
Densities of coalescing particle systems

Jinjiong Yu

East China Normal University

THU-PKU-BNU Probability Webinar

Nov 4, 2020



Coalescing particle systems

Let (X̃ x
t )t≥0 be a random walk or random motion in a space E ,

starting from X̃0 = x .

Let {X̃ xn}∞n=1 be independent. Define

X x1 = X̃ x1 ,

τn = inf{t : X̃ xn
t = X xk

t for some k < n} (n ≥ 2),

Kn = inf{k : X̃ xn = X xk} (n ≥ 2),

X xn (t) =

{
X̃ xn (t) t < τn,

X xKn (t) t ≥ τn,
(n ≥ 2).

(X xn : n ≥ 1) is a coalescing particle system.

Write ξA
t := {X x

t : x ∈ A} where A ⊂ E .



Coalescing particle systems

Question:

As t →∞, what is the density of the particle system (ξA
t )t≥0 at given

points y1, . . . , yn?

If E is discrete such as E = Zd , then

ρn(y1, . . . , yn; t) = P(y1, . . . , yn ∈ ξA
t )

If E is continuous such as E = Rd , then

ρn(y1, . . . , yn; t)dy1 . . . dyn = P(dy1, . . . , dyn ∈ ξA
t )

As t →∞,

ρn(y1, . . . , yn; t) ∼ c(y1, . . . , yn)t−α(n)?



Coalescing Brownian motions in R

ξZt = {Bx
t : x ∈ Z}, where Bx is a Brownian motion with Bx

0 = x .

ρ1(t) ∼ Ct−1/2.

Coalescing simple random walks (ξA
t )t≥0 is dual to a voter model

(ζB
t )t≥0 in the sense that

P(B ∩ ξA
t 6= ∅) = P(ζB

t ∩ A 6= ∅),
where the generator of ζB is

A 7→ A ∪ {x} (x /∈ A) at rate 1
2

∣∣{y ∈ A : |y − x | = 1}
∣∣,

A 7→ A \ {x} (x ∈ A) at rate 1
2

∣∣{y ∈ Ac : |y − x | = 1}
∣∣.

P(0 ∈ ξZt ) = P(ζ0
t 6= ∅)

(|ζ0
t |)t≥0 is a simple random walk

}
⇒ ρ1(t) ∼ Ct−1/2.
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Coalescing Brownian motions in R

Figure: Duality between coalescing random walks and the voter model



Coalescing Brownian motions in R
[MRTZ ’06] Given y1, . . . , yn, there exist C1 < C2 such that

C1 ≤
ρn(y1, . . . , yn; t)

t−n/2−n(n−1)/4
∏

i<j |yi − yj |
≤ C2.

Key tool: The Karlin-McGregor formula.
Transition kernel for non-intersecting Brownian motions

Kt(x, y) =

∣∣∣∣∣∣∣
Kt(x1, y1) . . . Kt(x1, yn)

...
...

Kt(xn, y1) . . . Kt(xn, yn)

∣∣∣∣∣∣∣
where Kt(x , y) = (2πt)−1/2e−|y−x|2/2t .
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Coalescing Brownian motions in R

[TZ ’11] If supi |yi | � t1/2, then as t →∞,

ρ2n(y1, . . . , y2n; t) ∼ (4π)−n/2Pf(J(2n)(φ))t−n−n(2n−1)/2
∏
i<j

|yi−yj |,

where φ(x) = x exp{−x2/4}, J(2n)(φ) is the 2n × 2n
anti-symmetric matrix with entries (1 ≤ i < j ≤ 2n)

J(2n)
ij (φ) = (−1)j−1 1

(i − 1)!(j − 1)!

di+j−2φ

dx i+j−2 (0),

and Pf(A) is the Paffian of the matrix A given by

Pf(A) =
∑
σ∈Σ2n

sgn(σ)ai1 j1 . . . ain jn ,

where Σ2n is the set of permutations of {1, . . . , 2n} with
σ(2k − 1) = ik , σ(2k) = jk , ik < jk and i1 < . . . < in.



Coalescing Brownian motions in R

1) A thinning relation between cBMs and annihilating BMs.
cBMs: B + B → B aBMs: B + B → ∅
Let Θ(A) be the random subset of A by thinning at rate 1/2.

Θ(ξA
t )

d
= η

Θ(A)
t : aBMs at time t with initial condition Θ(A)



Coalescing Brownian motions in R

2) Duality between forward and backward Brownian webs.



Coalescing Brownian motions in R

1) + 2)⇒ Duality formulas:
For x1 < . . . < x2m and y1 < . . . < y2n, let

A = {xi : 1 ≤ i ≤ 2m} and B = {yi : 1 ≤ i ≤ 2n},
Let I(B) = (y1, y2) ∪ . . . ∪ (y2n−1, y2n).

P(ξA
t ∩ I(B) = ∅) = P(I(η̂B

t ) ∩ A = ∅),
By thinning the points in A,

E
[
(−1)|η

A
t ∩I(B)|] = E

[
(−1)|I(η̂

B
t )∩A|],



Coalescing Brownian motions in R

3) Pfaffian formulas for aBMs. Let

m(2n)
t (y1, . . . , y2n) = E

∏
x∈η̂B

t

g(x)

 ,
where g is a bounded measurable function. Then,

m(2n)
t (y1, . . . , y2n) = Pf

(
m(2)

t (yi , yj) : 1 ≤ i < j ≤ 2n
)
.

1) + 2) + 3)⇒
Differentiating w.r.t. y1, y3, . . . , y2n−1 and letting y2i ↓ y2i−1, we get

P(dy1, dy3, . . . , dy2n−1 ∈ ξZt ) = P(dy1, dy3, . . . , dy2n−1 ∈ ξRt )
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Annihilating Brownian motions in R
Using thinning relation, one can obtain results on aBMs if the
corresponding results on cBMs are known.

Maximal Entrance Law

ξ
1
nZ+{0, 1

2n }
t → ξRt , ξ

1
nZ+{0, 1

n2 }
t → ξ̃ Rt ⇒ ξRt

d
= ξ̃ Rt

η
1
nZ+{0, 1

2n }
t → ηRt , η

1
nZ+{0, 1

n2 }
t → η̃ R

t ⇒ ηRt
d
6= η̃ R

t
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Annihilating Brownian motions in R

Identify aBMs with a measure-valued process (µt)t≥0.

Let µt(dx) = Ut(x)m(dx) with Ut : R→ [0, 1] the density w.r.t.
the Lebesgue measure.
Let (1− µ)t(dx) = (1− Ut(x))m(dx).
Define an equivalence relation ∼ identifying µ and 1− µ. Then,
there is a bijection between (µt)t≥0 with Ut ∈ {0, 1} and aBMs
(ηA

t ) with A a discrete set.

µt is an random element inM1(R) endowed with the vague
topology.
Define the quotient space V =M1(R)/ ∼.
ABMs starting from a discrete set is a process taking values in

Vd := {µ ∈ V : U(x) = 0 or 1}.
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Annihilating Brownian motions in R

[HOV ’18] For any entrance law (νt)t>0 for the semigroup (Pt)t≥0

of aBMs there exists a sequence (νn)n∈N of probability measures
on Vd such that

νt = lim
n→∞

νnPt , t > 0.



Annihilating Brownian motions in R

(a) (b) [U] = [ 1
2 ] (c) [U]=[0] (d) [U] = [ 1

4 ]



Coalescing simple random walks on Zd

ρn(y1, . . . , yn; t) = P(y1, . . . , yn ∈ ξZ
d

t )

[BG ’80] ρ1(t) ∼


1
π

log t
t , d = 2;

1
γd

1
t , d ≥ 3,

where γd = P(X 1
t 6= 0 for all t > 0).

An analysis on survival probability P(|ζ0
t | > 0) of the dual voter

model which starts from the origin.

[BK ’00, BK ’02] redo ρ1(t) for d ≥ 3 by building the effective rate
equation d

dt ρ1(t) = −λρ2
1(t).



Coalescing simple random walks on Zd

[LTZ ’18] For d ≥ 2,

ρn(y1, . . . , yn; t) ∼ ρn
1(t) pNC(y1, . . . , yn; t),

where pNC is the noncollision probability

P(no pair of random walks meets by time t).

In particular, for d = 2,

ρn(y1, . . . , yn; t) ∼ c(y1, . . . , yn)

πn t−n(log t)n−n(n−1)/2.

It is conjectured that

c(y1, . . . , yn) =
∏
i<j

log
(
|yi − yj |2

)
.



Coalescing simple random walks on Zd



Coalescing simple random walks on Zd

For 1� s � t ,

ρn(y; t) =
∑

x∈Zd ,xi 6=xj

ρn(x; t − s) pNC(y, x; s)

≈
∑

x∈Zd ,xi 6=xj

ρn(x; t − s) ps(y, x) pNC(s)

≈
∑
x∈Zd

ρn(x; t − s) ps(x) pNC(s)

= E
[
(
∑
x∈Z

ps(x)1{x∈ξt−s})
n] pNC(s)

≈ ρn
1(t) pNC(t).

The noncollision probability pNC(t) ∼ c(y1, . . . , yn)(log t)−n(n−1)/2 is
obtained in [CMP ’10, LTZ ’18].



Coalescing heavy-tailed random walks in R

The underlying random walk X is a heavy-tailed random walks with
increments in the domain of attraction of the α-stable law for some
α ∈ (0, 2). Initial condition is Z.

[Y. ’20+] For α ∈ (0, 1],

ρn(y1, . . . , yn; t) ∼ ρn
1(t) pNC(y1, . . . , yn; t).

For α ∈ (1, 2), ρn(y1, . . . , yn; t) is unknown.

1 The system is not integrable.

2 The n-point correlation is crucial for α > 1.
Asymptotics for pNC(y1, . . . , yn; t) is not known. Indeed, it is not
known even for pNC(y1, y2, y3; t).



Coalescing stable processes in R

The underlying random motion X is an α-stable process with α > 1.

[EMS ’13] (ξRt )t≥0 has the phenomenon of ‘coming down from
infinity’, i.e., ξRt is locally finite for any t > 0.

Observations:

There exist β, p > 0 such that

|x1 − x2| < ε ⇒ P(X 1
s = X 2

s for some 0 ≤ s ≤ βεα) ≥ p.

Assume the processes are living in the circle S1 with perimeter C.

|A| > n ⇒ |x1 − x2| ≤ Cn−1.

The collision probability for some pair of ξA
t within [0, βCαn−α] is

at least p.

P(τ n+1
n ≥ kβCαn−α) ≤ (1− p)k .



Coalescing stable processes in R

P(τA
n ≥ t) ≤ t−1

|A|∑
m=n

E[τm+1
m ] ≤ ct−1

∑
m≥n

m−α ≤ ct−1n1−α.

Choose finite An ↑ A, where A is a countable dense subset of S1.
Then, ξAn

t ↑ ξS1

t with P(τS1

K ≥ t) ≤ ct−1K 1−α.

To replace the initial condition S1 by an bounded interval I ⊂ R,
one can choose I ⊂ It ⊂ I2t ⊂ . . . such that
|I(n+1)t |/|Int | = 1 + o(1), and ξI

nt ⊂ Int with high probability.

To start from the whole real line R, find disjoint bounded intervals
∪iJi = R. If Ji is far away from J, then it is unlikely that

ξJi
t ∩ J 6= ∅ (t ≤ T ).



Coalescing Brownian motions in the Sierpinski triangle
Coming down from infinity holds.



Thank You!
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