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Coalescing particle systems

@ Let (X))o be a random walk or random motion in a space E,
starting from Xy = x.

o Let {X*}>° be independent. Define
XX = )~(X1
= inf{t : X" = X% for some k < n} (n>2),
K, = inf{k : X*» = X*} (n>2),
X*(t)  t< T,
X*(t) = 0 " (n>2).
X% (t) t> Tp,
(X* : n > 1) is a coalescing particle system.
o Write £/ := {X*: x € A} where A C E.



Coalescing particle systems

Question:
As t — o0, what is the density of the particle system (5,“)120 at given

points y1,...,yn?
@ If E is discrete such as E = 72, then

Pn(}’hn-y}’n;t) :P(y1,--.,yn eé‘;‘\)
@ If E is continuous such as E = R?, then

on(V1s - Ym Odys . dy, = P(dyy, ..., dy, € &)

Ast — oo,

pa(yrs - ymit) ~ eyt



Coalescing Brownian motions in R

o ¢ = {BY: x € Z}, where B is a Brownian motion with BY = x.
o pi(t) ~ Ct™1/2,



Coalescing Brownian motions in R

o ¢ = {BY: x € Z}, where B is a Brownian motion with BY = x.
o pi(t) ~ Ct™1/2,

Coalescing simple random walks (££')¢>o is dual to a voter model
(¢B)t>0 in the sense that

P(BNE&H #0) =P(¢FNA#D),
where the generator of (& is
A AU{x} (x¢A) atrate J|[{y € A: |y — x| =1}|,
A A\{x} (x€A) atrate J|{y € A°:|y—x| =1}




Coalescing Brownian motions in R

o (& = {B¥: x € Z}, where B* is a Brownian motion with B} = x.
o pi(t) ~ Ct™1/2,

Coalescing simple random walks (££')¢>o is dual to a voter model
(¢B)t>0 in the sense that

P(BNE #0) =P((FNA#D),
where the generator of (8 is
A AU{x} (x¢A) atrate J|[{y € A: |y — x| =1}|,
A A\{x} (x€A) atrate J|{y € A°:|y—x| =1}

P(0 € &) =P(CP # 0) e
(I¢?)t=0 is a simple random walk = p(t) ~ Gt



Coalescing Brownian motions in R
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Figure: Duality between coalescing random walks and the voter model



Coalescing Brownian motions in R
@ [MRTZ'06] Given y1, ..., ¥n, there exist C; < C; such that

Pn(}’h e Ym t)
C < < C.
A )




Coalescing Brownian motions in R
@ [MRTZ'06] Given y1, ..., ¥n, there exist C; < C; such that

Pn(}’h e Ym t)
C < < C.
A ] i

Key tool: The Karlin-McGregor formula.
Transition kernel for non-intersecting Brownian motions

Ki(x1,y1) .. Ki(x1,¥n)

Ki(x,y) = : :
Ki(Xny y1) oo Ki(Xn, yin)

where Ki(x, y) = (2rt)~"/2e=ly—xP/2t,

t N Y3, Js



Coalescing Brownian motions in R

o [TZ'11]lf sup; |y;| < t'/2, thenas t — oo,

pen(Y1.- -, Yomi 1) ~ (4)~2PH(UED (9)) "D T T |y,

i<j
where ¢(x) = x exp{—x2/4}, J@")(¢) is the 2n x 2n
anti-symmetric matrix with entries (1 <7 < j < 2n)
) 1 di+/*2¢
JE () = (—1) — (0
U (d)) ( ) (1—1)|(j—1)|dxl+j_2( )?
and Pf(A) is the Paffian of the matrix A given by
Pf(A) = Z sgn(o)aij, - - - @y
OEY o

where ¥, is the set of permutations of {1, ...,2n} with
o(2k —1) =ik, 0(2k) = jx, ik < jkand iy < ... <.




Coalescing Brownian motions in R

1) A thinning relation between cBMs and annihilating BMs.
cBMs: B+ B — B aBMs: B+ B — ()

Let ©(A) be the random subset of A by thinning at rate 1/2.
o(¢&h) 4 77?(A) : aBMs at time t with initial condition ©(A)



Coalescing Brownian motions in R

2) Duality between forward and backward Brownian webs.

Tirme




Coalescing Brownian motions in R

1) 4+ 2) = Duality formulas:
Forx; <...<xomandy; <...< yop,let

A={xi:1<i<2m} and B={yi:1<i<2n},
Let I(B) = (V1,¥2) U... U (Yan—1, Yon)-
P& N 1I(B) = 0) =P(I(77) N A=0),
By thinning the points in A,
E[(,1)\'/?ﬂ/(5)q _ E[(q)\/(ﬁ?)ﬁ%\\}



Coalescing Brownian motions in R

3) Pfaffian formulas for aBMs. Let

2
M (i, ven) =E | [[ o]
xen?
where g is a bounded measurable function. Then,

mE (yi, .. yen) = Pf(mﬁz)(yhy/) 11 <i<j<2n).



Coalescing Brownian motions in R

3) Pfaffian formulas for aBMs. Let

2
M (i, ven) =E | [[ o]
xen?
where g is a bounded measurable function. Then,

mE (yi, .. yen) = Pf(mﬁz)(yuy/) 11 <i<j<2n).

1)+2)+3)=
Differentiating w.r.t. y1, ¥3, ..., Yan_1 and letting y»; | y2i_1, we get

]P)(dy1 ; d}/3, cee 7dy2nf1 € gtz) = P(d}ﬁ ) dy37 s )dy2nf1 S 51]‘1%)



Annihilating Brownian motions in R
Using thinning relation, one can obtain results on aBMs if the
corresponding results on cBMs are known.
@ Maximal Entrance Law

l ’2n +{0’ }
& a0 }_>£t7 5: ”

1Z+ 0, ; +{07i} ~ ~
gm0 e n?#nfR

SR SR
=& = 5t =&t



Annihilating Brownian motions in R
Using thinning relation, one can obtain results on aBMs if the
corresponding results on cBMs are known.
@ Maximal Entrance Law

17+4{0,5} Z+{0,%} = ~
& et ft ) 5: # — gtR = 5t = t]R

17+{0,1} 17+{0,5} . -
iR g, oy U =it = f + i

t

wl




Annihilating Brownian motions in R

@ Identify aBMs with a measure-valued process (1i¢)t>o-

Let us(dx) = Us(x)m(dx) with U; : R — [0, 1] the density w.r.t.
the Lebesgue measure.

Let (1 — u)¢(dx) = (1 — Ui(x))m(dx).

Define an equivalence relation ~ identifying © and 1 — . Then,
there is a bijection between ()0 with U; € {0, 1} and aBMs
(nf') with A a discrete set.



Annihilating Brownian motions in R

@ Identify aBMs with a measure-valued process (1i¢)t>o-

Let us(dx) = Us(x)m(dx) with U; : R — [0, 1] the density w.r.t.
the Lebesgue measure.

Let (1 — u)¢(dx) = (1 — Ui(x))m(dx).

Define an equivalence relation ~ identifying © and 1 — . Then,
there is a bijection between ()0 with U; € {0, 1} and aBMs
(nf') with A a discrete set.

¢ is an random element in M;(R) endowed with the vague

topology.
Define the quotient space V = M1(R)/ ~.
ABMs starting from a discrete set is a process taking values in

Va:={pueV:Ux)=0or1}.



Annihilating Brownian motions in R

@ [HOV '18] For any entrance law ()¢ for the semigroup (P;)r>0
of aBMs there exists a sequence (v") ¢y of probability measures
on Vq such that

vi = lim v"P;, t>0.

n—oo



Annihilating Brownian motions in R

ML

(@) x) =17

(b) x$2 ~ PPP(n)

3

T
(© %7 = $2+ {0, %}

(@ =1z +{0, 1}
(@) (b) [U] = [3] (o) [Ul=[0] (d) [U] = [3]
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Coalescing simple random walks on Z¢

pa(Vis s Ymi ) = P(ya, ..,y € EF°)

t

)

lo
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d
o [BG'80] pi(t) ~ J

Q‘..:!

1
at’

\ V

where 74 = P(X]' # 0forall t > 0).

An analysis on survival probability P(|¢?| > 0) of the dual voter
model which starts from the origin.

@ [BK 00, BK02] redo p1(t) for d > 3 by building the effective rate
equation & p1(t) = —\p2(t).



Coalescing simple random walks on Z¢

@ [LTZ’18] Ford > 2,
pr(Yas -5 Yoi ) ~ p5(8) pne(Vis - - - Vi b)),
where pnc is the noncollision probability
[P(no pair of random walks meets by time t).
In particular, for d = 2,

c(yis ..., -
pn(yh---;yn; t)’\'(y1ﬂ_nyn) (|Ogt)n n(n 1)/2.

It is conjectured that

}/17---7Yn H'Og |yl yj
i<j



Coalescing simple random walks on Z¢

LI



Coalescing simple random walks on Z¢

For1 < s < i,

pn(y; t) = Z pn(X; t— S) pNC(Va X; S)

XEZI Xi#x;

~ Y palxit—s)ps(y, X) puc(s)
XEZY xi#x;

~ Y pa(X;t = 5) ps(x) pne(s)
xeZzZd

= E[(Z pS(X)‘I {xeér_s})n] pNC(S)

XEZ

~ pi(t) pac(t).

The noncollision probability pxc(t) ~ ¢(y1, . . ., yn)(log t)~"("=1)/2 is
obtained in [CMP "10, LTZ ’18].



Coalescing heavy-tailed random walks in R

The underlying random walk X is a heavy-tailed random walks with
increments in the domain of attraction of the a-stable law for some
a € (0,2). Initial condition is Z.
@ [Y.’20™] For « € (0, 1],
Pn(}’1 yoe Ym t) ~ p?(t) pNC(Yh e Ym t)

@ Fora € (1,2), pn(¥i, ..., yn t)is unknown.
@ The system is not integrable.

@ The n-point correlation is crucial for o > 1.
Asymptotics for pnc(yi, - - -, Ya; t) is not known. Indeed, it is not
known even for pxc(vi, Ve, ¥a; t).



Coalescing stable processes in R

The underlying random motion X is an a-stable process with o > 1.

@ [EMS ’13] (&)r>0 has the phenomenon of ‘coming down from
infinity’, i.e., S,R is locally finite for any t > 0.

Observations:
@ There exist 3, p > 0 such that
¥ —xo| <e = P(X!=X:forsome0 <s< B >p.
@ Assume the processes are living in the circle S' with perimeter C.
JAl>n = |x—x|<cnl
The collision probability for some pair of £ within [0, 3C*n~] is
at least p.
o P(r1 > kBC*n=) < (1 — p)X.



Coalescing stable processes in R

Al
o P(ri>t) <t ) E[rpt <ot m <t 'n'e
m=n m>n

@ Choose finite A, 1 A, where A is a countable dense subset of S'.
Then, & 1 €5 with P(r$' > 1) < et 1K',

@ To replace the initial condition S' by an bounded interval / C R,
one can choose | C Iy C Iy C ... such that
Hens)el /el = 1+ 0(1), and &}, C Iy with high probability.

@ To start from the whole real line R, find disjoint bounded intervals
Uid; = R. If J; is far away from J, then it is unlikely that

E'NJd#AD (t<T).



Coalescing Brownian motions in the Sierpinski triangle
Coming down from infinity holds.




Thank You!
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