Densities of coalescing particle systems

Jinjiong Yu East China Normal University

THU-PKU-BNU Probability Webinar

Nov 4, 2020

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Coalescing particle systems

- Let (X̃^x_t)_{t≥0} be a random walk or random motion in a space *E*, starting from X̃₀ = *x*.
- Let $\{\widetilde{X}^{x_n}\}_{n=1}^{\infty}$ be independent. Define

$$egin{aligned} X^{x_1} &= X^{x_1}, \ & au_n &= \inf\{t: \widetilde{X}_t^{x_n} = X_t^{x_k} ext{ for some } k < n\} & (n \geq 2), \ & au_n &= \inf\{k: \widetilde{X}^{x_n} = X^{x_k}\} & (n \geq 2), \ & au_n^{x_n}(t) &= \left\{ egin{aligned} \widetilde{X}^{x_n}(t) & t < au_n, \ & au_n^{x_{k_n}}(t) & t \geq au_n, \end{aligned}
ight. \ \end{aligned}$$

 $(X^{x_n} : n \ge 1)$ is a coalescing particle system.

• Write $\xi_t^A := \{X_t^x : x \in A\}$ where $A \subset E$.

Coalescing particle systems

Question:

As $t \to \infty$, what is the density of the particle system $(\xi_t^A)_{t\geq 0}$ at given points y_1, \ldots, y_n ?

• If *E* is discrete such as $E = \mathbb{Z}^d$, then

$$\rho_n(\mathbf{y}_1,\ldots,\mathbf{y}_n;t) = \mathbb{P}(\mathbf{y}_1,\ldots,\mathbf{y}_n \in \xi_t^A)$$

• If *E* is continuous such as $E = \mathbb{R}^d$, then

$$\rho_n(\mathbf{y}_1,\ldots,\mathbf{y}_n;t)\mathrm{d}\mathbf{y}_1\ldots\mathrm{d}\mathbf{y}_n=\mathbb{P}(\mathrm{d}\mathbf{y}_1,\ldots,\mathrm{d}\mathbf{y}_n\in\xi_t^A)$$

As $t \to \infty$,

$$\rho_n(\mathbf{y}_1,\ldots,\mathbf{y}_n;t)\sim \mathbf{c}(\mathbf{y}_1,\ldots,\mathbf{y}_n)t^{-\alpha(n)}?$$

• $\xi_t^{\mathbb{Z}} = \{B_t^x : x \in \mathbb{Z}\}$, where B^x is a Brownian motion with $B_0^x = x$. • $\rho_1(t) \sim Ct^{-1/2}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• $\xi_t^{\mathbb{Z}} = \{B_t^x : x \in \mathbb{Z}\}$, where B^x is a Brownian motion with $B_0^x = x$. • $\rho_1(t) \sim Ct^{-1/2}$.

Coalescing simple random walks $(\xi_t^A)_{t\geq 0}$ is dual to a voter model $(\zeta_t^B)_{t\geq 0}$ in the sense that

$$\mathbb{P}(B \cap \xi_t^A \neq \emptyset) = \mathbb{P}(\zeta_t^B \cap A \neq \emptyset),$$

where the generator of ζ^{B} is

 $\begin{aligned} A &\mapsto A \cup \{x\} \quad (x \notin A) \quad \text{at rate } \frac{1}{2} \big| \{y \in A : |y - x| = 1\} \big|, \\ A &\mapsto A \setminus \{x\} \quad (x \in A) \quad \text{at rate } \frac{1}{2} \big| \{y \in A^c : |y - x| = 1\} \big|. \end{aligned}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\xi_t^{\mathbb{Z}} = \{B_t^x : x \in \mathbb{Z}\}$, where B^x is a Brownian motion with $B_0^x = x$. • $\rho_1(t) \sim Ct^{-1/2}$.

Coalescing simple random walks $(\xi_t^A)_{t\geq 0}$ is dual to a voter model $(\zeta_t^B)_{t\geq 0}$ in the sense that

$$\mathbb{P}(B \cap \xi_t^A \neq \emptyset) = \mathbb{P}(\zeta_t^B \cap A \neq \emptyset),$$

where the generator of ζ^{B} is

 $\begin{array}{ll} A \mapsto A \cup \{x\} & (x \notin A) \quad \text{at rate } \frac{1}{2} \big| \{y \in A : |y - x| = 1\} \big|, \\ A \mapsto A \setminus \{x\} & (x \in A) \quad \text{at rate } \frac{1}{2} \big| \{y \in A^c : |y - x| = 1\} \big|. \end{array}$

$$\left. \begin{array}{l} \mathbb{P}(0 \in \xi_t^{\mathbb{Z}}) = \mathbb{P}(\zeta_t^0 \neq \emptyset) \\ (|\zeta_t^0|)_{t \geq 0} \text{ is a simple random walk} \end{array} \right\} \Rightarrow \rho_1(t) \sim Ct^{-1/2}.$$

Coalescing Brownian motions in $\ensuremath{\mathbb{R}}$

Figure: Duality between coalescing random walks and the voter model

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

• [MRTZ '06] Given y_1, \ldots, y_n , there exist $C_1 < C_2$ such that

$$C_1 \leq rac{
ho_n(y_1,\ldots,y_n;t)}{t^{-n/2-n(n-1)/4}\prod_{i< j}|y_i-y_j|} \leq C_2.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• [MRTZ '06] Given y_1, \ldots, y_n , there exist $C_1 < C_2$ such that

$$C_1 \leq rac{
ho_n(y_1, \ldots, y_n; t)}{t^{-n/2 - n(n-1)/4} \prod_{i < j} |y_i - y_j|} \leq C_2.$$

Key tool: The Karlin-McGregor formula.

Transition kernel for non-intersecting Brownian motions

$$K_t(\mathbf{x}, \mathbf{y}) = \begin{vmatrix} K_t(x_1, y_1) & \dots & K_t(x_1, y_n) \\ \vdots & & \vdots \\ K_t(x_n, y_1) & \dots & K_t(x_n, y_n) \end{vmatrix}$$

where $K_t(x, y) = (2\pi t)^{-1/2} e^{-|y-x|^2/2t}$.

• [TZ '11] If
$$\sup_i |y_i| \ll t^{1/2}$$
, then as $t \to \infty$,
 $\rho_{2n}(y_1, \dots, y_{2n}; t) \sim (4\pi)^{-n/2} \operatorname{Pf}(J^{(2n)}(\phi)) t^{-n-n(2n-1)/2} \prod_{i < j} |y_i - y_j|,$

where $\phi(x) = x \exp\{-x^2/4\}$, $J^{(2n)}(\phi)$ is the $2n \times 2n$ anti-symmetric matrix with entries $(1 \le i < j \le 2n)$

$$J_{ij}^{(2n)}(\phi) = (-1)^{j-1} \frac{1}{(i-1)!(j-1)!} \frac{\mathrm{d}^{i+j-2}\phi}{\mathrm{d}x^{i+j-2}}(0),$$

and Pf(A) is the Paffian of the matrix A given by

$$\mathsf{Pf}(\mathsf{A}) = \sum_{\sigma \in \Sigma_{2n}} \mathsf{sgn}(\sigma) a_{i_1 j_1} \dots a_{i_n j_n},$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where Σ_{2n} is the set of permutations of $\{1, \ldots, 2n\}$ with $\sigma(2k-1) = i_k, \ \sigma(2k) = j_k, \ i_k < j_k \text{ and } i_1 < \ldots < i_n$.

1) A thinning relation between cBMs and annihilating BMs. cBMs: $B + B \rightarrow B$ aBMs: $B + B \rightarrow \emptyset$

Let $\Theta(A)$ be the random subset of A by thinning at rate 1/2.

 $\Theta(\xi_t^A) \stackrel{d}{=} \eta_t^{\Theta(A)}$: aBMs at time *t* with initial condition $\Theta(A)$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

2) Duality between forward and backward Brownian webs.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

1) + 2) \Rightarrow Duality formulas: For $x_1 < \ldots < x_{2m}$ and $y_1 < \ldots < y_{2n}$, let $A = \{x_i : 1 \le i \le 2m\}$ and $B = \{y_i : 1 \le i \le 2n\}$, Let $I(B) = (y_1, y_2) \cup \ldots \cup (y_{2n-1}, y_{2n})$. $\mathbb{P}(\xi_t^A \cap I(B) = \emptyset) = \mathbb{P}(I(\hat{\eta}_t^B) \cap A = \emptyset)$,

By thinning the points in A,

$$\mathbb{E}\big[(-1)^{|\eta_t^A \cap I(B)|}\big] = \mathbb{E}\big[(-1)^{|I(\hat{\eta}_t^B) \cap A|}\big],$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3) Pfaffian formulas for aBMs. Let

$$m_t^{(2n)}(y_1,\ldots,y_{2n})=\mathbb{E}\left[\prod_{x\in\hat{\eta}_t^B}g(x)
ight],$$

where g is a bounded measurable function. Then,

$$m_t^{(2n)}(y_1, \ldots, y_{2n}) = \Pr(m_t^{(2)}(y_i, y_j) : 1 \le i < j \le 2n).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

3) Pfaffian formulas for aBMs. Let

$$m_t^{(2n)}(y_1,\ldots,y_{2n})=\mathbb{E}\left[\prod_{x\in\hat{\eta}_t^B}g(x)
ight],$$

where g is a bounded measurable function. Then,

$$m_t^{(2n)}(y_1, \ldots, y_{2n}) = \Pr(m_t^{(2)}(y_i, y_j) : 1 \le i < j \le 2n)$$

1) + 2) + 3) \Rightarrow Differentiating w.r.t. $y_1, y_3, \dots, y_{2n-1}$ and letting $y_{2i} \downarrow y_{2i-1}$, we get

$$\mathbb{P}(\mathrm{d} y_1, \mathrm{d} y_3, \ldots, \mathrm{d} y_{2n-1} \in \xi_t^{\mathbb{Z}}) = \mathbb{P}(\mathrm{d} y_1, \mathrm{d} y_3, \ldots, \mathrm{d} y_{2n-1} \in \xi_t^{\mathbb{R}})$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

Using thinning relation, one can obtain results on aBMs if the corresponding results on cBMs are known.

Maximal Entrance Law

$$\begin{split} \xi_t^{\frac{1}{n}\mathbb{Z}+\{0,\frac{1}{2n}\}} &\to \xi_t^{\mathbb{R}}, \quad \xi_t^{\frac{1}{n}\mathbb{Z}+\{0,\frac{1}{n^2}\}} \to \tilde{\xi}_t^{\mathbb{R}} \quad \Rightarrow \quad \xi_t^{\mathbb{R}} \stackrel{\mathrm{d}}{=} \tilde{\xi}_t^{\mathbb{R}} \\ \eta_t^{\frac{1}{n}\mathbb{Z}+\{0,\frac{1}{2n}\}} &\to \eta_t^{\mathbb{R}}, \quad \eta_t^{\frac{1}{n}\mathbb{Z}+\{0,\frac{1}{n^2}\}} \to \tilde{\eta}_t^{\mathbb{R}} \quad \Rightarrow \quad \eta_t^{\mathbb{R}} \stackrel{\mathrm{d}}{=} \tilde{\eta}_t^{\mathbb{R}} \end{split}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using thinning relation, one can obtain results on aBMs if the corresponding results on cBMs are known.

Maximal Entrance Law

$$\xi_{t}^{\frac{1}{n}\mathbb{Z}+\{0,\frac{1}{2n}\}} \to \xi_{t}^{\mathbb{R}}, \quad \xi_{t}^{\frac{1}{n}\mathbb{Z}+\{0,\frac{1}{n^{2}}\}} \to \tilde{\xi}_{t}^{\mathbb{R}} \quad \Rightarrow \quad \xi_{t}^{\mathbb{R}} \stackrel{d}{=} \tilde{\xi}_{t}^{\mathbb{R}}$$

$$\eta_{t}^{\frac{1}{n}\mathbb{Z}+\{0,\frac{1}{2n}\}} \to \eta_{t}^{\mathbb{R}}, \quad \eta_{t}^{\frac{1}{n}\mathbb{Z}+\{0,\frac{1}{n^{2}}\}} \to \tilde{\eta}_{t}^{\mathbb{R}} \quad \Rightarrow \quad \eta_{t}^{\mathbb{R}} \stackrel{d}{\neq} \tilde{\eta}_{t}^{\mathbb{R}}$$

Identify aBMs with a measure-valued process (µ_t)_{t≥0}.

Let $\mu_t(dx) = U_t(x)m(dx)$ with $U_t : \mathbb{R} \to [0, 1]$ the density w.r.t. the Lebesgue measure. Let $(1 - \mu)_t(dx) = (1 - U_t(x))m(dx)$. Define an equivalence relation \sim identifying μ and $1 - \mu$. Then, there is a bijection between $(\mu_t)_{t\geq 0}$ with $U_t \in \{0, 1\}$ and aBMs (η_t^A) with A a discrete set.

• Identify aBMs with a measure-valued process $(\mu_t)_{t\geq 0}$.

Let $\mu_t(dx) = U_t(x)m(dx)$ with $U_t : \mathbb{R} \to [0, 1]$ the density w.r.t. the Lebesgue measure.

Let $(1 - \mu)_t(dx) = (1 - U_t(x))m(dx)$.

Define an equivalence relation \sim identifying μ and $1 - \mu$. Then, there is a bijection between $(\mu_t)_{t\geq 0}$ with $U_t \in \{0, 1\}$ and aBMs (η_t^A) with A a discrete set.

 μ_t is an random element in $\mathcal{M}_1(\mathbb{R})$ endowed with the vague topology.

Define the quotient space $\mathcal{V} = \mathcal{M}_1(\mathbb{R})/\sim$.

ABMs starting from a discrete set is a process taking values in

$$\mathcal{V}_{\mathrm{d}} := \{ \mu \in \mathcal{V} : U(x) = 0 \text{ or } 1 \}.$$

[HOV '18] For any entrance law (ν_t)_{t>0} for the semigroup (P_t)_{t≥0} of aBMs there exists a sequence (νⁿ)_{n∈N} of probability measures on V_d such that

$$\nu_t = \lim_{n \to \infty} \nu^n P_t, \quad t > 0.$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

(a) (b) $[U] = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (c) [U]=[0] (d) $[U] = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$

$$\rho_n(\mathbf{y}_1,\ldots,\mathbf{y}_n;t) = \mathbb{P}(\mathbf{y}_1,\ldots,\mathbf{y}_n \in \xi_t^{\mathbb{Z}^d})$$

• [BG '80]
$$\rho_1(t) \sim \begin{cases} \frac{1}{\pi} \frac{\log t}{t}, & d=2; \\ \frac{1}{\gamma_d} \frac{1}{t}, & d \ge 3, \end{cases}$$

where
$$\gamma_d = \mathbb{P}(X_t^1 \neq 0 \text{ for all } t > 0).$$

An analysis on survival probability $\mathbb{P}(|\zeta_t^0| > 0)$ of the dual voter model which starts from the origin.

• [BK '00, BK '02] redo $\rho_1(t)$ for $d \ge 3$ by building the *effective rate* equation $\frac{d}{dt}\rho_1(t) = -\lambda \rho_1^2(t)$.

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

● [LTZ '18] For *d* ≥ 2,

 $\rho_n(\mathbf{y}_1,\ldots,\mathbf{y}_n;t) \sim \rho_1^n(t) \, \rho_{\mathrm{NC}}(\mathbf{y}_1,\ldots,\mathbf{y}_n;t),$

where $p_{\rm NC}$ is the noncollision probability

 $\mathbb{P}(\text{no pair of random walks meets by time } t)$.

In particular, for d = 2,

$$\rho_n(y_1,\ldots,y_n;t) \sim \frac{c(y_1,\ldots,y_n)}{\pi^n} t^{-n} (\log t)^{n-n(n-1)/2}.$$

It is conjectured that

$$c(y_1,\ldots,y_n) = \prod_{i< j} \log (|y_i - y_j|^2).$$

▲ロト▲舂と▲酒と▲酒と、酒、釣A@

For $1 \ll s \ll t$,

$$\rho_n(\mathbf{y}; t) = \sum_{\mathbf{x} \in \mathbb{Z}^d, x_i \neq x_j} \rho_n(\mathbf{x}; t - s) \, p_{\mathrm{NC}}(\mathbf{y}, \mathbf{x}; s)$$

$$\approx \sum_{\mathbf{x} \in \mathbb{Z}^d, x_i \neq x_j} \rho_n(\mathbf{x}; t - s) \, p_s(\mathbf{y}, \mathbf{x}) \, p_{\mathrm{NC}}(s)$$

$$\approx \sum_{\mathbf{x} \in \mathbb{Z}^d} \rho_n(\mathbf{x}; t - s) \, \rho_s(\mathbf{x}) \, p_{\mathrm{NC}}(s)$$

$$= \mathbb{E} \left[\left(\sum_{x \in \mathbb{Z}} p_s(x) \mathbf{1}_{\{x \in \xi_{t-s}\}} \right)^n \right] \, p_{\mathrm{NC}}(s)$$

$$\approx \rho_1^n(t) \, p_{\mathrm{NC}}(t).$$

The noncollision probability $p_{NC}(t) \sim c(y_1, \ldots, y_n)(\log t)^{-n(n-1)/2}$ is obtained in [CMP '10, LTZ '18].

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Coalescing heavy-tailed random walks in $\mathbb R$

The underlying random walk X is a heavy-tailed random walks with increments in the domain of attraction of the α -stable law for some $\alpha \in (0, 2)$. Initial condition is \mathbb{Z} .

- [Y. '20⁺] For $\alpha \in (0, 1]$, $\rho_n(y_1, \dots, y_n; t) \sim \rho_1^n(t) \rho_{\text{NC}}(y_1, \dots, y_n; t).$
- For $\alpha \in (1, 2)$, $\rho_n(y_1, \ldots, y_n; t)$ is unknown.
 - The system is not integrable.
 - The *n*-point correlation is crucial for α > 1. Asymptotics for p_{NC}(y₁,..., y_n; t) is not known. Indeed, it is not known even for p_{NC}(y₁, y₂, y₃; t).

Coalescing stable processes in $\mathbb R$

The underlying random motion X is an α -stable process with $\alpha > 1$.

[EMS '13] (ξ^ℝ_t)_{t≥0} has the phenomenon of 'coming down from infinity', i.e., ξ^ℝ_t is locally finite for any t > 0.

Observations:

There exist β, p > 0 such that |x₁ - x₂| < ε ⇒ P(X_s¹ = X_s² for some 0 ≤ s ≤ βε^α) ≥ p.
Assume the processes are living in the circle S¹ with perimeter C.

$$|A| > n \quad \Rightarrow \quad |x_1 - x_2| \leq Cn^{-1}.$$

The collision probability for some pair of ξ_t^A within $[0, \beta C^{\alpha} n^{-\alpha}]$ is at least p.

•
$$\mathbb{P}(\tau_n^{n+1} \ge k\beta C^{\alpha} n^{-\alpha}) \le (1-p)^k.$$

Coalescing stable processes in $\mathbb R$

•
$$\mathbb{P}(\tau_n^A \ge t) \le t^{-1} \sum_{m=n}^{|A|} \mathbb{E}[\tau_m^{m+1}] \le ct^{-1} \sum_{m\ge n} m^{-\alpha} \le ct^{-1} n^{1-\alpha}.$$

- Choose finite A_n ↑ A, where A is a countable dense subset of S¹. Then, ξ^{An}_t ↑ ξ^{S¹}_t with ℙ(τ^{S¹}_K ≥ t) ≤ ct⁻¹K^{1-α}.
- To replace the initial condition S¹ by an bounded interval *I* ⊂ ℝ, one can choose *I* ⊂ *I*_t ⊂ *I*_{2t} ⊂ ... such that |*I*_{(n+1)t}|/|*I*_{nt}| = 1 + o(1), and ξ^{*I*}_{nt} ⊂ *I*_{nt} with high probability.
- To start from the whole real line \mathbb{R} , find disjoint bounded intervals $\cup_i J_i = \mathbb{R}$. If J_i is far away from J, then it is unlikely that

 $\xi_t^{J_i} \cap J \neq \emptyset \quad (t \leq T).$

Coalescing Brownian motions in the Sierpinski triangle

Coming down from infinity holds.

Thank You!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○