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 Econometrica, Vol. 50, No. 4 (July, 1982)

 LARGE SAMPLE PROPERTIES OF GENERALIZED METHOD OF

 MOMENTS ESTIMATORS1

 BY LARS PETER HANSEN

 This paper studies estimators that make sample analogues of population orthogonality
 conditions close to zero. Strong consistency and asymptotic normality of such estimators is
 established under the assumption that the observable variables are stationary and ergodic.
 Since many linear and nonlinear econometric estimators reside within the class of estima-
 tors studied in this paper, a convenient summary of the large sample properties of these
 estimators, including some whose large sample properties have not heretofore been
 discussed, is provided.

 1. INTRODUCTION

 IN THIS PAPER we study the large sample properties of a class of generalized
 method of moments (GMM) estimators which subsumes many standard econo-
 metric estimators. To motivate this class, consider an econometric model whose

 parameter vector we wish to estimate. The model implies a family of orthogonal-

 ity conditions that embed any economic theoretical restrictions that we wish to
 impose or test. For example, assumptions that certain equations define projec-

 tions or that particular variables are predetermined give rise to orthogonality
 conditions in which expected cross products of unobservable disturbances and
 functions of observable variables are equated to zero. Heuristically, identification
 requires at least as many orthogonality conditions as there are coordinates in the
 parameter vector to be estimated. The unobservable disturbances in the orthogo-
 nality conditions can be replaced by an equivalent expression involving the true
 parameter vector and the observed variables. Using the method of moments,
 sample estimates of the expected cross products can be computed for any
 element in an admissible parameter space. A GMM estimator of the true
 parameter vector is obtained by finding the element of the parameter space that
 sets linear combinations of the sample cross products as close to zero as possible.

 In studying strong consistency of GMM estimators, we show how to construct
 a class of criterion functions with minimizers that converge almost surely to the
 true parameter vector. The resulting estimators have the interpretation of making
 the sample versions of the population orthogonality conditions as close as
 possible to zero according to some metric or measure of distance. We use the
 metric to index the alternative estimators. This class of estimators includes the
 nonlinear instrumental variables estimators considered by, among others,

 Amemiya [1, 2], Jorgenson and Laffont [24], and Gallant [11].2 There the

 'The author acknowledges helpful comments by Robert Avery, Robert Hodrick, V. Joseph Hotz,
 Dan Peled, Thomas Sargent, Katherine Schipper, Kenneth Singleton, Kenneth Wallis, Halbert White,
 and an anonymous referee. Special thanks are given to Christopher Sims who played a prominent
 role in the formulation of this paper.

 2We include versions of two- and three-stage least squares under the heading of instrumental
 variables procedures.
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 1030 LARS PETER HANSEN

 population orthogonality conditions equate expected cross products of instru-
 ments and serially independent disturbances to zero. In our treatment we work

 directly with expressions for the population orthogonality conditions and implic-
 itly permit the disturbance terms used in construction of the orthogonality
 conditions to be both serially correlated and conditionally heteroskedastic.3 We

 allow ourselves flexibility in choosing the distance measure because it permits
 choosing measures that are computationally convenient and because the choice

 of distance measure influences the asymptotic distribution of the resulting esti-
 mator.

 In studying asymptotic normality, we view estimation in a different but closely
 related fashion. We follow Sargan [29, 30] and consider estimators that have the
 interpretation of setting linear combinations of the sample orthogonality condi-
 tions to zero, at least asymptotically, where the number of linear combinations

 that are set to zero is equal to the number of coordinates in the parameter vector
 to be estimated. We index alternative estimators by an associated weighting
 matrix that selects the particular linear combinations of orthogonality conditions
 that are used in estimation. Since alternative weighting matrices give rise to
 estimators with alternative asymptotic covariance matrices, we describe how to
 obtain an asymptotically optimal weighting matrix. The estimators considered in
 our treatment of consistency are shown to reside in the class of estimators
 considered in our treatment of asymptotic normality by examining the first-order
 conditions of minimization problems used to construct the class of consistent
 estimators. It turns out, however, that our discussion of asymptotic normality is
 sufficiently general to include other consistent estimators that are obtained from
 minimizing or maximizing other criterion functions which have first-order condi-

 tions that satisfy the specification of our generic GMM estimator, e.g., least
 squares or quasi-maximum likelihood estimators. Again our discussion of large
 sample properties permits the disturbances implicitly used in the orthogonality
 conditions to be both conditionally heteroskedastic and serially correlated.4

 There are a variety of applications in which it is important to possess an
 asymptotic theory which accommodates these features. In testing market effi-
 ciency and the rationality of observed forecasts using least squares procedures,
 one oftentimes encounters situations in which the implied forecast interval

 3Sargan [30] treats the case in which disturbances can follow a low-order autoregression and can
 be filtered to remove serial correlation prior to the construction of the orthogonality conditions.
 White [34] discusses linear instrumental variables estimation in which observation vectors are
 independent but not necessarily identically distributed. White allows heteroskedasticity to exist both
 conditionally and unconditionally, but places restrictions on higher moments of observable and
 unobservable variables that are not needed in this paper. Here we think of heteroskedasticity
 emerging because of some implicit conditioning, do not impose independence, but maintain a
 stationarity assumption.

 4Engle [9] allows for conditional heteroskedasticity in regression models with serially uncorrelated
 disturbances. He proposes a maximum likelihood procedure for estimating such models when the
 form of the heteroskedasticity is specified a priori. White [32, 33, 34] has studied the asymptotic
 distribution of a variety of estimators for cross-sectional models which allow for both conditional and
 unconditional forms of heteroskedasticity. See Footnote 3.
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 LARGE SAMPLE PROPERTIES 1031

 exceeds the sampling interval giving rise to a serially correlated forecast error

 [4, 14, 17]. Least squares procedures can be used since the hypothetical forecast

 error should be orthogonal to the observed forecast and to any other variables in

 the information set of economic agents when the forecast is made. On the other
 hand, generalized least squares procedures can result in inconsistent parameter

 estimators (see Sims [31] and Hansen and Hodrick [17]). Brown and Maital [4],
 Hansen and Hodrick [17], and Hakkio [14] rely on the asymptotic distribution

 theory in this paper to carry out least squares estimation and inference for such
 models.

 Hansen and Sargent [18, 19] have considered linear rational expectations

 models in which economic agents are assumed to forecast infinite geometrically-

 declining sums of forcing variables and the econometrician employs only a

 subset of the variables in the information set of economic agents. The distur-

 bance terms in these models are serially correlated but orthogonal to current and

 past values of a subset of variables which are not strictly exogenous. Hansen and

 Sargent [18, 19] discuss how to apply the techniques developed in this paper to
 those rational expectations models. McCallum [28] has shown how other types of

 linear rational expectations models with disturbance terms that have low-order

 autoregressive representations lead to equations that can be estimated consis-

 tently using standard instrumental variables procedures. He notes, however, that

 the associated asymptotic distribution of the estimations has to be modified in
 the manner suggested in this paper to allow the disturbances to be serially

 correlated. In considering models like those studied by McCallum [28], Cumby,

 Huizinga, and Obstfeld [5] propose a two-step, two-stage least squares estimator

 that resides within the class of estimators examined in this paper.5
 Hansen and Singleton [20] have studied how to test restrictions and estimate

 parameters in a class of nonlinear rational expectations models. They construct

 generalized instrumental variables estimators from nonlinear stochastic Euler
 equations and note that the implied disturbance terms in these models are
 conditionally heteroskedastic and in many circumstances serially correlated.
 Their estimators are special cases of the generic GMM estimator of this paper.
 Finally, Avery, Hansen, and Hotz [3] describe how to use methods in this paper
 to obtain computationally convenient procedures for estimating multiperiod
 probit models. The vector disturbance term implicit in their orthogonality condi-

 tions also is conditionally heteroskedastic.

 In the examples described above, application of the techniques in this paper
 will not result in asymptotically efficient estimators. However, in these and other

 examples, a researcher may be willing to sacrifice asymptotic efficiency in
 exchange for not having to specify completely the nature of the serial correlation
 and/or heteroskedasticity or in exchange for computationally simpler estimation
 strategies. As noted above, we do provide a more limited optimality discussion

 5Cumby, Huizinga, and Obstfeld [5] proposed their estimator independently of this paper.
 However, their discussion of its asymptotic distribution exploited results in a precursor to this paper
 written by the author.
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 1032 LARS PETER HANSEN

 that is patterned after an approach taken by Sargan [29, 30] and can be easily
 exploited in practice.

 The organization of the paper is as follows. The second section provides some
 consistency results for the GMM estimator under various assumptions about the
 form of the econometric model. The third section discusses the asymptotic
 distribution of the GMM estimator and considers the construction of an asymp-
 totically optimal estimator among the class of estimators that exploit the same
 orthogonality conditions. The fourth section examines procedures for testing
 overidentifying restrictions using GMM estimation. Finally, the fifth section
 contains some concluding remarks.

 2. CONSISTENCY OF THE GMM ESTIMATOR

 In this section we specify our first form of the GMM estimator and provide
 some sufficient conditions that insure its almost sure convergence to the parame-
 ter vector that is being estimated. Let Q denote the set of sample points in the
 underlying probability space used in our estimation problem, and let E denote
 the associated expectations operator. We will be working with a p component
 stochastic process { x : n > 1 } defined on this probability space. A finite segment

 of one realization of this process, i.e., {fx,(@w): 1 < n < N} for sample size N and
 for some wo E S2, can be thought of as the observable data series that the
 econometrician employs.

 ASSUMPTION 2.1: {x,,: 1 < n} is stationary and ergodic.

 We introduce a parameter space S that is a subset of Rq (or its compactifica-

 tion) and let Po be the element of S that we wish to estimate.

 ASSUMPTION 2.2: (S, a) is a separable metric space.

 One possibility is to use the standard absolute value norm on R q to define a. It
 is well known that since S is a subset of R q the resulting metric space is
 separable. We do not restrict ourselves to this metric in order to allow for S to be
 a subset of a compactification of R q.

 We consider a function f: RP x S -- R r where R is the real line and r is greater
 than or equal to q.

 ASSUMPTION 2.3: f(., fi) is Borel measurable for each /8 in S and f(x, ) is
 continuous on S for each x in RP.

 The function f provides an expression for the r orthogonality conditions that
 emerge from the econometric model in the sense indicated by Assumption 2.4.

 ASSUMPTION 2.4: Ef(x1, /3) exists and is finite for all /B E S and Ef(xI, /80)
 =0.
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 LARGE SAMPLE PROPERTIES 1033

 A common way to obtain orthogonality conditions is to exploit the assumption

 that disturbances in an econometric model are orthogonal to functions of a set of

 variables that the econometrician observes. For example, suppose that the

 econometric model is given by

 un= F(Xn,io0)
 (1)

 n = G(xnq i30)

 where

 (2) E[un 0 zn]=O.

 The vector functions F and G are specified a priori, un is an unobservable vector
 of disturbance terms, zn is a vector of instrumental variables, and "0" denotes
 the Kronecker product. The dependence of G on its second argument is often-

 times trivial. When (2) is satisfied, we can let the function f be given by

 (3) f(xn, go) = F(Xnq /0) 0 G(Xn, o),

 and it follows that

 E[ f(xn 13o) 0.

 We proceed to describe how to use orthogonality conditions to construct an

 estimator of the unknown parameter vector go.
 For our discussion of consistency, we introduce a sequence of random weight-

 ing matrices { aN: N > 1 } that are dimensioned s by r where q < s < r. The
 matrices are random in order to allow for their possible dependence on sample
 information.

 ASSUMPTION 2.5: The sequence of random matrices { aN: N > 1} converges
 almost surely to a constant matrix ao.6

 These weighting matrices are used in conjunction with a method of moments

 estimator of E[fi(xn, ,B)] to obtain a sample objective function whose minimizer
 is our estimator of flo. Let

 fn (w ) =J[xn (W) f8@]I)

 N

 gN('9)N E fn (@ : )9

 hN (o, /) = aN (i) gN ( A)'

 BN(o) = { E S: IhN(o )12 = inf IhN (. f)I2}

 6This matrix convergence is defined as element by element convergence using the absolute value
 norm on R.
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 1034 LARS PETER HANSEN

 The random function gN(/3) is just the method of moments estimator of
 E [f(xn, /3)], IhN 2 is the sample criterion function to be used in estimation, and
 BN is the (random) set of elements in the parameter space S that minimize IhN 2.
 The weighting matrices { aN : N > 1 } can be thought of as defining the metric by
 which the sample orthogonality conditions gN(bN) are made as close as possible
 to zero.

 To estimate g3o we choose an element out of BN. More precisely, we employ the
 following definition.

 DEFINITION 2.1: The GMM estimator {bN b N> 1 } is a sequence of random
 vectors such that bN (O) E BN (O) for N > N*(co) where N*(co) is less than infinity
 for almost all X in 0.7

 The nonlinear instrumental variables estimators discussed by Amemiya [1],
 Jorgenson and Laffont [24], and Gallant [11] are defined in this manner for
 appropriate choices of aN. Their instrumental variables estimators assume that

 the function f satisfies (1)-(3) and in addition that the disturbances are serially

 independent. They use consistent estimators of E [u U4] and E [zzJ] to construct
 an estimator of ao where

 aoao= {E[ unun] E[Znzn] }1.8

 In preparation for our first consistency theory, we introduce the notation

 ho(3) = aoE[f1(W, 13)],

 1 (W, /3,8) = sup(tfi(o, /3A)-fl(,a)t a E S,a(,a) < 86.

 The following definition is needed for our consistency results.

 DEFINITION 2.2: The random function f1 is kth moment continuous at /3 if

 lim,50E [ k(C 8 6)] =0.9

 Since { Xn: n > 1 } is stationary, it follows that if fi is kth moment continuous,
 then fn is kth moment continuous for all n. Notice that kth moment continuity is
 joint property of the function f and the stochastic process { Xn: n > 1). An

 7In this definition we have imposed the requirement that the sequence of functions { bN: N > 1}
 be measurable. Alternatively, we could follow a suggestion of Huber [23] and not necessarily require
 that the functions be measurable and establish almost sure convergence in terms of outer probability.

 8Amemiya [1], Jorgenson and Laffont [24], and Gallant [11] do not require that the instrumental
 variables be stationary and ergodic but instead require that the appropriate moment matrices
 converge. Stationarity and ergodicity coupled with finite expectations are sufficient conditions for
 these moment matrices to converge almost surely. Amemiya [2] adopts a more general representation
 of the orthogonality conditions than (3) to allow different disturbances to be paired with different sets
 of instruments.

 9The function E((*, k3, 8) is Borel measurable under Assumptions 2.2 and 2.3. In the case in which
 k = 1, DeGroot [6] refers to first moment continuity as supercontinuity.
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 LARGE SAMPLE PROPERTIES 1035

 alternative characterization of kth moment continuity is established in Lemma

 2.1.

 LEMMA 2.1: Under Assumption 2.3, if there exists a 8 > 0 such that E [E k(, /,
 3)] < + oo, then fi is kth moment continuous at /.

 Using this lemma, it is apparent that kth moment continuity is implied if the
 random function fi is dominated locally by a random variable with a finite kth
 moment. DeGroot [6, p. 206] proved Lemma 2.1 for k and q equal to one, and

 the extension to larger specifications of k and q is immediate.

 One other lemma is of use in verifying first moment continuity in the case
 where the function f satisfies relation (3).

 LEMMA 2.2: Suppose (i) F1 and G1 are second moment continuous at ,l; (ii)
 F1(, /l3) and G1(, /l3) have finite second moments. Then f1 = F1 0 G1 is first
 moment continuous at /3.10

 Lemma 2.2 may be useful in establishing that fi is first moment continuous at

 /3 when the orthogonality conditions are of the form (3).
 We now consider our first consistency theorem for the GMM estimator.

 THEOREM 2.1: Suppose Assumptions 2.1-2.5 are satisfied. If (i) f1 is first moment

 continuous for all ,l Ee S; (ii) S is compact; (iii) ho( ,l) has a unique zero at /0; then
 a GMM estimator { bN: N > 1 } exists and converges almost surely to /l30.

 Condition (iii) of this theorem is the parameter identification requirement that

 the population orthogonality conditions used in estimation be satisfied only at

 the true parameter vector. When ao is an r by r nonsingular matrix, ho will have a
 unique zero at Po0 if, and only if, Ef(xI, *) has a unique zero at Pog. When ao has
 fewer rows than columns (s < r), condition (iii) imposes the more stringent
 requirement that s linear combinations of the population orthogonality condi-
 tions are satisfied only at the true parameter vector. For this reason, it may be

 judicious to choose ao to be an r by r nonsingular matrix.11
 The compactness condition (ii) of Theorem 2.1 can be weakened if a special

 structure is imposed on the function f. Consider the following assumption.

 ASSUMPTION 2.6: f(xI, /3) = co(x1) + c1(x )X( P) where co(x1) is an r dimen-
 sional column vector, c1(x ) is an r by m matrix, and X(,8/) is an m dimensional
 vector.

 '0At the recommendation of the editor, detailed versions of proofs in this section are not included
 in the paper but are available from the author on request.

 " I Sargan [29] and Amemiya [2] note that from the standpoint of obtaining desirable small sample
 properties, one should try to conserve on the number of orthogonal conditions used in the estimation.
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 1036 LARS PETER HANSEN

 This assumption accommodates models that are linear in the variables but not

 necessarily in the parameters. Our next theorem establishes consistency for
 models with orthogonality conditions that satisfy Assumption 2.6.

 THEOREM 2.2: Suppose Assumptions 2.1-2.6 are satisfied. If (i) (S, a) is locally

 compact; (ii) X is continuous on S, and for any k > 0 there exists a p > 0 such that

 X(a) - X( /)I < p, a(a, /3) < (; (iii) for any p > 0,

 inf 1+I( j h (PA)l A E- S, JX(P - )-( go)j > P} > ?;

 then the GMM estimator { bN: N > 1} exists and converges almost surely to /go.

 In examining Theorem 2.2, let us first consider the case in which X(/) = /3.

 Condition (i) is easily verified for (S, a) = (Rq, I 1). The function ho is given by

 h0(,B) = a0E[c0(x1)] + aoE[c1(x1)] P.

 Suppose that ao and Ec,(x,) are both of full rank. Furthermore, we assume that
 flo is a zero of ho. This is sufficient to imply that for any p > 0

 inf{ 1 I ho(13)J :f P Rq,I >p-}pol > 0,

 and consequently condition (iii) is met. Thus, for models that are linear in
 parameters, Theorem 2.2 requires no additional assumptions on the parameter
 space in order to achieve consistency. Of course, this result could be demon-

 strated easily by explicitly solving for the estimator. Nonetheless, a consistency
 result for linear models in which the underlying stochastic process is stationary

 and ergodic is embedded in Theorem 2.2.
 The more interesting aspect of Theorem 2.2 is that it provides a consistency

 result for models that are nonlinear in the parameters and does not explicitly

 employ a compactness requirement. For this reason, we will examine conditions
 (ii) and (iii) in more depth. Condition (ii) requires that the mapping defined by

 the inverse of X be continuous at the true parameter vector. In interpreting

 assumption (iii), it is fruitful to view R m as the unrestricted parameter space. The
 function X is used to indicate the elements of that space which satisfy the

 restrictions generated by the model. In particular, we let

 P = ( 9 E Rm : X(/f) = O for some/3 E S },

 i.e., P is the image of X over the set S, and the set S indexes elements of P that
 satisfy the restrictions. We define another set Q as

 Q = (9 E Rm: a0Ec0(xl) + a0Ecl(x1)9 = 0}.

 The hyperplane Q consists of all the elements of Rm that satisfy the population
 orthogonality conditions used in estimation. From conditions (ii) and (iii), we are

 guaranteed that Q n P = {f 0} where 90 = X(fo)4
 We now endeavor to construct sufficient conditions for condition (iii) to hold.
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 LARGE SAMPLE PROPERTIES 1037

 We define a function t by

 ((p) = inf { - 71 E Q, (=- P, |w -Sol > P, 10-Sot > P}

 The following lemma supplies some sufficient conditions for (iii) of Theorem 2.2
 to hold.

 LEMMA 2.3: Suppose Assumptions 2.4 and 2.5 are satisfied. If (i) for any p > 0,

 t(p) > 0; (ii) limP-0inf t(p)/p > 0; then condition (iii) of Theorem 2.2 is satisfied.

 Condition (i) of Lemma 2.3 says that it is not possible for elements in P to get

 arbitrarily close to elements in Q outside of the neighborhood of 00,. Condition
 (ii) of Lemma 2.3 says that the distance between P and Q outside a neighbor-

 hood of radius p of 00 eventually grows at least proportionately with p.'2 A
 condition like (ii) is needed because although the set P is specified a priori, the set

 Q is not known and ao, E[co(xl)], and E[c,(x,)] have to be estimated. Using
 estimators of these matrices, define the random set

 QN = E aN N c(x) + aN N C(Xn) = 0}-

 Even very small errors in estimating ao, E [co(x1)], and E [c,(x,)] get magnified in
 terms of the distance between QN and 0 E Q as 0 becomes large in absolute
 value. To insure that the GMM estimator is consistent, we have to rule out the

 possibility that QN n P contains an element far away from 00 for sufficiently
 large sample size N.

 If S is compact and P n Q = { 00}, then assumptions (i) and (ii) of Lemma 2.3
 are trivially met. However, Lemma 2.3 and Theorem 2.2 can be applied in
 situations in which S is not compact. In fact, an important special case occurs
 when Q = {S0}. This means that the unrestricted parameter vector QO is uniquely
 determined by the population orthogonality conditions used in estimation. When
 Q = { 0O} assumptions (i) and (ii) of Lemma 2.3 are easily verified.'3

 The consistency Theorems 2.1 and 2.2 illustrate the potential tradeoff between
 assumptions on the function f and assumptions on the parameter space S in

 order to obtain strong consistency of the GMM estimator. Theorem 2.1 most
 closely resembles other consistency theorems in the literature for nonlinear
 instrumental variables, where the parameter space is assumed to be compact [1,

 24]. In contrast to those theorems, Theorem 2.1 does not assume that distur-
 bances are serially independent. Theorem 2.2 relaxes the compactness assump-
 tion at the cost of being more restrictive about the specification off.

 12 A requirement equivalent to condition (ii) of Lemma 2.3 can be formulated in terms of
 asymptotic cones. If we let As(P) and As( Q) denote the asymptotic cones of P and Q, respectively,
 then condition (ii) is equivalent to requiring that As(P) n As( Q) = {O}.

 13In the example considered in Hansen and Sargent [18, pp. 33-36], Q O {90}. Malinvaud [27, p.
 350] has proved a theorem for minimum distance estimators similar to Theorem 2.2 in cases in which

 Q = {f 0}. Huber [23] has a general treatment of consistency in cases in which the observation vector
 is independent and identically distributed.
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 1038 LARS PETER HANSEN

 Before concluding this discussion on consistency, one additional theorem is
 considered. Suppose elements in Rq are partitioned into two subvectors, i.e.,

 la' = (3 j', 13). Furthermore, suppose the metric a is

 ao(8, y) = max(o1(,y1, I),o2(/32v72)}

 where a1 is a metric defined on

 S1= (/ 3: (/,/3 5)' E S for some/32}

 and 2 is a metric defined on

 S2= 2 (12:(I, 13) E S for some l1}.

 In some circumstances it may be computationally convenient to construct a

 strongly consistent estimator {blN N ?>1 } of f3lo by using a subset of the
 orthogonality conditions provided by the model. In particular, Theorems 3.1 or
 3.2 could be used to establish this consistency. After obtaining this estimator of

 1 0, we can construct an estimator of 1B2,0 by minimizing

 |hN[w, bl, N (W)1 82 ]12

 with respect to 8B2 such that ( 23j% 13)' E S, where I = blN(w). Theorem 2.3
 establishes the consistency of this recursive estimator.

 THEOREM 2.3: Suppose Assumptions 2.1-2.5 are satisfied. If (i) the conditions of
 Theorem 3.1 are satisfied; (ii) { bl ,N: N > 1 } converges almost surely to 13a o; (iii)
 for any sequence { yj:j2 1 } in S such that { y I : j]? 1 } converges to 81 o, there
 exists a sequence { 82j:j2 1 } such that {(-Y 1j 382j): ] > 1} is a sequence in S
 that converges to 180; then a GMM estimator {bN : N > 1 } exists and converges
 almost surely to 10.14

 A couple of comments are in order about Theorem 2.3. First, condition (iii)
 imposes an extra requirement on the parameter space S. If a1 and 2 are defined
 by the absolute value norm, then a sufficient condition for (iii) to hold is that S
 be convex. However, condition (iii) can be satisfied in the absence of convexity.
 Second, some of the coordinate functions of hN[w,bl N (w), ] may not actually
 depend on J12. If this is the case, computation of the criterion function for the
 second step of this recursive procedure can be simplifed by ignoring these
 coordinate functions.

 3. THE ASYMPTOTIC DISTRIBUTION OF THE GMM ESTIMATOR

 In this section we establish the asymptotic normality of a generic GMM
 estimator. Our discussion adopts a different but closely related formulation of

 14A version of Theorem 2.3 also can be established using the assumptions of Theorem 2.2 and
 conditions (ii) and (iii) of Theorem 2.3.
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 LARGE SAMPLE PROPERTIES 1039

 GMM estimation to that in Section 2. The first-order conditions of the minimiza-

 tion problem used to define a GMM estimator in Section 2 have the interpreta-
 tion of setting q linear combinations of the r sample orthogonality conditions to
 zero where q is the dimensionality of the parameter space. It turns out that

 estimators obtained by minimizing or maximizing other criterion functions, e.g.,
 quasi-maximum likelihood or least squares estimators, oftentimes can be inter-
 preted in the same manner by examining the corresponding first-order condi-

 tions. 15 Our approach in this section is to adopt a generic form of the first-order
 conditions and to assume that consistency has already been established. For
 estimators not included in the discussion of Section 2, consistency might be

 established by appealing to other treatments of those estimators or by appropri-
 ately modifying the proof strategy employed in Section 2.

 We begin our asymptotic distribution discussion by describing the underlying

 assumptions which we make. We extend the index set of the stochastic process
 containing the observable variables from the nonnegative integers to include all

 of the integers. For studying probabilistic properties, Doob [7, p. 456] argues that
 this extension is innocuous.

 ASSUMPTION 3.1: {x,: - < n < + x } is stationary and ergodic.

 We modify the specification and role of the set S in the analysis.

 ASSUMPTION 3.2: S is an open subset of R q that contains IBo*

 We use the metric implied by the absolute value norm to define our notion of
 convergence on S. We place additional requirements on the function f and the

 process {xn : - < n < + oo}.

 ASSUMPTION 3.3: f(., /3) and af/a/,(., 8) are Borel measurable for each

 B8 E S and af/af3(x, -) is continuous on S for each x E RP.

 ASSUMPTION 3.4: afl/a, is first moment continuous at 8Bo and E[af/af3(xt,
 B8o)] exists, is finite, and has full rank.

 We adopt the notation do = E[af/3af(xI, IB]O
 Our first consistency theorem (Theorem 2.1) relies on the condition that fi is

 first moment continuous. A link between this condition and Assumptions 3.3 and
 3.4 is provided by Lemma 3.1.

 15Hausman [21], among others, has provided an instrumental variables interpretation of maximum
 likelihood estimators by examining the first-order conditions of the maximization problem solved in
 obtaining the estimators. Avery, Hansen, and Holtz [3] illustrate how to apply results of this section to
 consistent, quasi-maximum likelihood estimators of multiperiod probit models. Hansen and Hodrick
 [17] apply results from this section to least squares estimators.
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 LEMMA 3.1: Suppose Assumptions 3.3 and 3.4 are satisfied. If E [f(x1, 180)] exists
 and is finite, then fi is first moment continuous at 3o016

 When f takes the special form given by Assumption 2.6, X is differentiable with

 aX/af/ continuous on S, and c,(xl) has a finite expectation, then Assumptions
 3.3 and 3.4 are satisfied as long as E[cj(xj)]aX/af8(j80) has full rank.

 As in Section 2, we will think of the function f as defining the orthogonality
 conditions that we consider using in estimation. Let

 wn =(xn, I0) for -x < n < + x

 and

 vj E[wlw_ WoIw_j y-1, . . . ]E[wol W-j-l 1W-j-2 5 ... forj > O.

 Assumptions 3.1 and 3.3 imply that {Wn: - < n < + oo} is stationary and
 ergodic. An iterated expectations argument can be employed to establish that

 {vj: j > O} is a martingale difference sequence.

 ASSUMPTION 3.5: E[w0w'] exists and is finite, E[wj wo ,w w J 1, . . . ] con-
 verges in mean square to zero, and 7 0E [Vj. j]1/2 is finite.

 Among other things, Assumption 3.5 implies that

 E[ f(xn, I30) ]=O for -oo < n < + oo,17

 and provides sufficient conditions suggested by Hannan [16] for applying a
 central limit theorem for stationary, ergodic processes proved by Gordin [13].

 We could conceive of estimating 80 by selecting a value of ,B that satisfies the r
 equations:

 (5) gN (JA) = O.

 This may not be possible since (5) involves only q unknowns and r can exceed q.
 Instead, we follow Sargan [29, 30] and reduce the number of equations to q by
 using linear combinations of the r equations. To accomplish this, we introduce a
 sequence of q by r random matrices {a*: N > 1} and make the following
 assumption:

 ASSUMPTION 3.6: {a* : N > 1} converges in probability to a constant matrix
 a* which has full rank.

 16Abbreviated versions of the proofs of some of the results in this section and in Section 4 are
 provided in the Appendix. More detailed versions of the proofs can be obtained from the author on
 request.

 '7This implication can be seen by employing an iterated expectations argument and noting that
 E[wo] = E[f(xn, 0o)I-
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 We require that a GMM estimator {b*: N > 1 } asymptotically satisfy the set
 equations

 aO*Ef(x,, )= 0

 in the sense of Definition 3.1.

 DEFINITION 3.1: The GMM estimator {b: N > 1 } is a sequence of random

 vectors that converges in probability to /0 for which { Na*gN(b): N > 1}
 converges in probability to zero.

 Before showing that this GMM estimator is asymptotically normal and dis-

 playing the dependence of its asymptotic covariance matrix on the limiting

 weighting matrix a*, we discuss the link between this estimator and the GMM
 estimator of Definition 2.1. Note that

 IhN (1)12 = laNgN (1)1 = gN(8 )aNaNgN' ( )a

 Assuming that the first-order conditions for the problem of minimizing IhNI2 are

 satisfied by bN, then

 (6) g (bN)'aNaNgN (bN)

 Let aN be the q by r matrix

 (7) a* = a,g (bN)'a aN.

 Substituting (6) into (7), we obtain aNgN(bN) = 0 which trivially satisfies one of
 the key requirements of Definition 2.1. Once we establish the strong consistency
 of the estimator of Definition 2.1, require that the first-order conditions (6) be
 satisifed, and demonstrate that the sequence {a*: N > 1 } converges in probabil-
 ity to a constant matrix, then we obtain a GMM estimator of Definition 3.1.

 Lemma 3.2 supplies sufficient conditions for {a*: N > 1} as defined by (7) to
 converge in probability to a constant matrix.

 LEMMA 3.2: Suppose Assumptions 3.1-3.4 are satisfied. If (i) {bN :N > 1}

 converges in probability to I30; (ii) { aN: N > 1 } converges in probability to ao; then
 {(agN/a/3)(bN): N > 1} converges in probability to do and {a* : N > 1} given by
 (7) converges in probability to a* = doa'ao.

 While the above discussion shows how the estimators of Definition 2.1 can be

 viewed as GMM estimators under Definition 3.1, our asymptotic distribution is
 not limited to estimators of this form. Any consistent estimators which minimize
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 or maximize criterion functions with first-order conditions that can be repre-
 sented as

 aNgN(bN) + HN(b*) = 0

 where {VNHN(b *) : N > 14 converges in probability to zero for an appropriate
 choice of a*, f, and HN, can be viewed as special cases of the generic GMM
 estimator of Definition 3.1.18 Thus, various forms of least squares and quasi-
 maximum likelihood along with nonlinear instrumental variables estimators are
 included in our asymptotic distribution discussion.

 In preparation for our asymptotic distribution theorem, we let

 Rw(j) = E[ wOw-].

 Assumptions (3.1) and (3.5) insure that Rw(j) is finite and that the matrix
 + 00

 SW = E RW(j)
 j=-00

 is well defined and finite.'9 Theorem 3.1 displays the asymptotic distribution of
 the GMM estimator.

 THEOREM 3.1: Suppose Assumptions 3.1-3.6 are satisfied. Then {VN(b* - 30):
 N > 1) converges in distribution to a normallv distributed random vector with mean
 zero and covariance matrix (ado)-la* SwaS*'(a*do) 1.2O

 Since Sw plays a prominent role in the expression for the asymptotic covari-
 ance matrix, we shall examine Assumption (3.5) in conjunction with the compu-

 tation of Sw. We focus on situations in which

 (10) f(xn, i?) = Un (0 Zn

 where we view zn as a vector of the instrumental variables and u, is a vector of
 the disturbance terms from the econometric model. Let

 Ru(j) = E[ Un Un1]

 and

 RZ (j) = EL ZnZn ]

 and assume that RJ(O) and RZ(O) exist and are finite. It is instructive for us to
 examine five special cases.

 18The minimax estimator of Sargan [30] can be interpreted as a GMM estimator with a nontrivial
 HN-

 19Under Assumptions 3.1 and 3.5 it can be shown that the elements in the autocovariance
 function for { wn: - 0 < n < + oo } are absolutely summable.

 201f S is singular, then it may be the case that the asymptotic covariance matrix for the GMM
 estimator is singular. If this happens, the GMM estimator has a degenerate normal asymptotic
 distribution.
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 CASE (i):

 E[un Zn1Un-=Zn-0,Un-2* =0?

 E[unun |ZnsUn- Zn- 1 Un-2 ... **] = Ru(0).

 This case includes as a special subcase models in which { un -X < n < + x }
 is a sequence of independent, random vectors and un is independent of {zj: -
 < j < n }. It is straightforward to verify that

 E[wo wI ,w- _, .... 3=0 for 1 ?1,

 VO = WO,

 and

 Vj =0 for j> 1.

 This shows that Assumption 3.5 is satisfied. Also, it can be demonstrated that

 R-(U)=0 for j# 0
 and

 Sw = Rw(O) = Ru(0) 0 R(0).

 Thus, Sw can be computed from the second moments of Zn and un.

 CASE (ii):

 E[ un I Zn, Un- I,Zn- ,Un-21 .. O. =?

 This case differs from Case (i) in that we no longer assume that the conditional

 covariance matrix for un is independent of the conditioning set. This allows for a
 particular form of heteroskedasticity. The stationarity assumption, however,

 restricts us to circumstances in which the unconditional variances of {unu: -X
 < n < + x } are constant. As in Case (i), it can be verified that Assumption 3.5
 of Theorem 3.1 is met and that

 RW(j)=0 for jp50.

 In contrast with Case (i), we can no longer compute Rw(O), and consequently Sn,.
 from the second moments of un and Zn. More specifically, we have

 Sw = RW(0) = E[ unun 0 znzn,j-

 This form of Sw arises in the multiperiod probit estimators proposed by Avery,
 Hansen, and Hotz [3].

 CASE (iii):

 E[ un l Znl Un-k,Zn-1, Un-k- 1 ... .1=0
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 Models in which the disturbance term is orthogonal to an extensive informa-
 tion set shifted back k time periods, such as the nonlinear rational expectations
 models studied by Hansen and Singleton [20] and the linear (in the variables)
 rational expectations models studied by Cumby, Huizinga, and Obstfeld [5] are
 included in this case. It can be verified that

 E[woIw_w__I.... ]=? for ?>k

 and

 vj=0 for j>k.

 This means that Assumption 3.5 is satisfied. Also,

 RW(j)=0 for j>k

 and

 k-I

 SW= E R, (j).
 j=k+ I

 Computation of SW entails only the determination of a finite number of the
 autocovariances of { wn -X < n < + }.

 CASE (iv):

 E[ Un I Zn, Un-k, Zn-1, Un-k- * ] =0

 E[ unun-j l znf un-kl zn- l1 un-k- 11 ... ] = Ru (j) for 0 < j < k.

 This case is embedded in Case (iii), and thus we know that assumptions (ii) and
 (iii) of Theorem 3.1 are satisfied. Since the conditional autocovariances of

 {Un -X < n < + x } are assumed constant, it follows that

 Rw(j) = Ru(j) 0 Rz(j) for -k + 1 < j < k-1

 and

 k-I

 SW= E Ru (j) DRz (j).
 j=k+ I

 Thus Sw can be computed from a finite number of the autocovariances of
 {Zn: -X < n < +x}) and {un: -0 < n < +x}). Brown and Maital [4] and
 Hansen and Hodrick [18] use these assumptions to study k-step ahead forecast-
 ing equations. McCallum [28] employs these assumptions in proposing instru-
 mental variables procedures for linear rational expectations models.

 One set of sufficient conditions for the conditional autocovariances of { un
 -00 < n < + so } to be constant is as follows. Suppose yn = (Un, Zn + k) and that
 the conditional expectation

 E[ n Yn . n 2. ...
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 is equal to the corresponding best linear predictor. Also, let

 Yn -E[yn Iyn-19 Yn-29* . . . Un

 and suppose that

 E[ un*un* I Yn- 1 Yn-2 9 **. ]

 is constant and hence independent of elements in the conditioning set. These are

 sufficient to imply that

 E[UnUnf-j I Znf Un-k,Zn- 1l Un-k-, * . = RU(j).

 CASE (v): Suppose that the {(u', z'): - < n < + xo } process is linearly
 regular and has fourth order cumulants that are zero. For simplicity we assume

 that

 E[zn] = 0,

 E[un] =0.

 Let

 R 2 (j) R UZ(i

 E[ UnZn_ jl ] u2z (j

 Rj (j) Ruz(j

 where L is the number of elements in the disturbance vector and where R k (j) is
 an M dimensional row vector with the same number of elements as are in the

 instrument vector. Define

 RR() (-j)'R ' (j) R 2(-j)'R]' (j) ... RL (-j)'R ' (j)

 Rw j) = RU-j) R R2z(j) R 2( (-j)'R 2 ( j) ... RUL (-j)'R 2z ( j)

 Ru1z (-j)'RuLz( j) RU2Z(-j)'Ruz ( .j.**. Ruz (-j)'RuLz (

 Then it can be shown that

 RW(j) = RW(j) + RU(j) 0 RZ(j),
 (8)

 + oo

 SW = E [kw (j) + Ru (j) DRz (j)]
 j= -00

 An alternative representation for Sw can be obtained using spectral density
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 matrices. Let

 + o0

 Su (co) = 2 e - iX8RU ( ) ?=-00

 i =-oo

 + oo

 j= -00

 + o0

 Su e R (j)k k() E -iX8 k
 j= -00

 The following relationships hold:

 E Ru (j) 0 Rz (j) = 2v '7 Su(@ 0 Sz -)dco, )00

 + o0

 R k(-j)R(i)= j 1 S 'z (S)' Slz (CO] dco.
 j]- 00

 Substituting relations (9) into (8) yields an equivalent representation for Sn,. As
 noted above, Assumption 3.5 implies that Ruz(O) = 0. In the rational expectations
 models studied by Hansen and Sargent [19], it is assumed that Ruz(j) = 0 for
 j > 0. This additional assumption can be used to simplify the expressions
 obtained in (8) and (9).

 The five special cases discussed above illustrate how auxiliary assumptions
 imply alternative formulas for calculating Sw. These auxiliary assumptions also
 can be used to obtain formulas for models with orthogonality conditions that
 have representations other than (10). Assumption 3.5, however, accommodates
 models that do not necessarily satisfy the defining assumptions of any of the five
 special cases discussed above. Some of the models examined by Hansen and
 Sargent [19] are not included in these cases as well as models whose orthogonal-
 ity conditions emerge because certain equations define best linear predictors but
 not conditional expectations. Theorem 3.1 can be applied to these models as well.

 In order to make asymptotically valid inferences and construct asymptotically

 correct confidence regions, it is necessary to have consistent estimators of a*, do,
 Sw. Since {a* : N ? 11 is assumed to converge in probability to ao, we can use a*
 as our estimator of a*. A natural candidate for estimating do is dN = (1/N)
 agN/a/3(bN). From Lemma 3.2 and Assumptions (3.1)-(3.4) of Theorem 3.1, dN
 is consistent. Consistent estimation of Sw is a little more involved. Let

 wN = f(Xn s b )g

 N

 Rw ( ) N wn wn _ j

 Lemma 3.3 provides conditions that are sufficient to guarantee that Rw(j) is a
 consistent estimator of RWO().
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 LEMMA 3.3: Suppose Assumptions 3.1-3.5 are satisfied. If f, is second moment
 continuous at 80, then { RN(j): N > 1 } converges to R (j) in probability.

 In situations where Sw depends on a finite number of autocovariances, i.e.,

 k-I

 Sw = I Rw (j),
 j=-k+ I

 we can use Lemma 3.2 to argue that:

 k-I

 Sw=E R N (j) =: w
 1=-k+ 1

 is a consistent estimator of Sw. Furthermore, if the conditional covariance
 assumptions of Case (i) or (iv) are met, the special structure of Sw can be
 exploited even further. Lemma 3.3 can be used to establish consistency of the

 sample autocovariances of the estimated disturbances and the instruments. In the

 general case, Sw cannot necessarily be computed from a finite number of
 autocovariances which complicates its consistent estimation. However, SW is the
 spectral density matrix of { Wn: - Xc < n < + xc } at frequency zero, and a
 consistent estimator of Sw can be obtained by using procedures appropriate for
 estimating spectral density matrices.21

 Up until now we have said relatively little about selection of the matrices
 { a : N > 1]. As is clear from the conclusion of Theorem 3.1, different choices of
 these weighting matrices give rise to GMM estimators with different asymptotic

 covariance matrices. In fact, Theorem 3.1 provides a convenient scheme for
 comparing the asymptotic distributions of elements of a whole family of econo-

 metric estimators formed by taking different weighted averages of the orthogo-

 nality conditions that emerge from the model. One could conceive of determining

 an "optimal" estimator from this class, where an optimal estimator is one that
 has an asymptotic covariance matrix at least as small as any other element in the

 class. This approach can be viewed as an extension of Sargan's [29, 30] discussion
 of how to obtain the optimal linear combinations of instruments to use in
 estimation given a finite set of instruments are specified a priori. Given a finite

 set of orthogonality conditions we show the optimal linear combinations (the aO*

 matrix) to use in estimating f80. In describing the solution to this optimization
 problem, it is convenient to introduce some definitions and notation.

 For a given function f and a given stochastic process { xn: - Xc < n < + x}
 we maintain Assumptions 3.1-3.5 and we assume that Sw is nonsingular. Asso-
 ciated with f and {xn: -c < n < + x}, we consider a family A of GMM

 21 See Hannan [15] for a discussion of alternative strategies for estimating spectral density matrices.
 In this paper we do not formally establish consistency of these spectral estimators of S. At the very

 least, it appears we would want to make the additional assumption that afl/a,8 be second-moment
 continuous at f30 in proving consistency. Hannan [16] provides some comments about consistent
 estimation of spectral density matrices under Assumptions 3.1 and 3.5. An advantage of spectral
 estimators of S., over truncated autocovariance estimators is that spectral estimators are constrained
 to be positive semidefinite.
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 estimators of 0. To each element of A, we assume there corresponds a sequence
 of q by r weighting matrices that converge in probability to a constant matrix of
 full rank such that the element of A satisfies Definition 3.1 of a GMM estimator

 using this particular sequence of weighting matrices. Two elements of A are said

 to be asymptotically equivalent if they have the same asymptotic covariance

 matrix. Using Theorem 3.1, it is obvious that if two elements of A have the

 same limiting weighting matrix, then they are asymptotically equivalent. We

 now consider a theorem that provides us with characterization of an optimal es-

 timator.

 THEOREM 3.2: Suppose { bN: N > 1 } E A and that the limiting weighting matrix

 associated with { bN: N > 1 } satisfies

 (10) (a*do) - la*Swa*(a*do) - 1 = (doS7- 'do)
 Then { b N > 1 } is optimal with asymptotic covariance matrix (doSw-'do)-
 Furthermore, all optimal estimators in A will have a limiting weighting matrix that
 satisfies (10), and

 (1 1) a* = edo6Sw-1

 for some q by q nonsingular matrix e.

 In order to determine an optimal choice of a* of the form specified in (1 1), it is

 necessary to have a consistent estimator of do and Sw. This can be accomplished
 by initially employing a not necessarily optimal GMM estimator and using one

 of the estimation strategies mentioned earlier for Sw and do.
 In considering the GMM estimators of Section 2, we indicated that from the

 standpoint of consistency it may be desirable to employ a square nonsingular

 matrix ao as the limiting weighting matrix. If we choose ao such that a'a0 = Sw-
 and aN is some consistent estimator of ao, then Lemma 3.2 informs us that the
 corresponding a* is equal to doSw-7. Thus the resulting estimator is optimal.
 Under the assumptions defining Case (i) above, the choice of a'a0 = Sw- 1 yields
 the nonlinear instrumental variables estimators discussed by Amemiya [1], Jor-
 genson and Laffont [24], and Gallant [11].

 Our optimality result in Theorem 3.2 is limited in that it takes the specification
 of the orthogonality conditions as given and does not discuss how to construct
 optimally orthogonality conditions. Amemiya [2] describes how to accomplish
 this latter task in environments with serially uncorrelated disturbances. A draw-

 back of his approach is that in many circumstances his construction is not
 possible to implement in practice. A related limitation of our optimality result is

 that it only allows a finite number of orthogonality conditions to be considered.
 Hayashi and Sims [22] and Hansen and Sargent [19] discuss optimality in linear
 environments in circumstances where orthogonality conditions

 E[ Un X Zn-ml = 0
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 for m > 0 can be used in estimation. Such a specification admits infinitely
 many orthogonality conditions in constructing instrumental variables estimators.
 These authors allow the disturbances to be serially correlated, but they rule out
 conditional heteroskedasticity.

 4. TESTING OVER-IDENTIFYING RESTRICTIONS

 When the number of orthogonality conditions, r, exceeds the number of
 parameters to be estimated, q, tests of the restrictions implied by the econometric
 model are available. As was noted in Section 3, estimation of the model
 parameters sets q linear combinations of the r sample orthogonality conditions
 equal to zero, at least asymptotically. Thus, when the model is true, there are
 r - q linearly independent combinations of the orthogonality conditions that
 ought to be close to zero but are not actually set to zero. This provides us with a
 scheme for testing the over-identifying restrictions of the model which is
 elaborated upon below.

 Using the results of Section 3, we can obtain the asymptotic distribution of

 { NgN(bk): N > 1}. Recall that gN(bk) is an expression for the sample orthogo-
 nality conditions evaluated at the parameter estimator b*. Lemma 4.1 provides
 the desired asymptotic result.

 LEMMA 4.1: Suppose Assumptions 3.1-3.6 are satisfied. Then {f NgN(b): N
 > 1} converges in distribution to a normal random vector with mean zero and

 covariance matrix 0= [I - do(a do)- a *S [I - do(ado)- 'as]'.

 Since we have assumed that { NagN(bN)] :N> 1] converges to zero in
 probability, it is reasonable to suspect that the asymptotic covariance matrix t0
 given in Lemma 4.1 is singular. We can verify this singularity by premultiplying

 t0 by a* and obtaining a matrix of zeroes. Although t0 is singular, if S", is
 nonsingular and r exceeds q, then t0 is not zero. Hence there are linear
 combinations of the sample orthogonality conditions that have a nondegenerate
 asymptotic distribution. These linear combinations of sample orthogonality con-
 ditions can be used to obtain asymptotically valid test statistics of the model
 restrictions.

 We wish to examine a particularly convenient test statistic of this form. This
 test can be viewed as an extension of a specification test proposed by Sargan [29,
 30] and of the specification test associated with minimum chi-square estimators
 (see Ferguson [10]). Let

 TN = gN(bN) (SW) gN(bN),

 where { S: : N > 1) is a consistent estimator of S,. Its asymptotic distribution is
 given in Lemma 4.2 assuming { bN : N > 1 } is an optimal estimator as defined in
 Section 3.

 LEMMA 4.2: Suppose Assumptions 3.1-3.6 of Theorem 4.1 are satisfied and that
 ao = edoSW-7 for some q by q nonsingular matrix e. Then NTN converges in
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 distribution to a chi-square distributed random variable with r - q degrees of
 freedom.

 Recall from Section 3 that choosing aN such that aNaN = (Sd)1 gives rise to a

 GMM estimator that is optimal and has a nonsingular limiting weighting matrix.
 Lemma 4.2 provides us with the asymptotic distribution of the minimized value

 of the criterion function |aNgN ( )12. This can be used as a statistic to test the
 over-identifying restrictions of the econometric model.22

 5. CONCLUSION

 This paper has provided a discussion of the large sample properties of a class

 of econometric estimators that are defined in terms of orthogonality conditions.
 Viewing estimation in this way is convenient for comparing estimators that

 exploit, at least implicitly, the same set of orthogonality conditions and is
 suggestive of computationally practical estimators in situations in which asymp-

 totically efficient estimation is computationally burdensome. The contribution of

 this paper is to provide a discussion of consistency and asymptotic normality of

 estimators under conditions not previously examined by other researchers.

 In our discussion we exploited the assumption that the underlying stochastic

 process of observables is stationary and ergodic. Assumptions of this nature

 oftentimes play a role in model specification. Lucas [25] and Lucas and Sargent
 [26] have emphasized that in time series modeling based on dynamic theory, the

 stochastic properties of the forcing variables play a critical role in model
 specification. Characterizing the forcing variables as a stationary process is

 clearly convenient in deriving the dynamic decision rules of economic agents

 because stationary processes have time invariant probability laws. Furthermore,

 the stationary assumption and the theorems in this paper accommodate poten-

 tially complicated conditional covariance structures for the disturbance terms
 and the observable variables. On the other hand, there exist many situations in
 which it would be useful to relax the stationarity assumption. It seems likely,

 however, that such extensions will either employ more obscure regularity condi-

 tions, or will employ regularity conditions that are not uniformly weaker than

 those used in this paper. Nonetheless, it would be a useful exercise to examine
 the extent to which results like those obtained here remain intact or could easily
 be modified when a subset of forcing variables are not stationary (even though

 they may have a time invariant representation). Along this vein, extensions of the

 cross-sectional results of White [32, 33, 34] and cross-sectional and time series

 22This result can be viewed as an extension of Sargan's [29, 30] derivation of the asymptotic
 distribution of what he refers to as the smallest characteristic root. Gallant and Jorgenson [12]
 propose a test for restrictions that is the nonlinear three-stage least-squares analogue of the likelihood
 ratio test. A derivation of the asymptotic distribution of their test statistic could be obtained in the
 estimation environment considered here. Avery, Hansen, and Hotz [3] use Lemma 4.1 directly to
 obtain some alternative specification tests.
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 results of Eicker [8] to the class of time series estimators considered here would
 be of interest.

 Carnegie-Mellon University

 Manuscript received March, 1979; final revision received July, 1981.

 APPENDIX

 In this Appendix we provide a brief sketch of some of the results in Sections 3 and 4. A more
 detailed version of the proofs to all of the lemmas and theorems presented in this paper is available
 from the author on request.

 PROOF OF THEOREM 3.1: We write agN/a,l in terms of its r row functions:

 ag'
 a,8

 agN
 a,3

 agN

 a,

 and we let

 DgN( B I.. r)

 ag(

 Using Taylor's theorem and Assumptions 3.2-3.4, with probability arbitrarily close to one for
 sufficiently large N we can write

 (12) gN(bN) = gN(UO) + DgN(bN. . * )(b* -0)
 where bA is between /lo and b* for i = 1, . . ., r. Premultiplying by a*, we obtain

 aNgN(bN) = aNgN(/30) + aNDgN(bkN A * * * (b -80)

 Since { bN N > 1 } converges in probability to lo, it follows that { bn : N > 1 } converges in probabil-
 ity to flo for i =1, . . ., r. Thus Lemma 4.2 implies that { DgN(b . b1Q): N > 1) converges in
 probability to do. Using Assumptions (3.4) and (3.6) we know that for sufficiently large N with
 probability arbitrarily close to one we can write

 (13) b* -/o= -[a* DgN (Nb . , )] aNgN(0)

 +[aNDgN(6N. * )] aNgN(bN)-

 Using Assumptions 3.1. 3.5, and Theorem 1 in Hannan [17], it can be shown that { NgN(1/3o): N
 > 1} converges in distribution to a normally distributed random vector with mean zero and
 covariance matrix S,,.. We use Assumption (3.6) to conclude that { VN(b* - 13o): N > 1 } converges in
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 distribution to a normally distributed random vector with mean zero and covariance matrix

 (a*dO)- lao*Swa*'(a*do)

 PROOF OF THEOREM 3.2: First, we factor Sw = CC' where C is r by r and nonsingular. Second, we
 let

 D = (a*do) la*C - (doS, 'do) do6C
 Third, we note that

 DC-'do= O.

 Fourth, we verify that

 (a*d) lao* Sa*'(ao*do) I'DD' + (doS,,- 'do)
 Thus, (doSW- 'do) is a lower bound for the asymptotic covariance matrix of elements in A. This
 lower bound is attained if and only if D = 0.

 We can premultiply D by aO*d0, postmultiply D by C -', and claim that if D = 0, then

 O- ao*do(doS, 'do) do6Sw7 =0

 or

 a= ed6Sw7'

 where

 e = a*do(doS 'do)

 On the other hand, if we let

 a*= edo6Sw

 for some q by q nonsingular matrix e, we can verify that D = 0.

 PROOF OF LEMMA 4.1: We substitute (12) into (13) and obtain

 VNgN(b) = [ I- DgN(b.N** ) {,aDgN () . * b)} aN]jVNgN (/30)

 +DgN(bkN,...,/4Nr)[a*DgNQ(5.N' ** Nr)] a*gN(b*)-

 Recall from the Proof of Theorem 3.1,

 DgN (bN.

 in probability and { VNgN ( go) :N > 1) converges to a normally distributed random vector with mean
 zero and covariance matrix Sw. The conclusion of Lemma 4.1 follows immediately.

 PROOF OF LEMMA 4.2: First, we factor S,$ = CNCN and adopt some normalization so that

 CN -> C in probability

This content downloaded from 203.93.6.8 on Sat, 29 Aug 2020 03:49:40 UTC
All use subject to https://about.jstor.org/terms
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 where C is nonsingular. Second, we determine the asymptotic covariance matrix of
 {VN(CN)-<gN(bN) N > 1). Using Lemma 4.1 and the fact that a* was chosen optimally we
 conclude that this covariance matrix is

 I - C - 'd0(d6S, 'd0) Ido6C -

 which is idempotent and has rank r - q. It follows that { NgN(b*)(SN) NgN(b,) N> 1 } is asymptot-
 ically chi-square distributed with r - q degrees of freedom.
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