Bayesian Statistics

Fabrizio Ruggeri

Istituto di Matematica Applicata e Tecnologie Informatiche Consiglio Nazionale delle Ricerche Via Alfonso Corti 12, I-20133, Milano, Italy, European Union fabrizio@mi.imati.cnr.it
www.mi.imati.cnr.it/fabrizio/

- We now consider linear regression (LR), providing a linear relation between a dependent variable (Y) and an independent one (X), sometimes called *covariate*
- We can distinguish 4 cases based on the dimensions of Y and X
 - Simple LR vs. Multiple LR: just one X or multiple X's
 - Univariate LR vs. Multivariate LR: just one-dimensional Y or multiple dimensional Y
- We consider only the simplest case: Univariate Simple Linear Regression
- $\bullet \ Y = \beta_1 + \beta_2 X + \varepsilon$
- β_1, β_2 univariate unknown parameters
- ε error term with $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2$ unknown
- We consider $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- Observations: $Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$, i = 1, ..., n
- X_i's are supposed known here but they could be r.v.'s as well
- We assume that $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. $\mathcal{N}(0, \sigma^2)$
- Notation: $\underline{Y} = (Y_1, \dots, Y_n)$ and $\underline{X} = (X_1, \dots, X_n)$
- Likelihood function $L(\beta_1, \beta_2, \sigma^2 | \underline{Y}, \underline{X})$ given by

$$\prod_{i=1}^{n} f(Y_i|X_i, \beta_1, \beta_2, \sigma^2) = \prod_{i=1}^{n} \left\{ \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(Y_i - \beta_1 - \beta_2 X_i)^2}{2\sigma^2}\} \right\}
\propto \frac{1}{(\sigma^2)^{n/2}} \exp\{\frac{-\sum_{i=1}^{n} (Y_i - \beta_1 - \beta_2 X_i)^2}{2\sigma^2}\}$$

Independent priors with known hyperparameters:

$$\beta_1 \sim \mathcal{N}(0, \tau_1^2), \, \beta_2 \sim \mathcal{N}(0, \tau_2^2) \text{ and } \sigma^2 \sim \mathcal{IG}(a, b)$$

Posterior distribution

$$\pi(\beta_{1}, \beta_{2}, \sigma^{2} | \underline{Y}, \underline{X}) \propto \frac{1}{(\sigma^{2})^{n/2}} \exp\{\frac{-\sum_{i=1}^{n} (Y_{i} - \beta_{1} - \beta_{2} X_{i})^{2}}{2\sigma^{2}}\} \cdot \exp\{-\beta_{1}^{2}/(2\tau_{1}^{2})\} \exp\{-\beta_{2}^{2}/(2\tau_{2}^{2})\} \frac{1}{(\sigma^{2})^{a+1}} \exp\{-b/\sigma^{2}\}$$

• Conditional on
$$\beta_1$$
: $\beta_1 | \beta_2, \sigma^2, \underline{Y}, \underline{X} \sim \mathcal{N}\left(\frac{\sum_{i=1}^n (Y_i - \beta_2 X_1)}{n + \sigma^2/\tau_1^2}, \frac{1}{n/\sigma^2 + 1/\tau_1^2}\right)$

$$\pi(\beta_1 | \beta_2, \sigma^2, \underline{Y}, \underline{X}) \propto \exp\left\{\frac{-(n\beta_1^2 - 2\beta_1 \sum_{i=1}^n (Y_i - \beta_2 X_i)}{2\sigma^2}\right\} \exp\left\{-\beta_1^2/(2\tau_1^2)\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\left(\frac{n}{\sigma^2} + \frac{1}{\tau_1^2}\right)\beta_1^2 - 2\frac{\beta_1}{\sigma^2} \sum_{i=1}^n (Y_i - \beta_2 X_i)\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2(n/\sigma^2 + 1/\tau_1^2)^{-1}}\left[\beta_1^2 - 2\frac{\beta_1}{\sigma^2} \frac{\sum_{i=1}^n (Y_i - \beta_2 X_i)}{n/\sigma^2 + 1/\tau_1^2}\right]\right\}$$

• Conditional on
$$\beta_2$$
: $\beta_2|\beta_1, \sigma^2, \underline{Y}, \underline{X} \sim \mathcal{N}\left(\frac{\sum_{i=1}^n X_i(Y_i - \beta_1)}{\sum_{i=1}^n X_i^2 + \sigma^2/\tau_1^2}, \frac{1}{\sum_{i=1}^n X_i^2/\sigma^2 + 1/\tau_1^2}\right)$

$$\pi(\beta_2|\beta_1, \sigma^2, \underline{Y}, \underline{X}) \propto \exp\left\{-\frac{\beta_2^2 \sum_{i=1}^n X_i^2 - 2\beta_2 \sum_{i=1}^n X_i(Y_i - \beta_1)}{2\sigma^2}\right\} \exp\left\{-\beta_2^2/(2\tau_2^2)\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[\left(\frac{\sum_{i=1}^n X_i^2}{\sigma^2} + \frac{1}{\tau_2^2}\right)\beta_2^2 - 2\frac{\beta_2}{\sigma^2}\sum_{i=1}^n X_i(Y_i - \beta_1)\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2(\sum_{i=1}^n \frac{X_i^2}{\sigma^2} + \frac{1}{\tau_i^2})^{-1}}\left[\beta_2^2 - 2\frac{\beta_2}{\sigma^2}\frac{\sum_{i=1}^n X_i(Y_i - \beta_1)}{\sum_{i=1}^n X_i^2/\sigma^2 + 1/\tau_1^2}\right]\right\}$$

• Conditional on
$$\sigma^2$$
: $\sigma^2 | \beta_1, \beta_2, \underline{Y}, \underline{X} \sim \mathcal{IG}\left(a + n/2, b + \frac{\sum_{i=1}^n (Y_i - \beta_1 - \beta_2 X_i)^2}{2}\right)$

$$\pi(\sigma^2 | \beta_1, \beta_2, \underline{Y}, \underline{X}) \propto \frac{1}{(\sigma^2)^{n/2}} \exp\{-\frac{\sum_{i=1}^n (Y_i - \beta_1 - \beta_2 X_i)^2}{2\sigma^2}\} \frac{1}{(\sigma^2)^{a+1}} \exp\{-b/\sigma^2\}$$

→ Gibbs sampling

- Different approach, with slight change, from Press, J. (2002), Subjective and Objective Bayesian Statistics, Wiley
- $\pi(\beta_1, \beta_2, \sigma^2) \propto \sigma^2$
- Joint posterior

$$\pi(\beta_1, \beta_2, \sigma^2 | \underline{Y}, \underline{X}) \propto \frac{1}{(\sigma^2)^{n/2}} \exp\{-\frac{\sum_{i=1}^n (Y_i - \beta_1 - \beta_2 X_i)^2}{2\sigma^2}\} \frac{1}{\sigma^2}$$

• Integrating out $\sigma^2 \Rightarrow (\beta_1, \beta_2)|\underline{Y}, \underline{X}$ bivariate Student distribution

$$\pi(\beta_1, \beta_2 | \underline{Y}, \underline{X}) \propto \frac{1}{\left[\sum_{i=1}^n (Y_i - \beta_1 - \beta_2 X_i)^2\right]^{n/2}}$$

- Bivariate Student's $t \Rightarrow$ Marginal Student's t
- $\Rightarrow \beta_1 | \underline{Y}, \underline{X} \sim t, \beta_2 | \underline{Y}, \underline{X} \sim t \text{ and } \sigma^2 | \beta_1, \beta_2, \underline{Y}, \underline{X} \sim \mathcal{IG} \text{ as before}$
- $\sigma_2^{(j)}$ from inverse gamma with values $\beta_1^{(j)}$ and $\beta_2^{(j)}$ generated from the t-distributions

- Another different approach from Cowles, M.K., (2013), Applied Bayesian Statistics, Springer
- Center the X_i 's around their mean $\overline{X}:\Rightarrow X_i\to X_i-\overline{X}$
- $\Rightarrow Y_i|X_i, \beta_1, \beta_2, \sigma^2 \sim \mathcal{N}(\beta_1 + \beta_2(X_i \overline{X}), \sigma^2), i = 1, \dots, n$
- $\pi(\beta_1, \beta_2, \sigma^2) \propto \sigma^2$
- We will consider three sufficient statistics: $\hat{\beta}_1, \hat{\beta}_2, SSR$ (sum of squared residuals)
- Given a r.v. X with density $f(X|\theta)$, a statistic t=T(X) is said sufficient for θ if f(X|t=T(X)) does not depend on θ
- In words, a sufficient statistic contains all the information provided by the data about the model parameters
- Those statistics are estimators from a frequentist viewpoint

- Likelihood: $\prod_{i=1}^{n} \left\{ \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^{2}} \left[Y_{i} \beta_{1} \beta_{2}(X_{i} \overline{X})\right]^{2}\right\} \right\} \text{ i.e.}$ $\frac{1}{\left[\sqrt{2\pi}\sigma\right]^{n}} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left[Y_{i} \beta_{1} \beta_{2}(X_{i} \overline{X})\right]^{2}\right\}$
- Loglikelihood $\propto l(\beta_1, \beta_2, \sigma^2) = -\frac{n}{2} \log \sigma^2 \frac{1}{2\sigma^2} \sum_{i=1}^n \left[Y_i \beta_1 \beta_2 (X_i \overline{X}) \right]^2$
- $\frac{\partial l}{\partial \beta_1} = \frac{1}{\sigma^2} \sum_{i=1}^n \left[Y_i \beta_1 \beta_2 (X_i \overline{X}) \right] = 0 \Leftrightarrow \sum_{i=1}^n Y_i n\beta_1 \beta_2 \sum_{i=1}^n \left[X_i \overline{X} \right] = 0$
- $\Rightarrow \widehat{\beta}_1 = \frac{\sum_{i=1}^n Y_i}{n} = \overline{Y} \text{ since } \sum_{i=1}^n \left[X_i \overline{X} \right] = 0$
- Note: if we had not centered the X_i around \overline{X} , we would have got $\widehat{\beta}_1 = \overline{Y} \widehat{\beta}_2 \overline{X}$

$$\frac{\partial l}{\partial \beta_2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X}) \left[Y_i - \beta_1 - \beta_2 (X_i - \overline{X}) \right] = 0$$

$$\Leftrightarrow \sum_{i=1}^n (X_i - \overline{X}) (Y_i - \widehat{\beta}_1) - \widehat{\beta}_2 \sum_{i=1}^n (X_i - \overline{X})^2 = 0$$

$$\Leftrightarrow \widehat{\beta}_2 = \frac{\sum_{i=1}^n (X_i - \overline{X}) (Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

- We have plugged-in $\widehat{\beta}_1$ and $\widehat{\beta}_2$ since the equality conditions are to be satisfied by them
- Sum of squared residuals $SSR = \sum_{i=1}^{n} \left[Y_i \hat{\beta}_1 \hat{\beta}_2 (X_i \overline{X}) \right]^2$
- Remember: in simple linear regression \Rightarrow Sample variance $S = \frac{SSR}{n-2}$
- We now go back to the Bayesian computations, using $\hat{\beta}_1, \hat{\beta}_2$ and SSR

- Priors: $\pi(\beta_1) \propto c_1, \pi(\beta_2) \propto c_2, \sigma^2 \propto 1/\sigma^2$
- $\Rightarrow \pi(\beta_1, \beta_2, \sigma^2) \propto 1/\sigma^2$
- Posterior $\pi(\beta_1, \beta_2, \sigma^2 | \underline{X}, \underline{Y})$

$$\propto \frac{1}{(\sigma^{2})^{n/2}} \exp\left\{-\frac{\sum_{i=1}^{n} \left[Y_{i} - \beta_{1} - \beta_{2}(X_{i} - \overline{X})\right]^{2}}{2\sigma^{2}}\right\} \cdot \frac{1}{\sigma^{2}}$$

$$\propto \frac{1}{(\sigma^{2})^{n/2+1}} \exp\left\{-\frac{\sum_{i=1}^{n} \left\{\left[Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}(X_{i} - \overline{X})\right] - (\beta_{1} - \hat{\beta}_{1}) - (\beta_{2} - \hat{\beta}_{2})(X_{i} - \overline{X})\right\}^{2}}{2\sigma^{2}}\right\}$$

$$\propto \frac{1}{(\sigma^{2})^{n/2+1}} \exp\left\{-\frac{\sum_{i=1}^{n} \left[Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}(X_{i} - \overline{X})\right]^{2} + \sum_{i=1}^{n} (\beta_{1} - \hat{\beta}_{1})^{2}}{2\sigma^{2}}\right\}$$

$$\cdot \exp\left\{-\frac{\sum_{i=1}^{n} (\beta_{2} - \hat{\beta}_{2})^{2}(X_{i} - \overline{X})^{2}}{2\sigma^{2}}\right\} \cdot \exp\left\{-\frac{2\sum_{i=1}^{n} \left[Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}(X_{i} - \overline{X})\right](\beta_{1} - \hat{\beta}_{1})}{2\sigma^{2}}\right\} \cdot \exp\left\{-\frac{2\sum_{i=1}^{n} \left[Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}(X_{i} - \overline{X})\right](\beta_{2} - \hat{\beta}_{2})(X_{i} - \overline{X})}{2\sigma^{2}}\right\} \cdot \exp\left\{-\frac{2\sum_{i=1}^{n} \left[\beta_{1} - \hat{\beta}_{1}\right](\beta_{2} - \hat{\beta}_{2})(X_{i} - \overline{X})}{2\sigma^{2}}\right\}$$

All the double products will cancel, as we are going to see

•
$$\sum_{i=1}^{n} \left[Y_i - \widehat{\beta}_1 - \widehat{\beta}_2 (X_i - \overline{X}) \right] (\beta_2 - \widehat{\beta}_2) (X_i - \overline{X}) =$$

$$= (\beta_2 - \hat{\beta}_2) \left\{ \sum_{i=1}^n \left[Y_i - \hat{\beta}_1 \right] (X_i - \overline{X}) - \hat{\beta}_2 \sum_{i=1}^n (X_i - \overline{X})^2 \right\} =$$

$$= (\beta_2 - \hat{\beta}_2) \left\{ \sum_{i=1}^n \left[Y_i - \overline{Y} \right] (X_i - \overline{X}) - \frac{\sum_{i=1}^n (X_i - \overline{X}) (Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} \sum_{i=1}^n (X_i - \overline{X})^2 \right\} = 0$$

•
$$\sum_{i=1}^{n} (\beta_1 - \hat{\beta}_1)(\beta_2 - \hat{\beta}_2)(X_i - \overline{X}) = (\beta_1 - \hat{\beta}_1)(\beta_2 - \hat{\beta}_2) \sum_{i=1}^{n} (X_i - \overline{X}) = 0$$

• Posterior $\pi(\beta_1, \beta_2, \sigma^2 | \underline{X}, \underline{Y})$

$$\propto \frac{1}{(\sigma^{2})^{n/2+1}} \exp\{-\frac{\sum_{i=1}^{n} \left[Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}(X_{i} - \overline{X})\right]^{2} + \sum_{i=1}^{n} (\beta_{1} - \hat{\beta}_{1})^{2}}{2\sigma^{2}}\} \cdot \exp\{-\frac{\sum_{i=1}^{n} (\beta_{2} - \hat{\beta}_{2})^{2}(X_{i} - \overline{X})^{2}}{2\sigma^{2}}\} \cdot \times \frac{1}{(\sigma^{2})^{n/2+1}} \exp\{-\frac{SSR + n(\beta_{1} - \hat{\beta}_{1})^{2} + (\beta_{2} - \hat{\beta}_{2})^{2} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{2\sigma^{2}}\} \times \frac{1}{(\sigma^{2})^{(n+1)/2}} \exp\{-\frac{SSR + n(\beta_{1} - \hat{\beta}_{1})^{2}}{2\sigma^{2}}\} \frac{1}{(\sigma^{2})^{1/2}} \exp\{-\frac{(\beta_{2} - \hat{\beta}_{2})^{2} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{2\sigma^{2}}\} \exp\{-\frac{(\beta_{2} - \hat{\beta}_{2})^{2} \sum_$$

- We integrate out $\beta_2 \sim \mathcal{N}(\widehat{\beta}_2, \frac{\sigma^2}{\sum_{i=1}^n (X_i \overline{X})^2})$
- $\Rightarrow \pi(\beta_1, \sigma^2 | \underline{X}, \underline{Y}) \propto \frac{1}{(\sigma^2)^{(n+1)/2}} \exp\{-\frac{SSR + n(\beta_1 \widehat{\beta}_1)^2}{2\sigma^2}\}$

- We integrate out $\sigma^2 \sim \mathcal{IG}((n-1)/2, (SSR + n(\beta_1 \hat{\beta}_1)^2)/2)$
- $\Rightarrow \beta_1 | \underline{X}, \underline{Y}$ will have a Student's *t*-distribution
- Student's t density f(t) with mean 0, scale 1 and degrees of freedom (d.f.) ν

$$\Rightarrow f(t) \propto rac{1}{\left[1 + rac{t^2}{
u}
ight]^{(
u+1)/2}}$$

$$\pi(\beta_{1}|\underline{X},\underline{Y}) \propto \frac{1}{\left[SSR + n(\beta_{1} - \hat{\beta}_{1})^{2}\right]^{(n-1)/2}} \times \frac{1}{\left[1 + \frac{(\beta_{1} - \hat{\beta}_{1})^{2}}{SSR/n}\right]^{[(n-2)+1]/2}} \times \frac{1}{\left[1 + \frac{(\beta_{1} - \hat{\beta}_{1})^{2}}{SSR/n}\right]^{[(n-2)+1]/2}} \times \frac{1}{\left[1 + \frac{(\beta_{1} - \hat{\beta}_{1})^{2}}{S^{2}/n}\right]^{[(n-2)+1]/2}}$$

- I used $\frac{SSR}{n} = \frac{SSR}{n-2} \frac{n-2}{n} = S^2 \frac{n-2}{n}$ where S^2 is an unbiased estimator of σ^2
- $\Rightarrow \beta_1 | \underline{X}, \underline{Y} \sim t_{n-2}(\widehat{\beta}_1, S^2/n)$, with mean $\widehat{\beta}_1$, scale S^2/n and (n-2) d.f.
- Similarly, it possible to prove that $\beta_2|\underline{X},\underline{Y}\sim t_{n-2}(\widehat{\beta}_2,\frac{S^2}{\sum_{i=1}^n(X_i-\overline{X})^2})$
- We go back to $\pi(\beta_1, \sigma^2|\underline{X}, \underline{Y}) \propto \frac{1}{(\sigma^2)^{n/2+1/2}} \exp\{-\frac{SSR + n(\beta_1 \widehat{\beta}_1)^2}{2\sigma^2}\}$
- We integrate out $\beta_1 \sim \mathcal{N}(\widehat{\beta}_1, \sigma^2/n)$
- $\Rightarrow \pi(\sigma^2|\underline{X},\underline{Y}) \propto \frac{1}{(\sigma^2)^{n/2}} \exp\{-\frac{SSR}{2\sigma^2}\}$
- $\Rightarrow \sigma^2 | \underline{X}, \underline{Y} \sim \mathcal{IG}(n/2 1, SSR/2)$

- Summarising, we have been able to get the three posteriors in closed form:
 - $\beta_1|\underline{X},\underline{Y} \sim t_{n-2}(\hat{\beta}_1,S^2/n)$

-
$$\beta_2|\underline{X},\underline{Y} \sim t_{n-2}(\widehat{\beta}_2,\frac{S^2}{\sum_{i=1}^n (X_i - \overline{X})^2})$$

-
$$\sigma^2 | \underline{X}, \underline{Y} \sim \mathcal{IG}(n/2 - 1, SSR/2)$$

- Note that the posterior means for β_1 and β_2 coincide with the MLEs: this is not uncommon when considering improper priors
- Warning: the posteriors are proper if and only if n > 2 and not all X_i 's are equal!
- The posterior mean of σ^2 exists if and only if n>4 since the mean of the inverse gamma $\mathcal{IG}(a,b)$ is $\frac{b}{a-1}=\frac{SSR/2}{(n/2-1)-1}=\frac{SSR}{n-4}$

- We have found the posterior distributions of the parameters, either in closed form or in a suitable one to apply MCMC ⇒ now we can estimate them, e.g., considering the posterior mean, and build credible intervals in a way similar to what we saw earlier (and I will not repeat it)
- When considering more than one covariate, i.e., X_1, \ldots, X_n , still Gaussian priors should be considered for each of them
- Similarly to the frequentist approach, there is an interest for the covariates which are significant
 - Instead of considering p-values, Bayesians look for a credible interval and check if 0 belongs to it
 - If the credible interval contains 0 then the covariate is not significant; otherwise, it is
 - We will see an example next
- If Y is multivariate, then multivariate Gaussian distributions are chosen to model the observations and as a prior for the mean, while an Inverse Wishart distribution is chosen for the covariance matrix

- Both frequentist and Bayesian methods will be applied in the next example
- 713 observations corresponding to the days where the prices of the Bitcoins in 8 different exchange markets were recorded together with the prices of the classical assets and the exchange rates
- We will use the package rstanarm and the function stan_glm, whose usage is similar to lm
- Use of improper priors leading to results close to frequentist ones
- You could try other priors, using the R tutorials, like ?stan_glm
- For this example, I tried stan_lm, the very equivalent of lm (both about linear models) but it did not work, so that I used the one for generalised linear models
- I first present the commands for the frequentist analysis

```
rm(list=ls()) # Clear the environment
install.packages("ggplot2",dependencies=TRUE)
install.packages("readxl",dependencies=TRUE)
install.packages("corrplot",dependencies=TRUE)
library(ggplot2);library(readxl);library(corrplot)
exchanges<-read_excel("exchanges.xlsx") # Read in working directory
data<-exchanges
datal<-data[-1] # Remove the first column from data
# New dataset with returns instead of prices: (log(x)-log(x-1))
data2<-as.data.frame(sapply(data1,function(x)diff(log(x),lag=1)))
attach(data2) # Bring the names of the variables directly into memory</pre>
```

```
# Multiple linear regression [btc_coinbase on all other variables]
model_3<-lm(btc_coinbase~.,data=data2)
summary(model_3)
# Get and plot residuals
res<-model_3$residuals
plot(res,type='l')
install.packages("rstanarm",dependencies=TRUE)
library(rstanarm)
model_b<-stan_glm(btc_coinbase~.,data=data2)
summary(model_b, digits=3)
# Get and plot residuals
resb<-model_b$residuals
plot(resb,type='l')</pre>
```

Default priors: standard Gaussian for intercept and coefficients and exponential of parameter 1 for σ^2

Results based on MLE

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
            0.0001059 0.0003123
                                 0.339 0.73454
btc kraken
            0.0210321
                      0.0123977 1.696 0.09025 .
                      0.0359272 1.070 0.28503
btc_bitstamp
            0.0384385
                      0.0256007 0.509 0.61082
btc itbit
            0.0130343
btc bitfinex
            0.2297741
                      0.0315236 7.289 8.47e-13 ***
            0.0821093
                      0.0184755
                                4.444 1.03e-05 ***
btc hitbtc
btc_gemini
            0.5981632
                      0.0308680
                                19.378 < 2e-16 ***
btc bittrex 0.0056419
                      0.0145595
                                0.388 0.69850
                      0.2066436
                                -0.506 0.61291
usdyuan
       -0.1045943
usdeur
           0.2060414
                      0.0986501 2.089 0.03710 *
        0.0712161
                      0.0575053 1.238
                                        0.21597
gold
                                        0.00208 **
oil
        -0.0595675
                      0.0192726
                                -3.091
sp500
                      0.0569865
           -0.0952889
                                -1.672
                                        0.09495 .
Signif. codes:
              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Warmup is better known as burn-in, i.e. the first values are discarded because affected by the starting values
- We now consider different priors, like Student t for each coefficient, Cauchy for the intercept and exponential for σ^2
- We consider also 1 chains, setting a seed and the number of iterations

```
model_b<-stan_glm(btc_coinbase~.,chains=1,seed=12345,iter=250,
prior=student_t(df=4,0,2.5),prior_intercept=cauchy(0,10),prior_aux =
exponential(1/2),data=data2)
summary(model_b, digits=3)
print(model_b)
prior_summary(model_b) # To see the chosen priors
library(bayesplot)
mcmc_dens(model_b)
library(bayestestR)
hdi(model_b)</pre>
```

- The previous example dealt with continuous variables but what about a response (dependent variable) taking only a finite number of integer values?
- Consider people applying for mortgages (or subject to surgery): are they able to pay the mortgage back (or will they survive)?
- The observations are 1's (pays back/survives) and 0's (does not pay back/dies)
- We are still interested in studying the effect of covariates (independent variables), like age and gender, on the final result
- We cannot use $Y = \beta_1 + \beta_2 X + \epsilon$ with Y = 0, 1 since it is almost impossible to choose r.h.s. terms such that there is always either 0 or 1 in the l.h.s.
- We consider $\pi = P(Y = 1)$ but we cannot use $\pi = \beta_1 + \beta_2 X + \epsilon$ since it is almost impossible to choose r.h.s. terms such that the l.h.s. will be always between 0 and 1
- $\bullet \ \ \ (\text{logit}) \ \ \text{transformation: log} \left(\frac{\pi}{1-\pi}\right) = X^{'}\beta, \ \text{with} \ X^{'}, \beta \ \ \text{vectors of size} \ k$
- Earlier: $X' = (1, X), \beta' = (\beta_1, \beta_2)$

•
$$\log\left(\frac{\pi}{1-\pi}\right) = X'\beta \Rightarrow \pi = \frac{e^{X'\beta}}{1+e^{X'\beta}}$$

- For each i = 1, ..., n, consider n_i observations (y_i, x_i) and the related probability π_i (e.g. y_i , out of n_i , persons with features x_i , paid the mortgage back)
- $y=(y_1,\ldots,y_n), \underline{x}=(x_1,\ldots,x_n), \underline{\pi}=(\pi_1,\ldots,\pi_n)$ and $\underline{n}=(n_1,\ldots,n_n)$
- We consider a Binomial model (Bernoulli if $n_i = 1$)

$$P(Y_i = y_i | \pi_i, n_i, x_i) = \binom{n_i}{y_i} \pi_i^{y_i} (1 - \pi_i)^{n_i - y_i} = \binom{n_i}{y_i} \left(\frac{e^{x_i'\beta}}{1 + e^{x_i'\beta}}\right)^{y_i} \left(\frac{1}{1 + e^{x_i'\beta}}\right)^{n_i - y_i}$$

- Likelihood: $\prod_{i=1}^{n} \binom{n_i}{y_i} \frac{e^{y_i x_i' \beta}}{\left(1 + e^{x_i' \beta}\right)^{n_i}}$
- Prior distribution on β : e.g. Multivariate Gaussian (simplest: product of independent univariate Gaussian distributions)

- Survey of 3200 residents in a small area of Bangladesh suffering from arsenic contamination of groundwater*
- Respondents with elevated arsenic levels in their wells were encouraged to switch their water source to a safe well in the nearby area and the survey was conducted several years later to learn which of the affected residents had switched wells
- The goal of the analysis is to learn about the factors associated with switching wells
- To start, we will use dist (the distance from the respondent's house to the nearest well with safe drinking water) as the only predictor of switch (1 if switched, 0 if not).
- Then we will expand the model by adding the arsenic level of the water in the resident's own well as a predictor and then we will add all variables
- After loading the wells data, we first rescale the dist variable (measured in meters) so that it is measured in units of 100 meters

^{*}Example due to Gabry and Goodrich (website), based on Gelman and Hill's book

```
library(rstanarm)
data(wells)
wells$dist100 <- wells$dist / 100
head(wells)
library(ggplot2)
ggplot(wells,aes(x=dist100,y=after_stat(density),fill=switch==1)) +
geom_histogram() + scale_fill_manual(values=c("gray30", "skyblue"))</pre>
```

- Distribution of dist100: 1737 residents who switched (blue bars) and 1283 who did not (dark grey bars)
- It is just one density (not two!) which describes also the proportion of switch/no switch at various distances
- For the residents who switched wells, the distribution of dist100 is more concentrated at smaller distances
- We use a Student t prior with coefficients close to 0 but with chances of being large (less likely under Gaussian)

```
t_prior <- student_t(df = 7, location = 0, scale = 2.5)
fit1<-stan_glm(switch ~ dist100, data=wells, seed = 12345,
    family = binomial(link = "logit"),
    prior = t_prior, prior_intercept = t_prior)
summary(fit1, digits=3)
round(posterior_interval(fit1, prob = 0.5), 3) # digits=3
fit2 <- update(fit1, formula = switch ~ dist100 + arsenic)
round(coef(fit2), 3)
summary(fit2, digits=3)
fit3<-stan_glm(switch ~ arsenic+assoc+educ+dist100, data=wells,
family = binomial(link = "logit"), seed = 12345,
    prior = t_prior, prior_intercept = t_prior)
summary(fit3, digits=3)</pre>
```

- switch binary/dummy (0 or 1) for well-switching
- 0.468: arsenic arsenic level in respondent's well
- -0.897: dist100 distance (100 meters) from the respondent's house to the nearest well with safe drinking water
- -0.125: association binary/dummy (0 or 1) if member(s) of household participate in community organizations
- 0.043: educ years of education (head of household)
- Interpretation of those numbers (posterior means)?

- Using the coefficient estimates from the first model, we can plot the predicted probability of switch = 1 (as a function of dist100)
- plogis is the cdf of a logistic distribution

```
t_prior <- student_t(df = 7, location = 0, scale = 2.5)
fit1<-stan_glm(switch ~ dist100, data=wells, seed = 12345,
    family = binomial(link = "logit"),
    prior = t_prior, prior_intercept = t_prior)
summary(fit1, digits=3)
pr_switch <- function(x, ests) plogis(ests[1] + ests[2] * x)
coef(fit1)[1]; coef(fit1)[2]
aa=seq(0,12,0.25)
plot(aa,pr_switch(aa,coef(fit1)),type='1')</pre>
```