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REGRESSION

We now consider linear regression (LR), providing a linear relation between a de-
pendent variable (Y') and an independent one (X)), sometimes called covariate

We can distinguish 4 cases based on the dimensions of Y and X
— Simple LR vs. Multiple LR: just one X or multiple X’s

— Univariate LR vs. Multivariate LR: just one-dimensional Y or multiple dimen-
sional Y

We consider only the simplest case: Univariate Simple Linear Regression
Y =081+ BX+¢

B1, B2 univariate unknown parameters

e error term with E(¢) = 0 and Var(e) = o2 unknown

We consider ¢ ~ N (0, o?)



REGRESSION
Observations: V; = 81 + 82X, +¢€i,1=1,...,n
X;’s are supposed known here but they could be r.vs as well
We assume that ey, ..., e, are i.i.d. N'(0, 0?)
Notation:Y = (Y1,...,Y,)and X = (X4,...,X,)

Likelihood function L(31, 32, 02|Y, X) given by

n n - . N2
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Independent priors with known hyperparameters:
B1~N(0,72), B2 ~ N(0,73) and 02 ~ ZG(a,b)
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e Posterior distribution
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e Conditional on 82: 32|81,0%,Y, X ~ N(
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e Conditional on 02: 62|81, 82,Y, X ~ ZG (a /2,64 > iz (Yi — B1 — B2X;) )
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e = Gibbs sampling
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Different approach, with slight change, from Press, J. (2002), Subjective and Objec-
tive Bayesian Statistics, Wiley

7(B1, B2, 0°) x o

Joint posterior

> S (Yi— 81— B2Xi)?, 1
77(617/8270- |X7 X) X (0_2)n/2 eXp{_ 20_2 }0_2
Integrating out o = (81, 82)|Y, X bivariate Student distribution
1
(81, B2|Y, X) o /2

> (Vi = 1 — B2Xi)?]
Bivariate Student’s ¢ = Marginal Student’s ¢
= B1|Y, X ~ t, Bo|Y, X ~ t and o2|B1, B2, Y, X ~ ZG as before
agj) from inverse gamma with values ng) and Béj) generated from the t-distributions

6



REGRESSION

Another different approach from Cowles, M.K., (2013), Applied Bayesian Statistics,
Springer

Center the X;’s around their mean X = X; — X; — X

= Yi|Xi, B1, 82,02 ~ N(B1 + Bo(Xi — X),02), i=1,...,n

7(B1, 82,0°) x 0?

We will consider three sufficient statistics: 381, 52, SSR (sum of squared residuals)

Given a r.v. X with density f(X|0), a statistic t = T'(X) is said sufficient for 0 if
f(X|t = T(X) does not depend on ¢

In words, a sufficient statistic contains all the information provided by the data about
the model parameters

Those statistics are estimators from a frequentist viewpoint
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- = 1 1 —a2. ).
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Loglikelihood (81, 82, 02) = —Eloga ——ZY B — Ba(X; — X)]

ol
91

1 n _ n n J—
=5 [Yi-A-5Xi-X)]=0s) Yi-npi-fh) [Xi-X]
i=1 =1 =1

ﬁBAl:M:?SinCGZ[Xi—Y] =0

n
=1

Note: if we had not centered the X; around X, we would have got 81 = Y — 5o X
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ol 1 N X
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i=1 =1
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We have plugged-in 51 and B2 since the equality conditions are to be satisfied by
them

p— BQZ

Sum of squared residuals SSR =) _ [Y; — B1 — B2(X; — X))
=1

SSR
n— 2

Remember: in simple linear regression = Sample variance S =

We now go back to the Bayesian computations, using 51, 8> and SSR
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o Priors: m(B1) o c1,m(B2) x c2,0% x 1/0?
o = 7m(B1,82,0%) x 1/0?

e Posterior 7(B1, 82,0%|X,Y)

1 SV =B - Ba(Xi — X)) 1
= (o) exp{ - s 1202 2 ] e

1 S Y= B — Ba(Xi = X)] = (B — B1) — (B2 — Ba)(Xi — X))V
x (0-2)n/2+1 eXp{— 1{[ 1 2 ] 20-21 1 2 2 } }
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S Yi— B — Ba(Xi — 7)]2 + >0 (B — B1)?

X g2y P — )
exp{_Z?zl(ﬁz —f;f(xi _ 7)2} |
exp(-2Zim [V = A= P = O] (= B)y
ST T
oxp (-2 Zima 1 = B2 = ) (X = X,

e All the double products will cancel, as we are going to see
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12



REGRESSION

e Posterior (51, B2, UQIX, Y)

x (Og)ip — exp{_Z?zl Y — B1 — Ba(X; 2—5)]2 + 5 (B — 31)2} |
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e We integrate out 82 ~ N (B2, )

Z?:l(Xi - Y)Q

SSR 4+ n(B1 — B1)?

. = 7(B1,0?X,Y) o
202

}
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e We integrate out 02 ~ ZG((n — 1) /2, (SSR + n(B1 — B1)?)/2)

e = (1|X,Y will have a Student’s ¢-distribution

e Student’s ¢ density f(t) with mean 0, scale 1 and degrees of freedom (d.f.) v

1

= f(t) o 14 L] (v+1)/2

7T(61|X7 X) X

1

SSR+n(By — B1)2] "D
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14



REGRESSION
SSR _ SSRn—2 _

n n—2 n n

-2
| used 2Tt

= B1|X,Y ~ t, 2(B1,S?/n), with mean /31, scale S?/n and (n — 2) d.f.

52

Similarly, it possible to prove that 82| X, Y ~ t,—2(B2, == —

)

_SSR4n(B1 — B1)?

1
2
We go back to 7 (51,07 X,Y) ()T exp{ 5o2

We integrate out 81 ~ N'(B1,02/n)

SSR

= 21X,Y)
(0% X,Y) =

}

1
(o2)n/2 exp{—

= 0| X, Y ~IG(n/2 —1,SSR/2)

}

where S2 is an unbiased estimator of o2
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Summarising, we have been able to get the three posteriors in closed form:
- A1 X, Y ~ tn_2(B1,5%/n)
52
> (Xi—X)?
- 0% X, Y ~ZIG(n/2 —1,SSR/2)

- BQ‘X?X ~ tn—2(327 )

Note that the posterior means for 51 and (> coincide with the MLEs: this is not
uncommon when considering improper priors

Warning: the posteriors are proper if and only if n > 2 and not all X;’s are equal!
The posterior mean of o2 exists if and only if n > 4 since the mean of the inverse

b _ SSR/2 _ SSR
—1 (n/2-1)—-1 n-—4

gamma ZG(a,b) is
a
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e We have found the posterior distributions of the parameters, either in closed form or
in a suitable one to apply MCMC =- now we can estimate them, e.g., considering the
posterior mean, and build credible intervals in a way similar to what we saw earlier
(and I will not repeat it)

e When considering more than one covariate, i.e., X1,..., X,, still Gaussian priors
should be considered for each of them

e Similarly to the frequentist approach, there is an interest for the covariates which are
significant

— Instead of considering p-values, Bayesians look for a credible interval and check
if O belongs to it

— If the credible interval contains O then the covariate is not significant; otherwise,
it is
— We will see an example next

e If Y is multivariate, then multivariate Gaussian distributions are chosen to model the
observations and as a prior for the mean, while an Inverse Wishart distribution is
chosen for the covariance matrix
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Both frequentist and Bayesian methods will be applied in the next example

713 observations corresponding to the days where the prices of the Bitcoins in 8
different exchange markets were recorded together with the prices of the classical
assets and the exchange rates

We will use the package rstanarm and the function stan glm, whose usage is
similar to 1m

Use of improper priors leading to results close to frequentist ones
You could try other priors, using the R tutorials, like ?stan_glm

For this example, | tried stan_1m, the very equivalent of 1m (both about linear mod-
els) but it did not work, so that | used the one for generalised linear models

| first present the commands for the frequentist analysis
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rm(list=1s()) # Clear the environment
install.packages ("ggplot2", dependencies=TRUE)

install.packages ("readxl",dependencies=TRUE)

install.packages ("corrplot", dependencies=TRUE)

library (ggplot?2);library (readxl);library (corrplot)
exchanges<-read_excel ("exchanges.x1lsx") # Read in working directory
data<—-exchanges

datal<—-data[-1] # Remove the first column from data

# New dataset with returns instead of prices: (log(x)-log(x-1))
dataz2<—-as.data.frame (sapply(datal, function(x)diff (log(x),lag=1l)))
attach (data2) # Bring the names of the variables directly into memory
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# Multiple linear regression [btc_coinbase on all other variables]
model 3<-Im(btc_coinbase™.,data=data?2)

summary (model_3)

# Get and plot residuals

res<-model 3Sresiduals

plot (res, type="1")
install.packages ("rstanarm", dependencies=TRUE)
library (rstanarm)
model_b<-stan_glm(btc_coinbase™.,data=data?)
summary (model_b, digits=3)

# Get and plot residuals

resb<-model bSresiduals

plot (resb, type="1")

Default priors: standard Gaussian for intercept and coefficients and exponential of param-

eter 1 for o2
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Results based on MLE

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.0001059 0.0003123 0.339 0.73454
btc_kraken 0.0210321 0.0123977 1.696 0.09025
btc_bitstamp 0.0384385 0.0359272 1.070 0.28503
btc_itbit 0.0130343 0.0256007 0.509 0.61082
btc_bitfinex 0.2297741 0.0315236 7.289 8.47e-13 **x*
btc_hitbtc 0.0821093 0.0184755 4.444 1.03e-05 *+*x*
btc_gemini 0.5981632 0.0308680 19.378 < 2e—-16 #*x*xx*
btc_bittrex 0.0056419 0.0145595 0.388 0.69850
usdyuan —-0.1045943 0.2066436 -0.506 0.61291
usdeur 0.2060414 0.0986501 2.089 0.03710 =
gold 0.0712161 0.0575053 1.238 0.21597
oil -0.0595675 0.0192726 -3.091 0.00208 *x*
sp500 -0.0952889 0.0569865 -1.672 0.09495
Signif. codes: O ‘xxx" 0.001 ‘%" 0.01 'x’ 0.05 '.” 0.1

\

14

1
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e Warmup is better known as burn-in, i.e. the first values are discarded because af-
fected by the starting values

e We now consider different priors, like Student ¢ for each coefficient, Cauchy for the
intercept and exponential for o2

e We consider also 1 chains, setting a seed and the number of iterations

model_b<-stan_glm(btc_coinbase™.,chains=1,seed=12345,1iter=250,
prior=student_t (df=4,0,2.5),prior_intercept=cauchy (0, 10),prior_aux =
exponential (1/2),data=data?2)

summary (model_b, digits=3)

print (model_Db)

prior_summary (model_b) # To see the chosen priors

library (bayesplot)

mcmc_dens (model_Db)

library (bayestestR)

hdi (model_b)
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LOGISTIC REGRESSION

The previous example dealt with continuous variables but what about a response
(dependent variable) taking only a finite number of integer values?

Consider people applying for mortgages (or subject to surgery): are they able to pay
the mortgage back (or will they survive)?

The observations are 1’s (pays back/survives) and 0’s (does not pay back/dies)

We are still interested in studying the effect of covariates (independent variables),
like age and gender, on the final result

We cannot use Y = 81 + 82X + e with Y = 0, 1 since it is almost impossible to
choose r.h.s. terms such that there is always either 0 or 1 in the I.h.s.

We consider m = P(Y = 1) but we cannot use m = 81 4+ 8>X + € since it is almost
impossible to choose r.h.s. terms such that the l.h.s. will be always between 0 and 1

) T
(Logit) transformation: log (1
— T

) = X 3, with X', 8 vectors of size k

Earlier: X' = (1,X),8 = (B4, 82)
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LOGISTIC REGRESSION
log (1iw> =X/ﬁ¢w:i

For each i = 1,...,n, consider n; observations (y;, x;) and the related probability
m; (e.9. y;, out of n;, persons with features x;, paid the mortgage back)

y= (1, ..,¥n),z=(21,...,2p), ® = (m1,...,m) and n = (n1,...,ny)

We consider a Binomial model (Bernoulli if n; = 1)

' ; 37;5 Y 1 ni—Yi
P(Y; = yi|7r2-, n;, x@) — (nz) 7_‘_Zyz(l . Wi)ni—yi — (nz) 6—/ —/)
Yi yi/ \ 1+ %P 1+ enf

eyiw;B

Likelihood: 1;[1 (y) T o)

Prior distribution on 3: e.g. Multivariate Gaussian (simplest: product of independent
univariate Gaussian distributions)
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LOGISTIC REGRESSION

e Survey of 3200 residents in a small area of Bangladesh suffering from arsenic con-
tamination of groundwater*

e Respondents with elevated arsenic levels in their wells were encouraged to switch
their water source to a safe well in the nearby area and the survey was conducted
several years later to learn which of the affected residents had switched wells

e The goal of the analysis is to learn about the factors associated with switching wells

e To start, we will use dist (the distance from the respondent’s house to the nearest
well with safe drinking water) as the only predictor of switch (1 if switched, 0 if not).

e Then we will expand the model by adding the arsenic level of the water in the resi-
dent’s own well as a predictor and then we will add all variables

e After loading the wells data, we first rescale the dist variable (measured in me-
ters) so that it is measured in units of 100 meters

“Example due to Gabry and Goodrich (website), based on Gelman and Hill’s book

25



LOGISTIC REGRESSION

library (rstanarm)
data (wells)
wells$Sdistl1l00 <— wellsS$Sdist / 100

head (wells)

library (ggplot?2)

ggplot (wells, aes (x=distl1l00,y=after_stat (density), fill=switch==1)) +
geom_histogram() + scale_fill_manual (values=c ("gray30", "skyblue"))

e Distribution of dist100: 1737 residents who switched (blue bars) and 1283 who did
not (dark grey bars)

e It is just one density (not two!) which describes also the proportion of switch/no
switch at various distances

e For the residents who switched wells, the distribution of dist100 is more concen-
trated at smaller distances

e We use a Student ¢ prior with coefficients close to O but with chances of being large
(less likely under Gaussian)
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LOGISTIC REGRESSION

t_prior <- student_t(df = 7, location = 0, scale = 2.5)
fitl<-stan_glm(switch = distl100,data=wells,seed = 12345,
family = binomial (link = "logit"),
prior = t_prior, prior_intercept =
summary (fitl,digits=3)
round (posterior_interval (fitl, prob = 0.5), 3) # digits=3
fit2 <- update(fitl, formula = switch 7 distl1l00 + arsenic)
round (coef (fit2), 3)
summary (fit2,digits=3)

t_prior)

fit3<-stan_glm(switch =~ arsenictassoc+educ+distl00,data=wells,
family = binomial (link = "logit"),seed = 12345,
prior = t_prior, prior_intercept = t_prior)

summary (fit3,digits=3)
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LOGISTIC REGRESSION

switch — binary/dummy (0 or 1) for well-switching
0.468: arsenic —arsenic level in respondent’s well

-0.897: dist100 — distance (100 meters) from the respondent’s house to the near-
est well with safe drinking water

-0.125: association — binary/dummy (0 or 1) if member(s) of household partici-
pate in community organizations

0.043: educ — years of education (head of household)

Interpretation of those numbers (posterior means)?
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LOGISTIC REGRESSION

e Using the coefficient estimates from the first model, we can plot the predicted prob-
ability of switch = 1 (as a function of dist100)

e plogis is the cdf of a logistic distribution

t_prior <- student_t(df = 7, location = 0, scale = 2.5)
fitl<-stan_glm(switch = distl100,data=wells, seed = 12345,
family = binomial (link = "logit"),
prior = t_prior, prior_intercept =
summary (fitl,digits=3)
pr_switch <- function(x, ests) plogis(ests[l] + ests[2] * Xx)
coef (fitl) [1]; coef (fitl) [2]
aa=seq(0,12,0.25)
plot (aa,pr_switch (aa,coef (fitl)),type="1")

t_prior)
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