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Intersection numbers (Witten–Kontsevich correlators)
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The Deligne–Mumford compactification Mg,n of the moduli space of smooth

complex curves of genus g with n labeled marked points P1, . . . , Pn ∈ C is a

complex orbifold of complex dimension 3g − 3 + n.

Choose index i in {1, . . . , n}. The family of complex lines cotangent to C at

the point Pi forms a holomorphic line bundle Li over Mg,n which extends to Mg,n.
The first Chern class of this tautological bundle is denoted by ψi = c1(Li).

Any collection of nonnegative integers satisfying d1 + · · ·+ dn = 3g − 3 + n

determines a positive rational “intersection number ” (or the “correlator ” in the

physical context):

〈τd1 . . . τdn〉g :=
∫

Mg,n

ψd1
1 . . . ψdn

n .

The famous Witten’s conjecture claims that these numbers satisfy certain

recurrence relations which are equivalent to certain differential equations on

the associated generating function (“partition function in 2-dimensional
quantum gravity ”). Witten’s conjecture was proved by M. Kontsevich;

alternative proofs belong to A. Okounkov and R. Pandharipande, to

M. Mirzakhani, to M. Kazarian and S. Lando (and there are more).
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Recursive relations
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Initial data: 〈τ30 〉 = 1, 〈τ1〉 = 1
24 .

String equation:

〈τ0τd1 . . . τdn〉g,n+1 = 〈τd1−1 . . . τdn〉g,n + · · ·+ 〈τd1 . . . τdn−1〉g,n .

Dilaton equation:

〈τ1τd1 . . . τdn〉g,n+1 = (2g − 2 + n)〈τd1 . . . τdn〉g,n .
Virasoro constraints (in Dijkgraaf–Verlinde–Verlinde form; k ≥ 1):

〈τk+1τd1 · · · τdn〉g =
1

(2k + 3)!!

[
n∑

j=1

(2k + 2dj + 1)!!

(2dj − 1)!!
〈τd1 · · · τdj+k · · · τdn〉g

+
1

2

∑

r+s=k−1
r,s≥0

(2r + 1)!!(2s+ 1)!!〈τrτsτd1 · · · τdn〉g−1

+
1

2

∑

r+s=k−1
r,s≥0

(2r+1)!!(2s+1)!!
∑

{1,...,n}=I
∐

J

〈τr
∏

i∈I

τdi〉g′〈τs
∏

i∈J

τdi〉g−g′

]

.



Uniform large genus asymptotics
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We stated in August 2019 a conjecture which was proved by Amol Aggarwal

already in April 2020.

Theorem (Aggarwal’21). The following uniform asymptotic formula is valid:

∫

Mg,n

ψd1
1 . . . ψdn

n =

=
1

24g
· (6g − 5 + 2n)!

g! (3g − 3 + n)!
· d1! . . . dn!

(2d1 + 1)! · · · (2dn + 1)!
·
(
1 + ε(d)

)
,

where ε(d) = O
(

1 + (n+log g)2

g

)

uniformly for all n = o(
√
g) and all

partitions d, d1 + · · ·+ dn = 3g − 3 + n, as g → +∞.



Volume polynomials

6 / 30

Consider the moduli space Mg,n of Riemann surfaces of genus g with n

marked points. Let d1, . . . , dn be an ordered partition of 3g − 3 + n into the

sum of nonnegative numbers, d1 + · · ·+ dn = 3g − 3 + n, let d be the

multiindex (d1, . . . , dn) and let b2d denote b2d11 · · · · · b2dnn .

Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g − 6 + 2n
in variables b1, . . . , bn:

Ng,n(b1, . . . , bn) :=
∑

|d|=3g−3+n

cdb
2d ,

where

cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n
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cd :=
1

25g−6+2n d!

∫

Mg,n

ψd1
1 . . . ψdn

n

Up to a numerical factor, the polynomial Ng,n(b1, . . . , bn) coincides with the

top homogeneous part of the Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn)
providing the Weil–Petersson volume of the moduli space of bordered Riemann

surfaces:

V top
g,n (b) = 22g−3+n ·Ng,n(b) .
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Define the formal operation Z on monomials as

Z :
n∏

i=1

bmi

i 7−→
n∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extend it to symmetric polynomials in bi by linearity.



Trivalent ribbon graphs
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This trivalent ribbon graph defines an orientable surface of genus g = 1 with
n = 2 boundary components. If we assigned lengths to all edges of the core

graph, each boundary component gets induced length, namely, the sum of the

lengths of the edges which it follow.

Note, however, that in general, fixing a genus g, a number n of boundary
components and integer lengths b1, . . . , bn of boundary components, we get

plenty of trivalent integral metric ribbon graphs associated to such data. The

Theorem of Kontsevich counts them.



Kontsevich’s count of metric ribbon graphs
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Theorem (Kontsevich’92; in this form — Norbury’10). Consider a

collection of positive integers b1, . . . , bn such that
∑n

i=1 bi is even. The

weighted count of genus g connected trivalent metric ribbon graphs Γ with

integer edges and with n labeled boundary components of lengths b1, . . . , bn
is equal to Ng,n(b1, . . . , bn) up to the lower order terms:

∑

Γ∈Rg,n

1

|Aut(Γ)| NΓ(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms ,

where Rg,n denote the set of (nonisomorphic) trivalent ribbon graphs Γ of

genus g and with n boundary components.

This Theorem is an important part of Kontsevich’s proof of Witten’s conjecture.



Stable graph associated to a square-tiled surface
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points. We also consider a multicurve γ on the resulting surface

composed of the waist curves γj of all maximal horizontal cylinders.
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Having a square-tiled surface we associate to it a topological surface S on
which we mark all “corners” with cone angle π (i.e. vertices with exactly two

adjacent squares). By convention the associated hyperbolic metric has cusps

at the marked points. We also consider a multicurve γ on the resulting surface

composed of the waist curves γj of all maximal horizontal cylinders. The

associated stable graph Γ is the dual graph to the multicurve. The vertices of Γ
are in the natural bijection with metric ribbon graphs given by components of

S \ γ. The edges are in the bijection with the waist curves γi of the cylinders.

The marked points are encoded by “legs” — half-edges of the dual graph.

———————————————————————



Number of square-tiled tori
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φ

b

h

φ

The number of square-tiled tori tiled with at most N squares has asymptotics

∑

b,h∈N
b·h≤N

b =
∑

b,h∈N

b≤N
h

b ∼
∑

h∈N

1

2
·
(

N

h

)2

=
N2

2

∑

h∈N

1

h2
=
N2

2
ζ(2) =

=
N2

2
Z(b) =

N2

2
·
π2

6
.
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) b1 1

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) b1
1 1

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2)

b1 b2
0

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·
·N1,1(b2)

b1 b2
0 1

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·
·N0,3(b2, b3, b3)

b1 b2
b30 0

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·
·N0,3(b1, b2, b3)

b1 b2 b3

0

0
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b1
1
2 · 1 · b1 ·N1,2(b1, b1) = 1

2 · b1
(

1
384(2b

2
1)(2b

2
1)
)

b1

1
2 · 1

2 · b1 ·N1,1(b1) ·N1,1(b1) = 1
4 · b1

(
1
48b

2
1

) (
1
48b

2
1

)

b1 b2
1
8 · 1 · b1b2 ·N0,4(b1, b1, b2, b2) = 1

8 · b1b2 ·
(
1
4(2b

2
1 + 2b22)

)

b1
b2

1
2 · 1

2 · b1b2 ·N0,3(b1, b1, b2)·
·N1,1(b2) = 1

4 · b1b2 ·
(
1
)
·
(

1
48b

2
2

)

b1
b2

b3
1
8 · 1

2 · b1b2b3 ·N0,3(b1, b1, b2)·
·N0,3(b2, b3, b3) = 1

16 · b1b2b3 · (1) · (1)

b1
b2

b3
1
12 · 1

2 · b1b2b3 ·N0,3(b1, b2, b3)·
·N0,3(b1, b2, b3) = 1

24 · b1b2b3 · (1) · (1)



Volume of Q2
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b1
1

192 · b51
Z7−→ 1

192 ·
(
5! · ζ(6)

)
= 1

1512 · π6

b1

1
9216 · b51

Z7−→ 1
9216 ·

(
5! · ζ(6)

)
= 1

72576 · π6

b1 b2
1
16(b

3
1b2+

+b1b
3
2)

Z7−→ 1
16 · 2

(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

720 · π6

b1
b2

1
192 · b1b32

Z7−→ 1
192 ·

(
1! · ζ(2)

)
·
(
3! · ζ(4)

)
= 1

17280 · π6

b1
b2

b3
1
16b1b2b3

Z7−→ 1
16 ·

(
1! · ζ(2)

)3
= 1

3456 · π6

b1
b2

b3
1
24b1b2b3

Z7−→ 1
24 ·

(
1! · ζ(2)

)3
= 1

5184 · π6

VolQ2 =
128
5 ·

(
1

1512 +
1

72576 +
1

720 +
1

17280 +
1

3456 +
1

5184

)
· π6 = 1

15π
6 .

These contributions to VolQ2 are proportional to Mirzakhani’s frequencies of corresponding multicurves.
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Volume of Qg,n
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Theorem (Delecroix–Goujard–Zograf–Zorich’21). The Masur–Veech

volume VolQg,n of the moduli space of meromorphic quadratic differentials
with n simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·
∑

Weighted graphs Γ
with n legs

1

2Number of vertices of Γ−1
· 1

|AutΓ| ·

· Z




∏

Edges e of Γ

be ·
∏

Vertices of Γ

Ngv,nv+pv(b
2
v, 0, . . . , 0
︸ ︷︷ ︸

pv

)



 ,

The partial sum for fixed number k of edges gives the contribution of k-cylinder

square-tiled surfaces.
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Theorem (Delecroix–Goujard–Zograf–Zorich’21). The Masur–Veech

volume VolQg,n of the moduli space of meromorphic quadratic differentials
with n simple poles has the following value:

VolQg,n =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·
∑

Weighted graphs Γ
with n legs

1

2Number of vertices of Γ−1
· 1

|AutΓ| ·

· Z




∏

Edges e of Γ

be ·
∏

Vertices of Γ

Ngv,nv+pv(b
2
v, 0, . . . , 0
︸ ︷︷ ︸

pv

)



 ,

Remark. The Weil–Petersson volume of Mg,n corresponds to the constant

term of the volume polynomial Ng,n(L) when the lengths of all boundary

components are contracted to zero. To compute the Masur–Veech volume we
use the top homogeneous parts of volume polynomials; i.e. we use them in the

opposite regime when the lengths of all boundary components tend to infinity.



Mirzakhani’s volume polynomials
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Theorem (M. Mirzakhani, 2008). Weil–Petersson volume of the moduli space

of boarded hyperbolic surfaces is a polynomial in even powers of lengths of

boundary components. Its term of top degree 6g − 6 + 2n has the form:

VolWP

(
Mg,n(b1, . . . , bn)

)

=
1

23g−3+n

∑

|d|=3g−3+n

〈ψd1
1 . . . ψdn

n 〉
d1! . . . dn!

b2d1 . . . b2dn+(terms of lower degree) .

Example: M1,1(b1)M1,1(b1)M1,1(b1). Here 3g − 3 + n = 1; 〈ψ1
1〉 = 1

24 .

VolWP

(
M1,1(b1)

)
=

2

21
〈ψ1〉
1!

b2·11 + 4π2 =
1

24
b21 + 4π2 .

Example: M1,2(b1, b2)M1,2(b1, b2)M1,2(b1, b2).
Here 3g − 3 + n = 2; 〈ψ2

1〉 = 〈ψ1ψ2〉 = 〈ψ2
2〉 = 1

24 .

VolWP

(
M1,2(b1, b2)

)
=

1

22

(〈ψ2
1〉

2! 0!
b2·21 +

〈ψ1ψ2〉
1! 1!

b2·11 b2·12 +
〈ψ2

2〉
0! 2!

b2·22

)

+· · ·

=
1

192

(
b21 + b22 + 4π2

)(
b21 + b22 + 12π2

)
.



Alternative formula for the Masur–Veech volume of Qg,n
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Theorem (D. Chen, M. M öller, A. Sauvaget’19)

VolQ(14g−4+n,−1n) =

=
22g+1π6g−6+2n

(6g − 7 + 2n)!

g
∑

i=0

(4g − 4 + n)!

(2g − 3 + n+ i)!

∫

Mg,2g−3+2n+i

ψ2
n+1 . . . ψ

2
2g−3+2n+iλg−i =

=
22g+1π6g−6+2n

(6g − 7 + 2n)!

g
∑

i=0

(4g − 4 + n)!(4g − 7 + 2n+ i)!!

(2g − 3 + n+ i)!(4g − 7 + i)!!
·

·
∫

Mg,2g−3+2n+i

ψ2
1 . . . ψ

2
2g−3+iλg−i
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1 . . . ψ
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Theorem (M. Kazarian’19; D. Yang–D. Zagier–Y. Zhang’20). Linear Hodge

integrals as above admit simple and very explicit recursion in the spirit of the
Virasoro constraints.
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Simple closed multicurve, its topological type and underly ing
primitive multicurve
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The first homology H1(M
2;Z) of the surface is great to study closed curves,

but it ignores some interesting curves. The fundamental group π1(M
2) is also

wonderful, but it is mainly designed to work with self-intersecting cycles.

Thurston invented yet another structure to work with simple closed multicurves;

in many aspects it resembles the first homology, but there is no group structure.

A general multicurve ρ:

the canonical representative γ = 3γ1 + γ2 + 2γ3 in its orbit Mod2 · ρ under

the action of the mapping class group and the associated reduced multicurve.

γ = 3γ1 + γ2 + 2γ3 γreduced = γ1 + γ2 + γ3

γ1

γ2

γ3



Geodesic representatives of multicurves
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Consider several pairwise nonintersecting essential simple closed curves

γ1, . . . , γk on a smooth surface Sg,n of genus g with n punctures. In the

presence of a hyperbolic metric X on Sg,n the simple closed curves

γ1, . . . , γk contract to simple closed geodesics.

Fact. For any hyperbolic metric X the simple closed geodesics representing
γ1, . . . , γk do not have pairwise intersections.

We define the hyperbolic length of a multicurve γ :=
∑k

i=1 aiγi as

ℓγ(X) :=
∑k

i=1 aiℓX(γi), where ℓX(γi) is the hyperbolic length of the

simple closed geodesic in the free homotopy class of γi.

Denote by sX(L, γ) the number of simple closed geodesic multicurves on X

of topological type [γ] and of hyperbolic length at most L.



Frequencies of multicurves
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Theorem (Mirzakhani’08). For any integral multi-curve γ and any hyperbolic

surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) · c(γ)
bg,n

· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).
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surface X in Mg,n the number sX(L, γ) of simple closed geodesic

multicurves on X of topological type [γ] and of hyperbolic length at most L has

the following asymptotics:

sX(L, γ) ∼ µTh(BX) · c(γ)
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· L6g−6+2n as L→ +∞ .

Here µTh(BX) depends only on the hyperbolic metric X ; the constant bg,n
depends only on g and n; c(γ) depends only on the topological type of γ and

admits a closed formula (in terms of the intersection numbers of ψ-classes).

Corollary (Mirzakhani’08). For any hyperbolic surface X in Mg,n, and any

two rational multicurves γ1, γ2 on a smooth surface Sg,n considered up to the

action of the mapping class group one obtains

lim
L→+∞

sX(L, γ1)

sX(L, γ2)
=
c(γ1)

c(γ2)
.



Example
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.
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A simple closed geodesic on a hyperbolic sphere with six cusps separates the

sphere into two components. We either get three cusps on each of these

components (as on the left picture) or two cusps on one component and four
cusps on the complementary component (as on the right picture). Hyperbolic

geometry excludes other partitions.

Example (Mirzakhani’08) ; confirmed experimentally in 2017 by M. Bell;

confirmed in 2017 by more implicit computer experiment of V. Delecroix and by

relating it to Masur–Veech volume.

lim
L→+∞

Number of (3 + 3)-simple closed geodesics of length at most L

Number of (2 + 4)- simple closed geodesics of length at most L
=

4

3
.



Hyperbolic and flat geodesic multicurves
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2γ1

γ2

γ3

2γ4

Left picture represents a geodesic multicurve γ = 2γ1 + γ2 + γ3 + 2γ4 on a
hyperbolic surface in M0,7. Right picture represents the same multicurve this

time realized as the union of the waist curves of horizontal cylinders of a

square-tiled surface of the same genus, where cusps of the hyperbolic surface

are in the one-to-one correspondence with the conical points having cone

angle π (i.e. with the simple poles of the corresponding quadratic differential).
The weights of individual connected components γi are recorded by the

heights of the cylinders. Clearly, there are plenty of square-tiled surface

realizing this multicurve.



Hyperbolic and flat geodesic multicurves

22 / 30

2γ1

γ2

γ3

2γ4

Theorem (Delecroix–Goujard–Zograf–Zorich’21). For any topological class

γ of simple closed multicurves considered up to homeomorphisms of a surface

Sg,n, the associated Mirzakhani’s asymptotic frequency c(γ) of hyperbolic
multicurves coincides with the asymptotic frequency of simple closed flat
geodesic multicurves of type γ represented by associated square-tiled

surfaces.

Remark. Francisco Arana Herrera recently found an alternative proof of this
result. His proof uses more geometric approach.

Singular layers and ribbon graphs



Shape of a random multicurve on
a surface of genus two

Formula for the
Masur–Veech volume

Mirzakhani’s count of
closed geodesics

Random multicurves:
genus two

• Separating versus
non-separating

• Simple closed curves
rarely separate

Random square-tiled
surfaces
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What shape has a random simple closed multicurve?
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Picture from a book of Danny Calegari

Questions.

• Which simple closed geodesics are more frequent: separating or

non-separating?

Take a random (non-primitive) multicurve γ = m1γ1 + · · ·+mkγk. Consider

the associated reduced multicurve γreduced = γ1 + · · ·+ γk.

• What is the probability that γreduced separates S into distinct connected

components?

• What are the probabilities that γreduced has k = 1, 2, 3 primitive connected

components γ1, . . . , γk?



Separating versus non-separating simple closed curves in g = 2
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Ratio of asymptotic frequencies (Mirzakhani’08). Genus g = 2

lim
L→+∞

Number of separating simple closed geodesics of length at most L

Number of non-separating simple closed geodesics of length at most L
=

1

48



Random simple closed curve rarely separates
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Theorem (V. Delecroix, E. Goujard, A. Zorich’19). A random simple closed

curve on a surface of large genus separates the surface very rarely. Namely:

c(γsep)

c(γnonsep)
∼
√

2

3πg
· 1

4g
as g → +∞ ,

An integer multiple mγ of a simple closed curve γ has weight m with
probability 1

m6g−6 · 1
ζ(6g−6) . Thus, a random one-cylinder square-tiled surface

of large genus has height 1 with probability very close to 1.
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Theorem (V. Delecroix, E. Goujard, A. Zorich’19). A random simple closed

curve on a surface of large genus separates the surface very rarely. Namely:

c(γsep)

c(γnonsep)
∼
√

2

3πg
· 1

4g
as g → +∞ ,

An integer multiple mγ of a simple closed curve γ has weight m with
probability 1

m6g−6 · 1
ζ(6g−6) . Thus, a random one-cylinder square-tiled surface

of large genus has height 1 with probability very close to 1.

Idea of the proof. Frequencies of separating simple closed curves are
expressed in terms of the intersection numbers which admit closed expression:

∫

Mg,1

ψ
3g−2
1 =

1

24g g!
.

Frequencies of non-separating simple closed curves are expressed in terms of
∫

Mg,2

ψk
1ψ

3g−1−k
2

for which we obtain large genus asymptotics uniform for all k in fixed genus g.



Multicurves on a surface of genus two and their frequencies

27 / 30

The picture below illustrates all topological types of primitive multicurves on a

surface of genus two without punctures; the fractions give frequencies of

non-primitive multicurves γ having a reduced multicurve γreduced of the

corresponding type.

16

63

8

15

1

9

1

189

1

45

2

27

In genus 3 there are already 41 types of multicurves, in genus 4 there are 378
types, in genus 5 there are 4554 types and this number grows faster than

exponentially when genus g grows. It becomes pointless to produce tables: we

need to extract a reasonable sub-collection of most common types which

ideally, carry all Thurston’s measure when g → +∞.



Shape of a random multicurve on
a surface of large genus. Shape
of a random square-tiled surface

of large genus.

Formula for the
Masur–Veech volume

Mirzakhani’s count of
closed geodesics

Random multicurves:
genus two

Random square-tiled
surfaces

• Random integers

• Random
permutations
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Statistics of prime decompositions: random integer number s
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The Prime Number Theorem states that an integer number n taken randomly in

a large interval [1, N ] is prime with asymptotic probability logN
N

.

Actually, one can tell much more about prime decomposition of a large random

integer. Denote by ω(n) the number of prime divisors of an integer n counted

without multiplicities. In other words, if n has prime decomposition
n = pm1

1 . . . p
mk

k , let ω(n) = k. By the Erdős–Kac theorem, the centered and

rescaled distribution prescribed by the counting function ω(n) tends to the

normal distribution:

Erdős–Kac Theorem (1939)

lim
N→+∞

1

N
card

{

n ≤ N
∣
∣
∣
ω(n)− log logN√

log logN
≤ x

}

=
1√
2π

∫ x

−∞
e−

t2

2 dt .

The subsequent results of A. Selberg (1954) and of A. Rényi and P. Turán

(1958) describe the rate of convergence.



Statistics of prime decompositions: random permutations
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Denote by Kn(σ) the number of disjoint cycles in the cycle decomposition of a

permutation σ in the symmetric group Sn. Consider the uniform probability

measure on Sn. A random permutation σ of n elements has exactly k cycles in

its cyclic decomposition with probability P
(
Kn(σ) = k

)
= s(n,k)

n! , where

s(n, k) is the unsigned Stirling number of the first kind. It is immediate to see
that P

(
Kn(σ) = 1

)
= 1

n
. V. L. Goncharov computed the expected value and

the variance of Kn as n→ +∞:

E(Kn) = logn+ γ + o(1) , V(Kn) = logn+ γ − ζ(2) + o(1) ,

and proved the following central limit theorem:

Theorem (V. L. Goncharov, 1944)

lim
n→+∞

1

n!
card

{

σ ∈ Sn

∣
∣
∣
Kn(σ)− logn√

log n
≤ x

}

=
1√
2π

∫ x

−∞
e−

t2

2 dt .
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