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Part 1. Symplectic manifold
1. SYMPLECTIC MANIFOLD AND HAMILTONIAN VECTOR FIELDS

1.1. Definition. Let X be a (real) 2n dimensional manifold and w a differ-
ential 2-form on it.

Definition 1. w is said to be a symplectic structure of X if and only if:
(1) dw = 0.
(2) The 2n-form w™ never vanishes.
A pair (X, w) is said to be a symplectic manifold.
We remark that at each point x € X a 2-form w on X defines an anti-

symmetric bilinear map

T.X T, X — R. (1)

Excercise 2. Show that w" is non-zero at z if and only if (1) is non-
degenerate.

Using local coordinate, w is written as
w = sz-jdx’ A dx?.

Here w;; is anti-symmetric.
A Riemannian metric g on X can be written

g= Zgijdxidxj.
Here g;; is symmetric. These two notions look similar but there are various

serious difference. Here we emphasize the next fact. Suppose X is a compact
manifold.
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(I) For a Riemannian metric g the group
Aut(X,g) ={p: X - X [¢"g =g}

of automorphisms (isometries) of (X, g) is a finite dimensional Lie

group.
(IT) For a symplectic form w the group

Aut(X,w) ={p: X - X | p*w = w}

of automorphisms (symplectic diffeomorphisms) of (X,w) is infinite
dimensional.

Proof of (I) (Sketch). We may assume X is connected. We put
SX ={(z,V) | ze X,V eT,X,q(V,V) = 0}.
We fix 9 € X and an orthonormal basis ey, ..., e, of T, X. We define
I:Aut(X,g) — (SX)"
by
I(p) = (¢(x0), (Dayp)(€i))izs
Lemma 3. I is injective.!

The lemma implies that Aut(X,g) is finite dimensional. We omit the
proof that it is a Lie group.

Sketch of the proof of Lemma 3. O

Suppose I(¢1) = I(p2). Put = ¢1(20) = p2(20). Let ¢ = waop; !, We
have ¢(z) = x. Moreover (D,¢) : T, X — T, X is the identity map.

Let y is an arbitrary point of X. There exists a geodesic v : [0,T] — X
such that v(0) = z, v(T) = y. Then ¢ o~ is a geodesic joining = and ¢(y).
Geodesic satisfies a second order ODE (See Theorem 31). Since

2(0) = (e om(0),

uniqueness of the solution of ODE implies v = ¢ 0. Hence y = ¢(y). O

Proof of (II). For the proof we need to find a lot of automorphisms of (X, w).
We use Hamiltonian diffeomorphism for this purpose. The proof is com-
pleted at the end of Subsection 4.3. O

To define and study Hamiltonian diffeomorphisms we review some ele-
mentary facts on calculus of manifolds.

1t is actually a diffeormorphism onto a smooth submanifold.
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1.2. Vector fields on manifolds: Review.

Definition 4. Let X be a manifold and V' a vector field on it. We define
one parameter group of transformations expﬁ/ : X — X (t € R) associated
to V by the following two equalities.

(1) e;cp?/(x) = . t
(2) & expl, (z)|i=t, = V(exp(x)).
It satisfies the next equality also:

(3) expl, oexpv = exp’{;’tl.

Remark 5. In the case X is compact without boundary such expﬁ, exists
for all t € R. In the case X is non-compact, there exists Tk, such (¢,x) —
expl,(z) for t € [Tk, Tk] and = € K for any compact subset K.

We next review Lie derivative of a tensor field. We remark that a tensor
T (called ¢ — k tensor) is a section of the tensor product vector bundle

TXFO @ (TX*)"®.

Using a local coordinate z; it is written as

TS g9l gt @ @dut,

J1.- .]Zajl aj

where Tz1 ‘I are smooth functions. If v : X — X is a diffeomorphism it

induces 1somorphism Dy : Ty X — T, )X The inverse of its dual induces
(Dypp*) 1 TEX — T:(I)X. They induce

T, X" @ (T, X*)*® — Ty X @ (T X )",
which we denote by (Dy), for simplicity. We denote by (Dy)* its inverse.

Definition 6. The Lie derivative Ly T of a tensor T by a vector field V is
defined by

(Dexpl )*T =T
t

Lemma 7. For a (0,0) tensor f we have Ly f = V(f).
For a vector field W (that is a (1,0) tensor) we have

LyW = [V, W],
where the right hand side is defined by
[V,WI(f) = VIW(f)) =W (V(f))

See 777 for the proof.

Ly T = lim
t—0

Excercise 8. Prove the following identity. (the Jacobi Identity)
U, V], W]+ [[W, UL, V] +[[V,W],U] = 0.
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We next review inner product. The differential k-form is a (0, k) tensor
u such that
ug : (T, X)"® - R

is anti-symmetric:
ur(Vi, ooy Vi) = —up (.. Vie, Vi, Vi oo Vi, Vi Vo).
Definition 9. Let u be a differential k£ form and V' a vector. We define
differential (k — 1) form iy u by
(lyu)(Wh, oo, Wi—1) = uw(V, W1, ..., Wi_1).
The next lemma is important to study Hamiltonian vector field.

Lemma 10. (Cartan’s formula) For a differentia form u and a vector field
V' we have
(iv od +doiy)u = Lyu. (2)

See Subsection 1.5 for the proof.

1.3. Hamiltonian Vector field. Let (X,w) be a symplectic manifold and
H : X — R be a (smooth) function.

Definition 11. The Hamiltonian vector field X generated by H is defined
by the next formula.

w(Xg, V) = (dH)(V). (3)
Here V is an arbitrary vector field.

The non-degeneracy of w implies the unique existence of Xp.
Let Vi = {V;} be a t € R dependent family of vector fields. (We require
t — Vi(f) is smooth on ¢ for any function f.) One parameter group of
transformations expﬁ/* is defined in a similar way as Definition 4 by the next
formula:
(1) exp?/* (x) ==
d ¢
(2) g expy, (2)li=ty = V(expy, (x)).
Definition 12. A diffeomorphism ¢ : X — X is said to be a Hamilton-

ian diffeomorphism if there exists Hy; a t € R dependent family of smooth
functions such that

p = exp%EHt
Here Xpg, is the Hamiltonian vector field generated by H; and we regard it
as a t € R dependent family of vector fields.

Excercise 13. Show that if ¢, ¢’ are Hamiltonian diffeomorphisms then
their composition ¢ o ¢’ is a Hamiltonian diffeomorphism.

Proposition 14. If ¢ is a Hamiltonian diffeomorphism then
orw = w.

For the proof we first prove its ‘infinitesimal version’.
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Lemma 15. The Hamiltonian vector field Xy satisfies:
Ly,w=0.
Proof. We remark that Formula (3) can be written as
ixyw = dH.
We now use Cartan’s formula (2) and dw = 0 to find:

Ly, w =ix, (dw) + d(ix,w) = ddH = 0.

O
Proof of Proposition 14. We consider
Wy 1= (ength)*w-
It satisfies the differential equation
d
ﬁwt = Lthwt. (4)

together with initial condition : wy = w. Note (4) is an ordinary differential
equation of first order on an appropriate Banach space, so its solution with
given initial condition is unique. Lemma 15 implies that wy = w is a solution.
Therefore w; = w as required. O

We remark that Xy = X¢ if and only if d(H — G) = 0. Therefore
Proposition 14 implies that Aut(X,w) is infinite dimensional.

1.4. Poisson’s Bracket.

Definition 16. For functions f,g : X — R on a symplectic manifold, we
define ifs Poisson Braket {f, g} by:

{f.9} = df(Xg) = X4(f).
By definition df (¥Xy) = w(Xy, Xy). Therefore
{f,9} = g, f}- (5)
Proposition 17.
Xirgy = —[%s. Xg]- (6)
For the proof we use:

Lemma 18.

[Lv,iw] =i, w. (7)
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Proof of Lemma 18.

([Lv,iw](w)(Va, ..., V)
—(Ly (iwuw)(V1, ..., Vi) — (Lyuw) (W, VA,..., V)
k
=V (u(W,,..., Vi) = D (=D)u(W,....[V.Vi],...)
=1

k

—V@W, V..., Vi) = u([V,W],...) + D (=D)'u(W,..., [V, Vi],...)
=1

= (ip,wu)(V1, ..., V).

O
Proof of Proposition 17.
Lyix,w =ix,Lx,w + ifogggw = i[vaxg]w.
On the other hand,
Lz,ix,w = Lx,dg = dX;(g) = —d{f, g}
O

Proposition 19. Poisson bracket satisfies

{59}, 03 +{{h, f}, 9} + {{g, b}, f} = 0. (8)

The fact the left hand side is constant follows from Proposition 17 and
Excersise 8. We will prove the fact that this constant is 0 later.

Proposition 19 and (5) implies that (C*(X), {}) is a Lie algebra. Propo-
sition 17 imply that f ~— X; is an anti Lie algebra homomorphism from
(C*(X),{}) to the Lie algebra of vector fields.

We remark that if {f,g} = 0 then g is constant on the orbit of X;. In
particular f is constant on the orbit of X;.

1.5. Proof of Cartan’s Formula. We prove Lemma 10. For differential
k-form wu is exterior differential du is given by

(du)(Vo, .-, Vi)

=Y (=DWVi(u( o Vi) + (D) (Vi Vil Vi V).
i<j
(9)
Excercise 20. Show (9). Here use the definition
A A , A of .
d(fdx" ~n--- Ada'™) =df Adz" Ao Ada, df = ~dx’
(fdz" A -+ Adz'™) =df Adx" A /\x,fzéxzx

for the left hand side.
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Now we calculate
((ix od)u)(Va,..., Vi) =(du)(X,V1,..., Vi)

X (u(Vi, ... Vi) + (—1)Vi(X,. .. Vi)
SN[ X Vi V)

+ (D) MHu(Vi VL X, Vi V)

1<j

(doix)u)(Vi, ..., Vi) :Z(_ni—lwx, Vi)
- S )X [V Vi, Vi V).

1<j

Therefore
(ixod+ixod)u)(Vi,...,Vip) = X(u(V1,..., V%))

SN (DX, Vi V)
_ (LXu)(Vl,...,Vk).
0

2. EXAMPLE OF SYMPLECTIC MANIFOLDS 1: COTANGENT BUNDLE AND
BRIEF REVIEW OF HAMILTONIAN MECHANICS.

2.1. Symplectic structure on the cotangent bundle. The most impor-
tant example of symplectic manifold is the cotangent bundle 7% M of a man-
ifold M. An element of T*M is a pair (z,v) where x € M and v : T, M — R
is a linear map from the tangent space T, M. (Namely v e T} M.)

Definition 21. The canonical one form? 6 on T*M is defined as follows.
Wen consider the projection 7 : T*M — M. Let (z,v) € T*M. 7 induces
Dr: Ty T*M — T, M. We put

0(V) = v(Dn(V))
for V e T(%U)T*M
Lemma 22. w = df is a symplectic form on T*M.

Proof. dw = 0 is obvious. We prove w” never vanishes where n = dim M.
The problem is local. We take a local coordinate ¢, ..., ¢" of M. An element
v e T*zM then is written as . p;dg’ where p’ € R. In fact p; = v(0/dq"). If
the coordinate of z is (¢!,...,¢") then we associate (¢',...,¢",p1,...,Dn)
to (z,v) € T*M. Thus (¢*,...,q"% p1,...,pn) is a coordinate of T*M. By
definition it is easy to see

n

0=> pidg
i=1
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in this coordinate. Therefore
w" = (Z dp; A dg))™ = nldpy A dg* A - A dp, A dg",
which never vanishes. O

Excercise 23. Let F' : M — N be a diffeomorphism. It induces a diffeo-
morphism Fy : T*M — T*N. Prove (Fy)*0 = 6.

During the proof of Lemma 22 we showed
w= 2 dp; A dq'. (10)
i=1

Suppose H : T*M — R be a function. Using (10) and the definition, we
find that the Hamiltonian vector field generated by H is

" (0H ¢ 0H 0
Y (W@m ~ aqz'> ' ()

Therefore the Poisson bracket is given by:
([ of og  Of Og
= = - === . 12
o =3 (Fz-L (12)

The equation that ¢ — (¢'(¢),...,q"(t),p1(t),...,pn(t)) is the integral curve
of Xy is:

d¢' 0H
dt - api

13
dpi _ OH -
dt  0g

(13) is called Hamilton equation.

2.2. Euler-Lagrange equation. In this and the next subsection we briefly
review how Hamilton equation (13) appeared in mechanics.

Let L : TM — R be a smooth function on the tangent bundle M. We
call L the Lagrangian function. For a curve 7 : [0,7] — M in M we define
the Lagrangian functional £() by

T
Liy) = f L((t), 5(t))dt. (14)

Here ~(t) is the tangent of the curve € Ty M.
We consider a family of curves s : [0,T] — M for s € [—¢, €] such that:
(1) 70 =1-
(2) 75(0) and ~4(T") are independent of s.
Let a:i‘be a local coordinate of M. An element of T,M is written as
Syio/oxt. Thus x!,... 2", y', ..., y" are coordinates of T M.

Theorem 24. The following two conditions for v are equivalent.
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(I) For any s as in (1)(2) above

4 )leo =0
(I1) ]VE;LQ use local coordinate to write y(t) = (x'(t),...,z"(t),y*(t),...,y"(1)).
00,50 - F 5 (0.4(0) =0 (15)

(15) is called the Euler-Lagrange equation.

Proof. (1) = (1) Put (v(t),7s(t) = (1(0),...,47 () We have i(t) =
dx’(t)/dt. We calculate:

oL dz'( oL d?z'(t
7£ () f Z (61:’ ds ) é’yi dtfii )> dt
:f 2 <8L B 62L'> dxi(t)dt
0 ort  O0toy ds
Here we use (2) and integration by parts. Since this vanish for al
s = 0 we have (15).

(IT) = (I) can be proved by looking the formula in the opposite direction.
O

dai(t)
| —ds at

Example 25. Let g be a Riemannian metric on M. It induces a function
v — g(v,v) on TM. Writing g = ) gi;dx*da? g(v,v) = > gijv'v). Let
V : M — R be a function. We put

L(z,v) = %g(v,v) —V(x). (16)

In case M = R" and g is the standard metric,
1 i\2
= 5(21/ )" —

d?at o ov

2 ozt
This is the equation of the motion of particle under the field of force with
potential V.

In this case (15) is

2.3. Hamilton’s formalism. We discuss the relation between (15) and
(13). Let L : TM — R be the function. We define

Leg; : TM — T*M

the Legendre transformation, as follows. Let (x,v) € TM. We restrict L to
T, M and differentiate at (x,v). Note T,,T,,M is canonically isomorphic to
T, M. Therefore a linear map D, L|p,pr : ToM — R. We put

Leg; (z,v) = (z, DyL|p, ) € Tk M.
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In local coordinate Legendre transformation is written as follows. Let z' be
a coordinate of M. We put v = > y'd/dx". Thus z* and ¥’ is an coordinate

of TM. We define
oL

PGy
Then

Legy (zb,...,2™ b ... y™) = (24, ..., 2™ p1, ..., Dn).
Remark 26. p; is called the momentum conjugate to ¢* = .

For the Lagrangian (16) Legendrian transformaition is given: (z%,7")

¢ =2’ pi=) gijxl. (17)

To discuss relationship between (15) and (13) we assume:

Assumption 27. The Legendre transformation Leg; : TM — T*M is a
diffeomorphism.

In various situations, it suffices Assumption 27 locally, that is, Leg; is a
diffeomorphism between open subsets. For simplicity we require Assumption
27 globally.

Suppose L satisfies Assumption 27. We define H : T*M — R by the next
formula:

H(z,v) = v((Legy) ™' (,v)) — L(Legp) ™" (z,0)). (18)
We remark that (Leg;)~!(x,v) € Tp(M). Therefore the first term makes
sense.
When we use coordinate ¢, 3, ¢*, p’ then

H(¢,...,pn) szq — L(z',...,y"). (19)
Theorem 28. Under Assumption 27 suppose H and L are related as in
(18). Then the next two condition for ~y : [0,T] — M are equivalent.
(I) ~ satisfies (15).
(I1) (¢',...,pn) := Legy o satisfies (13).
Proof. (II) = (I). Let (g*(t),...,pn(t)) be apath of T*M and (x1(t),...,yn(t)) :=
Legzl(L(’y(t))). Suppose (II). We calculate:

oy’ ; oyl OL oy »
ijy y+2< y y):yz.
(3pz —\"opi oy’ Op;
Here we use p; = gyL“ ‘gf)] = 0.
Therefore the second equation of (13) implies
dz'(t)
() = :
yit) =—4

Namely (z'(1),...,y"(t)) = (v(t),7(1))-
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We next calculate
_ﬁH _ Z B ﬁyj 67[/63;7' aiﬁyj _ JL
ot - P o¢t  o0xd ot Oyl ot ) oxt

Here we use a“ZZ = §%. On the other hand:

0
dpi L
dt  otoyt
Therefore the first equation of (13) is
L oL
otoyt  oxt
This is nothing but equation (15).
The proof of (I) = (II) is similar. O

2.4. Equation of geodesic: an example. We fix a Riemannian metric
g on a manifold M. Let v : [0,1] — M. We consider the following two

functional:
1
() = fo ORI (20)
1

B0) =5 | 9605w (21)

L is the length of the curve v and F is called the energy of ~.

Lemma 29. We have
2E(7) = L(7)*. (22)

The equality holds if and only if t — g(y(t),¥(t)) is constant.

Proof. We put f(t) = A/ g(7(t),7(t)), a = L(y) = Sé f(t) and calculate

1
0< | ()= a)dt = 25(:) = 20£(2) + 0 = 28(1) ~ £(2)"

The lemma follows. O

Excercise 30. (1) Show for each ~ : [0,1] — M there exists a diffeo-
morphism s(t) : [0,1] — [0,1] such that ¥ = ~(s(¢)) : [0,1] — [0, 1]

satisfies the condition that 7 is constant.
(2) Show L(v) = L(7).

Lemma 29 and Excercise 30 implies that to obtain a critical point of £(7)
(which is called a geodesic) it suffices to study a critical point of E(y). Let
us study the latter by Hamiltonian formalism. We regard

1 o
1
L(z',....y") = 5291‘;’2/2/]
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as a Lagrangian function. Then Legendre transformation is obtained as (17).
Therefore (19) becomes

H( 7"'7p'I’L Zgzjyy _7Zgl‘]yy - yn)
Namely
H(q',...,pn) = Zg pip;

where (¢/) is the inverse matrix of (gij). (13) becomes

dq'(t) _0H Zgijp
= j

dt — opi &
Pi ; (23)
dpi(t) . _aH
dt  ogi’
Let us rewrite this equation to the equation of z*(¢). Since ‘3’3;1 =-A"! %A‘l
we have
agjk Z e 9em mk;
— = — —g (24)
aqz o aqz
Therefore
dp; og* ag¢
o —*Z S PP = g Z i pipkg’ g™ (25)
7,k.l,m q

We take t derivative of the first formula of (23) and use (24), (25) and the
second formula of (23) to obtain:

d2qi dg i.j : p
= Jj 3 J
arz =2 ar Z
dog" ko i3 4D;
T A
0g 1 g
== > g e+ 5 D 9T g g ke
A aq 2 oq)
ikLlmmn 7.k lmmn
agmn k agmn
_ im n ij YImn m n
Z 9 (9 Z 9 aqj
k,m,n ] m,n
_ = Z ig [ ag]m + agWLn dqmdin
qr oq’ dt dt -’
] m,n
We define Christoffel’s symbol T, by:
. 1 (095 0g; dg
. == Rl e i LU I 26
2 j;ng ( o T agm T og (26)

We have proved the following:
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Theorem 31. A curve t — ~(t) = (z(t),...,2"(t)) is a geodesic with
g(y(t),7(t)) beging constant if and only if it satisfies

d?a'(t) - dx™ dz"
i Ay 2
iz 2 T g =0 (27)

)

2.5. Variational principle for Hamilton equation. Let z,y € M we
consider the set of path v(t) = (¢*(t),...,pn(t)) : [0,T] — T*M such that
v(0) € T} (M), v(T') € T, (M) which we denote by P(T*M;z,y).

Remark 32. In the case of general symplectic manifold X (not necessary

cotangent bundle) we consider Lagrangian submanifolds L;, L of X (see
?77) and the set of path v in X such that v(0) € Ly, v(T') € Lo.

Definition 33. Let H be a smooth function on R x T* M we define action
functional Ag by the next formula.

T T
A7) = f 2o - fo H(t, (1)) . (25)

0
Theorem 34. The following two conditions are equivalent.

(1) For any one parameter family s of elements of P(T*M;x,y) with
Yo = v we have

0

%-AH(’YS)‘Szo =0.
(2) ,
d¢  oH,
dt B api
2
o o8, (20)
dt  oq

Note that (13) is a special case of (29) where H is t-independent.

Proof. We write ~,( ) = (q'(s,t),...,pn(s,t)). Then
T apl (9q T a2qi
51% o 8pz (961

C s ot Gt as

Here we use %‘i(t) = 0 for t = 0,7 to use integration by parts. On the other
hand, ‘
T 0H op; T 0H 04

d
- H S S= = T~ T~
f (t7 <t))dt’ 0 0 5 0s di 0 (3q 0s di

Theorem follows from these calculations immediately. Namely 2 A So VEO|s=0 =
So (t,7vs(t))dt|s=o for all 4 if and only if (29) holds. O

However it is difficult to use this variational principle to show an existence
of a solution of Hamilton equation. For example:
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Excercise 35. Prove that Ag never has local minimum unless M is a point.

On the other hand there are many cases where Lagrangian functional has
local minimum, such as the case of geodesic. Only after Floer’s invention
of Floer homology we can use A to prove the existence of a solution of
Hamilton equation.

3. EXAMPLE OF SYMPLECTIC MANIFOLDS 2: KAHLER MANIFOLDS.

3.1. Almost complex structure. The other type of important example
of symplectic manifolds are Kahler manifolds. It is a special type of complex
manifolds. We first review almost complex and complex manifolds.

Definition 36. Let X be a manifold. An almost complex structure of M
is a family of linear maps J, : T, X — T, X depending smoothly on x € X
such that:

(*) Jpod, =—1

An open subset of C™ has a canonical almost complex structure. In fact
T, (C)™ is canonically isomorphic to C" and we define J,(v) = /—1v. We
call it the standard almost complex structure.

A diffeomorphism ¢ : X — Y between almost complex manifold is said
to be isomorphism if D,y o J, = Jo(z) © Dz for all z € X.

An almost complex structure of X induces one on an open submanifold
of X in an obvious way.

An almost complex manifold (X, J) is said to be integrable if for each
x € X there exists its neighborhood U, and an open set V, of C" such that
(Ug, J) is isomorphic to (V,,J). Here J on V, is the standard one.

An almost complex manifold (X, J) is said to be a complex manifold if J
is integrable.

If (X, J) is an almost complex manifold and = € X then 7, X has a unique
structure of complex vector space such that J, = 1/—1.

A submanifold Y of almost complex manifold (X, J) is said to be a com-
plex submanifold, if for each z € Y, the subspace J,T.Y is in contained in
T,Y. This is equivalent to the condition that J,7,Y is a complex linear
subspace.

Lemma 37. A complex submanifold Y of an integrable almost complex man-
ifold (X, J) is a complex manifold.

Proof. Since the problem is local we may assume X = C". Let pe Y. By a
complex linear transformation we may assume 7,,Y = C™ x {0}. By implicit
function theorem we may assume 7 : Y — C™ (y, z) — vy is a diffemorphism
(by replacing Y its open subset). Then D,7 : T,Y — C™ is complex linear
for each x € X. Therefore Jo Dp = Dyo J. O

Our concern in this book on almost complex structure is its relation to
symplectic structure.
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Definition 38. Let (X,w) is a symplectic manifold. An almost complex
structure J of X is said to be compatible with w if:

g(w,w) := w(V, J(W)) (30)
is a Riemannian metric.

We elaborate on (30). We recall that ¢ is a Riemannian metric if and
only if g(v,w) = g(w,v), g(v,v) = 0 and g(v,v) = 0 implies v = 0.

Lemma 39. (30) is a Riemannian metric if and only if the following two
conditions are satisfied.

(1) w(JV,JW) = w(V,W).

(2) w(V,JV) = 0. w(V,JV) =0 if and only if V = 0.
Proof. Define g by (30). Then g(v,w) = w(v, Jw). g(w,v) = w(w, Jv) =
—w(Jv,w). We write Jw = w’. Then g(v,w) = g(w,v) is w(v,w’) =
w(Jv, Jw'). (Here we use JJ = —1). Thus (1) is equivalent to g(v,w) =
g(w,v). It is easy to see that ‘g(v,v) = 0 and g(v,v) = 0 implies v = 0’ is
equivalent to (2). O

Remark 40. There is a slightly weaker notion that an almost complex
structure is tamed by a symplectic structure w, that is, g(v,w) : w(v, Jw) +
w(w, Jv) is a Riemannian metric. We do not discuss it here.

The next lemma is sometimes useful.

Lemma 41. Let (X,w) is a symplectic manifold and J is a compatible
almost complex structure. Let Y be a complex submanifold of (X,J). The
wly is a symplectic structure of Y.

Proof. Put wy = wly. dwy = 0 is obvious. Note that for v # 0, v € T,,Y we
have

Wy (’U, J U) #0.
This implies that wy at x is non-degenerate. Therefore wy never vanish by
Excercise 2. [l

Solution of Excersice 2
Let Q : V®V — R be an anti-symmetric bi-linear form. We prove the
next lemma.

Lemma 42. Let e € V such that v — Q(e,v) is non-zero. Then there exists
feV and V* such that

(V,Q) = (Re ®RE, Q) ® (V+,Q|y2).
Here Qq(e,f) = 1 and two summands are orthogonal.
Proof. We can find f with Q(e,f) = 1 easily. We put

VE={veV|Q(ev) = Q(f,v) = 0}.

Since V — R%, v — (Q(e, v), Q(f,v)) is surjective, dim V+ = dim V —2. The
lemma follows. O
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By the lemma we can find e;, f; ¢ = 1,..., m by induction such that

m
V = @ (Re; @ Rf;, Q) @ Vo.
i=1
Here g is as above and 2 is zero on V4.
Now we consider the case 2 = w,. It is obvious that €2 is non-degenerate
if and only if Vj is 0.
On the other hand, we may write

wy=e Afl 4. +emAfm

where €’ f* are dual basis to e;, f;.
Therefore (w;)™ # 0 if and only if m = n. Here 2n = dim V.

3.2. Kahler manifold.

Definition 43. We say (X,w,J) is a Kéhler manifold if:

(1) w is a symplectic structure.
(2) J is an almost complex structure which is compatible with w.
(3) J is integrable. (In other words (X, J) is a complex manifold.)

Lemmas 37 and 41 imply:
Lemma 44. Complex submanifold of a Kdihler manifold is Kdhler.

In the next subsection we show that a complex projective space CP"
has a canonical Kéhler structure. Therefore its complex submanifold is
also Kéahler. It is a classical theorem of Chow, that a complex submanifold
of CP™ is an algebraic variety. A smooth algebraic variety is said to be
projective if it is a complex submanifold of CP". So a smooth complex
algebraic variety is a Kahler.

3.3. Projective space. We consider C'*" the n 4 1 dimensional complex
vector space.

Definition 45. CP"™ is the set of all one dimensional complex linear spaces
of Cl+n,

We recall that CP™ is a complex manifold. Let m; : CP™ — C be the
projection to i-th factor. (¢ =0,...,n.) We put:
U;={LeCP"|m(L)+# 0}.
If L € U; then there exists unique Z € L such that z; = 1. Therefore U; is
identified with C™ by
(bi : (wl,...,wn) = (wl,...,wi_l,l,wi,...,wn).

Excercise 46. Show ¢; o qb;l is a diffeomorphism between open subsets.

Suppose L € U;, we define a complex structure of TpCP™ such that
D((;bi)—l(L)Qbi : T(d)i)—l(L)Cn - TLCPn is complex linear. Show that this
complex structure of Ty CP"™ is independent of i.
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We next define a symplectic (Kéhler) structure on CP™. The construction
below is a special case of the construction of symplectic quotient, which we
will discuss systematically later.

We consider the standard symplectic form w on C"*! where

w = dei A dyt,
(2 = i +/~=1y".)

SQnJrl _ {56 (CnJrl | HZH _ 1}
and the map
II: $>**+ - cpr
where II(2) := CZ.
Lemma 47. There exists a unique differential form @ on CP™ such that
"o = w|52n+1.
Proof. Let 7€ S**1. T:82n+1 A JT:52"+1 is 2n dimensional. In fact
T5S2n+1 _ (T552n+1 A JT5512?1+1) (‘DRZ

Note C"*! is Kihler. For W e TS+l = (T38%7+1 ~ JTz82") JW e
TS+ = (T8%7+1 A JT28?"*t1) so JW is perpendicular to z. Therefore

w(Z,W) =—g(z,JW) = 0. (31)
Put L = II(Z). By (31) there exists wy, € A2CP" such that
w|T252n+1 = DIl owy,.

We claim that such @y, is independent of Z such that L = II(Z). To see this
we consider the S' = {a € C | |a| = 1} action on S?"*! given by

a- (20, 2n) = (@20,...,Q2,).
Then the independence of @y, of 7 is a consequence of the next two facts.

(1) a*w = w. Here a: §2"*1 — §27+1 ig defined as above.
(2) If II(2) = II(w) then there exists o € S' such that @ = o - 7.
([

Lemma 48. dw = 0.

Proof. II*dw = dII*@ = dwgzn+1 = 0 since dw = 0. Since D3II : Tz5?"+! —
Tt CP™ is surjective the lemma follows. O

Lemma 49. © is a symplectic form.

Proof. It suffices to show that @ is non-degenerate on T, CP™. This follows
from the fact that

DAL : T8 A JT28*"! — Ty CP" (32)
is an isomorphism and that w is non-degenerate on TxS?" 1~ JTS*" 1. O

Lemma 50. Lemma 39 (1)(2)(3) holds for @.
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Proof. They hold for w on C"*!. Therefore they hold for w on TxS*"*+1 A
JT>5%"+1, Therefore the lemma follows from the fact that (32) is an iso-
morphism (of complex vector spaces). U

We thus proved:
Theorem 51. CP" is Kdhler.

The symplectic form @ is called the Fubini-Study form. Let us calculate
it explicitly by a coordinate.
We define

fz1,. 0 2n) = \/1+ |21]2 + - + |20 %

Put
1

f(z1,. .0y 2n)
IT o ¢g is an isomorphism C" — Ujy. Actually it coincides with ¢g. By
definition

w021y .-y 2n) = (1,21,...,zn)68"+1.

(ITo pp)*w = Ppw.
We will calculate the left hand side.
Let (wo,...,w,) be the standard coordinate of C™! and w; = X; +
V—=1Y;. w=>dX" A dY". Note

Xi =Rez/f,  Yi=Imz/f,

for ¢ # 0 and
Xo =1/f, Yy =0.
We put z; = x; + +/—1y;. Then

W= andXi A dY;
i=1

1 1
= Pdel A dy; — FZ(azzdml Adf —yidy; A df)
(We use df A df =0 here.) Since

1
df = i > (@ida; + yidy,)
we have ) 9
W= 2 Z dxi A dy; — Iz Z“’iyjdwi A dyj. (33)
7 2y

We can calculate (IT o ¢;)*w in the same way, by renaming the variables.

Excercise 52. Show (33) is a symplectic form by a direct calculation. Show
also that it is a Kahler form with respect to the standard complex structure
by a direct calculation. Show (33) together its analogue on U; define a global
2 form by a direct calculation.
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3.4. Space of compatible almost complex structures. Let (X,w) be
a symplectic manifold. We consider

J(X,w) = {J | J is an almost complex structure compatible with w}.
Theorem 53. J(X,w) is weakly contractible.
We recall:

Definition 54. A space X is said to be weakly contractible, if all the maps
S™ — X extends to D"*! — X. Where S™ = oD"*1.

Remark 55. In fact we need to specify the topology of J(X,w). Most of
the natural topology works. For example we can take the topology of C®
convergence.

Theorem 53 is a consequence of a standard fact on linear algebra and a
general statement on fiber bundles. We first discuss the former.

We consider 2n-dimensional vector space R?" together with its standard
symplectic form 2. Let J be the set of all linear map J : R*® — R?” such
that J? = —1 and that J satisfies Lemma 39 (1)(2) with w replaced by Q.
We prove:

Proposition 56. J is contractible.

For the proof, we need a few things about Lagrangian Grassmannian. We
define

LAG(R?™; Q) = {L c R*" | n-dimensional linear subspace, Q|7 = 0}.

An element of LAG(R?"; Q) is said to be a Lagrangian linear subspace of
(R?7: Q).

We take Ly < R?" such that Q, = 0. More explicitely x;,y; (i =
1,...,n) is a basis of R?" such that Q = Y. dx; A dy; and y1, . .., yn is a basis
of Lo.

Lemma 57. The set
LAG(R*™; Q: Lo){L € LAG(R*™;Q) | L n Ly = {0}}.
is contractible.
We prove the lemma later. Let J € J. We put:
w(J) = J(Lo).

We remark that for v € Lo, v # 0, Q(v, J(v)) # 0. Therefore J(v) ¢ Lo.
(In fact Q = 0 on Lg.) Therefore m(J) € LAG(R?";; Lg). (We also use the
fact that  is J invariant. It implies that J(Lo) € LAG(R?"; Q).

Lemma 58. 7: J — L'AQ(RQ”;Q;LO) is a fiber bundle.

We prove Lemma 58 in Subsection 3.5. (We define the notion of fiber
bundle also in Subsection 3.5.)

Lemma 59. The fiber 7='(L) is contractible.
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Lemma 60. If 7 : E — B is a fiber bundle such that B and 7~ (p) are
contractible. (p € B.) Then E is contractible.

We prove Lemma 60 in Subsection 3.5. Proposition 56 follows from Lem-
mas 57-60. (]

Proof of Lemma 57. We observe that R?" can be identified with the cotan-
gent bundle T*R"™. In fact if 21, ..., z, are coordinate of R" then by defining
y; by v = > y;dz; (for tangent vector v), x1,...,Zn,Y1,...,Yn. The sym-
plectic form ) dx; A dy; is minus of the symplectic form we used in the last
section.

A digression: We generalize the situation a bit more since we use those
cases later. Let T* M be a cotangent bundle and L ¢ T*M be ann = dim M
dimensional submanifold. We assume for each x two submanifolds 7 M and
L intersection transversally at one point. Then there exists u(x) € T, M such
that u(z) € L.  — u(x) becomes a diffcomorphism I : M — L. x — u(x)
may be regarded as a differential 1 form.

Lemma 61. I*0 = u.
Proof. Immediate from the definition. O

In particular w|z, = 0 is equivalent to du = 0.

We go back to the proof of Lemma 57. We are given L < T*R". It is
a linear subspace and L n TfR"™ = 0. (Note that TfR™ = Ly.) It implies
LT} R™ = 0 for any z easily. Therefore there exists a closed one form u on
R™ such that L = {u(z) | u € R"}. Put u(x) = (x,y(x)) where y(z) € R"™.
Since L is a linear subspace, the map y is linear. Since v is closed on R" it
is exact. There exists fR™ — R such that v = df. We may require f(0) = 0.
Then f is unique. Since u is linear f is quadratic, that is,

fa) = aya;

aij = CLjZ'.

When a quadratic function f is given we put v = df and L = {u(z) |u e
R"}. Then L € LAG(R?™;(); Ly).

Thus LAG(R?*™; Q; Lo) is diffeomorphic to the space of all quadratic func-
tions, which is contractible. In fact it is diffeomorphic to R™(+1)/2 O

Proof of Lemma 59. We define I : L — L§ by I(v)(w) = Q(w,v). Since
is non-degenerate, Lo|o, = 0, L n Lo = 0, and dim Ly = n the map [ is an
isomorphism.

Let Je J, Jen1(L). We define a inner product hy on Ly by

hj(v,w) = Q(v, Jw). (34)

We can show hj(w,v) = hy(v,w) in the same way as the proof of Lemma
39. Moreover h is strictly positive definite. (This is the consequence of the
compatibility of J with w.)
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We claim that if hy, = hy, then J; = Jo. In fact if hy, = hj, then
I(Jyw) = I(Jow) for any w € Lg. Therefore, since I is an isomorphism,
Ji = Ja.

On the other hand, if h is a strictly positive definite inner product on L
there exists unique map Jy : Ly — L such that (34) holds with A replaced by
h and J replaced by Jy. Since h is non-degenrate Jy is an isomorphism. Note
that R?" = Lo®L. We define J : R?™ — R2" by (a,b) — (—J; '(b), Jo(a)). It
is easy to see that J2 = —1 and (34) holds with h; replaced by h. Moreover
JeJ,Jen \(L).

Thus 7~ !(L) is diffeomorphic to the set of all positive definite inner prod-
uct on Lg. It is easy to see that the latter is contractible. O

Proof of Theorem 53. We consider the set

J(X)=A(z,Jy) |z e X, Jy € T(TpX,wz)} (35)
Here J (T, X, w,) is the space J above when we replace C™, Q by T, X, w,.
Lemma 62. 7 : J(X) — X which sends (z,J;) to x is a fiber bundle.

This is actually easy. See Subsection 3.5.
Then Theorem 53 is a consequence of Proposition 56, Lemma 62 and the
next proposition.

Proposition 63. Let m : M — N be a fiber bundle whose fiber F' is con-
tractible, then

S={s:N—->M|nos=id}
1s contractible.

We prove Proposition 63 in Subsection 3.5. The proof of Theorem 53 is
complete modulo the points we show in Subsection 3.5. ([

Proof of Proposition 56. (]

3.5. A quick review of fiber bundle.

Definition 64. Let 7 : M — N be a C® map between C® manifolds. We
say it is a fiber bundle with fiber F' (a smooth manifold) if the following
holds.

For each = € N there exists its neighborhood U, and a diffeomorphism
g : m Y (Uy) — U, x F such that

Ty, O Pz = T.
Here np : U, x ' — U, is the projection.

Proof of Lemma 58. Let L,L' € LAG(R?";Q; Ly). We have isomorphism
I : L — L§ by I(v)(w) = Q(w,v). We also have I}, : L' — L.
We define I}, : as the composition

Iy, =10l ': L' — L.



22 TENTATIVE NOTE FOR PART 1

By definition
w(w, I1,(v)) = w(w,v) (36)
for we Ly, ve L.
We remark that
L®Ly~R" ~L'@® L.
We define ¢ : R*" — R*" by

or(@+y) =I5 (v) +y)
where x € L', y € Ly. (36) and Q(z1,z2) = Q(z],25) = Qy1,y2) = 0 for
x1,x9 € L, xb,xh € L', y1,y2 € Ly implies
(L) =Q.

Now we define

@(J) = (pyryproJo (¥7)™).
It defines a diffeomorphism

J — EAQ(R%; 0; L) x 7r_1(L0).

([

The poof of Lemma 57 is actually over, since we obtained a global iso-
morphism. Lemma 60 is also true. We mention it a bit.
Let m: M — N be a fiber bundle. f: N' — N a smooth map. We put

f*M ={(z,y) e M x N[ n(z) = f(y)}-
Lemma 65. f*M is a smooth manifold. f*M — N, (z,y) — y defines a
fiber bundle.

Proof. Let y, € N'. Put yo = f(yo0). There exists a neighborhood Uy, such
that ¢ : ﬂ'_lUyO ~ F' x Uy, and the diffeomorphism preserves projections.
Put U?;f) = f~1(yo). We can define diffeomorphism W’*l(Uéé) ~ F x Uzl/f) by
(@,9) = (mr(e(@)), ) O
We call (f*M, N', ') the pull back bundle.
Important fact in the theory of fiber bundle is the following.

Theorem 66. Let § = (7 : M — N) be a fiber bundle and f; : N' — N a
smooth map. Suppose fi is homotopic to fa. Then f1 +§ = f55F.

Here two fiber bundles §; = (M;, N,7;) are isomorphic if there exists
diffeomorphism ¢ : My — Ms such that mo 0 g = 7.
We postpone the proof of Theorem 66.

Proof of Lemma 60. We observe id : B — B is homotopic to the constant
map. The pull back of M — B by id is original fiber bundle. On the other
hand the pull back by constant map is the direct product. O

To prove Theorem 53 it suffices to prove the next proposition.
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Proposition 67. Let M — N be a fiber bundle such that its fiber is con-
tractible. Then the space of its sections are weakly contractible.

Proof. 1t suffices to prove it in the case when NNV is a simplicial complex. By
Lemma 60 M = N x F with F' being contractible. The space of the sections
is identified with Map(N, F') Let 0D™ — Map(N, F') be a map. It induces
f:0D" x N — F. Since F is contractible standard algebraic topology
implies that it extends to D™ x N — F. ([l

3.6. An example of symplectic manifold which is not Kahler.

4. DAROUX’S AND MOSER’S THEOREMS.

4.1. Moser’s Theorem. Let X be a compact manifold without boundary
and w; a t € (—1.1) parametrized family of symplectic structures on X.

Theorem 68. If the de-Rham cohomlology class [w;] is independent of t,
there exists a t parametrized family of diffeomorphisms o : M — M such
that ©fwy = we.

Example 69. We consider t parametrized family of complex submanifolds

5
X; :={[xo,...,25] € CP® | 2 a2 + troriworsrars = 0},
i=0
X, is a smooth complex submanifold of CP® for t # 0. Therefore X; is
Kéhler. Theorem 68 implies that X; is symplectomorphic to Xy for ¢,t" # 0.
One may say that a ‘constant’ family of symplectic manifolds X; suddenly
becomes singular at ¢ = 0.

Note that the particular form of the equation Z?:o x?+tx0x1x2x3x4x5 =0
is not important. Suppose we have t parametrized family of homogeneous
polynomials P;(xq,...,x,) such that the zero of P, is non-singular except
finitely many ¢’s. (This is the case of ‘generic’ family.) Then the symplectic
structure of the hypersurface of CP" obtained as zero set of P; is independent
of the generic t.

The complex structure does depend on t.

The technically most non-trivial part of the proof of Theorem 68 is the
next proposition.

Proposition 70. Let u; be a t € P parametrized family of differential k-
forms on X. We assume duy = 0 and [uy] = 0 in de Rham cohomology.
Then there exists a family of k — 1 forms vy depending smoothly on t such
that dvy = uy.

Maybe a shortest proof is using harmonic analysis but it is not so much
elementary. We provide an elementary proof (using a proof of de Rham
theorem) later.
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Proof of Theorem 68. Put

dey

dt

oy is a family of closed 2 forms representing 0 in de-Rham cohomology.
Therefore there exists a family of 1-forms S; such that

d,@t = O¢.
We will find ¢ : X — X such that

ap =

Py wo = Wr. (37)
We can find a ¢t parametrized family of vector fields V; such that

©r = expy, .
Differentiating (37) we have

Ly,w = dp.

Now we define V; by the formula

Z'Vtwt = ﬂt-
By Cartan’s formula

Ly,w = dp.
By doing calculation in the opposite direction, it implies ¢; = exp@* satisfies
Yiwg = wy. O

Example 71. We consider X, = {[z : y : z] € CP? | 222 + ¢® + €23 = 0}.
The intersection of X; with C? (= {[z : y : 2] | 2 # 0}) is the solution
set of 2 + 4% + € = 0. It is singular when € = 0. For € # 0, X, is a
non-singular 2 manifold. It is actually a 72 (elliplic curve). We consider
one parameter family ¢; = exp(2my/—1t). By Theorem 68 there exists a
one parameter family of symplectic diffeomorphisms ¢; : X, — X,. Note
€ = €9 = 1. Therefore 1 : X1 — X is a symplectic diffeomorphism. This
diffeomorphism cannot be an identity map. We can show in homology it
becomes (a,b) — (a,b + a). We can use this fact to show that such ¢
cannot be biholomorphic. (On the other hand, as we discussed above, it is
realized as a symplectic diffeomorphism.)

4.2. Family version of de Rham’s theorem. In this subsection we prove
Proposition 70. We first review Ceck cohomology and proof of de Rham
theorem using it. Let § be one of, A* (k =0,1,2,...) or R. For U an open
set of an manifolds F(U) is the set of k forms on U if § = A*, the set of
real valued locally constant functions on U if § = R. (In the latter case
R(U) = R when U is connected.)

Let U = {U; | i € I} be an open covering of X where the index set I is a
finite set. For i = (ig, ..., i) € I**1, we put U; = ﬂj Ui, and

CHEU) = D 3U).

jelk+1
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Its element is written as (x;,,. 4, ). We define
§: CF(F:U) — CFY(E:U)
by (ib‘zozk) — (yio,...,ik+1)a where

Yio,...ik41 = Z(—l)ji*l‘ v
J

105wy Tk yeeeslk

Here i* : §(U. ~+ ) — §(Ui,....i) is the restriction map.
10,y B k5 eesile

It is easy to check d o § = 0.
We define

H (X:5:U) — Kerd : C’_(S’,U) CHY(F:U)
Imé : CF=1(F;U) — Ck(F;U)
the Ceck cohomology group of § with respect to the covering .
Lemma 72. If § = A! then

vk
H (X;A%U) =0 (38)

for £ >0 and

v 0

H (X;A%U) = AY(X) (39)
the space of of differential £ forms on X.

Proof. Let x; : Uy — [0,1] be the partition of unity associated to U. We
extend it to all X by putting y; = 0 outside U;. We define

A CHYEU) — CFF:U)
by (yi07---7ik+1) = g i such that
k+1

) S Jnsng. . . .
Lig,..yip = Z Z (-1 XiYio,oyij 15055541, k41

iel j=0
By a direct calculation we can easily check
Aod+doA=id.
Let k > 0 and 6u = 0 with u € C*(§F;U). Then u = §Au. Thus (38) holds.

v O
Note that H (X;A%U) = Kerd : CO(AYU) — CH(A%U). Suppose ()
is in the kernel. x; is a differential ¢ form on U;. §(z;) = 0 implies that
x; = x5 on U; n Uj. Therefore they determine a differential ¢ form on X.
On the contrary a differential ¢ form z on X determine an element (z;) is
in the kernel by x; = z|y,. Thus (39) holds. O

Definition 73. An open covering U of a manifold X is called a simple cover
if U is either empty or is diffeomorphic to R".

Lemma 74. Simple cover exists for any manifolds.

We omit the proof. See 777.
We also use the next proposition.
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Proposition 75. (parametrized version of Poincaré’s lemma.) Let ay be a t
parametrized family of differential k forms on R™ such that doy = 0. Assume
k > 0. Then there exists a t-parametrized family of differential k — 1 forms
By on R™ such that dB; = ay.

We will prove it in Subsection 4.5.
We take and fix a simple cover U. We define
Cht = CR (A5 U).
We have defined the operator:
S Ck,f N Ck—i—l,f'
We next define
d: Ck,é N Ck,é-ﬁ-l.

z; ) where x;, ., is a differential ¢ form on
k [

3

An element of CF is (i,
Uip.....ir,- We define

-----

d(xio,---,xik) = (dmio7---7$ik)’
We have
dod=460d =0, dod=90dod.
Lemma 72 implies:

Kerd : CM* — ¢ = Tm6 : CF 10 — OF!

for k = 1. Moreover
Kerd : O — g1t = A¢
the set of differential ¢ forms.
Proposition 75 implies:

Kerd : C*f — P! = Imd : B! — OR!
for ¢ > 1. Moreover
Kerd : O — OP1 = CF(R; U).

Thus we have the next commutative diagram. The vertical and horizontal
lines are exact except —1-th ones.

We first review how we prove de Rham’s theorem using this diagram.
(This proof is due to A. Weil.) We consider the case of degree 2 form which
is the case we used. Let a be a differential 2 form with da = 0. The we
obtain a?® € C?Y such that da?® = 0. Therefore we have o' € C'° such that
da'® = a?°. We obtain o'l € C!! by o'l = 6a!?. dall = §da'® = 6020 = 0.
Therefore we have a®' € C with da® = a!''. We put a’? = §a®'. Then
da®? = 0. Therefore it comes from 3 € C?(R,U). We can show 63 = 0.
Thus [o] — [8] H3z(X) — H*(X;R;U). We can check that this map is
independent of the choices we made. For example we may replace a'? by
a'® + dz. Then o' changes to a'® + dz. Therefore o’ = §a'® does not
change.

If we change a®! to a®' + y where y € C?(X;R;U) then 3 changes to
B+ dy.
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5 — CIQ\Z) s C/\OL — C\/)\Z
\ l)l L]

00— c) — C — C

0 =l - = O —

IR

/\“(%) — AN — /\1(><l'7

70

FIiGURE 1. double complex.

Thus in a similar way we can show [a] — [3], H7gz(X) — H*(X;R;U) is
well defined.

We can change the role of k& and ¢ and repeat the same argument to show
that it is an isomorphism.

Proof of Proposition 70. Let oy be a t parametrized family of 2 forms with
doay = 0. We obtain o’ etc. in a similar way as above and then f3; €
C?(X;R;U). (We use Lemma 76 below here.) Note §3; = 0. Moreover we
assume that [ay] = 0 in de Rham cohomology. Then [3;] € H?*(X;R;U).
Using the fact C¥(X;R;U) is finite dimensional, it is easy to find v €
C1(X;R;U) depending smoothly on t such that §y; = 8;. Then §(af! —7) =
0. Therefore there exists 70 € C% such that §(7°) = aj! — 4. Then
§(af® — dyP%) = 0. Therefore there exists 6; € A! such that 6; = o — dy°
in C19. Now it is easy to see df; = a. O

Lemma 76. Let (C*,8) be a finite dimensional chain complex over R. If
z; € CF is a t parametrized family such that x; € Imé then there exists y; t
parametrized family such that xy = 0y;.
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@/——a‘O\OL
0\~__>d\\‘ .
o ] -
10’7&,”’770
7o
a —

FIGURE 2. diagram chase.

Proof. Tm(§ : C*=' — C*) is a finite dimensional subspace there exists
A :Im(6 : C* ! — C*) — C*~1 such that 6 o A = id. 3 = A(xy) has the
required property. O
4.3. The group of symplectic diffeomorphisms. We continue discus-
sion on group of symplectic diffeomorphisms. We first explain that the group
of Hamiltonian diffeomorphisms coincides with Aut(X,w) modulo finite di-
mension.

Let v be a differential one form on X. We assume dv = 0. By non-
degeneracy of w there exists unique vector field $), such that

1x,w = V.
By the same calculation as the proof of Lemma 15 we can show
Ly, w=dv=0.
Suppose (X, w) is compact symplectic manifold.

Lemma 77. If ¢ : X — X is a diffeomorphism with ¢*w = w. Suppose ¢
is sufficiently close to the identity map, then there exists a t parametrized
family of differential one forms vy with dvy = 0 such that

Y = eXp%xvt} .

We postpone its proof to later.
Morally speaking Lemma 77 implies that the Lie algebra of Aut(X,w) is
the set of closed 1-forms. We consider the next exact sequence:

0->R—{df | feC®(X)} - {ueQY(X)|du=0} - H(X;R) - 0.
This is linearization of the following exact sequence of groups:

1 — Ham(X,w) — Auto(X,w) — H'(X;R) — 0, (40)
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where mo(X ,w) is the connected component of the universal covering space
of Aut(X,w) and
Ham(X,w) = {[¢:] € Auto(X,w) | o' € Ham(X,w)}
where Ham(X, w) is the group of Hamiltonian diffeomorphisms. The Lie
algebra of Ham (X, w) is {df | f € C*(X)}.)
The homomorphism Auty(X,w) — H*(X;R) appearing in (40) is call the

flux homomorphism and is defined as follows.

Definition 78. Let ¢ € Autg(X,w) we choose a path ¢! such that ¢¥ is the
identity map and ¢ = !. (By an abuse of notation we write an element of

Auto(X,w) and its image in Auto(X,w) by the same symbol.) There exists
a closed one form v; such that

got = exp%evt . (41)
(Again by Cartan’s formula.) We define

1
Flux(yp) = L [v:] € HY(X;R).

Lemma 79. Flux(y) depends only on ¢ € mo(X,w).
Proof. Let v : S — X be a loop. We define u : [0,1] x S* — X by

ut,s) = o'(7(s)).

We claim:

1

( f [w]) ~ [] = f ww e R. (42)

0 [0,1]x STt
We observe that the claim implies (42) implies the lemma. In fact if ¢’ is
another path then u changes to u’ such that v’ is homotopic to u relative to
the boundary [0, 1] x S'. Therefore by the right hand side does not change

(since w is closed.)
We will prove (42) in the rest of the proof. We put

£(t) = <f ) a bl glt) = f[ o

0

It is easy to see

On the other hand,
df 1

dt >0 € Jipiiexst
Note that Du(%) = X,,. Therefore
u*w = w(Xy,, 0/0s)dt A ds = (ix,,w)(0/0s)dt A ds = v (d/ds)dt A ds.
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Therefore

1
lim — urw = J v(0/0s)ds = [v] N [¢™Y] = [ve] © [7],
€20 € J[tt4e]x St 51

as required. O

Lemma 80. Flux is a group homomorphism. Namely
Flux(¢ o ) = Flux(y) + Flux(¢)).

Proof. Let !, 1t represent ¢ and 1), respectively. Then we consider the
family parametrized by ¢ € [0, 2] and defined by

ot — @ when ¢t <1
|yt tog! whent > 1,
which represents ¢ o ¢. (This is the definition of the covering group.) The

lemma follows from (42) and the fact that (! is homotopic to the identity
through the diffeomorphisms preserving symplectic form. ([

Proposition 81. The sequence (40) is exact.

Proof. We first show the surjectivity of the Flux homomorphism mO(X ,w) —
H'(X;R). Let v be a closed one form representing an element of H'(X;R).
Then, for SO%EU (Here X, is a t-independent vector field), Flux(o!) = [v] is
immediate from definition. .

The fact the composition Ham(X,w) — Auto(X,w) — H'(X;R) is also
obvious from definition. .

The most important step is to show that if ¢! is an element of Auty(X,w)
such that its Flux is 0 then it is equivalent to an element of the image
of Ham(X,w). We prove it now. Let [¢!] € Auto(X,w). We have a t
parametrized family of closed 1 forms v; such that

o' = exp;v*.
Here ix,, w = v;. We assume
1
f [vi]dt = 0 e HY(X;R).
t

=0
Therefore there exists a function f such that

1
f Ve = df
t=0

We consider ¢! = expt_xf Note (¢') represents an element of Ham(X,w).
The composition () o (i) is engev, with szo v; = 0. (Here v; = v, for
t € [0,1] and v; = —df for t € [1,2].) >l<Thus it suffices to consider ['] with
o = engev* and Stl:o v = 0. We will study this case below.

For s € [0, 1] we take w® = Si vydt. We consider exp, () (t € [0,1]). (rys

is a t independent family of vector fields.). It gives an element mO(X ,w)
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which we define by ;. On the other hand exp, (t) (t € [0,s]) gives an
element of ;‘Ifto(X ,w) which we define by ¢s. Note

s 1
Fluxps = J [v]dt = j [v¢]dt = —Flux)g
0 s

Therefore Flux(is o ps) = 0. It follows that

D
X = diips O Ps
S

satisfies Ly, = 0, [ix,w] = 0 € H*(X;R).
Moreover since wg = w1 = 0 we have

Yoo =id,  Progr =
Therefore there exists Hy such that Xy = Xp,. Thus [¢s0ps] € fl\arn(X,w).

We thus proved exactness at mO(X ,w). Using simply connected-ness of
H'(X;R) we can then show Ham(X,w) — Autg(X,w) is injective. O

Proposition 81 shows that Ham(X,w) is a closed subgroup of Autg(X, w).

Theorem 82. (Ono) Ham(X,w) is a closed subgroup of Auto(X,w) in C*
topology.

This is a deep theorem and its proof uses various modern technique in
symplectic geometry.

Conjecture 83. (C°-Flus conjecture) Ham(X,w) is a closed subgroup of
Auto(X,w) in C° topology.

In other words, if ¢; is a sequence of Hamiltonian diffeomorphisms which
converges to a symplectic diffeomorphism ¢ then ¢ is also a Hamiltonian
diffeomorphism.

The next famous result is older and it is discovered around the time when
the study of global symplectic geometry started.

Theorem 84. (Eliashberg) Aut(X,w) is closed in Diff(X) in C° topology.

In other words if ¢; is a sequence of symplectic diffeomorphisms which
converges to a diffeomorphism ¢ then ¢ is also a symplectic diffeomorphism.

4.4. Darboux’s theorem. We next show the following;:

Theorem 85. Let (X,w) be a symplectic manifold and p € X. Then there
exists a diffeomorphism ¢ : D" — X onto an open subset such that o(0) = p
and

n
orw = CZ dzt A dy
i=1

1

for some positive constant c. Here z',... 2" y', ..., y" is a standard coor-

dinate of D*™.
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Here D?" denotes the open ball of radius 1 in R?”. We first explain the
rough idea. We take a smooth map ® : D?" — X with ®(0) = p. By
assumption ®*w at 0 is a anti-symmetric bi-linear form wy. We may change
a coordinate of D?" such that wg = Sy dz® A dy' at origin. (See solution
of Excersice 2 in Subsection 3.1.) Put ®V(x,y) = ®(x/N,y/N) then

IN?(@V)*w = Y dat A dy|ce < C/N
i=1
We may choose N large such that

n
wp = tN2(®NM)*w + (1 — 1) Z dz' A dy
i=1
is non-degenerate on D" for t € [0,1].

Since H?(D?";R) = 0 the de Rham cohomology class of w; is zero. So
if we could apply Theorem 68, then there exists ¢y : D?® — D?" such that
Yiwe = wp. It will imply Theorem 85.

However we assumed compactness of X in Theorem 68. In fact we need
to integrate the vector field X,, appearing in the proof.

So we need to adapt the proof of Theorem 68 carefully so that it works
in our non-compact situation.

We use the following variant of Poincaré’s lemma for this purpose. A
domain D in R" is said to be star-shaped if there exists pg € D such that
the line segument pgp is in D for any p € D.

Proposition 86. (A variant of Poincaré’s lemma) Let D be a star-shapced
domain. If u is a differential k-form on D with du = 0. Then there exists
k—1 form v on D such that dv = u. Moreover:

(1) If ug ist parameter family with duy = 0 then we can take t parameter
family vy such that dvy = uy.
(2) There ezists C(k, D) depending only of k and D such that

lvellen < C(k, D) ug] -
We prove Proposition 86 in Subsection 4.5

Proof of Theorem 85. We use notations above. Note

d
| Zetlx < C(k)/N.

Therefore we have g; such df; = %wt and
1Belen < C'(k)/N
We take a vector field Xy on D?*"(2) such that
'ith = Bt
and
| X¢|en < C"/N. (43)

Now we claim
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Lemma 87. If N is large then for each p € D*™ there exists Yp(t) such that

7(0) = p, ]
@’Yp = W(’Y(t))

and the length of v, is smaller than 1/2.

Using (43) we can prove the lemma in the same way as the standard
proof of the existence of the solution of ODE. The map p — 7,(t) becomes a
smooth map D?® — D?"(2) which is a diffeomorphism to an open subspace.
We write it ¢!. Now by the same calculation as the proof of Theorem 68 we
can show (p')*wp = w; and can complete the proof of Theorem 85. g

4.5. Poincaré’s lemma with estimate. We begin with the following:

Lemma 88. Let U < R" be an open subset. There exists a map
I:A*([0,1] x U) — AF1([0,1] x U)
such that
(do[—i—fod)uzu—ﬂ*(u‘{o}xU). (44)
Proof. We use t as the coordinate of [0, 1]. We write
u=dt A up + us

where u7,us does not contain dt. We put

S

I(u)(s, 2) = f i (8, 7).

0
We calculate

me@@:I@ﬁA%m+%w+ﬁA%%)
= —J dyui(t, x)dt + ua(s, z) — u2(0,x).
0
d(Tu)(s,x) = j dguy (t, z)dt + dt A uy(s, ).
0
The lemma follows. O

We remark that, explicit formula of I implies that, if u; is t-parametrized
family then I (u;) is also a t-parametrized family. Moreover I is C* bounded.

Proof of Proposition 86. We put U = D. We define H : [0,1] — D by
H(t,p) = (1—1t)po +tp. Then we apply Lemma for H*u. Note H*ul( 0} =
0. Therefore using du = 0.

dI(H*u) = H*u.

Since H(1,p) = p we obtain dI(H*u)|(1yxp = u. Thus v = I(H*u)|(yxp
has the required properties.

Item (1)(2) in Proposition 86 follows from the corresponding properties
of I which we remarked above. (|
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4.6. Weinstein neighborhood theorem. We recall that

Definition 89. Let (X,w) be a 2n-dimensional symplectic manifold.

An (embedded) Lagrangian submanimfold L is an n dimensional (embed-
ded) submanifold such that w|L = 0.

An immersed Lagrangian submanimfold is a pair L = (E,z 1) where L
is an n-dimensional manifold and iy : L — X is an immersion such that
ijw=0.

We discuss Lagrangian submanifold systematically in Part ?7. In the
case when X = T*M is a cotangent bundle the fibers T M are Lagrangian
submanifold. Moreover for a closed 1 form u its graph {(p,u(p)) € T*M |
p € M} is a Lagrangian submanifold. In particular the zero section 0y :=
{(p,0)e T*M | pe M} is a Lagrangian submanifold.

Theorem 90. Let L be an embedded Lagrangian submanifold of a symplectic
manifold (X,wx). Then there exists an open neighborhood Uy, of the zero
section 0r, in the cotangent bundle T*L and an open embedding i : U, — X
such that:
(1) i*wx = w. Here wx is the symplectic form of X and w in the right
hand side is the canonical symplectic form in Lemma 22.
(2) ilo, is the identity map.

Proof.

Lemma 91. Let i;, : L — X be the identity map and ig : L — T*L is the
identification with zero section. Then there exists an isomorphism of vector
bundle I : i;TX =i;TT*X such that:

(1) I preserves the symplectic forms.

(2) The restriction of I to i3 TL is the identity map TL — TOy,.

Proof. We can choose a rank n subbundle W of 7 T'L such that W, nT,,L =
{0} for p € L and the symplectic form vanish on W.

Excercise 92. Prove it.

Using symplectic form there is a canonical isomorphism W =~ TL*. We
consider the subbundle V' < ¢TT*X such that V, = T,T;L. (Here we
regard p € 0z, and 77 L a submanifold of T*L.) Using symplectic structure
of T*L there is a canonical isomorphism W =~ V. Note i;TX = W®TL and
i;TT*X =V @TL. Therefore the isomorphism W =~ V and the identity
map T'L =~ TL induces a bundle isomorphism I : ¢;TX =~ ¢7TT*X. Using
the fact that the fibers of V, W are Lagrangians, T),L is also a Lagrangian,
and the construction of W =~ V it is easy to see I : ¢7TX =~ ¢;TT*X
preserves the symplectic form. ([l

Excercise 93. Show that there exists an open subset U} of the zero section
0z, and an open embedding ¢’ : U} — X such that:

(1) i is the identity map on L.
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(2) For p € L the derivative Dpi’ is the isomorphism in Lemma 91.

We consider
wr = (1—tw + (i) wx.
We may replace U}’) by a smaller neighborhood so that w; is a symplectic
form for any ¢. Then the rest of the proof is mostly the same as the proof
of Moser’s theorem, except again the domain is not compact. We can go
around this trouble in the same way as the proof of Darboux’s theorem using
the next lemma.

Proposition 94. (A variant of De Rham’s theorem with estimage) Let M
be a (not necessary smooth). If uy is a t-parametrized family of differential
k-form on M with du; = 0. Assume the de Rham cohomology classes of uy
are 0. Then there exists a t-parametrized family k — 1 form vy on M such
that dvy = u;. Moreover there exists C(k, M) depending only of k and M
such that

[vtlen < C(k, M)ui] o (45)

Proof. Except (45), this is Proposition 70. On one chart (45) is Proposition
86. We can use a similar argument to the proof of Proposition 70 (diagram

chase of double complex C*f) and one chart version of (45), to prove (45)
for M. (]

The proof of Theorem 90 is now complete. ([

We can use Theorem 90 to prove Lemma 77 as follows. Let ¢ : X — X
be a symplectic diffeomorphism which is C! close to identity map. We
consider —X x X, which is a symplectic manifold (X x X, —7fw + mw),
where w is the symplectic form of X and 7 : X x X — X is the projection
to the first factor, mo is the projection to the second factor. The diagonal
A = {(z,x) | x € X} is a Lagrangian submanifold and Grapy = {(z, ¢(z) |
x € X} is also a Lagrangian submanifold. We apply Theorem 90 to a
Lagrangian submanifold A of —X x X. We may assume Grapy < ia(Ua).
Then z’ZlGrapap is a Lagrangian submanifold of T*X which is C! close to
the zero section. Therefore there exists closed one form u on L such that
ix'Grapy = {(z,u(z)) € T*X | x € X}. The map

x — ia((z, tu(z))

is a Lagrangian embedding X — —X x X which is sufficiently close to the
diagonal embedding. Therefore z — m1(ia((z, tu(x))) is a diffeomorphism.
It implies that there is a ¢ parametrized family of symplectic diffeomorpisms
¢+ X — X such that

{in((z, tu(@)) | v e X} = {(z, pr(2)) | v € X}.

We put

d

Viler(@) = Leile).
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Then vy = iy,w is the required family of closed 1 forms. The proof of Lemma
77 is complete. O
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