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Part 1. Symplectic manifold

1. Symplectic manifold and Hamiltonian Vector Fields

1.1. Definition. Let X be a (real) 2n dimensional manifold and ω a differ-
ential 2-form on it.

Definition 1. ω is said to be a symplectic structure of X if and only if:

(1) dω “ 0.
(2) The 2n-form ωn never vanishes.

A pair pX,ωq is said to be a symplectic manifold.

We remark that at each point x P X a 2-form ω on X defines an anti-
symmetric bilinear map

TxX b TxX Ñ R. (1)

Excercise 2. Show that ωn is non-zero at x if and only if (1) is non-
degenerate.

Using local coordinate, ω is written as

ω “
ÿ

ωijdx
i ^ dxj .

Here ωij is anti-symmetric.
A Riemannian metric g on X can be written

g “
ÿ

gijdx
idxj .

Here gij is symmetric. These two notions look similar but there are various
serious difference. Here we emphasize the next fact. Suppose X is a compact
manifold.
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(I) For a Riemannian metric g the group

AutpX, gq “ tϕ : X Ñ X | ϕ˚g “ gu

of automorphisms (isometries) of pX, gq is a finite dimensional Lie
group.

(II) For a symplectic form ω the group

AutpX,ωq “ tϕ : X Ñ X | ϕ˚ω “ ωu

of automorphisms (symplectic diffeomorphisms) of pX,ωq is infinite
dimensional.

Proof of (I) (Sketch). We may assume X is connected. We put

SX “ tpx, V q | x P X,V P TxX, gpV, V q “ 0u.

We fix x0 P X and an orthonormal basis e1, . . . , en of Tx0X. We define

I : AutpX, gq Ñ pSXqn

by

Ipϕq “ pϕpx0q, pDx0ϕqpeiqq
n
i“1

Lemma 3. I is injective.1

The lemma implies that AutpX, gq is finite dimensional. We omit the
proof that it is a Lie group.

Sketch of the proof of Lemma 3. �

Suppose Ipϕ1q “ Ipϕ2q. Put x “ ϕ1px0q “ ϕ2px0q. Let ϕ “ ϕ2 ˝ϕ
´1
1 . We

have ϕpxq “ x. Moreover pDxϕq : TxX Ñ TxX is the identity map.
Let y is an arbitrary point of X. There exists a geodesic γ : r0, T s Ñ X

such that γp0q “ x, γpT q “ y. Then ϕ ˝ γ is a geodesic joining x and ϕpyq.
Geodesic satisfies a second order ODE (See Theorem 31). Since

D

dt
γp0q “

D

dt
pϕ ˝ γqp0q,

uniqueness of the solution of ODE implies γ “ ϕ ˝ γ. Hence y “ ϕpyq. �

Proof of (II). For the proof we need to find a lot of automorphisms of pX,ωq.
We use Hamiltonian diffeomorphism for this purpose. The proof is com-
pleted at the end of Subsection 4.3. �

To define and study Hamiltonian diffeomorphisms we review some ele-
mentary facts on calculus of manifolds.

1It is actually a diffeormorphism onto a smooth submanifold.
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1.2. Vector fields on manifolds: Review.

Definition 4. Let X be a manifold and V a vector field on it. We define
one parameter group of transformations exptV : X Ñ X (t P R) associated
to V by the following two equalities.

(1) exp0
V pxq “ x.

(2) d
dt exptV pxq|t“t0 “ V pexpt0V pxqq.

It satisfies the next equality also:

(3) exptV ˝ expt
1

V “ expt`t
1

V .

Remark 5. In the case X is compact without boundary such exptV exists
for all t P R. In the case X is non-compact, there exists TK , such pt, xq ÞÑ
exptV pxq for t P r´TK , TKs and x P K for any compact subset K.

We next review Lie derivative of a tensor field. We remark that a tensor
T (called `´ k tensor) is a section of the tensor product vector bundle

TXkb b pTX˚q`b.

Using a local coordinate xi it is written as

T “
ÿ

T i1...ikj1...j`

B

Bxj1
b ¨ ¨ ¨ b

B

Bxj`
b dxi1 b ¨ ¨ ¨ b dxik ,

where T i1...ikj1...j`
are smooth functions. If ϕ : X Ñ X is a diffeomorphism it

induces isomorphism Dxϕ : TxX Ñ TϕpxqX. The inverse of its dual induces

pDxϕ
˚q´1 : T ˚xX Ñ T ˚ϕpxqX. They induce

TxX
kb b pTxX

˚q`b Ñ TϕpxqX
kb b pTϕpxqX

˚q`b,

which we denote by pDϕq˚ for simplicity. We denote by pDϕq˚ its inverse.

Definition 6. The Lie derivative LV T of a tensor T by a vector field V is
defined by

LV T “ lim
tÑ0

pD exptV q
˚T ´ T
t

Lemma 7. For a p0, 0q tensor f we have LV f “ V pfq.
For a vector field W (that is a p1, 0q tensor) we have

LVW “ rV,W s,

where the right hand side is defined by

rV,W spfq “ V pW pfqq ´W pV pfqq.

See ??? for the proof.

Excercise 8. Prove the following identity. (the Jacobi Identity)

rrU, V s,W s ` rrW,U s, V s ` rrV,W s, U s “ 0.
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We next review inner product. The differential k-form is a p0, kq tensor
u such that

ux : pTxXq
kb Ñ R

is anti-symmetric:

uxpV1, . . . , Vkq “ ´uxp. . . Vi´1, Vj , Vi, . . . , Vj´1, Vi, Vj , . . . q.

Definition 9. Let u be a differential k form and V a vector. We define
differential pk ´ 1q form iV u by

piV uqpW1, . . . ,Wk´1q “ upV,W1, . . . ,Wk´1q.

The next lemma is important to study Hamiltonian vector field.

Lemma 10. (Cartan’s formula) For a differentia form u and a vector field
V we have

piV ˝ d` d ˝ iV qu “ LV u. (2)

See Subsection 1.5 for the proof.

1.3. Hamiltonian Vector field. Let pX,ωq be a symplectic manifold and
H : X Ñ R be a (smooth) function.

Definition 11. The Hamiltonian vector field XH generated by H is defined
by the next formula.

ωpXH , V q “ pdHqpV q. (3)

Here V is an arbitrary vector field.

The non-degeneracy of ω implies the unique existence of XH .
Let V˚ “ tVtu be a t P R dependent family of vector fields. (We require

t Ñ Vtpfq is smooth on t for any function f .) One parameter group of
transformations exptV˚ is defined in a similar way as Definition 4 by the next
formula:

(1) exp0
V˚
pxq “ x.

(2) d
dt exptV˚pxq|t“t0 “ V pexpt0Vt0

pxqq.

Definition 12. A diffeomorphism ϕ : X Ñ X is said to be a Hamilton-
ian diffeomorphism if there exists Ht a t P R dependent family of smooth
functions such that

ϕ “ exp1
XHt

Here XHt is the Hamiltonian vector field generated by Ht and we regard it
as a t P R dependent family of vector fields.

Excercise 13. Show that if ϕ,ϕ1 are Hamiltonian diffeomorphisms then
their composition ϕ ˝ ϕ1 is a Hamiltonian diffeomorphism.

Proposition 14. If ϕ is a Hamiltonian diffeomorphism then

ϕ˚ω “ ω.

For the proof we first prove its ‘infinitesimal version’.



TENTATIVE NOTE FOR PART 1 5

Lemma 15. The Hamiltonian vector field XH satisfies:

LXH
ω “ 0.

Proof. We remark that Formula (3) can be written as

iXH
ω “ dH.

We now use Cartan’s formula (2) and dω “ 0 to find:

LXH
ω “ iXH

pdωq ` dpiXH
ωq “ ddH “ 0.

�

Proof of Proposition 14. We consider

ωt :“ pexptXHt
q˚ω.

It satisfies the differential equation

d

dt
ωt “ LXHt

ωt. (4)

together with initial condition : ω0 “ ω. Note (4) is an ordinary differential
equation of first order on an appropriate Banach space, so its solution with
given initial condition is unique. Lemma 15 implies that ωt ” ω is a solution.
Therefore ωt “ ω as required. �

We remark that XH “ XG if and only if dpH ´ Gq “ 0. Therefore
Proposition 14 implies that AutpX,ωq is infinite dimensional.

1.4. Poisson’s Bracket.

Definition 16. For functions f, g : X Ñ R on a symplectic manifold, we
define ifs Poisson Braket tf, gu by:

tf, gu “ dfpXgq “ Xgpfq.

By definition dfpXgq “ ωpXf ,Xgq. Therefore

tf, gu “ ´tg, fu. (5)

Proposition 17.

Xtf,gu “ ´rXf ,Xgs. (6)

For the proof we use:

Lemma 18.

rLV , iW s “ iLVW . (7)
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Proof of Lemma 18.

prLV , iW spuqqpV1, . . . , Vkq

“pLV piWuqqpV1, . . . , Vkq ´ pLV uqpW,V1, . . . , Vkq

“V pupW,V1, . . . , Vkqq ´
k
ÿ

i“1

p´1qiupW, . . . , rV, Vis, . . . q

´ V pupW,V1, . . . , Vkq ´ uprV,W s, . . . q `
k
ÿ

i“1

p´1qiupW, . . . , rV, Vis, . . . q

“ piLVWuqpV1, . . . , Vkq.

�

Proof of Proposition 17.

LXf
iXgω “ iXgLXf

ω ` iLXf
Xgω “ irXf ,Xgsω.

On the other hand,

LXf
iXgω “ LXf

dg “ dXf pgq “ ´dtf, gu.

�

Proposition 19. Poisson bracket satisfies

ttf, gu, hu ` tth, fu, gu ` ttg, hu, fu “ 0. (8)

The fact the left hand side is constant follows from Proposition 17 and
Excersise 8. We will prove the fact that this constant is 0 later.

Proposition 19 and (5) implies that pC8pXq, tuq is a Lie algebra. Propo-
sition 17 imply that f ÞÑ Xf is an anti Lie algebra homomorphism from
pC8pXq, tuq to the Lie algebra of vector fields.

We remark that if tf, gu “ 0 then g is constant on the orbit of Xf . In
particular f is constant on the orbit of Xf .

1.5. Proof of Cartan’s Formula. We prove Lemma 10. For differential
k-form u is exterior differential du is given by

pduqpV0, . . . , Vkq

“
ÿ

p´1qiVipup. . . ,
v
V i, . . . qq `

ÿ

iăj

p´1qi`1uprVi, Vjs, . . . ,
v
V i, . . . ,

v
V j , . . . qq.

(9)

Excercise 20. Show (9). Here use the definition

dpfdxi1 ^ ¨ ¨ ¨ ^ dxikq “ df ^ dxi1 ^ ¨ ¨ ¨ ^ dxik , df “
ÿ Bf

Bxi
dxi

for the left hand side.
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Now we calculate

ppiX ˝ dquqpV1, . . . , Vkq “pduqpX,V1, . . . , Vkq

“XpupV1, . . . , Vkqq ` p´1qiVipX, . . . ,
v
V i, . . . q

`
ÿ

p´1qi`1uprX,Vis, . . . ,
v
V i, . . . q

`
ÿ

iăj

p´1qi`juprVi, Vjs, X, . . . ,
v
V i, . . . ,

v
V j , . . . q

ppd ˝ iXquqpV1, . . . , Vkq “
ÿ

p´1qi´1VipX, . . . ,
v
V i, . . . q

`
ÿ

iăj

p´1qi`jupX, rVi, Vjs, . . . ,
v
V i, . . . ,

v
V j , . . . q.

Therefore

ppiX ˝ d` iX ˝ dquqpV1, . . . , Vkq “ XpupV1, . . . , Vkqq

`
ÿ

p´1qi`1uprX,Vis, . . . ,
v
V i, . . . q

“ pLXuqpV1, . . . , Vkq.

�

2. Example of Symplectic manifolds 1: Cotangent bundle and
brief review of Hamiltonian mechanics.

2.1. Symplectic structure on the cotangent bundle. The most impor-
tant example of symplectic manifold is the cotangent bundle T ˚M of a man-
ifold M . An element of T ˚M is a pair px, vq where x PM and v : TxM Ñ R
is a linear map from the tangent space TxM . (Namely v P T ˚xM .)

Definition 21. The canonical one form? θ on T ˚M is defined as follows.
Wen consider the projection π : T ˚M Ñ M . Let px, vq P T ˚M . π induces
Dπ : Tpx,vqT

˚M Ñ TxM . We put

θpV q “ vpDπpV qq

for V P Tpx,vqT
˚M .

Lemma 22. ω “ dθ is a symplectic form on T ˚M .

Proof. dω “ 0 is obvious. We prove ωn never vanishes where n “ dimM .
The problem is local. We take a local coordinate q1, . . . , qn ofM . An element
v P T ˚xM then is written as

ř

pidq
i where pi P R. In fact pi “ vpB{Bqiq. If

the coordinate of x is pq1, . . . , qnq then we associate pq1, . . . , qn, p1, . . . , pnq
to px, vq P T ˚M . Thus pq1, . . . , qn, p1, . . . , pnq is a coordinate of T ˚M . By
definition it is easy to see

θ “
n
ÿ

i“1

pidq
i
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in this coordinate. Therefore

ωn “ p
ÿ

dpi ^ dq
iqn “ n!dp1 ^ dq

1 ^ ¨ ¨ ¨ ^ dpn ^ dq
n,

which never vanishes. �

Excercise 23. Let F : M Ñ N be a diffeomorphism. It induces a diffeo-
morphism F˚ : T ˚M Ñ T ˚N . Prove pF˚q

˚θ “ θ.

During the proof of Lemma 22 we showed

ω “
n
ÿ

i“1

dpi ^ dq
i. (10)

Suppose H : T ˚M Ñ R be a function. Using (10) and the definition, we
find that the Hamiltonian vector field generated by H is

XH “
n
ÿ

i“1

ˆ

BH

Bqi
B

Bpi
´
BH

Bpi

B

Bqi

˙

. (11)

Therefore the Poisson bracket is given by:

tf, gu “
n
ÿ

i“1

ˆ

Bf

Bqi
Bg

Bpi
´
Bf

Bpi

Bg

Bqi

˙

. (12)

The equation that t ÞÑ pq1ptq, . . . , qnptq, p1ptq, . . . , pnptqq is the integral curve
of XH is:

$

’

’

&

’

’

%

dqi

dt
“
BH

Bpi
dpi
dt
“ ´

BH

Bqi

(13)

(13) is called Hamilton equation.

2.2. Euler-Lagrange equation. In this and the next subsection we briefly
review how Hamilton equation (13) appeared in mechanics.

Let L : TM Ñ R be a smooth function on the tangent bundle M . We
call L the Lagrangian function. For a curve γ : r0, T s ÑM in M we define
the Lagrangian functional Lpγq by

Lpγq “
ż T

0
Lpγptq,

¨
γptqqdt. (14)

Here
¨
γptq is the tangent of the curve P TγptqM .

We consider a family of curves γs : r0, T s ÑM for s P r´ε, εs such that:

(1) γ0 “ γ.
(2) γsp0q and γspT q are independent of s.

Let xi be a local coordinate of M . An element of TxM is written as
ř

yiB{Bxi. Thus x1, . . . , xn, y1, . . . , yn are coordinates of TM .

Theorem 24. The following two conditions for γ are equivalent.
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(I) For any γs as in (1)(2) above

d

ds
Lpγsq|s“0 “ 0.

(II) We use local coordinate to write γptq “ px1ptq, . . . , xnptq, y1ptq, . . . , ynptqq.
Then

BL

Bxi
pγptq,

¨
γptqq ´

d

dt

BL

Byi
pγptq,

¨
γptqq “ 0. (15)

(15) is called the Euler-Lagrange equation.

Proof. pIq ñ pIIq Put pγsptq,
¨
γsptq “ px1

sptq, . . . , y
n
s ptqq We have yisptq “

dxisptq{dt. We calculate:

d

ds
Lpγsq “

ż T

0

ÿ

ˆ

BL

Bxi
dxisptq

ds
`
BL

Byi
d2xisptq

dtds

˙

dt

“

ż T

0

ÿ

ˆ

BL

Bxi
´
B2L

BtByi

˙

dxisptq

ds
dt

Here we use (2) and integration by parts. Since this vanish for all dxisptq
ds at

s “ 0 we have (15).
pIIq ñ pIq can be proved by looking the formula in the opposite direction.

�

Example 25. Let g be a Riemannian metric on M . It induces a function
v ÞÑ gpv, vq on TM . Writing g “

ř

gijdx
idxj gpv, vq “

ř

gijv
ivj . Let

V : M Ñ R be a function. We put

Lpx, vq “
1

2
gpv, vq ´ V pxq. (16)

In case M “ Rn and g is the standard metric,

Lpx, vq “
1

2
p
ÿ

yiq2 ´ V pxq.

In this case (15) is

d2xi

dt2
“ ´

BV

Bxi
.

This is the equation of the motion of particle under the field of force with
potential V .

2.3. Hamilton’s formalism. We discuss the relation between (15) and
(13). Let L : TM Ñ R be the function. We define

LegL : TM Ñ T ˚M

the Legendre transformation, as follows. Let px, vq P TM . We restrict L to
TxM and differentiate at px, vq. Note TvTxM is canonically isomorphic to
TxM . Therefore a linear map DvL|TxM : TxM Ñ R. We put

LegLpx, vq “ px,DvL|TxM q P T
˚
xM.
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In local coordinate Legendre transformation is written as follows. Let xi be
a coordinate of M . We put v “

ř

yiB{Bxi. Thus xi and yi is an coordinate
of TM . We define

pi “
BL

Byi
.

Then
LegLpx

1, . . . , xn, y1, . . . , ynq “ px1, . . . , xn, p1, . . . , pnq.

Remark 26. pi is called the momentum conjugate to qi “ xi.

For the Lagrangian (16) Legendrian transformaition is given: pxi, yiq ÞÑ
pqi, piq

qi “ xi, pi “
ÿ

j

gijx
j . (17)

To discuss relationship between (15) and (13) we assume:

Assumption 27. The Legendre transformation LegL : TM Ñ T ˚M is a
diffeomorphism.

In various situations, it suffices Assumption 27 locally, that is, LegL is a
diffeomorphism between open subsets. For simplicity we require Assumption
27 globally.

Suppose L satisfies Assumption 27. We define H : T ˚M Ñ R by the next
formula:

Hpx, vq “ vppLegLq
´1px, vqq ´ LpLegLq

´1px, vqq. (18)

We remark that pLegLq
´1px, vq P TxpMq. Therefore the first term makes

sense.
When we use coordinate xi, yi, qi, pi then

Hpq1, . . . , pnq “
ÿ

piq
i ´ Lpx1, . . . , ynq. (19)

Theorem 28. Under Assumption 27 suppose H and L are related as in
(18). Then the next two condition for γ : r0, T s ÑM are equivalent.

(I) γ satisfies (15).
(II) pq1, . . . , pnq :“ LegL ˝ γ satisfies (13).

Proof. pIIq ñ pIq. Let pq1ptq, . . . , pnptqq be a path of T ˚M and px1ptq, . . . , ynptqq :“
Leg´1

L pLpγptqqq. Suppose (II). We calculate:

BH

Bpi
“ yi `

ÿ

j

pj
Byj

Bpi
´
BL

Bpi
“ yi `

ÿ

j

ˆ

pj
Byj

Bpi
´
BL

Byi
Byi

Bpj

˙

“ yi.

Here we use pi “
BL
Byi

, Bx
j

Bpi
“ 0.

Therefore the second equation of (13) implies

yptq “
dxiptq

dt
.

Namely px1ptq, . . . , ynptqq “ pγptq,
¨
γptqq.
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We next calculate

´
BH

Bqi
“

ÿ

j

ˆ

´pj
Byj

Bqi
`
BL

Bxj
Bxj

Bqi
`
BL

Byj
Byj

Bqi

˙

“
BL

Bxi
.

Here we use Bxj

Bqi
“ δij . On the other hand:

dpi
dt
“
B2L

BtByi
.

Therefore the first equation of (13) is

B2L

BtByi
´
BL

Bxi
“ 0.

This is nothing but equation (15).
The proof of pIq ñ pIIq is similar. �

2.4. Equation of geodesic: an example. We fix a Riemannian metric
g on a manifold M . Let γ : r0, 1s Ñ M . We consider the following two
functional:

Lpγq “
ż 1

0

b

gp
¨
γptq,

¨
γptqqdt (20)

Epγq “
1

2

ż 1

0
gp
¨
γptq,

¨
γptqqdt. (21)

L is the length of the curve γ and E is called the energy of γ.

Lemma 29. We have

2Epγq ě Lpγq2. (22)

The equality holds if and only if t ÞÑ gp
¨
γptq,

¨
γptqq is constant.

Proof. We put fptq “

b

gp
¨
γptq,

¨
γptqq, α “ Lpγq “

ş1
0 fptq and calculate

0 ď

ż 1

0
pfptq ´ αq2dt “ 2Epγq ´ 2αLpγq ` α2 “ 2Epγq ´ Lpγq2.

The lemma follows. �

Excercise 30. (1) Show for each γ : r0, 1s Ñ M there exists a diffeo-
morphism sptq : r0, 1s Ñ r0, 1s such that rγ “ γpsptqq : r0, 1s Ñ r0, 1s

satisfies the condition that
¨

rγ is constant.
(2) Show Lpγq “ Lprγq.

Lemma 29 and Excercise 30 implies that to obtain a critical point of Lpγq
(which is called a geodesic) it suffices to study a critical point of Epγq. Let
us study the latter by Hamiltonian formalism. We regard

Lpx1, . . . , ynq “
1

2

ÿ

gijy
iyj
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as a Lagrangian function. Then Legendre transformation is obtained as (17).
Therefore (19) becomes

Hpq1, . . . , pnq “
ÿ

gijy
iyj ´

1

2

ÿ

gijy
iyj “ Lpx1, . . . , ynq.

Namely

Hpq1, . . . , pnq “
1

2

ÿ

gijpipj

where pgijq is the inverse matrix of pgijq. (13) becomes

dqiptq

dt
“
BH

Bpi
“

ÿ

j

gijpj

dpiptq

dt
“ ´

BH

Bqi
.

(23)

Let us rewrite this equation to the equation of xiptq. Since BA
´1

Bx “ ´A´1 BA
BxA

´1

we have
Bgjk

Bqi
“ ´

ÿ

`,m

gj`
Bg`m
Bqi

gmk (24)

Therefore

dpi
dt
“ ´

1

2

ÿ

j,k

Bgjk

Bqi
pjpk “

1

2

ÿ

j,k,`,m

Bg`m
Bqi

pjpkg
j`gmk (25)

We take t derivative of the first formula of (23) and use (24), (25) and the
second formula of (23) to obtain:

d2qi

dt2
“

ÿ

j

dgij

dt
pj `

ÿ

j

gij
dpj
dt

“
ÿ

j

Bgij

Bqk
dqk
dt
pj `

ÿ

j

gij
dpj
dt

“ ´
ÿ

j,k,`,m,n

gim
Bgmn
Bqk

gnjgk`p`pj `
1

2

ÿ

j,k,`,m,n

gij
Bgmn
Bqj

gmkg`npkp`

“ ´
ÿ

k,m,n

gim
Bgmn
Bqk

ynyk `
1

2

ÿ

j,m,n

gij
Bgmn
Bqj

ymyn

“
1

2

ÿ

j,m,n

gij
ˆ

´2
Bgjm
Bqn

`
Bgmn
Bqj

˙

dqm

dt

dqn

dt
.

We define Christoffel’s symbol Γinm by:

Γinm “
1

2

ÿ

j,m,n

gij
ˆ

Bgjm
Bqn

`
Bgjn
Bqm

´
Bgmn
Bqj

˙

. (26)

We have proved the following:
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Theorem 31. A curve t ÞÑ γptq “ px1ptq, . . . , xnptqq is a geodesic with

gp
¨
γptq,

¨
γptqq beging constant if and only if it satisfies

d2xiptq

dt2
`

ÿ

m,n

Γinm
dxm

dt

dxn

dt
“ 0. (27)

2.5. Variational principle for Hamilton equation. Let x, y P M we
consider the set of path γptq “ pq1ptq, . . . , pnptqq : r0, T s Ñ T ˚M such that
γp0q P T ˚x pMq, γpT q P T

˚
y pMq which we denote by PpT ˚M ;x, yq.

Remark 32. In the case of general symplectic manifold X (not necessary
cotangent bundle) we consider Lagrangian submanifolds L1, L2 of X (see
???) and the set of path γ in X such that γp0q P L1, γpT q P L2.

Definition 33. Let H be a smooth function on Rˆ T ˚M we define action
functional AH by the next formula.

AHpγq “

ż T

0
γ˚θ ´

ż T

0
Hpt, γptqqdt. (28)

Theorem 34. The following two conditions are equivalent.

(1) For any one parameter family γs of elements of PpT ˚M ;x, yq with
γ0 “ γ we have

B

Bs
AHpγsq|s“0 “ 0.

(2)
$

’

’

&

’

’

%

dqi

dt
“
BHt

Bpi
dpi
dt
“ ´

BHt

Bqi

(29)

Note that (13) is a special case of (29) where H is t-independent.

Proof. We write γsptq “ pq
1ps, tq, . . . , pnps, tqq. Then

d

ds

ż T

0
γ˚s θ|s“0 “

ż T

0

Bpi
Bs

Bqi

Bt
dt`

ż T

0
pi
B2qi

BtBs
dt

“

ż T

0

Bpi
Bs

Bqi

Bt
dt´

ż T

0

Bpi
Bt

Bqi

Bs
dt

Here we use Bqi

Bs ptq “ 0 for t “ 0, T to use integration by parts. On the other
hand,

d

ds

ż T

0
Hpt, γsptqqdt|s“0 “

ż T

0

BH

Bpi

Bpi
Bs
dt`

ż T

0

BH

Bqi
Bqi

Bs
dt

Theorem follows from these calculations immediately. Namely d
ds

şT
0 γ

˚
s θ|s“0 “

d
ds

şT
0 Hpt, γsptqqdt|s“0 for all γs if and only if (29) holds. �

However it is difficult to use this variational principle to show an existence
of a solution of Hamilton equation. For example:
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Excercise 35. Prove that AH never has local minimum unless M is a point.

On the other hand there are many cases where Lagrangian functional has
local minimum, such as the case of geodesic. Only after Floer’s invention
of Floer homology we can use AH to prove the existence of a solution of
Hamilton equation.

3. Example of Symplectic manifolds 2: Kähler manifolds.

3.1. Almost complex structure. The other type of important example
of symplectic manifolds are Kähler manifolds. It is a special type of complex
manifolds. We first review almost complex and complex manifolds.

Definition 36. Let X be a manifold. An almost complex structure of M
is a family of linear maps Jx : TxX Ñ TxX depending smoothly on x P X
such that:

(*) Jx ˝ Jx “ ´1.

An open subset of Cn has a canonical almost complex structure. In fact
TxpCqn is canonically isomorphic to Cn and we define Jxpvq “

?
´1v. We

call it the standard almost complex structure.
A diffeomorphism ϕ : X Ñ Y between almost complex manifold is said

to be isomorphism if Dxϕ ˝ Jx “ Jϕpxq ˝Dx for all x P X.
An almost complex structure of X induces one on an open submanifold

of X in an obvious way.
An almost complex manifold pX,Jq is said to be integrable if for each

x P X there exists its neighborhood Ux and an open set Vx of Cn such that
pUx, Jq is isomorphic to pVx, Jq. Here J on Vx is the standard one.

An almost complex manifold pX, Jq is said to be a complex manifold if J
is integrable.

If pX,Jq is an almost complex manifold and x P X then TxX has a unique
structure of complex vector space such that Jx “

?
´1.

A submanifold Y of almost complex manifold pX, Jq is said to be a com-
plex submanifold, if for each x P Y , the subspace JxTxY is in contained in
TxY . This is equivalent to the condition that JxTxY is a complex linear
subspace.

Lemma 37. A complex submanifold Y of an integrable almost complex man-
ifold pX, Jq is a complex manifold.

Proof. Since the problem is local we may assume X “ Cn. Let p P Y . By a
complex linear transformation we may assume TpY “ Cmˆt0u. By implicit
function theorem we may assume π : Y Ñ Cm py, zq ÞÑ y is a diffemorphism
(by replacing Y its open subset). Then Dxπ : TxY Ñ Cm is complex linear
for each x P X. Therefore J ˝Dϕ “ Dϕ ˝ J . �

Our concern in this book on almost complex structure is its relation to
symplectic structure.
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Definition 38. Let pX,ωq is a symplectic manifold. An almost complex
structure J of X is said to be compatible with ω if:

gpv, wq :“ ωpV, JpW qq (30)

is a Riemannian metric.

We elaborate on (30). We recall that g is a Riemannian metric if and
only if gpv, wq “ gpw, vq, gpv, vq ě 0 and gpv, vq “ 0 implies v “ 0.

Lemma 39. (30) is a Riemannian metric if and only if the following two
conditions are satisfied.

(1) ωpJV, JW q “ ωpV,W q.
(2) ωpV, JV q ě 0. ωpV, JV q “ 0 if and only if V “ 0.

Proof. Define g by (30). Then gpv, wq “ ωpv, Jwq. gpw, vq “ ωpw, Jvq “
´ωpJv,wq. We write Jw “ w1. Then gpv, wq “ gpw, vq is ωpv, w1q “
ωpJv, Jw1q. (Here we use JJ “ ´1). Thus (1) is equivalent to gpv, wq “
gpw, vq. It is easy to see that ‘gpv, vq ě 0 and gpv, vq “ 0 implies v “ 0’ is
equivalent to p2q. �

Remark 40. There is a slightly weaker notion that an almost complex
structure is tamed by a symplectic structure ω, that is, gpv, wq : ωpv, Jwq `
ωpw, Jvq is a Riemannian metric. We do not discuss it here.

The next lemma is sometimes useful.

Lemma 41. Let pX,ωq is a symplectic manifold and J is a compatible
almost complex structure. Let Y be a complex submanifold of pX, Jq. The
ω|Y is a symplectic structure of Y .

Proof. Put ωY “ ω|Y . dωY “ 0 is obvious. Note that for v ‰ 0, v P TxY we
have

ωY pv, Jvq ‰ 0.

This implies that ωY at x is non-degenerate. Therefore ωnY never vanish by
Excercise 2. �

Solution of Excersice 2
Let Ω : V b V Ñ R be an anti-symmetric bi-linear form. We prove the

next lemma.

Lemma 42. Let e P V such that v ÞÑ Ωpe, vq is non-zero. Then there exists
f P V and V K such that

pV,Ωq “ pRe‘ Rf ,Ω0q ‘ pV
K,Ω|V Kq.

Here Ω0pe, fq “ 1 and two summands are orthogonal.

Proof. We can find f with Ωpe, fq “ 1 easily. We put

V K “ tv P V | Ωpe, vq “ Ωpf , vq “ 0u.

Since V Ñ R2, v ÞÑ pΩpe, vq,Ωpf , vqq is surjective, dimV K “ dimV ´2. The
lemma follows. �
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By the lemma we can find ei, fi i “ 1, . . . ,m by induction such that

V “
m
à

i“1

pRei ‘ Rfi,Ω0q ‘ V0.

Here Ω0 is as above and Ω is zero on V0.
Now we consider the case Ω “ ωx. It is obvious that Ω is non-degenerate

if and only if V0 is 0.
On the other hand, we may write

ωx “ e1 ^ f1 ` ¨ ¨ ¨ ` em ^ fm

where ei, f i are dual basis to ei, fi.
Therefore pωxq

n ‰ 0 if and only if m “ n. Here 2n “ dimV .

3.2. Kähler manifold.

Definition 43. We say pX,ω, Jq is a Kähler manifold if:

(1) ω is a symplectic structure.
(2) J is an almost complex structure which is compatible with ω.
(3) J is integrable. (In other words pX,Jq is a complex manifold.)

Lemmas 37 and 41 imply:

Lemma 44. Complex submanifold of a Kähler manifold is Kähler.

In the next subsection we show that a complex projective space CPn
has a canonical Kähler structure. Therefore its complex submanifold is
also Kähler. It is a classical theorem of Chow, that a complex submanifold
of CPn is an algebraic variety. A smooth algebraic variety is said to be
projective if it is a complex submanifold of CPn. So a smooth complex
algebraic variety is a Kähler.

3.3. Projective space. We consider C1`n the n` 1 dimensional complex
vector space.

Definition 45. CPn is the set of all one dimensional complex linear spaces
of C1`n.

We recall that CPn is a complex manifold. Let πi : CPn Ñ C be the
projection to i-th factor. (i “ 0, . . . , n.) We put:

Ui “ tL P CPn | πipLq ‰ 0u.

If L P Ui then there exists unique ~z P L such that zi “ 1. Therefore Ui is
identified with Cn by

φi : pw1, . . . , wnq ÞÑ pw1, . . . , wi´1, 1, wi, . . . , wnq.

Excercise 46. Show φj ˝ φ
´1
i is a diffeomorphism between open subsets.

Suppose L P Ui, we define a complex structure of TLCPn such that
Dpφiq´1pLqφi : Tpφiq´1pLqCn Ñ TLCPn is complex linear. Show that this
complex structure of TLCPn is independent of i.
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We next define a symplectic (Kähler) structure on CPn. The construction
below is a special case of the construction of symplectic quotient, which we
will discuss systematically later.

We consider the standard symplectic form ω on Cn`1 where

ω “
ÿ

dxi ^ dyi,

(zi “ xi `
?
´1yi.)

S2n`1 “ t~z P Cn`1 | }~z} “ 1u.

and the map
Π : S2n`1 Ñ CPn

where Πp~zq :“ C~z.

Lemma 47. There exists a unique differential form ω on CPn such that

Π˚ω “ ω|S2n`1 .

Proof. Let ~z P S2n`1. T~zS
2n`1 X JT~zS

2n`1 is 2n dimensional. In fact

T~zS
2n`1 “ pT~zS

2n`1 X JT~zS
2n`1q ‘ R~z.

Note Cn`1 is Kähler. For W P T~zS
2n`1 “ pT~zS

2n`1 X JT~zS
2n`1q JW P

T~zS
2n`1 “ pT~zS

2n`1 X JT~zS
2n`1q so JW is perpendicular to ~z. Therefore

ωp~z,W q “ ´gp~z, JW q “ 0. (31)

Put L “ Πp~zq. By (31) there exists ωL P Λ2
LCPn such that

ω|T~zS2n`1 “ DΠ ˝ ωL.

We claim that such ωL is independent of ~z such that L “ Πp~zq. To see this
we consider the S1 “ tα P C | |α| “ 1u action on S2n`1 given by

α ¨ pz0, . . . , znq “ pαz0, . . . , αznq.

Then the independence of ωL of ~z is a consequence of the next two facts.

(1) α˚ω “ ω. Here α : S2n`1 Ñ S2n`1 is defined as above.
(2) If Πp~zq “ Πp~wq then there exists α P S1 such that ~w “ α ¨ ~z.

�

Lemma 48. dω “ 0.

Proof. Π˚dω “ dΠ˚ω “ dωS2n`1 “ 0 since dω “ 0. Since D~zΠ : T~zS
2n`1 Ñ

TΠp~zqCPn is surjective the lemma follows. �

Lemma 49. ω is a symplectic form.

Proof. It suffices to show that ω is non-degenerate on TLCPn. This follows
from the fact that

D~zΠ : T~zS
2n`1 X JT~zS

2n`1 Ñ TΠp~zqCPn (32)

is an isomorphism and that ω is non-degenerate on T~zS
2n`1XJT~zS

2n`1. �

Lemma 50. Lemma 39 (1)(2)(3) holds for ω.
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Proof. They hold for ω on Cn`1. Therefore they hold for ω on T~zS
2n`1 X

JT~zS
2n`1. Therefore the lemma follows from the fact that (32) is an iso-

morphism (of complex vector spaces). �

We thus proved:

Theorem 51. CPn is Kähler.

The symplectic form ω is called the Fubini-Study form. Let us calculate
it explicitly by a coordinate.

We define

fpz1, . . . , znq “
a

1` |z1|
2 ` ¨ ¨ ¨ ` |zn|2.

Put

ϕ0pz1, . . . , znq “
1

fpz1, . . . , znq
p1, z1, . . . , znq P S

n`1.

Π ˝ ϕ0 is an isomorphism Cn Ñ U0. Actually it coincides with φ0. By
definition

pΠ ˝ ϕ0q
˚ω “ φ˚0ω.

We will calculate the left hand side.
Let pw0, . . . , wnq be the standard coordinate of Cn`1 and wi “ Xi `?
´1Yi. ω “

ř

dXi ^ dY i. Note

Xi “ Rezi{f, Yi “ Imzi{f,

for i ‰ 0 and

X0 “ 1{f, Y0 “ 0.

We put zi “ xi `
?
´1yi. Then

ω “
n
ÿ

i“1

dXi ^ dYi

“
1

f2

ÿ

i

dxi ^ dyi ´
1

f4

ÿ

i

pxidxi ^ df ´ yidyi ^ dfq

(We use df ^ df “ 0 here.) Since

df “
1

f

ÿ

pxidxi ` yidyiq

we have

ω “
1

f2

ÿ

i

dxi ^ dyi ´
2

f4

ÿ

i,j

xiyjdxi ^ dyj . (33)

We can calculate pΠ ˝ ϕiq
˚ω in the same way, by renaming the variables.

Excercise 52. Show (33) is a symplectic form by a direct calculation. Show
also that it is a Kähler form with respect to the standard complex structure
by a direct calculation. Show (33) together its analogue on Ui define a global
2 form by a direct calculation.
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3.4. Space of compatible almost complex structures. Let pX,ωq be
a symplectic manifold. We consider

J pX,ωq “ tJ | J is an almost complex structure compatible with ωu.

Theorem 53. J pX,ωq is weakly contractible.

We recall:

Definition 54. A space X is said to be weakly contractible, if all the maps
Sn Ñ X extends to Dn`1 Ñ X. Where Sm “ BDn`1.

Remark 55. In fact we need to specify the topology of J pX,ωq. Most of
the natural topology works. For example we can take the topology of C8

convergence.

Theorem 53 is a consequence of a standard fact on linear algebra and a
general statement on fiber bundles. We first discuss the former.

We consider 2n-dimensional vector space R2n together with its standard
symplectic form Ω. Let J be the set of all linear map J : R2n Ñ R2n such
that J2 “ ´1 and that J satisfies Lemma 39 (1)(2) with ω replaced by Ω.
We prove:

Proposition 56. J is contractible.

For the proof, we need a few things about Lagrangian Grassmannian. We
define

LAGpR2n; Ωq “ tL Ă R2n | n-dimensional linear subspace, Ω|L “ 0u.

An element of LAGpR2n; Ωq is said to be a Lagrangian linear subspace of
pR2n; Ωq.

We take L0 Ă R2n such that Ω|L0 “ 0. More explicitely xi, yi pi “
1, . . . , nq is a basis of R2n such that Ω “

ř

dxi^dyi and y1, . . . , yn is a basis
of L0.

Lemma 57. The set

LAGpR2n; Ω;L0qtL P LAGpR2n; Ωq | LX L0 “ t0uu.

is contractible.

We prove the lemma later. Let J P J . We put:

πpJq “ JpL0q.

We remark that for v P L0, v ‰ 0, Ωpv, Jpvqq ‰ 0. Therefore Jpvq R L0.
(In fact Ω “ 0 on L0.) Therefore πpJq P LAGpR2n; Ω;L0q. (We also use the
fact that Ω is J invariant. It implies that JpL0q P LAGpR2n; Ωq.

Lemma 58. π : J Ñ LAGpR2n; Ω;L0q is a fiber bundle.

We prove Lemma 58 in Subsection 3.5. (We define the notion of fiber
bundle also in Subsection 3.5.)

Lemma 59. The fiber π´1pLq is contractible.
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Lemma 60. If π : E Ñ B is a fiber bundle such that B and π´1ppq are
contractible. (p P B.) Then E is contractible.

We prove Lemma 60 in Subsection 3.5. Proposition 56 follows from Lem-
mas 57-60. �

Proof of Lemma 57. We observe that R2n can be identified with the cotan-
gent bundle T ˚Rn. In fact if x1, . . . , xn are coordinate of Rn then by defining
yi by v “

ř

yidxi (for tangent vector v), x1, . . . , xn, y1, . . . , yn. The sym-
plectic form

ř

dxi ^ dyi is minus of the symplectic form we used in the last
section.

A digression: We generalize the situation a bit more since we use those
cases later. Let T ˚M be a cotangent bundle and L Ă T ˚M be an n “ dimM
dimensional submanifold. We assume for each x two submanifolds T ˚xM and
L intersection transversally at one point. Then there exists upxq P T ˚xM such
that upxq P L. x ÞÑ upxq becomes a diffeomorphism I : M Ñ L. x ÞÑ upxq
may be regarded as a differential 1 form.

Lemma 61. I˚θ “ u.

Proof. Immediate from the definition. �

In particular ω|L “ 0 is equivalent to du “ 0.

We go back to the proof of Lemma 57. We are given L Ă T ˚Rn. It is
a linear subspace and L X T ˚0 Rn “ 0. (Note that T ˚0 Rn “ L0.) It implies
LXT ˚xRn “ 0 for any x easily. Therefore there exists a closed one form u on
Rn such that L “ tupxq | u P Rnu. Put upxq “ px, ypxqq where ypxq P Rn.
Since L is a linear subspace, the map y is linear. Since u is closed on Rn it
is exact. There exists fRn Ñ R such that u “ df . We may require fp0q “ 0.
Then f is unique. Since u is linear f is quadratic, that is,

fpxq “
ÿ

aijxixj

aij “ aji.
When a quadratic function f is given we put u “ df and L “ tupxq | u P

Rnu. Then L P LAGpR2n; Ω;L0q.
Thus LAGpR2n; Ω;L0q is diffeomorphic to the space of all quadratic func-

tions, which is contractible. In fact it is diffeomorphic to Rnpn`1q{2 �

Proof of Lemma 59. We define I : L Ñ L˚0 by Ipvqpwq “ Ωpw, vq. Since Ω
is non-degenerate, L0|Ω0 “ 0, LX L0 “ 0, and dimL0 “ n the map I is an
isomorphism.

Let J P J , J P π´1pLq. We define a inner product hJ on L0 by

hJpv, wq “ Ωpv, Jwq. (34)

We can show hJpw, vq “ hJpv, wq in the same way as the proof of Lemma
39. Moreover hJ is strictly positive definite. (This is the consequence of the
compatibility of J with ω.)
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We claim that if hJ1 “ hJ2 then J1 “ J2. In fact if hJ1 “ hJ2 then
IpJ1wq “ IpJ2wq for any w P L0. Therefore, since I is an isomorphism,
J1 “ J2.

On the other hand, if h is a strictly positive definite inner product on L
there exists unique map J0 : L0 Ñ L such that (34) holds with hJ replaced by
h and J replaced by J0. Since h is non-degenrate J0 is an isomorphism. Note
that R2n “ L0‘L. We define J : R2n Ñ R2n by pa, bq ÞÑ p´J´1

0 pbq, J0paqq. It
is easy to see that J2 “ ´1 and (34) holds with hJ replaced by h. Moreover
J P J , J P π´1pLq.

Thus π´1pLq is diffeomorphic to the set of all positive definite inner prod-
uct on L0. It is easy to see that the latter is contractible. �

Proof of Theorem 53. We consider the set

J pXq “ tpx, Jxq | x P X, Jx P J pTxX,ωxqu. (35)

Here J pTxX,ωxq is the space J above when we replace Cn, Ω by TxX, ωx.

Lemma 62. π : J pXq Ñ X which sends px, Jxq to x is a fiber bundle.

This is actually easy. See Subsection 3.5.
Then Theorem 53 is a consequence of Proposition 56, Lemma 62 and the

next proposition.

Proposition 63. Let π : M Ñ N be a fiber bundle whose fiber F is con-
tractible, then

S “ ts : N ÑM | π ˝ s “ idu

is contractible.

We prove Proposition 63 in Subsection 3.5. The proof of Theorem 53 is
complete modulo the points we show in Subsection 3.5. �

Proof of Proposition 56. �

3.5. A quick review of fiber bundle.

Definition 64. Let π : M Ñ N be a C8 map between C8 manifolds. We
say it is a fiber bundle with fiber F (a smooth manifold) if the following
holds.

For each x P N there exists its neighborhood Ux and a diffeomorphism
ϕx : π´1pUxq Ñ Ux ˆ F such that

πUx ˝ ϕx “ π.

Here πF : Ux ˆ F Ñ Ux is the projection.

Proof of Lemma 58. Let L,L1 P LAGpR2n; Ω;L0q. We have isomorphism
IL : LÑ L˚0 by ILpvqpwq “ Ωpw, vq. We also have IL1 : L1 Ñ L˚0 .

We define I 1L1 : as the composition

I 1L1 “ IL ˝ I
´1
L1 : L1 Ñ L.
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By definition

ωpw, I 1L1pvqq “ ωpw, vq (36)

for w P L0, v P L1.
We remark that

L‘ L0 – R2n – L1 ‘ L0.

We define ϕ1L : R2n Ñ R2n by

ϕ1Lpx` yq “ pI
1
L1pvq ` yq

where x P L1, y P L0. (36) and Ωpx1, x2q “ Ωpx11, x
1
2q “ Ωpy1, y2q “ 0 for

x1, x2 P L, x12, x
1
2 P L

1, y1, y2 P L0 implies

pϕ1Lq
˚Ω “ Ω.

Now we define

ϕpJq Ñ pϕJpLq, ϕ
1
L ˝ J ˝ pϕ

1
Lq
´1q.

It defines a diffeomorphism

J Ñ LAGpR2n; Ω;L0q ˆ π
´1pL0q.

�

The poof of Lemma 57 is actually over, since we obtained a global iso-
morphism. Lemma 60 is also true. We mention it a bit.

Let π : M Ñ N be a fiber bundle. f : N 1 Ñ N a smooth map. We put

f˚M “ tpx, yq PM ˆN 1 | πpxq “ fpyqu.

Lemma 65. f˚M is a smooth manifold. f˚M Ñ N , px, yq ÞÑ y defines a
fiber bundle.

Proof. Let y10 P N
1. Put y0 “ fpy0q. There exists a neighborhood Uy0 such

that ϕ : π´1Uy0 – F ˆ Uy0 and the diffeomorphism preserves projections.
Put U 1y10

“ f´1py0q. We can define diffeomorphism π1´1pU 1y10
q – F ˆ U 1y10

by

px, y1q ÞÑ pπF pϕpxqq, y
1q. �

We call pf˚M,N 1, π1q the pull back bundle.
Important fact in the theory of fiber bundle is the following.

Theorem 66. Let F “ pπ : M Ñ Nq be a fiber bundle and fi : N 1 Ñ N a
smooth map. Suppose f1 is homotopic to f2. Then f1 ˚ F – f˚2 F.

Here two fiber bundles Fi “ pMi, N, πiq are isomorphic if there exists
diffeomorphism g : M1 ÑM2 such that π2 ˝ g “ π1.

We postpone the proof of Theorem 66.

Proof of Lemma 60. We observe id : B Ñ B is homotopic to the constant
map. The pull back of M Ñ B by id is original fiber bundle. On the other
hand the pull back by constant map is the direct product. �

To prove Theorem 53 it suffices to prove the next proposition.
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Proposition 67. Let M Ñ N be a fiber bundle such that its fiber is con-
tractible. Then the space of its sections are weakly contractible.

Proof. It suffices to prove it in the case when N is a simplicial complex. By
Lemma 60 M “ N ˆF with F being contractible. The space of the sections
is identified with MappN,F q Let BDn Ñ MappN,F q be a map. It induces
f : BDn ˆ N Ñ F . Since F is contractible standard algebraic topology
implies that it extends to Dn ˆN Ñ F . �

3.6. An example of symplectic manifold which is not Kähler.

4. Daroux’s and Moser’s Theorems.

4.1. Moser’s Theorem. Let X be a compact manifold without boundary
and ωt a t P p´1.1q parametrized family of symplectic structures on X.

Theorem 68. If the de-Rham cohomlology class rωts is independent of t,
there exists a t parametrized family of diffeomorphisms ϕt : M Ñ M such
that ϕ˚t ω0 “ ωt.

Example 69. We consider t parametrized family of complex submanifolds

Xt :“ trx0, . . . , x5s P CP 5 |

5
ÿ

i“0

x5
i ` tx0x1x2x3x4x5 “ 0u.

Xt is a smooth complex submanifold of CP 5 for t ‰ 0. Therefore Xt is
Kähler. Theorem 68 implies that Xt is symplectomorphic to Xt1 for t, t1 ‰ 0.

One may say that a ‘constant’ family of symplectic manifolds Xt suddenly
becomes singular at t “ 0.

Note that the particular form of the equation
ř5
i“0 x

5
i`tx0x1x2x3x4x5 “ 0

is not important. Suppose we have t parametrized family of homogeneous
polynomials Ptpx0, . . . , xnq such that the zero of Pt is non-singular except
finitely many t’s. (This is the case of ‘generic’ family.) Then the symplectic
structure of the hypersurface of CPn obtained as zero set of Pt is independent
of the generic t.

The complex structure does depend on t.

The technically most non-trivial part of the proof of Theorem 68 is the
next proposition.

Proposition 70. Let ut be a t P P parametrized family of differential k-
forms on X. We assume dut “ 0 and ruts “ 0 in de Rham cohomology.
Then there exists a family of k ´ 1 forms vt depending smoothly on t such
that dvt “ ut.

Maybe a shortest proof is using harmonic analysis but it is not so much
elementary. We provide an elementary proof (using a proof of de Rham
theorem) later.
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Proof of Theorem 68. Put

αt “
dωt
dt
.

αt is a family of closed 2 forms representing 0 in de-Rham cohomology.
Therefore there exists a family of 1-forms βt such that

dβt “ αt.

We will find ϕt : X Ñ X such that

ϕ˚t ω0 “ ωt. (37)

We can find a t parametrized family of vector fields Vt such that

ϕt “ exptV˚ .

Differentiating (37) we have

LVtωt “ dβt.

Now we define Vt by the formula

iVtωt “ βt.

By Cartan’s formula

LVtωt “ dβt.

By doing calculation in the opposite direction, it implies ϕt “ exptV˚ satisfies
ϕ˚t ω0 “ ωt. �

Example 71. We consider Xε “ trx : y : zs P CP 2 | zx2 ` y3 ` εz3 “ 0u.
The intersection of Xt with C2 (“ trx : y : zs | z ‰ 0u) is the solution
set of x2 ` y3 ` ε “ 0. It is singular when ε “ 0. For ε ‰ 0, Xε is a
non-singular 2 manifold. It is actually a T 2 (elliplic curve). We consider
one parameter family εt “ expp2π

?
´1tq. By Theorem 68 there exists a

one parameter family of symplectic diffeomorphisms ϕt : Xε0 Ñ Xεt . Note
εt “ ε0 “ 1. Therefore ϕ1 : X1 Ñ X1 is a symplectic diffeomorphism. This
diffeomorphism cannot be an identity map. We can show in homology it
becomes pa, bq ÞÑ pa, b ` aq. We can use this fact to show that such ϕ1

cannot be biholomorphic. (On the other hand, as we discussed above, it is
realized as a symplectic diffeomorphism.)

4.2. Family version of de Rham’s theorem. In this subsection we prove
Proposition 70. We first review Čeck cohomology and proof of de Rham
theorem using it. Let F be one of, Λk (k “ 0, 1, 2, . . . ) or R. For U an open
set of an manifolds FpUq is the set of k forms on U if F “ Λk, the set of
real valued locally constant functions on U if F “ R. (In the latter case
RpUq “ R when U is connected.)

Let U “ tUi | i P Iu be an open covering of X where the index set I is a

finite set. For ~i “ pi0, . . . , ikq P I
k`1, we put U~i “

Ş

j Uij . and

CkpF;Uq “
à

~iPIk`1

FpU~iq.
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Its element is written as pxi0,...,ikq. We define

δ : CkpF;Uq Ñ Ck`1pF;Uq
by pxi0,...,ikq ÞÑ pyi0,...,ik`1

q, where

yi0,...,ik`1
“

ÿ

j

p´1qji˚x
i0,...,

v
ik,...,ik

Here i˚ : FpU
i0,...,

v
ik,...,ik

q Ñ FpUi0,...,ikq is the restriction map.

It is easy to check δ ˝ δ “ 0.
We define

v
H
k

pX;F;Uq “ Kerδ : CkpF;Uq Ñ Ck`1pF;Uq
Imδ : Ck´1pF;Uq Ñ CkpF;Uq

the Čeck cohomology group of F with respect to the covering U .

Lemma 72. If F “ Λ` then

v
H
k

pX; Λ`;Uq “ 0 (38)

for ` ą 0 and
v
H

0

pX; Λ`;Uq “ Λ`pXq (39)

the space of of differential ` forms on X.

Proof. Let χi : Ui Ñ r0, 1s be the partition of unity associated to U . We
extend it to all X by putting χi “ 0 outside Ui. We define

∆ : Ck`1pF;Uq Ñ CkpF;Uq
by pyi0,...,ik`1

q ÞÑ xi0,...,ik such that

xi0,...,ik “
ÿ

iPI

k`1
ÿ

j“0

p´1qjχiyi0,...,ij´1,i,ij`1,...,ik`1

By a direct calculation we can easily check

∆ ˝ δ ` δ ˝∆ “ id.

Let k ą 0 and δu “ 0 with u P CkpF;Uq. Then u “ δ∆u. Thus (38) holds.

Note that
v
H

0

pX; Λ`;Uq “ Kerδ : C0pΛ`;Uq Ñ C1pΛ`;Uq. Suppose pxiq
is in the kernel. xi is a differential ` form on Ui. δpxiq “ 0 implies that
xi “ xj on Ui X Uj . Therefore they determine a differential ` form on X.
On the contrary a differential ` form x on X determine an element pxiq is
in the kernel by xi “ x|Ui . Thus (39) holds. �

Definition 73. An open covering U of a manifold X is called a simple cover
if U~i is either empty or is diffeomorphic to Rn.

Lemma 74. Simple cover exists for any manifolds.

We omit the proof. See ???.
We also use the next proposition.
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Proposition 75. (parametrized version of Poincaré’s lemma.) Let αt be a t
parametrized family of differential k forms on Rn such that dαt “ 0. Assume
k ą 0. Then there exists a t-parametrized family of differential k ´ 1 forms
βt on Rn such that dβt “ αt.

We will prove it in Subsection 4.5.
We take and fix a simple cover U . We define

Ck,` “ CkpΛ`;Uq.
We have defined the operator:

δ : Ck,` Ñ Ck`1,`.

We next define
d : Ck,` Ñ Ck,``1.

An element of Ck,` is pxi0,...,xik q where xi0,...,xik is a differential ` form on
Ui0,...,ik . We define

dpxi0,...,xik q “ pdxi0,...,xik q.

We have
d ˝ d “ δ ˝ δ “ 0, d ˝ δ “ δ ˝ d.

Lemma 72 implies:

Kerδ : Ck,` Ñ Ck`1,` “ Imδ : Ck´1,` Ñ Ck,`

for k ě 1. Moreover
Kerδ : C0,` Ñ C1,` “ Λ`

the set of differential ` forms.
Proposition 75 implies:

Kerd : Ck,` Ñ Ck,``1 “ Imd : Ck,`´1 Ñ Ck,`

for ` ě 1. Moreover

Kerδ : Ck,0 Ñ Ck,1 “ CkpR;Uq.
Thus we have the next commutative diagram. The vertical and horizontal
lines are exact except ´1-th ones.

We first review how we prove de Rham’s theorem using this diagram.
(This proof is due to A. Weil.) We consider the case of degree 2 form which
is the case we used. Let α be a differential 2 form with dα “ 0. The we
obtain α20 P C20 such that dα20 “ 0. Therefore we have α10 P C10 such that
dα10 “ α20. We obtain α11 P C11 by α11 “ δα10. dα11 “ δdα10 “ δα20 “ 0.
Therefore we have α01 P C01 with dα01 “ α11. We put α02 “ δα01. Then
dα02 “ 0. Therefore it comes from β P C2pR,Uq. We can show δβ “ 0.
Thus rαs ÞÑ rβs H2

dRpXq Ñ H2pX;R;Uq. We can check that this map is
independent of the choices we made. For example we may replace α10 by
α10 ` dx. Then α01 changes to α10 ` δx. Therefore α02 “ δα10 does not
change.

If we change α01 to α01 ` y where y P C2pX;R;Uq then β changes to
β ` δy.
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Figure 1. double complex.

Thus in a similar way we can show rαs ÞÑ rβs, H2
dRpXq Ñ H2pX;R;Uq is

well defined.
We can change the role of k and ` and repeat the same argument to show

that it is an isomorphism.

Proof of Proposition 70. Let αt be a t parametrized family of 2 forms with
dαt “ 0. We obtain α20

t etc. in a similar way as above and then βt P
C2pX;R;Uq. (We use Lemma 76 below here.) Note δβt “ 0. Moreover we
assume that rαts “ 0 in de Rham cohomology. Then rβts P H

2pX;R;Uq.
Using the fact CkpX;R;Uq is finite dimensional, it is easy to find γt P
C1pX;R;Uq depending smoothly on t such that δγt “ βt. Then δpα11

t ´γq “
0. Therefore there exists γ00

t P C00 such that δpγ00
t q “ α11

t ´ γt. Then
δpα10

t ´ dγ
00
t q “ 0. Therefore there exists θt P Λ1 such that θt “ α10

t ´ dγ
00
t

in C10. Now it is easy to see dθt “ αt. �

Lemma 76. Let pCk, δq be a finite dimensional chain complex over R. If
xt P C

k is a t parametrized family such that xt P Imδ then there exists yt t
parametrized family such that xt “ δyt.
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Figure 2. diagram chase.

Proof. Impδ : Ck´1 Ñ Ckq is a finite dimensional subspace there exists
∆ : Impδ : Ck´1 Ñ Ckq Ñ Ck´1 such that δ ˝∆ “ id. yt “ ∆pxtq has the
required property. �

4.3. The group of symplectic diffeomorphisms. We continue discus-
sion on group of symplectic diffeomorphisms. We first explain that the group
of Hamiltonian diffeomorphisms coincides with AutpX,ωq modulo finite di-
mension.

Let v be a differential one form on X. We assume dv “ 0. By non-
degeneracy of ω there exists unique vector field Hv such that

iXvω “ v.

By the same calculation as the proof of Lemma 15 we can show

LXvω “ dv “ 0.

Suppose pX,ωq is compact symplectic manifold.

Lemma 77. If ϕ : X Ñ X is a diffeomorphism with ϕ˚ω “ ω. Suppose ϕ
is sufficiently close to the identity map, then there exists a t parametrized
family of differential one forms vt with dvt “ 0 such that

ϕ “ exp1
tXvtu

.

We postpone its proof to later.
Morally speaking Lemma 77 implies that the Lie algebra of AutpX,ωq is

the set of closed 1-forms. We consider the next exact sequence:

0 Ñ RÑ tdf | f P C8pXqu Ñ tu P Ω1pXq | du “ 0u Ñ H1pX;Rq Ñ 0.

This is linearization of the following exact sequence of groups:

1 Ñ ĆHampX,ωq Ñ ĄAut0pX,ωq Ñ H1pX;Rq Ñ 0, (40)
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where ĄAut0pX,ωq is the connected component of the universal covering space
of AutpX,ωq and

ĆHampX,ωq “ trϕts P ĄAut0pX,ωq | ϕ
1 P HampX,ωqu

where HampX,ωq is the group of Hamiltonian diffeomorphisms. The Lie

algebra of ĆHampX,ωq is tdf | f P C8pXqu.)

The homomorphism ĄAut0pX,ωq Ñ H1pX;Rq appearing in (40) is call the
flux homomorphism and is defined as follows.

Definition 78. Let ϕ P ĄAut0pX,ωq we choose a path ϕt such that ϕ0 is the
identity map and ϕ “ ϕ1. (By an abuse of notation we write an element of
ĄAut0pX,ωq and its image in Aut0pX,ωq by the same symbol.) There exists
a closed one form vt such that

ϕt “ exp1
Xvt

. (41)

(Again by Cartan’s formula.) We define

Fluxpϕq “

ż 1

0
rvts P H

1pX;Rq.

Lemma 79. Fluxpϕq depends only on ϕ P ĄAut0pX,ωq.

Proof. Let γ : S1 Ñ X be a loop. We define u : r0, 1s ˆ S1 Ñ X by

upt, sq “ ϕtpγpsqq.

We claim:

p

ż 1

0
rvtsq X rγs “

ż

r0,1sˆS1

u˚ω P R. (42)

We observe that the claim implies (42) implies the lemma. In fact if ϕ1t is
another path then u changes to u1 such that u1 is homotopic to u relative to
the boundary Br0, 1sˆS1. Therefore by the right hand side does not change
(since ω is closed.)

We will prove (42) in the rest of the proof. We put

fptq “ p

ż t

0
rvtsq X rγs, gptq “

ż

r0,tsˆS1

u˚ω.

It is easy to see
df

dt
“ rvts X rγs.

On the other hand,
df

dt
“ lim

εÑ0

1

ε

ż

rt,t`εsˆS1

u˚ω.

Note that Dup B
Btq “ Xvt . Therefore

u˚ω “ ωpXvt , B{Bsqdt^ ds “ piXvt
ωqpB{Bsqdt^ ds “ vtpB{Bsqdt^ ds.
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Therefore

lim
εÑ0

1

ε

ż

rt,t`εsˆS1

u˚ω “

ż

S1

vtpB{Bsqds “ rvts X rϕ
tγs “ rvts X rγs,

as required. �

Lemma 80. Flux is a group homomorphism. Namely

Fluxpψ ˝ ϕq “ Fluxpϕq ` Fluxpψq.

Proof. Let ϕt, ψt represent ϕ and ψ, respectively. Then we consider the
family parametrized by t P r0, 2s and defined by

φt “

#

ϕt when t ď 1

ψt´1 ˝ ϕ1 when t ě 1,

which represents ψ ˝ ϕ. (This is the definition of the covering group.) The
lemma follows from (42) and the fact that ϕ1 is homotopic to the identity
through the diffeomorphisms preserving symplectic form. �

Proposition 81. The sequence (40) is exact.

Proof. We first show the surjectivity of the Flux homomorphism ĄAut0pX,ωq Ñ
H1pX;Rq. Let v be a closed one form representing an element of H1pX;Rq.
Then, for ϕ1

Xv
(Here Xv is a t-independent vector field), Fluxpϕ1q “ rvs is

immediate from definition.
The fact the composition ĆHampX,ωq Ñ ĄAut0pX,ωq Ñ H1pX;Rq is also

obvious from definition.
The most important step is to show that if ϕt is an element of ĄAut0pX,ωq

such that its Flux is 0 then it is equivalent to an element of the image

of ĆHampX,ωq. We prove it now. Let rϕts P ĄAut0pX,ωq. We have a t
parametrized family of closed 1 forms vt such that

ϕt “ exptXv˚
.

Here iXvt
ω “ vt. We assume

ż 1

t“0
rvtsdt “ 0 P H1pX;Rq.

Therefore there exists a function f such that
ż 1

t“0
vt “ df.

We consider ψt “ expt´Xf
Note pψtq represents an element of ĆHampX,ωq.

The composition pψtq ˝ pϕtq is exptXv1˚

with
ş2
t“0 v

1
t “ 0. (Here v1t “ vt for

t P r0, 1s and v1t “ ´df for t P r1, 2s.) Thus it suffices to consider rϕts with

ϕt “ exptXv˚
and

ş1
t“0 vt “ 0. We will study this case below.

For s P r0, 1s we take ws “
ş1
s vtdt. We consider expxws ptq pt P r0, 1sq. (xws

is a t independent family of vector fields.). It gives an element ĄAut0pX,ωq
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which we define by ψs. On the other hand expv˚ptq pt P r0, ssq gives an

element of ĄAut0pX,ωq which we define by ϕs. Note

Fluxϕs “

ż s

0
rvtsdt “ ´

ż 1

s
rvtsdt “ ´Fluxψs

Therefore Fluxpψs ˝ ϕsq “ 0. It follows that

Xs :“
D

ds
ψs ˝ ϕs

satisfies LXs “ 0, riXsωs “ 0 P H2pX;Rq.
Moreover since w0 “ w1 “ 0 we have

ψ0 ˝ ϕ0 “ id, ψ1 ˝ ϕ1 “ ϕ1

Therefore there exists Hs such that Xs “ XHs . Thus rψs ˝ϕss P ĆHampX,ωq.

We thus proved exactness at ĄAut0pX,ωq. Using simply connected-ness of

H1pX;Rq we can then show ĆHampX,ωq Ñ ĄAut0pX,ωq is injective. �

Proposition 81 shows that ĆHampX,ωq is a closed subgroup of ĄAut0pX,ωq.

Theorem 82. (Ono) HampX,ωq is a closed subgroup of Aut0pX,ωq in C1

topology.

This is a deep theorem and its proof uses various modern technique in
symplectic geometry.

Conjecture 83. (C0-Flus conjecture) HampX,ωq is a closed subgroup of
Aut0pX,ωq in C0 topology.

In other words, if ϕi is a sequence of Hamiltonian diffeomorphisms which
converges to a symplectic diffeomorphism ϕ then ϕ is also a Hamiltonian
diffeomorphism.

The next famous result is older and it is discovered around the time when
the study of global symplectic geometry started.

Theorem 84. (Eliashberg) AutpX,ωq is closed in DiffpXq in C0 topology.

In other words if ϕi is a sequence of symplectic diffeomorphisms which
converges to a diffeomorphism ϕ then ϕ is also a symplectic diffeomorphism.

4.4. Darboux’s theorem. We next show the following:

Theorem 85. Let pX,ωq be a symplectic manifold and p P X. Then there
exists a diffeomorphism ϕ : D2n Ñ X onto an open subset such that ϕp0q “ p
and

ϕ˚ω “ c
n
ÿ

i“1

dxi ^ dyi

for some positive constant c. Here x1, . . . , xn, y1, . . . , yn is a standard coor-
dinate of D2n.
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Here D2n denotes the open ball of radius 1 in R2n. We first explain the
rough idea. We take a smooth map Φ : D2n Ñ X with Φp0q “ p. By
assumption Φ˚ω at 0 is a anti-symmetric bi-linear form ω0. We may change
a coordinate of D2n such that ω0 “

řn
i“1 dx

i ^ dyi at origin. (See solution
of Excersice 2 in Subsection 3.1.) Put ΦN px, yq “ Φpx{N, y{Nq then

}N2pΦN q˚ω ´
n
ÿ

i“1

dxi ^ dy}Ck ă C{N

We may choose N large such that

ωt “ tN2pΦN q˚ω ` p1´ tq
n
ÿ

i“1

dxi ^ dy

is non-degenerate on D2n for t P r0, 1s.
Since H2pD2n;Rq “ 0 the de Rham cohomology class of ωt is zero. So

if we could apply Theorem 68, then there exists ϕt : D2n Ñ D2n such that
ϕ˚t ωt “ ω0. It will imply Theorem 85.

However we assumed compactness of X in Theorem 68. In fact we need
to integrate the vector field Xvt appearing in the proof.

So we need to adapt the proof of Theorem 68 carefully so that it works
in our non-compact situation.

We use the following variant of Poincaré’s lemma for this purpose. A
domain D in Rn is said to be star-shaped if there exists p0 P D such that
the line segument p0p is in D for any p P D.

Proposition 86. (A variant of Poincaré’s lemma) Let D be a star-shapced
domain. If u is a differential k-form on D with du “ 0. Then there exists
k ´ 1 form v on D such that dv “ u. Moreover:

(1) If ut is t parameter family with dut “ 0 then we can take t parameter
family vt such that dvt “ ut.

(2) There exists Cpk,Dq depending only of k and D such that

}vt}Ck ď Cpk,Dq}ut}Ck .

We prove Proposition 86 in Subsection 4.5

Proof of Theorem 85. We use notations above. Note

}
d

dt
ωt}Ck ď Cpkq{N.

Therefore we have βt such dβt “
d
dtωt and

}βt}Ck ď C 1pkq{N

We take a vector field Xt on D2np2q such that

iXtω “ βt

and
}Xt}Ck ă C2{N. (43)

Now we claim
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Lemma 87. If N is large then for each p P D2n there exists γpptq such that
γp0q “ p,

d

dt
γp “ Vtpγptqq

and the length of γp is smaller than 1{2.

Using (43) we can prove the lemma in the same way as the standard
proof of the existence of the solution of ODE. The map p ÞÑ γpptq becomes a
smooth map D2n Ñ D2np2q which is a diffeomorphism to an open subspace.
We write it ϕt. Now by the same calculation as the proof of Theorem 68 we
can show pϕtq˚ω0 “ ωt and can complete the proof of Theorem 85. �

4.5. Poincaré’s lemma with estimate. We begin with the following:

Lemma 88. Let U Ă Rn be an open subset. There exists a map

I : Λkpr0, 1s ˆ Uq Ñ Λk´1pr0, 1s ˆ Uq

such that
pd ˝ I ` I ˝ dqu “ u´ π˚pu|t0uˆU q. (44)

Proof. We use t as the coordinate of r0, 1s. We write

u “ dt^ u1 ` u2

where u1, u2 does not contain dt. We put

Ipuqps, xq “

ż s

0
u1pt, xqdt.

We calculate

Ipduqps, xq “ Ip´dt^ dxu1 ` dxu2 ` dt^
Bu2

dt
qq

“ ´

ż s

0
dxu1pt, xqdt` u2ps, xq ´ u2p0, xq.

dpIuqps, xq “

ż s

0
dxu1pt, xqdt` dt^ u1ps, xq.

The lemma follows. �

We remark that, explicit formula of I implies that, if ut is t-parametrized
family then Iputq is also a t-parametrized family. Moreover I is Ck bounded.

Proof of Proposition 86. We put U “ D. We define H : r0, 1s Ñ D by
Hpt, pq “ p1´ tqp0` tp. Then we apply Lemma for H˚u. Note H˚u|t0uˆU “
0. Therefore using du “ 0.

dIpH˚uq “ H˚u.

Since Hp1, pq “ p we obtain dIpH˚uq|t1uˆD “ u. Thus v “ IpH˚uq|t1uˆD
has the required properties.

Item (1)(2) in Proposition 86 follows from the corresponding properties
of I which we remarked above. �
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4.6. Weinstein neighborhood theorem. We recall that

Definition 89. Let pX,ωq be a 2n-dimensional symplectic manifold.
An (embedded) Lagrangian submanimfold L is an n dimensional (embed-

ded) submanifold such that ω|L “ 0.

An immersed Lagrangian submanimfold is a pair L “ pL̃, iLq where L̃

is an n-dimensional manifold and iL : L̃ Ñ X is an immersion such that
i˚Lω “ 0.

We discuss Lagrangian submanifold systematically in Part ??. In the
case when X “ T ˚M is a cotangent bundle the fibers T ˚pM are Lagrangian
submanifold. Moreover for a closed 1 form u its graph tpp, uppqq P T ˚M |

p P Mu is a Lagrangian submanifold. In particular the zero section 0M :“
tpp, 0q P T ˚M | p PMu is a Lagrangian submanifold.

Theorem 90. Let L be an embedded Lagrangian submanifold of a symplectic
manifold pX,ωXq. Then there exists an open neighborhood UL of the zero
section 0L in the cotangent bundle T ˚L and an open embedding i : UL Ñ X
such that:

(1) i˚ωX “ ω. Here ωX is the symplectic form of X and ω in the right
hand side is the canonical symplectic form in Lemma 22.

(2) i|0L is the identity map.

Proof.

Lemma 91. Let iL : L Ñ X be the identity map and i0 : L Ñ T ˚L is the
identification with zero section. Then there exists an isomorphism of vector
bundle I : i˚LTX – i˚LTT

˚X such that:

(1) I preserves the symplectic forms.
(2) The restriction of I to i˚LTL is the identity map TLÑ T0L.

Proof. We can choose a rank n subbundle W of i˚LTL such that WpXTpL “
t0u for p P L and the symplectic form vanish on W .

Excercise 92. Prove it.

Using symplectic form there is a canonical isomorphism W – TL˚. We
consider the subbundle V Ă i˚LTT

˚X such that Vp “ TpT
˚
p L. (Here we

regard p P 0L and T ˚p L a submanifold of T ˚L.) Using symplectic structure
of T ˚L there is a canonical isomorphism W – V . Note i˚LTX “W‘TL and
i˚LTT

˚X “ V ‘ TL. Therefore the isomorphism W – V and the identity
map TL – TL induces a bundle isomorphism I : i˚LTX – i˚LTT

˚X. Using
the fact that the fibers of V , W are Lagrangians, TpL is also a Lagrangian,
and the construction of W – V it is easy to see I : i˚LTX – i˚LTT

˚X
preserves the symplectic form. �

Excercise 93. Show that there exists an open subset U 1L of the zero section
0L and an open embedding i1 : U 1L Ñ X such that:

(1) i1L is the identity map on L.
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(2) For p P L the derivative Dpi
1 is the isomorphism in Lemma 91.

We consider

ωt “ p1´ tqω ` tpi
1q˚ωX .

We may replace U 1p by a smaller neighborhood so that ωt is a symplectic
form for any t. Then the rest of the proof is mostly the same as the proof
of Moser’s theorem, except again the domain is not compact. We can go
around this trouble in the same way as the proof of Darboux’s theorem using
the next lemma.

Proposition 94. (A variant of De Rham’s theorem with estimage) Let M
be a (not necessary smooth). If ut is a t-parametrized family of differential
k-form on M with dut “ 0. Assume the de Rham cohomology classes of ut
are 0. Then there exists a t-parametrized family k ´ 1 form vt on M such
that dvt “ ut. Moreover there exists Cpk,Mq depending only of k and M
such that

}vt}Ck ď Cpk,Mq}ut}Ck . (45)

Proof. Except (45), this is Proposition 70. On one chart (45) is Proposition
86. We can use a similar argument to the proof of Proposition 70 (diagram
chase of double complex Ck,`) and one chart version of (45), to prove (45)
for M . �

The proof of Theorem 90 is now complete. �

We can use Theorem 90 to prove Lemma 77 as follows. Let ϕ : X Ñ X
be a symplectic diffeomorphism which is C1 close to identity map. We
consider ´X ˆ X, which is a symplectic manifold pX ˆ X,´π˚1ω ` π˚2ωq,
where ω is the symplectic form of X and π1 : X ˆX Ñ X is the projection
to the first factor, π2 is the projection to the second factor. The diagonal
∆ “ tpx, xq | x P Xu is a Lagrangian submanifold and Grapϕ “ tpx, ϕpxq |
x P Xu is also a Lagrangian submanifold. We apply Theorem 90 to a
Lagrangian submanifold ∆ of ´X ˆX. We may assume Grapϕ Ă i∆pU∆q.
Then i´1

∆ Grapϕ is a Lagrangian submanifold of T ˚X which is C1 close to
the zero section. Therefore there exists closed one form u on L such that
i´1
∆ Grapϕ “ tpx, upxqq P T ˚X | x P Xu. The map

x ÞÑ i∆ppx, tupxqq

is a Lagrangian embedding X Ñ ´X ˆX which is sufficiently close to the
diagonal embedding. Therefore x ÞÑ π1pi∆ppx, tupxqqq is a diffeomorphism.
It implies that there is a t parametrized family of symplectic diffeomorpisms
ϕt : X Ñ X such that

ti∆ppx, tupxqq | x P Xu “ tpx, ϕtpxqq | x P Xu.

We put

Vtpϕtpxqq “
d

dt
ϕtpxq.
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Then vt “ iVtω is the required family of closed 1 forms. The proof of Lemma
77 is complete. �
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