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Dedication

This book is dedicated to the memory of my father Oleg Vassilievich Man-

turov (July 3, 1936 – July 23, 2011).

V.O. Manturov and O.V. Manturov, Moscow, 1988.
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Oleg Vassilievich Manturov was a remarkable mathematician with a pro-

found scientific sight. I mention two of his most significant achievements:

the classification of homogeneous Riemannian spaces with irreducible ro-

tation group (early 1960s) and the classification of complex vector bundles

over compact homogeneous spaces (early 1970s). The first mentioned result

is related to the classification of the most natural wide class of homoge-

neous spaces since E. Cartan classified his symmetric spaces (some years

later, O.V. Manturov’s result was rediscovered by J. Wolf; afterwards these

spaces were called Manturov–Wolf spaces). The second mentioned result

was a breakthrough in K-theory. Before my father’s work, K-rings were

constructed explicitly for a very small class of spaces; for a very huge class

of homogeneous spaces O.V. Manturov classified all complex vector bun-

dles explicitly in terms of maps to the Grassmann space; to this end, he

handled the Bott isomorphism “by hand”.

Since 1983, he was one of co-chairmen of the World’s well known “Sem-

inar on Vector and Tensor Analysis” (this seminar works in the Moscow

State University since 1920s; in 1930s E. Cartan and J. Schouten gave

talks at this seminar). The scope of my father’s mathematical interests

was very wide; he was working on product integration, calculation of ho-

mology groups of homogeneous spaces, decompositions of tensor products

of Lie algebra representation; he led about 40 disciples to their Ph.D.’s.

He paid attention to my early interest in mathematics. When I was

six and discovered a criterion of divisibility by 43 of positive integers, my

father immediately explained to me how to find such divisibility criteria by

other integers; some years later, he taught me how to construct the 17th

square root of unity by compass and ruler, and how to classify the sections

of the four-dimensional cube by hyperplanes. In the same period of time he

brought me to “kruzhoks” (Russian-type seminars) held for schoolchildren

in the Moscow State University (“small” mechanical and mathematical fac-

ulty).

It is important to mention the deep understanding of my father of the

general importance of many problems I was working on. An advice concern-

ing the general importance often led me to the true way. Understanding

the deep importance of quantum invariants, the interrelation between knot

theory and Lie group representation theory, he played a key role in the

foundation of the seminar “Knots and the Representation theory” in 2000;

in the mean time, this seminar is working very actively. My father warm-

heartedly supported my research in the virtual knot theory, especially the

relations between atoms and virtual knots. He praised highly the parity
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Dedication vii

theory. He himself made an impact to the parity theory, when he con-

structed in a joint work with myself an invariant of free knots valued in

conjugacy classes of the infinite dihedral group (and its generalizations),

which later turned out to be a sliceness obstruction for free knots.

Up to the very last days Oleg Vassilievich was very interested in various

areas of mathematics, which he discussed with me.

I hope the book will be a modest contribution to the memory of an

outstanding mathematician and a remarkable person.

Vassily Olegovich Manturov, Moscow, 2012.
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Preface by Louis H. Kauffman

This book, is the first full-length book on the theory of virtual knots and

links. I coined the term virtual knot theory and wrote a first paper1 on this

subject in 1999. From my point of view, the idea was to simultaneously

have a diagrammatic theory that could handle knots in thickened surfaces

and would generalize knot theory to arbitrary oriented, not necessarily

planar, Gauss codes. These non-planar Gauss codes act in knot theory

as abstract graphs behave in graph theory. They can be projected into

the plane, and will acquire virtual crossings in the process. They can be

embedded in surfaces of higher genus, and one can search for the surface

of least genus that will support them. The abstract Gauss codes (often

depicted as so-called Gauss diagrams) have Reidemeister moves defined for

them irrespective of a choice of embedding of the code in a surface. Once

embedded, they yield a knot in a thickened version of that surface. Classical

knot theory embeds in virtual knot theory.

Many invariants of classical knots generalize directly to virtual knots,

the fundamental group and the quandle among them. The first quantum

invariant that has an easy generalization is the Jones polynomial. The

bracket state sum model of the Jones polynomial generalizes directly to

virtual knot theory and has a number of startling properties. One of these

properties is that a non-trivial classical knot can be transformed to a virtual

knot by changing only the orientation of some of its crossings (we call this

process the virtualization of the crossing). If a subset of crossings is chosen

so that switching those crossings unknots the classical knot, then the virtual

knot obtained by reversing their orientations will be a non-trivial virtual

knot with Jones polynomial equal to one. Thus there are infinitely many

1Kauffman, L. H. (1999). Virtual knot theory, European J. Combin. 20, 7, pp. 663–
690.
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non-trivial virtual knots with unit Jones polynomial. We would like to know

if any of these are actually classical knots. We suspect that this is not the

case and the research on this problem has led to the invention/discovery of

new invariants by myself and by many other workers in virtual knot theory,

including particularly the authors of this book and Vassily Manturov most

particularly. This problem about the Jones polynomial is a driving force

behind much of the research on virtual knot theory. Of course, in back

of that problem is the question whether the Jones polynomial detects the

unknot for classical knots.

All quantum invariants of classical knots generalize to a special category

of virtual knots and links that I call the rotational virtuals and are called in

this book the rigid virtuals. Using the present terminology, a rigid virtual

knot does not have a flat version of the first Reidemeister move available for

its diagrams. In the paper1 I began the study of this version of virtual knot

theory and it is still in need of development. The reader will find a short

exposition of rigid virtual knot theory in the present book in Chap. 4, in the

paper1 and in the paper2 where we relate this theory both to a categorical

approach to the virtual braid group and to quantum invariants derived from

Hopf algebras. In any case, this underlines the meaning of “State of the

Art” in the title of the present book. There is much that is in the course

of development in virtual knot theory, and this book is a snapshot of that

development from the point of view of the authors of the book.

Turning to the book itself, the reader will find a remarkable and en-

cyclopedic treatment of the basics, with the first chapter devoted to the

diagrammatic and combinatorial definitions and to a discovery of mine of

which I am very fond – the self-linking number of a virtual knot3. This

self-linking number is, in the Gauss-diagram language the sum of the cross-

ing signs for those chords in the diagram that are odd. A chord in a chord

diagram is odd if it is intersected by an odd number of other chords in the

diagram. The appearance of odd chords is a feature that can only happen in

a virtual knot or link. The self-linking number is surprisingly powerful and

certainly the simplest combinatorial invariant that one can find for virtual

knots. It is also the tip of the iceberg of parity, a subject that Manturov

has expanded for virtual knot theory and found ways to exploit that are

highly significant for virtual theory and, we expect for classical theory as

2Kauffman, L. H. and Lambropoulou, S. (2011). A categorical model for the virtual

braid group, preprint, arXiv:math.GT/1103.3158.
3Kauffman, L. H. (2004). A self-linking invariant of virtual knots, Fund. Math. 184,

pp. 135–158.
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well in an indirect way. Later in the book, in Chap. 8, this full development

of Manturov Parity Theory for Virtual Knots is given in its entirety. Here

again, we go from the basics of the first chapter to the frontiers of research.

The surface structure of parity that one sees in the Gauss diagrams for

virtual knots and links is certainly just an indication of deeper matters of

parity that are in the works below that surface. The future of virtual knots

and their relationship with classical knots turns on this deep parity.

Continuing to Chap. 2, we find a discussion of Kuperberg’s Theorem

and the surface genus of virtual knots. Kuperberg proved the remarkable

theorem that if a virtual knot or link is represented in its minimal genus

surface, then this embedding type is unique. This means that the virtual

knots have a definite topological interpretation in their minimal genus sur-

faces. This result of Kuperberg has been very fruitful for getting deeper

invariants of virtual knots. Heather Dye and myself found ways to use the

Kuperberg theorem to get stronger version of the Jones polynonmial for

virtuals4 and Manturov did a similar analysis that will be found in this

book. This chapter proves that virtual knots are algorithmically recog-

nizable by generalizing the technique of Haken and Hemion for classical

knots and it proves that connected sums of non-trivial virtual knots are

non-trivial. This is particularly significant in the light of the phenomenon

that connected sums of trivial virtual diagrams can yield non-trivial virtual

knots!

In Chap. 3 the authors consider quandles and their generalizations for

virtual knots. One of the most fruitful generalizations of invariants that

has emerged from virtual knot theory is the use of the biquandle5,6, a gen-

eralization of the quandle (which in turn generalizes the fundamental group

of a knot or link) and its powerful applications to the theory. Here also the

reader will find Manturov’s remarkable uses of Lie algebraic techniques for

invariants. In this same chapter one will find long virtual knots and clever

invariants for them using Manturov’s application of the precendence order

that is available there and flat virtuals where one is looking at immersions

of curves in surfaces. This leads to a notion of mine called the (flat) hierar-

chy where we have as many virtual crossings as one likes, ordered by some

choice of an ordinal, in terms of their ability to move across one another.

4Dye, H. A. and Kauffman, L. H. (2005). Minimal surface representations of virtual
knots and links, Algebr. Geom. Topol. 5, pp. 509–535.
5Fenn, R., Jordan-Santana, M. and Kauffman, L. H. (2004). Biquandles and virtual

links, Topology Appl. 145, pp. 157–175.
6Kauffman, L. H. and Manturov, V. O. (2005). Virtual biquandles, Fund. Math. 188,

pp. 103–146.
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Manturov’s first steps at some invariants are found here for the hierarchy.

Chapter 4 does the basics of the Jones polynomial via the bracket state

sum and introduces the concept of atoms (surfaces, orientable or not, bear-

ing the virtual knot diagram). Now the pace picks up as we go to Chap. 5

and meet Khovanov homology for virtual knots. Manturov gave a first

combinatorial solution to the question of constructing integral Khovanov

homology for virtual knots and links. His theory is quite interesting and

it needs to be compared with the Khovanov–Rozansky Categorified Link

Homology and it needs to be computed. There is a rich vein of research

material for the active reader who gets to this point in the book.

We are not done! Chapter 6 deals with virtual braids and the work of

Kamada and Kauffman and Lambropoulou7. It ends with an exposition of

Manturov’s invariants of virtual braids.

Chapter 7 treats Vassiliev invariants and returns to another source of

virtual knot theory – the work of Goussarov, Polyak and Viro who used

virtual knots in the guise of general Gauss diagrams to construct a theory

of Gauss diagram formulas for virtual knots. Here we find that theory

and a exposition of Manturov’s proof of a conjecture of Vassiliev about

these diagrams. Then comes Chap. 8 on Parity, alluded to before. This

chapter includes work on the Goldman bracket, and the Turaev cobracket

and on cobordisms of free knots. What is a free knot? In this book’s

terminology it is a flat virtual knot taken up to virtualization consisting

in allowing one to exchange adjacent virtual and real crossings. This frees

up part of the restriction at a vertex. The theory of free knots has been

pursued with much energy by Manturov and his collaborators. At first

it was thought (a conjecture of Turaev) that free knots were trivial, but

Manturov showed, using parity that this is not the case and that there

are non-trivial cobordism classes of free knots. The analogous virtual knot

theory is to study virtual knots (with over and undercrossings) up to change

of orientation of the crossings as we describe at the beginning of the preface,

that is to study virtual knots up to virtualization equivalence. The theory

of free knots sheds light on these questions of virtualization. And finally

there is Chap. 9 on Graph-Links, a further combinatorial generalization of

the theory that has much promise in illuminating its original problems.

We hope that the reader of this preface is motivated to delve into the

adventure presented by this remarkable book.

7Kauffman, L. H. and Lambropoulou, S. (2006). Virtual braids and the L-move, J.
Knot Theory Ramifications 15, 6, pp. 773–811.
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Preface by Vassily Olegovich
Manturov & Denis Petrovich Ilyutko

This book is the first systematic research completely devoted to a compre-

hensive study of virtual knots and classical knots as its integral part.

Classical knot theory counts more than two hundred years. As a math-

ematical theory, it appeared in 19th century with an important impact to

knot theory due to Vandermonde, Dehn [67, 68], Gauss [104], Klein, Tait,

Reidemeister [271], Alexander [5, 7] and other outstanding scientists. Over

the last decades, knot theory was enriched by numerous methods and subtle

invariants, which nowadays constitute a powerful machinery in knot the-

ory and low-dimensional topology. A breakthrough in knot theory which

led to its modern state-of-art and solutions to many long-standing prob-

lems is due to discoveries of Conway [63] and Jones [141], and later, of

Vassiliev [304, 305], is dated by the last thirty years of the 20th century

(the Conway and Jones polynomials, Vassiliev’s finite type invariants). For

their impact to knot theory which related knot theory to various branches

of mathematics and physics, Jones, Witten, Drinfeld (1990) and Kontse-

vich (1998) were awarded the highest honor of mathematics, the Fields

medals. We recommend the following textbooks and monographs on knot

theory: [154, 156, 162, 215, 267].

Classical knot theory (i.e. the theory of knots in three-dimensional Eu-

clidean space or in the three-sphere), is an integral part of a much larger

theory, knots in 3-manifolds. For the latter theory, the approach is much

less developed.

Virtual knots were discovered by Kauffman in 1996, [158, 159], and

independently by Goussarov, Polyak and Viro [114]. When virtual knot

theory arose, it became clear that classical knot theory was a small integral

part of a larger theory, and studying properties of virtual knots helped

one to understand better some aspects of the classical knot theory and

xiii
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stimulated the statement of some problems, see [86]. Virtual knot theory

finds its applications in classical knot theory. By means of virtual knot

theory, the problem of existence of combinatorial formulae for finite type

invariants for classical knots was solved [114]. Virtual knot theory occupies

an intermediate position between theory of knots in arbitrary 3-manifolds

and classical knot theory. On one hand, it is much wider than classical

knot theory, and on the other hand, it is very close to classical knot theory

because of many reasons we are going to describe below. Consequently,

many methods and invariants of classical knot theory can be extended to

virtual knot theory. This extension often uses additional ideas presented

in the present book. Among such ideas we can mention new powerful

invariant, Khovanov homology (1997). The latter is the homology of an

algebraic complex which is constructed with a diagram of a knot (link). As

it was shown by Kronheimer and Mrówka [187], Khovanov homology detects

the unknot, which seriously enlarges horizons of the Khovanov homology

theory.

In 1990s, some branches of low-dimensional geometry and topology ex-

perienced a rapid development; these theories are connected to knot theory

and have their own interest. The theory of Legendrian knots, lying in

the junction of knot theory and contact geometry [55, 83, 84, 100], has

revealed, and many important problems in this theory were solved. This

theory has numerous analogues and is connected to various branches of ge-

ometry, topology, optics and physics. The Khovanov theory [176] associates

with each knot diagram a chain complex, whose homology is a knot invari-

ant, and the Euler characteristic of this complex coincides with the Jones

polynomial. The chains of the complex constructed with a knot diagram,

correspond to formal smoothings of this diagram at all classical crossings.

Every smoothing of such sort gives rise to a collection of some number k

of circles; with this state we associate a chain space which is the kth ten-

sor power of some two-dimensional space. Differentials of the Khovanov

complex are defined combinatorially, and the homology is invariant under

Reidemeister moves.

In order to extend Khovanov homology theory to virtual knots, the first-

named author (V.O. Manturov) had to revisit completely the definition

of the usual Khovanov homology and construct a complex homotopically

equivalent to the “usual” Khovanov complex. The problem of such a con-

struction in the case of virtual knots is related to the well definedness in

order for the square of the differential to be equal to zero. Such a construc-

tion required a number of new ideas: orientation and enumeration of the
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state curves, twisted coefficients in the Frobenius algebra representing the

homology of the unknot, usage of exterior products instead of usual (sym-

metric) products. A key role in this construction was played by the notion

of atom (introduced by Fomenko [98]). Atoms and d-diagrams (special type

of chord diagrams with two families of pairwise split chords, for definition

see page 137) played the key role in the proof of Vassiliev’s conjecture

(Chap. 7). The d-diagram theory was developed in [203–205].

Let us describe a common point of view which allows us to treat classical

and virtual knots uniformly. A classical knot (link) can be given by a

planar diagram. In such a diagram there are classical crossings and curves

connecting crossings to each other. If we locate crossings on the plane

in an arbitrary way and indicate how they are connected to each other,

then sometimes the curves connecting crossings can be chosen to be non-

intersecting (this happens in the case of a classical knot), and in some cases

it is impossible to situate these curves without additional intersections.

These new intersections are marked as virtual (encircled) and we get a

virtual diagram. Virtual crossings appear every time when a 4-valent graph

defined by classical crossings and ways of connection, is not planar, which

happens quite often. An example of a virtual diagram is given in Fig. 0.1.

Fig. 0.1 A virtual diagram.

Thus, virtual knots are related to classical knots approximately in the

same way as graphs are related to planar graphs.

Herewith, the equivalence (isotopy) of classical knot diagrams is defined

by means of formal combinatorial transformations (Reidemeister moves),

which are applied to crossings lying close to each other. For virtual knots
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given by a collection of classical crossings and ways to connect them, the

equivalence is given by the same Reidemeister moves applied to classical

crossings.

From the topological point of view, virtual knots are knots in thickened

surfaces (products of sphere with handles with an interval) considered up to

isotopy and stabilizations (see, e.g. [158, 160]). Herewith, when projecting

the sphere with handles Sg to the plane, crossings of the diagram on Sg are

projected to classical crossings; besides that, new (virtual) crossings appear

as intersection points between different branches of the diagram Sg; such

virtual crossings are depicted as encircled.

Note that in this generalization new theories were born: Virtual mul-

tidimensional knots (abstract knots, Kamada and Kamada [151]), virtual

spatial graphs (Flemming and Mellor [93]) and others.

The recognition problem for classical knots was one of the central prob-

lems in low-dimensional topology. Its first solution is related to Haken’s

normal surface theory, and the final steps belong to Matveev. The re-

sult of algorithmic recognizability of a certain object in low-dimensional

topology is important because in low-dimensional topology, the algorithmic

non-realizability takes place for many objects. When virtual knot theory

appeared, the problem of algorithmic realizability of virtual knots arose.

This problem is resolved positively in Chap. 2 of the present book; this

result relies not only on Haken’s theory but also on Kuperberg’s theorem.

Virtual knot theory, its constructions and methods are closely related

to various branches of classical knot theory, in particular, to Vassiliev’s in-

variant theory. Vassiliev invariants occupy a special position in classical

knot theory; it turned out just when this theory appeared, that all polyno-

mial and quantum invariants were expressible in terms of Vassiliev invari-

ants. In the case of virtual knots, the theory of Vassiliev knot invariants is

much more complicated; even the space of order zero invariants is infinite-

dimensional. To combinatorial aspects of the Vassiliev invariant theory, we

dedicate Chap. 7. In this chapter, by using atoms and d-diagrams, we prove

Vassiliev’s conjecture about planarity of framed 4-valent graphs (graphs

where at each vertex four half-edges are split into two pairs of opposite

ones); this conjecture solved positively by the first-named author, plays a

key role in Vassiliev’s work on the existence of integer-valued combinatorial

formulae for invariants of finite order.

In virtual knot theory, there are many unexpected invariants which do

not take place in the classical case.

The most striking example of such a theory is the parity theory con-
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ceived by the first-named author, where all classical crossings are either

even or odd, herewith the property of being even is naturally preserved by

Reidemeister moves. Roughly speaking, by parity we mean any such nat-

ural way of labeling of all classical crossings which is defined for all knots

from this theory. By means of parity, one can construct functorial map-

pings from knots to knots, filtrations on the space of knots, refine many

invariants and prove minimality of many series of knot diagrams. The ex-

istence of different parities and different projections (from knots to knots)

allows one to establish various filtrations on the space of knots. Besides

that, such projections allows one to “lift” invariants from classical knots to

virtual knots.

Chapter 8 is devoted to parity in knot theory.

The passage from classical knots to virtual knots can also be motivated

by representing Reidemeister moves in the language of Gauss diagrams.

Every Gauss diagram is a circle with a collection of pairs of points (all

points mutually disjoint); every pair of points is endowed with an arrow

from one point to the other and a sign. Each chord diagram of such sort

has an intersection graph. Vertices of the intersection graph correspond to

chords, and two vertices are adjacent whenever the corresponding chords

are linked. To such graphs, one can extend Reidemeister moves. Note that

not all simple (without multiple edges and loops) graphs originate from

chord diagrams. When passing from intersection graphs of chord diagrams

to arbitrary graphs and extending Reidemeister moves to such graphs, we

end up with the graph-link theory due to the authors of the present book.

An analogous theory was constructed by Traldi and Zulli [293]. Chapter 9

of the present book is devoted to the graph-link theory. Graph-links can

be treated as “diagramless knot theory”: Such “links” have crossings, but

they do not have arcs connecting these crossings since the corresponding

graphs are not intersection graphs of any chord diagrams and thus they are

not “drawable” on the plane. It turns out, however, that to graph-links one

can extend many methods of the classical and virtual knot theory, in par-

ticular, the parity theory. We have constructed various invariants, proved

the equivalence of two approaches to graph-knots: the one suggested by the

authors and the one suggested by Traldi and Zulli. We have constructed

various invariants showing non-realizability of graph-links (the fact that a

graph-link has no drawable representative). A remarkable achievement in

the graph-link theory is the work by Nikonov [256, 257] who constructed

Khovanov homology theory for graph-links with coefficients from Z2. Unlike

the usual Kauffman bracket when one had to count the number of “non-
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existing” state-circles, for this problem one had to understand how these

“non-existing” circles might interfere in order to construct the differential

in the Khovanov complex.

The theories mentioned above are related to different problems of com-

binatorics, three-dimensional topology and four-dimensional topology, rep-

resentation theory for Lie groups and algebras. Representation theory is

the starting point for constructing quantum invariants of knots and 3-

manifolds, see, e.g. [259, 297].
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Chapter 1

Basic Definitions and Notions

1.1 Classical knots

A (classical) knot is the image of a smooth embedding of the standard

circle S1 in the three-dimensional sphere S3 (or in the space R3); two knots

are called isotopic, if one of them can be transformed to the other by a

diffeomorphism of the ambient space S3 (or R3) onto itself, preserving the

orientation of the sphere S3 (or R3) (such a diffeomorphism is called an

isotopy) (it is well known that each of such diffeomorphisms is homotopic

to the identical one in the class of diffeomorphisms [53]). If we embed a

disjoint union of several circles S1 ⊔ · · · ⊔S1 in the sphere S3 (or R3), then

we get a classical link ; the image of each circle, a knot, is called a component

of the link. We call such a smooth embedding of a circle (a disjoint union

of circles) also a knot (a link).

The main question of knot theory is the following: Which two knots

are isotopic and which are not? This problem is called the knot recognition

problem. A classification of knots in S3 is equivalent to a classification of

knots in R3. Having an isotopy equivalence relation, one can speak about

knot isotopy classes. When seen in this context, we shall say “knot” when

referring to the knot isotopy class.

If we fix an orientation of the circle S1, then we have an oriented knot

(respectively, in the case of an oriented link we require orientations of the

circles, i.e. the preimages of the component of the link); under an isotopy

of oriented links we require that the diffeomorphism of the ambient space

preserves both the orientation of S3 (or R3) and the orientations of all the

components.

If the components of a link are numbered and, moreover, we require

that the numbers of the components preserve under isotopies, then we have

1
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a colored link.

Definition 1.1. An oriented link is called framed if at each point of it a

unit vector which is orthogonal to a component of the link and depends

continuously on a point is specified; two framed links are called (framed)

isotopic if there exists a mapping of the ambient space (the sphere S3) on

itself which preserves the orientation and takes one link to the other one in

a way compatible with the vector fields.

Framed links can be treated as embeddings of a set of bands S1× I and

Möbius bands S1×̃I in the three-dimensional Euclidean space (the three-

dimensional sphere); the corresponding vector field points out a way in

which these bands are twisted.

Usually, knots are encoded by plane diagrams, which are 4-valent graphs

with an additional structure. Let us give main definitions concerning 4-

valent graphs and plane knot diagrams (knot diagrams).

Let G be a graph with the set of vertices V (G) and the set of edges E(G)

(we consider only finite graphs, i.e. graphs with finite sets of vertices and

edges). We think of an edge as an equivalence class of the two half-edges

constituting the edge. We say that a vertex v ∈ V (G) has the degree k if v

is incident to k half-edges. A graph whose vertices have the same degree k

is called k-valent or a k-graph. The free loop, i.e. the graph without vertices

but with one cyclic edge, is considered as k-valent graph for any k.

A graph is called simple, if it has no multiple edges and loops.

Definition 1.2. A 4-graph is called framed if for every vertex the four

emanating half-edges are split into two pairs of (formally) opposite edges,

i.e. we have the structure of opposite edges. The edges from one pair are

called opposite to each other.

Definition 1.3. By an isomorphism between framed 4-graphs we assume

a framing-preserving isomorphism. All framed 4-graphs are considered up

to isomorphism. Denote by G0 the framed 4-graph isomorphic to the circle

(the free loop).

When drawing framed graphs on the plane, we always assume the fram-

ing to be induced from the plane R2.

Fix a knot, i.e. the image of an embedding f : S1 → R3. Consider a

plane h ⊂ R3 (say, h = Oxy) and the projection of the knot on it. Without

loss of generality we can assume that the projection of the knot is a finite

embedded framed 4-valent graph being the image of a smooth immersion
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Chapter 1. Basic Definitions and Notions 3

of the circle in the plane. Usually, we shall call a part (i.e. the image of

an interval in the three-dimensional space, a part of the circle) of a knot

a branch of it. Sometimes (when it is clear from the context) we also use

the term branch for the image of a branch in the plane. Each vertex of this

graph (also called a crossing of the diagram of the link) is endowed with the

following additional structure. Let a and b be two branches of a knot, whose

projections intersect each other in the point v. Since a and b do not intersect

in R3, the two preimages of v have different z-coordinates. So, we can say,

which branch (a or b) goes over (forms an overcrossing); the other one goes

under (forms an undercrossing), see Fig. 1.1. Half-edges of overcrossings are

depicted by continuous lines, and half-edges of undercrossings are depicted

by lines having a break at the crossing. This image of a knot on the plane

is called a plane knot diagram or a knot diagram.

All crossings of a diagram of an oriented link are divided into positive

ones and negative ones . It is easy to check that in the case of a

knot the sign of a crossing does not depend on an orientation of a knot.

A link diagram is called alternating, if when moving along each compo-

nent one passes overcrossings and undercrossings alternately.

�
�
�
�

@
@

@
@ overcrossing

undercrossing

Fig. 1.1 The local structure of a crossing.

The simplest examples of diagrams of classical knots are depicted in

Fig. 1.2.

(a) (b) (c) (d)

Fig. 1.2 The simplest knots.
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The first two diagrams represent the unknot or the trivial knot, the third

diagram represents the trefoil, and the knot shown in the fourth diagram

is called the figure eight knot. All these diagrams are alternating.

(a) (b) (c) (d)

Fig. 1.3 The simplest links.

In Fig. 1.3(a) the trivial link with two components is depicted. In

Figs. 1.3(b), 1.3(c) and 1.3(d) the Hopf link, the Whitehead link and the

Borromean rings are shown, respectively. Each of these links is not trivial.

By an arc of a planar link diagram we mean a connected component

of the diagram (thus, each arc always goes “over”; it starts and stops at

undercrossings).

The framed 4-valent graph without an over/undercrossing structure is

called the shadow of the knot or the underlying graph. The complexity of

a knot is the minimal number of crossings for knot diagrams of a given

isotopy type. We shall call a diagram of a link connected if its shadow (its

underlying graph) is connected as a framed 4-graph. In particular, any

diagram of a knot is connected.

Let us define knots by using the language of framed 4-valent graphs.

In [271] Reidemeister presented a list of local topological moves (known as

Reidemeister moves). The three basic Reidemeister moves are shown in

Fig. 1.4, the others are obtained from these moves by using their combina-

tions. Reidemeister proved that any two planar diagrams generated isotopic

knots (links) if and only if there existed a finite chain of Reidemeister moves

and planar isotopies (diffeomorphisms of the plane on itself preserving the

orientation of the plane) from one of them to the other. The Reidemeis-

ter theorem allows one to consider isotopy classes of links as combinatorial

objects: They represent equivalence classes of planar diagrams modulo the

Reidemeister moves. In [119] Hass and Lagarias proved the existence of

an exponential upper bound (depending on the crossing number) on the
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number of Reidemeister moves required to convert a diagram representing

the unknot to a trivial knot diagram.

The first Reidemeister move Ω The second Reidemeister move Ω

The third Reidemeister move Ω

1 2

3

Fig. 1.4 Reidemeister moves Ω1,Ω2,Ω3.

The Reidemeister moves are a starting point for a combinatorial defini-

tion of virtual knots (see below). To prove the invariance for some functions

on knots (given on diagrams of knots), one should check its invariance under

the Reidemeister moves.

One of the earliest invariants of knots is a topological invariant, the knot

group. The knot group of a knot (link) K ⊂ R3 (denoted by π(K)) is the

fundamental group of the complement to the knot (link) K, more precisely,

to a small tubular neighborhood N(K) of it, namely, we set π(K) = π1(R3 \
N(K)).

It is known that the knot group is a very strong invariant. For instance,

the famous Dehn–Papakyriakopoulos’ theorem [265] asserts that a unique

knot having the knot group isomorphic to the group Z is the unknot.

From a diagram of a knot (link) we can construct a presentation of

the knot group (which is called a Wirtinger presentation). There is also a

Dehn presentation, which assigns generators to domains of the plane of the

projection, and relations to crossings.

The Wirtinger presentation is constructed as follows. Let us consider

a knot (link) K given by some planar diagram K. Consider a point x

“hanging” over this plane. Without loss of generality we may assume that
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Fig. 1.5 Loops corresponding to edges.

K ⊂ R2 × {0} and x ∈ R2 × {1}. Let us classify isotopy classes of loops in

R3\N(K) outgoing from this point. It is easy to see (the proof is left to the

reader) that one can choose generators in the following way. All generators

are classes of loops outgoing from x and hooking the arcs of the planar

diagram K. Let us decree that the loop corresponding to an oriented edge

is a loop turning according to the right-hand rule (each such loop bounds

a disc intersecting exactly one arc of the knot at exactly one point), see

Fig. 1.5.

Now, let us find the system of relations for this group.

It is easy to see the geometrical connection between loops hooking ad-

jacent edges (i.e. edges separated by an overcrossing edge). Actually, we

have b = cac−1, where c separates a and b, see Fig. 1.6.

-

a

b

c
b = cac−1

Fig. 1.6 Relation for a crossing.

From the geometrical consideration, it easily follows that the given set

of relations generates all relations in the knot group.

Thus, the Wirtinger presentation of the fundamental group of the link

complement is constructed as follows. The arcs correspond to the generators
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and the generating relations come from crossings. We take cac−1 = b−1 for

adjacent edges a and b, separated by c, when the edge b lies on the left from

c with respect to the orientation of c.

The main disadvantage of the knot (link) group is that groups given

by different presentations are very hard to compare. In the general case,

the problem of recognition of a group by its presentation is an unsolved

problem. However, one can construct more convenient (but more powerful)

invariants of knots and links and prove structural theorems by using a knot

group.

The fundamental group is an almost complete knot invariant, in par-

ticular, it recognizes prime knots. A knot is called prime, if it cannot be

represented as the connected sum of two non-trivial knots; see Chap. 2

for the definition of the operation of connected sum. More precisely, two

prime oriented knots have isomorphic fundamental groups if they are ei-

ther isotopic to each other or obtained from each other by changing the

orientation of a knot and/or the ambient space. It can be a non-trivial

problem to determine whether a given knot is prime or not. There is a

prime decomposition for knots [277].

A natural formal generalization of the notion of the fundamental group

is a notion of a distributive groupoid or a quandle, introduced independently

by Matveev [242] and (a little later) Joyce [144], also see [71].

The idea is as follows. We change the group relation b = cac−1 at a

crossing by a formal relation a ◦ c = b.

Further, we describe a formal object, generators of which are arcs of the

diagram and we put formal relations on generators. We want this object

to be invariant under the Reidemeister moves. As a result, we immediately

get the following necessary axioms:

(1) idempotency : a ◦ a = a;

(2) existence of left-inverse element : for fixed elements b, c there exists a

unique element x such that x◦b = c. In this case we shall write x = c/b;

(3) right self-distributivity : (a ◦ b) ◦ c = (a ◦ c) ◦ (b ◦ c).

These axioms correspond to the first, second and third Reidemeister

moves respectively.

This object (the pure axiomatic definition will be given in Chap. 3)

is stronger than the fundamental group. A straightforward check of the

axioms of a distributive groupoid for the operation a◦b = bab−1 in the group

shows that this operation satisfies all axioms of a distributive groupoid

and defines a morphism from the category of groups to the category of
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distributive groupoids, and the preimage of the distributive groupoid of a

knot is the fundamental group of the complement to the knot (considered

up to isomorphism).

Chapter 3 of the book is devoted to distributive groupoids in theory of

virtual and classical knots.

1.2 Virtual knots

The main object of Louis Kauffman’s theory (1996) and the present book

is a virtual knot (or, in the case of many components, a virtual link). A

virtual knot represents a natural combinatorial generalization of a classical

knot: We introduce a new type of a crossing and extend new moves to the

list of the Reidemeister moves. The new crossing (which is called virtual

and depicted by a small circle) should be treated neither as a passage of one

branch over the other one nor as a passage of one branch under the other. It

should be treated as a diagrammatic picture of two parts of a knot (a link)

on the plane which are far from each other, and the intersection of these

parts is artifact of such a drawing, see Fig. 1.7. In that sense the following

list of generalized Reidemeister moves is natural: All classical Reidemeister

moves related to classical crossings and a detour move. The latter represents

the following: A branch of a knot diagram containing several consecutive

virtual crossings but not containing classical crossings can be transformed

into any other branch with the same endpoints; new intersections and self-

intersections are marked as virtual crossings, see Fig. 1.7.

Fig. 1.7 Detour move.

Definition 1.4. A virtual diagram (or a diagram of a virtual link) is the

image of an immersion of a framed 4-valent graph in R2 with a finite number

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 1. Basic Definitions and Notions 9

of intersections of edges. Moreover, each intersection is a transverse double

point which we call a virtual crossing and mark by a small circle, and each

vertex of the graph is endowed with the classical crossing structure (with a

choice for underpass and overpass specified). The vertices of the graph are

called classical crossings or just crossings.

A virtual diagram is called connected if the corresponding framed 4-

valent graph is connected.

A virtual link is an equivalence class of virtual diagrams modulo the gen-

eralized Reidemeister moves. The latter consist of the usual Reidemeister

moves referring to classical crossings and the detour move.

Thereby, in order to define a virtual knot, we need only to know the

position of classical crossings and their connections with each other. More-

over, positions of paths connecting classical crossings, their intersections

and self-intersections, are not important for us.

Like a classical link a virtual link has the number of components. A

virtual knot is a virtual link with one (unicursal) component.

The components of a virtual link can be described combinatorially by

using virtual diagrams.

Definition 1.5. By a unicursal component of a virtual diagramK we mean

the following. Consider K as a one-dimensional cell-complex on the plane.

Some of the connected components of this complex are circles. We call

each of these components a unicursal component of K. The remaining part

of the cell-complex represents a framed 4-valent graph with vertices which

are classical or virtual crossings. Unicursal components of K are (besides

circles) equivalence classes on the set of edges of the graph: Two edges e, e′

are equivalent if there exists a collection of edges e = e1, . . . , ek = e′ and a

collection of vertices v1, . . . , vk−1 (some of them may coincide) of the graph

such that edges ei, ei+1 are opposite to each other at the vertex vi.

It is easy to see that the number of components of a virtual diagram

is invariant under the generalized Reidemeister moves. Therefore, we can

define unicursal components of a link as unicursal components of a diagram

of the link. In the classical case, this definition coincides with the definition

given above.

The writhe, w(K), of a virtual diagram K is the number equal to the

number of positive crossings minus the number of negative crossings .

Remark 1.1. Note that such approach, the standard moves inside a local

Euclidean domain and the detour move, was used by Kamada and Ka-
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mada [151] for constructing formal theories of multidimensional “virtual

knots” and their invariants.

This brings us to the following interpretation of virtual knots described

in terms of Gauss diagrams (see, e.g. [57, 123, 124]).

Definition 1.6. By the Gauss diagram corresponding to a planar diagram

of a (virtual) knot we mean a diagram consisting of an oriented circle (with

a fixed point, not a preimage of a crossing) on which the preimages of the

overcrossing and the undercrossing (for each classical crossing) are con-

nected by an arrow directed from the preimage of the undercrossing to the

preimage of the overcrossing. Each arrow is endowed with a sign coinciding

with the sign of a crossing, i.e. it equals 1 if we have and −1 for .

Remark 1.2. A Gauss diagram is a particular case of a chord diagram, see

Definition 4.2. More precisely, a Gauss diagram is a chord diagram with

an additional structure.

The Gauss diagram of the right-handed trefoil is shown in Fig. 1.8.

1

2

3

+

3

3

2

2

1

1+

+

Fig. 1.8 The Gauss diagram of the right-handed trefoil.

Gauss diagrams (with some information lost; we forget about the ori-

entation of chords and signs) can be encoded by double occurrence words,

i.e. each letter in a word occurs precisely twice, and, moreover, it does not

matter which letters are used, but it is important whether two letters are

the same or not. Let us attribute a letter to each classical crossing (dif-

ferent crossings have different letters). To each classical crossing, an arrow

of the Gauss diagram is assigned. Let us place each letter corresponding

to a crossing near the head and the end of the arrow corresponding to

the crossing. By traveling along the circle of the Gauss diagram from the
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fixed point and writing down consequently the letters met by us, we get

the double occurrence word. Let us call this word the Gauss code of a knot

diagram. For instance, let us attribute the letters a, b, c to the crossings of

the classical trefoil. Then the Gauss code is abcabc.

Arbitrary Gauss diagrams, generally speaking, can be non-realizable by

an embedding of a framed 4-valent graph in the plane, but they can be

realized by means of a generic immersion in the plane by making points

having more than one preimage (in a generic case they have exactly two

preimages) virtual crossings, see Fig. 1.9.

1

2

+

+

2

2
1

1

Fig. 1.9 The Gauss diagram of a virtual knot.

This naturally leads us to the next definition of a virtual knot (not

links): One has to consider all formal Gauss diagrams and describe formal

Reidemeister moves on them (as it was done in the case of classical knots).

They will represent combinatorial scheme of transformations of Gauss di-

agrams. In that case, equivalence classes of Gauss diagrams over formal

Reidemeister moves are virtual knots. Note that we do not need the detour

move as a Gauss diagram “knows” nothing about position of virtual cross-

ings on the plane, and it “knows” only position of classical crossings and

their connections with each other. It means that Gauss diagrams “feel”

only classical Reidemeister moves and do not “feel” the detour move. The

exact list of Reidemeister moves for Gauss diagrams are given by us in

Chaps. 8 and 9. Further, it allows us to construct a new theory, the theory

of graph-links, see Chap. 9.

Virtual knots (here by a knot we mean also a link) can be defined as

knots in thickened oriented surfaces S × I, where S is a two-dimensional

oriented closed surface and I = [0, 1] is the segment with a fixed orientation;

moreover, thickened surfaces should be considered up to stabilizations, i.e.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

12 Virtual Knots: The State of the Art

up to additions and removals of handles to S in such a way that additional

thickened handles do not touch our knot (see more detailed description in

Chap. 2 and in [158, 160]). Branches of a virtual knot having a virtual

intersection for a virtual diagram and related to two parts of the virtual

knot located far away from each other, can move freely on the surface

independently from each other.

From now on, we suppose that the structure of direct product is fixed

on a thickened surface S × I and it is pointed toward which side is up, say

the side S × {1}, and which one is down, say the side S × {0}.
In the case of links, one can consider a disjoint union of manifolds,

S = S1 ⊔ · · · ⊔ Sk (sometimes it is required that in each manifold Sj × I
there is at least one component of a virtual link, [189]).

Links in S × I can be described by diagrams on S with the un-

der/overcrossing structure specified. In that sense, virtual diagrams are

obtained by means of regular generic projections of diagrams from S to the

plane: Crossings pass to classical crossings and new intersections (artifacts)

are marked by virtual crossings; moreover, it is required that under regular

generic projections neighborhoods of classical crossings are mapped into the

oriented plane with the orientation preserved. The Reidemeister moves for

diagrams on S (the same as in the case of classical diagrams) correspond to

the classical Reidemeister moves for virtual diagrams; there are also trans-

formations which do not change the combinatorial structure of diagrams

on S, but do change the combinatorial structure of the projection to the

plane. The detour move corresponds to these transformations.

The theorem about an equivalence of different definitions of virtual

knots was announced in [158] and proved by different authors, including

Kauffman. The full detailed proof can be found, e.g. in [221].

In addition to virtual knots there exists a theory of “twisted virtual

knots” introduced by Bourgoin [42] which represents virtual knots in ori-

ented thickenings of non-orientable surfaces.

A realization of the detour move by moves on thickened surfaces and

their projections is shown in Fig. 1.10.

This leads us to local versions of the detour move which consist of:

(1) virtual Reidemeister moves Ω′
1,Ω

′
2,Ω

′
3, which are obtained from the

classical Reidemeister moves by swapping all classical crossings partic-

ipating in moves for virtual crossings, see Fig. 1.11;

(2) semivirtual version Ω′′
3 of the third Reidemeister move. Under this move

the branch containing two virtual crossings can be carried through a

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 1. Basic Definitions and Notions 13
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The semivirtual move
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2

The first virtual Reidemeister move

Sg
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2

Sg

R
2

The second virtual 

Reidemeister move
R

2 R
2

The third virtual Reidemeister move

Sg Sg

Fig. 1.10 Generalized Reidemeister moves and thickened surfaces.

classical crossing, see Fig. 1.12.

Definition 1.7. We call a Reidemeister move increasing (respectively, de-

creasing) if this move increases (respectively, decreases) the number of

crossings (the number of classical crossings in the classical case and the

number of virtual ones in the virtual case).

For example, the moves Ω1, Ω2, Ω
′
1, Ω

′
2 are increasing “in one direction”,

and decreasing “in the opposite direction”.

The following statement is obvious.

Statement 1.1. Two virtual diagrams K and K ′ are obtained from each

other by a finite sequence of detour moves if and only if they are obtained

from each other by a finite sequence of the moves Ω′
1, Ω

′
2, Ω

′
3, Ω

′′
3 and their

inverses.

The reconstruction of a knot diagram in a thickened surface by a virtual

diagram on the plane is as follows.

Let K be a virtual diagram on the sphere S2 (we compactify the plane

R2 by adding one point). Each virtual crossing of this diagram corresponds
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The move Ω1 The move Ω2

The move Ω3
’

’ ’

Fig. 1.11 Moves Ω′
1,Ω

′
2,Ω

′
3.

Fig. 1.12 The semivirtual move Ω′′
3 .

to an intersection of two arcs. Let us choose one of them and construct

a handle for its “lifting”, see Fig. 1.13. As a result, we get a diagram

(with over/undercrossings and virtual crossings) on the torus, the number

of virtual crossings of which is less by one than the number of virtual

crossings in the initial diagram.

Note that the choice for a position of a handle, up or down, is immaterial

since thickened surfaces are considered on their own account without any

embedding into R3.

It is also easy to check that it does not matter which arc we choose for

lifting it to a new handle. Two diagrams K1 and K2 corresponding to two

such lifts to surfaces M1 and M2 with handles, i.e. K1 ⊂ M1 and K2 ⊂
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Fig. 1.13 Lifting of a virtual crossing to a handle.

M2, will be combinatorially equivalent (i.e. there exists a homeomorphism

f : M1 → M2 of one lifting to the other one and f transforms one virtual

diagram to the other one, f(K1) = K2).

Continuing this process we can get rid of all the virtual crossings and

obtain a diagram on Sg (=Sg×{ 12} ⊂ Sg× [0, 1]), where g is the number of

handles. Here it is convenient to use detour moves. Each of these moves is

a merging of subsequently situated handles to one handle and a partition

of this handle into new handles situated in other places, see Fig. 1.14.

In Fig. 1.14 (lower part) merging (respectively, partition) consists of

elementary moves which are the destabilization (respectively, the stabiliza-

tion). Meanwhile classical Reidemeister moves are performed locally on

some part of the surface Sg obtained from the sphere by adding handles.

It is natural that the surface Sg is automatically oriented. The orienta-

tion for Sg arises from the orientation of the sphere S2 to which we attach

handles.

Note that on the surface Sg there is no fixed system of longitudes and

meridians. Actually, under the first virtual Reidemeister move this surface

goes through Dehn twist, see Fig. 1.15.

Note that two moves resembling Reidemeister moves and shown in

Fig. 1.16, generally speaking, are not equivalence relations on virtual knots.

They are called the forbidden moves, see Fig. 1.16.

It turns out (it was noted independently by Goussarov, Polyak and

Viro [114] and Kauffman [157, 158]) that if we admit two forbidden moves,

then any two virtual knots (but not links!) will become equivalent (see

also [255]). If we add only one of these moves and the other one is left

forbidden, we obtain a theory of welded knots. This theory was proposed

by Satoh [273], see also [78, 172, 173].
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Fig. 1.14 Detour move and stabilization.

It is well known that each classical knot can be transformed into the

unknot by a consecutive change of the crossing structure ⇐⇒ .

This is a starting point for constructing knot invariants (skein-modules,

the Conway algebra, the Kauffman polynomial, Vassiliev’s invariants and

so on). This is not true for virtual knots. Namely, if we factorize the theory

of virtual knots over the relation ⇐⇒ (this relation allows one to

change the structure of classical crossings), we get a non-trivial theory,

the theory of flat virtual knots, see, e.g. [151, 175]. This theory can be

formalized in the following way. We only use one sort of crossings instead

of classical crossings, which is called flat or flat classical ; it is depicted as an

ordinary intersection of two lines on the plane; moreover, we admit virtual

crossings. The Reidemeister moves for flat virtual knots are depicted in

Fig. 1.17.

We can simplify this theory further and obtain a new non-trivial theory.

Namely, let us factorize the theory of flat virtual knots over a new move,

the virtualization, see Fig. 1.18. We get a new theory, the theory of free

knots. It turns out that this theory is highly non-trivial, see more details

in Chap. 8.
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Isotopy

Dehn twist

Destabilization

Fig. 1.15 Dehn twist and the move Ω′
1.

F
1

F
2

Fig. 1.16 Forbidden moves.

Another simplification of the theory of virtual knots when we keep in

mind only the local writhe information (at each classical crossing) is called

the theory of pseudoknots. But if we keep in mind the information about

which branch lies upper and which one is lower, we obtain the theory called

the theory of quasiknots, see [300].

The simplest example of a flat virtual knot not equivalent to the unknot

is depicted in Fig. 1.19.

Virtual knots are lifted to thickened surfaces. If we disregard which

branch of a virtual knot at a classical crossing passes over and which one

passes under (i.e. we forget the under/overcrossing structure at classical

crossings), we shall obtain a natural lifting of flat virtual knots to 2-surfaces
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Fig. 1.17 Reidemeister moves for flat knots.

Fig. 1.18 Virtualization.

(“thickening” is not required); here we describe another way of lifting dis-

tinct from the one described above.

The lift is constructed in two steps. Let a virtual diagram K be given.

We construct a surface with boundary as follows. In each classical crossing

of K we place a cross (the upper picture of Fig. 1.20), at each virtual

crossing we set two non-intersecting bands (the lower picture), cf. [151].

Connecting these crosses and bands by bands (non-overtwisted) along the

arcs of K we obtain an oriented two-dimensional manifold with boundary.

Denote this manifold by M ′.

One can project the diagram of K to M ′ in such a way that the arcs

of the diagram are projected to the middle lines of the bands; herewith

classical (flat) crossings correspond to crossings in the crosses. Thus, we
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Fig. 1.19 The simplest non-trivial flat virtual knot.
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Fig. 1.20 The local structure of M ′.

obtain a set of curves δ ⊂M ′. Attaching discs to the boundary components

of M ′, one obtains an orientable manifold M = M(L) without boundary

with the set δ of curves immersed in it.

This leads us to the theorem, see, e.g. [151].

Theorem 1.1. Flat virtual links are equivalence classes of finite collections

of curves in 2-surfaces up to free homotopy, stabilization and destabiliza-

tion.

Remark 1.3. Other generalizations of knots on surfaces were studied

in [50, 52].

The problem of whether two such representations of a flat virtual link are

equivalent in the category of flat virtual links is algorithmically recognized.
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Let S be an oriented closed 2-surface of genus g. In [120], pointed to

us by Cahn, Hass and Scott showed that if we had two homotopic curves

on the surface S such that the numbers of self-intersection points for these

curves were minimal, then these two curves could be related to each other

by only a finite sequence of third Reidemeister moves.

Our next goal is to prove the following theorem (see also [272] for curves

on compact surfaces).

Theorem 1.2. A flat knot has a unique minimal (with respect to genus)

representative (S,K) (closed oriented 2-surface, a curve on it) up to a

diffeomorphism (f : (S,K) → (S′,K ′), K ′ = f(K)) and a homotopy of

knots on the surface.

As a corollary from this theorem (by using the result of Hass and Scott)

we have the following.

Corollary 1.1. A flat knot has a unique minimal representative (with re-

spect to genus and the number of crossings) up to a diffeomorphism and

third Reidemeister move.

The proof of Theorem 1.2 is analogous to the proof of Kuperberg theo-

rem [189], see also Theorem 2.1 and its proof.

Proof of Theorem 1.2. Assume the contrary. Let (S,K) be a minimal

(with respect to the genus) representative of a flat knot, which can be

transformed to distinct minimal representatives with destabilizations and

Reidemeister moves. Therefore, on S there are two diagrams K1, K2 ho-

motopic to K and two non-trivial closed curves γ1, γ2 such that Ki∩γi = ∅,
i = 1, 2, and the destabilization along γi (cutting along a cycle and pasting

a disc to boundary) gives us the set of distinct minimums. Note that we

choose the representative (S,K) in such a manner that the result (Si,K
′
i)

of the destabilization for each i = 1, 2 has a unique minimum. Let us show

that (Si,K
′
i), i = 1, 2, can be destabilized to the same flat diagram (S̃, K̃).

Then (S1,K
′
1) and (S2,K

′
2) will have the same minimum coinciding with a

minimum for (S̃, K̃), and as a result, we obtain a contradiction. �

Let K0 be a minimal (with respect to the number of crossings) repre-

sentative of K on S. Let us use the next lemma.

Lemma 1.1. Let K and K ′ be two diagrams on S, and let K ′ be obtained

from K by applying a finite sequence of decreasing first Reidemeister moves,

decreasing second Reidemeister moves not causing destabilizations, and also
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third Reidemeister moves and isotopy. Let γ be a non-contractible closed

curve such that γ ∩K = ∅. Then γ can be isotoped simultaneously with the

diagram K in such a way that the resulting curve and the resulting diagram

will not intersect each other in the surface. In particular, there exists a

curve γ′ isotopic to γ such that γ′ ∩K ′ = ∅.

Proof. The curve γ lies in a non-trivial (non-homeomorphic to a disc)

component of S \K. Let us observe what happens with components under

moves. Under first, second and third Reidemeister moves a trivial compo-

nent of the complement disappears (under the third move, one more such

component appears), and the other components are isotoped. Under an

isotopy all components are isotoped. Therefore, our curve can be isotoped

together with all components in such a way that the resulting curve does

not intersect the resulting diagram in the surface. �

Now, let us prove Theorem 1.2. Since a minimal (with respect to

the crossing number) representative is unique up to isotopy, then using

Lemma 1.1 one may assume that K1 = K2 = K0 and K0 ∩ γi = ∅, i = 1, 2.

Let us consider the complete destabilization of the representative (S,K0).

To this end, we replace all non-trivial components of S \ K0 with unions

of disjoint discs and glue discs along circles, along which these components

were joined to the knot K0. This is equivalent to performing consecutive

destabilization along some set of non-intersecting non-trivial curves lying

in S \K0. It is clear that one can choose this set in such a way that this

set contains curves γi. Therefore, the result (S̃, K̃) of the complete desta-

bilization is obtained by further destabilizations of (Si,K
′
i) (along the rest

of curves from this set). Theorem 1.2 is proved.

In Chap. 8, we shall consider the theory of free knots which is a dramatic

simplification of the theory of virtual knots. Speaking roughly, a free knot is

an equivalence class of curves without any connection with a manifold, i.e.

we do not consider pairs (M, δ), but do consider only curves and manifolds

are arbitrary. In spite of the fact that flat virtual knots are algorithmi-

cally recognized, we do not know whether free knots are algorithmically

recognizable.

Let us define an equivalence relation up to free homotopy and stabiliza-

tion more precisely.

Let S be a set of all pairs (M, δ), where M is a smooth oriented closed

2-surface (probably disconnected, but with a finite number of connected

components), and δ be an unordered finite set of closed curves immersed

in M . Later on, we shall always consider only generic immersions.
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Let us define equivalence classes on S by means of the following elemen-

tary equivalence relations:

(1) two pairs (M, δ) and (M ′, δ′) are equivalent if there exists a homeomor-

phism M →M ′ identifying the sets δ and δ′;

(2) for a fixed manifold M if a set δ of curves is free homotopic to a set δ′

of curves in M , then the pairs (M, δ) and (M, δ′) are equivalent;

(3) two pairs (M, δ) and (N, δ) are equivalent if N is the manifold obtained

fromM by deleting two discs not intersecting curves from δ and pasting

an oriented handle instead of them (stabilization);

(4) for each closed oriented 2-manifolds N , pairs (M, δ) and (M ⊔N, δ) are
equivalent.

It is natural to consider the inverse operation to each elementary oper-

ation; the inverse operation to the stabilization is called destabilization.

In relation (4) the sign ⊔ stands for the disconnected sum of the manifold

M (with all curves from the set δ on this manifold) and the manifold N

(with empty set of curves).

Further, we shall need these combinatorial objects for constructing

much stronger invariants of virtual knots (the Ξ-polynomial, see Chap. 4,

Sec. 4.3.2).

The space of Vassiliev’s invariants of order zero is the space of functions

on virtual knots, which are invariant under the relation ⇐⇒ , i.e.

functions on flat virtual knots. Thus the linear space spanned by flat virtual

knots is dual to the space of Vassiliev invariants of order zero, see Chap. 7

for details.

Besides knot theory, there exists the theory of braids (the notion was

first introduced by Artin [12]). By the group of braids with n strands we

mean the fundamental group of the configuration space of unordered sets

of n distinct points on the complex line. Thus, for defining a braid with

n strands we have to define a closed path in this configuration space, i.e.

to describe a trajectory of moving of n points in the time in such a way

that they will run into the place of initial points at the final moment of

time (in some order). An order of the points is not fixed. If we fix an

order of the points, we shall get the notion of a pure braid. Braids can be

considered in either smooth category or piecewise-linear category, herewith

in the smooth category the operation of smoothing under multiplication of

braids is naturally defined.

An initial point in the configuration space is usually the set of real points

{1, . . . , n} on the complex line C.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 1. Basic Definitions and Notions 23

Trajectories of moving of distinct points represent strands of a braid. A

homotopy in the space of braids represents a continuous deformation of all

strands without intersections.

There exists a natural operation for closing a braid: the closure of a

braid. If we connect each upper end of the braid with the corresponding

lower end, we shall get the well-defined class of the link, see Fig. 1.21.

A

B

1 2 3 4A A A

B B B
1

2 3 4

Fig. 1.21 The closure of a braid.

Equivalence classes of braids have a natural group structure.

Simultaneously with virtual knot theory, there exists the theory of vir-

tual braids first considered in papers by Vershinin [307], Kamada [153], see

also [166, 209]. The group of virtual braids with n strands represents the

group with two families of generators: n − 1 classical generators (like for

classical braids) and n − 1 virtual generators (like for symmetric group).

The relations correspond to all the generalized Reidemeister moves except

for the first classical and virtual moves Ω1,Ω
′
1 and a remote commutativ-

ity (see below). They are divided into three classes. The classical relations

(which are related to the classical generators), the relation of the symmetric

group (which are related to the virtual generators) and the mixed relations

(which correspond the semivirtual move Ω′′
3).

Just as the closure of a classical braid gives us a classical link, the

closures of virtual braids lead to virtual links. Moreover, such links are

automatically oriented. The orientation is inherited from a braid, if all

braids are oriented from top to bottom. An example of a virtual braid is
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Fig. 1.22 A virtual braid.

depicted in Fig. 1.22.

There are a line of natural aspects of the theory of classical and virtual

braids. Let us note some of them.

(1) Any oriented classical link can be obtained by closing a braid. This

fact was proved in [6]. Any oriented virtual link can be obtained by

closing a virtual braid, see [153, 307].

(2) The closures of isotopic (in the classical case) or equivalent (in the

virtual case) braids lead to isotopic (equivalent) closures. This assertion

follows from the definition.

(3) Two classical braids having isotopic closures are obtained from each

other by a finite sequence of, so-called, Markov’s moves (see [26, 252]).

Two virtual braids having equivalent closures are obtained from each

other by a finite sequence of virtual Markov’s moves (Kamada); an-

other set of sufficient moves was suggested by Kauffman and Lam-

bropoulou [166]. In the series of papers [29–34] it was shown that the

unknot can be detected by means of braid theory.

(4) The group of classical braids is naturally embedded in the group of

virtual braids. This fact was first proved by Fenn, Rimanyi and

Rourke [87]. In Chap. 6 of the book, we give a proof of this fact based

on the invariant F [209].

Note that the assertion that the natural mapping from the set of clas-

sical knots to the set of virtual knots is a one-to-one correspondence
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(with its image), and is not equivalent to the analogous question about

braids. Moreover, none of these two assertions is not direct consequence

of the other one.

(5) There are a lot of algorithms for recognizing classical braids, see,

e.g. [12, 69]. Moreover, for classical braids there are complete in-

variants clearly described and faithful finite-dimensional representa-

tions [24, 186]. For classical braids with any number of strands the

problem of conjugacy was solved positively [102]. The Dehornoy’s al-

gorithm leads to ordering of classical braids, see [69, 70, 200].

For the case of virtual braids with three strands, an algorithm of recog-

nition was constructed by Bardakov by means of bringing braids to

a normal form, see [16]. In [109] Godelle and Paris claim that they

have a refinement of Bardakov’s paper [16] where they prove the word

problem for virtual braid groups with any number of strands.

The first-named author of this book constructed an invariant of virtual

braids which was a generalization of a complete invariant of classical

braids. The question whether this invariant is complete is still open.

Note that the problem of conjugacy for virtual braids is not solved, and

the question whether the group of virtual braids is linear is still open.

(6) The problem of constructing invariants of virtual knots by using braids

is also interesting. In the classical case, the construction of such in-

variants was initiated by Jones [142] who constructed an invariant of

links by using of Markov’s theorem. In what follows, it led to the the-

ory of quantum invariants of classical knots. The theory of quantum

invariants of virtual knots is not completed, the main obstruction to

a complete construction is the virtual first Reidemeister move Ω′
1. If

we disregard this move, we shall get the theory of rigid virtual knots.

All quantum invariants of classical knots can be extended to the theory

of rigid virtual knots (Kauffman’s theorem from [158]). The theory of

rigid knots is more explicit in approaching the theory of classical knots

rather than the theory of virtual knots.

1.3 Self-linking number

Let us bring one simple invariant of virtual knots belonging to Kauff-

man [161] and based on the notion of parity. This invariant is the first

one in which parity is used. Further (see Chap. 8), we shall show that the

genuine notion of parity gives deep, important and interesting results.
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Definition 1.8. Let K be a diagram of an oriented virtual knot. Call a

classical crossing v of K odd, if in the Gauss code of K the number of letters

between two occurrences of the crossing v is odd.

Set:

J(K) = w(K)|Odd(K),

where Odd(K) denotes the collection of odd crossings of K, and the re-

striction of the writhe w(K) to Odd(K), denoted by w(K)|Odd(K), means

the summation the signs of the odd crossings in K. Then it is not hard to

see that J(K) is an invariant of the virtual knot (link) K. We call J(K)

the self-linking number of the virtual diagram K. This invariant is simple,

but remarkably powerful.

If K is classical, then J(K) = 0, since there are no odd crossings at a

classical diagram.

Theorem 1.3. Let K be a virtual knot diagram and let K∗ denote the

mirror image of K (obtained by switching all the crossings of the diagram

K). Then

J(K∗) = −J(K).

Hence, if J(K) ̸= 0, then K is inequivalent to its mirror image. If K

is a virtual knot and J(K) is non-zero, then K is not equivalent to any

classical knot.

We leave the proof of this theorem and the proof of the invariance of

J(K) to the reader. See [161] for more about this invariant.

K

a

b

E

c

a
b

Fig. 1.23 Virtual trefoil K and virtual figure eight E.

In Fig. 1.23, the two virtual knots illustrate an application of Theo-

rem 1.3. In the case of the virtual trefoil K two crossings are odd and,

hence, we have J(K) = 2. This proves that K is non-trivial, non-classical
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and inequivalent to its mirror image. Similarly, for the virtual knot E the

crossings a and b are odd. We have J(E) = 2 and, hence, the knot E is also

non-trivial, non-classical and inequivalent to its mirror image. Note that

for the knot E the invariant is independent of the type of the crossing c.

d

’K

ca

b

Fig. 1.24 The knot K′.

In Fig. 1.24, the virtual knot K ′ has J(K ′) = 2. Note that K ′ would

be unknotted if we allowed the second (Fig. 1.16, lower) forbidden move.

This example underlines why we forbid such moves in virtual knot theory.
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Chapter 2

Virtual Knots and Three-Dimensional
Topology

2.1 Introduction

Three-dimensional topology plays a key role in classical knot theory. The

first invariants of classical knots and links were invariants of topological na-

ture related to the complement to a tubular neighborhood of the link. So are

the fundamental group (of the complement to the link) and the Alexander

polynomial [5, 7]. As it was clarified later, the topology of the knot comple-

ment completely defines its isotopy class (the Gordon–Luecke theorem [111];

an analogous statement about links is false). Besides, due to the topologi-

cal theorem of Waldhausen [313] stating that for some class of 3-manifolds

(which are called sufficiently large) every isomorphism of the fundamen-

tal group is generated by some homeomorphism of manifolds, a formally

invariant of classical links was constructed, see papers of Matveev [243],

Joyce [144], Eisermann [81] and Deviatov [71]. Here the key observation is

that the complement to a tubular neighborhood of a non-trivial knot is a

sufficiently large 3-manifold with boundary.

This chapter is devoted to the proof of the two basic results: We prove

the algorithmic recognizability of virtual links and we prove that any non-

trivial connected sum of two non-trivial virtual knots is non-trivial.

The first algorithm for recognizing classical knots and links is also re-

lated to the three-dimensional topology. Namely, it is based on the theory of

normal surfaces, suggested by Haken [118] and developed by Hemion [121]

and Matveev [243]. Normal surfaces were first introduced by Kneser [183].

The main idea is that in “good” 3-manifolds (possibly, with boundary),

there is a class of normal surfaces, for example, those surfaces having

“right” position with respect to the decomposition of the manifold (for

example, to its triangulation). The key statement of the Haken theory
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states that normal surfaces are obtained from a finite algorithmically de-

cidable collection of basic normal surfaces. Moreover, for many important

properties P the following statement holds: If there exists a surface pos-

sessing the property P , then there exists a basic normal surface possessing

the same property. On the set of normal surfaces the so-called geomet-

ric summation operation is defined: Every surface is defined by a finite

number of non-negative characteristics which are additive with respect to

the summation. The question of finding basic normal surfaces is reduced

to the question of finding basic non-negative integer-valued solutions of a

finite integral system of equations. This problem is algorithmically decid-

able, but its solution is too huge in concrete cases related to problems of

three-dimensional topology.

For a review of the normal surface theory and its application to three-

dimensional topology, see [243].

Therefore, many problems in three-dimensional topology can be algo-

rithmically solved if they are reformulated in the language of normal sur-

faces and their properties (for example, the problem of recognizing a clas-

sical knot). The first impeccable proof of all statements of Haken’s theory

can be found in [243].

From the very beginning, virtual knots are connected to three-

dimensional topology. When constructing this theory, Kauffman was moti-

vated by the theory of knots in “thickened surfaces” developed by Jaeger,

Kauffman, and Saleur [139]. An important step for understanding this con-

nection is Kuperberg’s theorem (Theorem 2.1), stating that every virtual

knot has a canonical minimal realization (which is minimal with respect to

the surface genus).

We shall use this fact together with key statements of the Haken–

Matveev theory for the solution of two problems in virtual knot theory:

The proof of the fact that any connected sum of non-trivial virtual knots

is non-trivial, and the algorithmical recognition of virtual links.

Note that the algorithmic recognition of links (both virtual and classi-

cal) in terms of the normal surface theory is principally a logical question:

Though a formal description of all steps of the algorithm (for classical or

virtual case) can be described algorithmically, this algorithm is too com-

plicated, and it can hardly be realized by computer (without additional

simplification ideas) for concrete practical purposes.

In this chapter, we use the following definition of virtual knots and links.

Definition 2.1. A virtual link is an equivalence class of links in thickened
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surfaces M × I up to stabilizations/destabilizations (see further).

A virtual linkK is oriented if the corresponding link inM×I is oriented,
i.e. so is every circle S1, . . . , S1 (preimage of any link component).

Analogously, one can define framed virtual links (see Definition 1.1)

that can be presented by a collection of bands S1 × I and Möbius bands

embedded in thickened surfaces.

When defining an equivalence relation of oriented links, we require that

the orientation is preserved for all components.

Definition 2.2. By a thickened surface we mean the Cartesian product

M×I, where I is the interval [0, 1], andM is the closed oriented 2-manifold,

not necessarily connected. Herewith, if we have a link, we require that for

every connected componentMi ofM , the thickened surfaceMi×I contains
at least one connected component of the link.

In particular, when we deal with knots, the underlying manifold always

has to be connected, i.e. the surfaceM is homeomorphic to the sphere with

some number of handles.

By destabilization we mean the following: Let S be a non-contractible

circle on the surface M for which there exists a (vertical) annulus C ho-

motopic (in the class of proper embeddings, see Fig. 2.1) to the annulus

S × I, and not intersecting the link (during the homotopy process it is as-

sumed that the intersection of the annulus with ∂(M × I) coincides with

the boundary of the annulus). Then our destabilization is cutting of the

manifold M × I along the annulus and pasting of the newborn components

by plates (thickened discs) D2 × I (Fig. 2.1). If this cutting leads to a

new empty component, this component has to be removed in order not to

violate the initial agreement (Definition 2.2): In each component Mi × I,
there should be at least one link component.

We shall also use the expression destabilization along an annulus C.

By stabilization we mean the operation opposite to destabilization.

In other words, the stabilization and destabilization are addition and

removal of handles to (from) the surface M ; herewith these (thickened)

handles we are adding/removing should not contain points of the link.

It is evident that every diagram can be stabilized.

An important question is: How long can one destabilize a diagram? Let

a virtual link be given by a link in a thickened surface M × I. We say

that this representative of the virtual link is minimal if no destabilization

is possible.
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Fig. 2.1 Destabilization of a pair (S2 × I,K).

In this chapter, by “manifold” we mean a 3-manifold N , possibly, with

a boundary, and by “surface” we mean a proper 2-surface F ⊂ N unless

specified otherwise. This means that F ∩ ∂N = ∂F , where ∂N and ∂F

is the boundary of the manifold N and the boundary of the surface F ,

respectively.

Moreover, in this chapter all 3-manifolds are assumed oriented, and the

orientation is fixed; by homeomorphism we always mean an orientation-

preserving homeomorphism.

2.2 The Kuperberg theorem

Using methods of three-dimensional topology, Kuperberg proved the fol-

lowing important and fundamental theorem, see [189].

Theorem 2.1. For every virtual link K its minimal representative is

unique up to a diffeomorphism of the pair (M × I,K ⊂ M × I) to itself

taking the upper boundary component M × {1} to itself.
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Remark 2.1. This theorem is very useful in virtual knot theory. For ex-

ample, it allows one to understand whether two links are equivalent or not

by just considering their minimal representatives, to determine whether a

virtual knot diagram is non-classical (and hence non-trivial), see [75, 146].

Also note that some invariants of knots give minimality, i.e. they show that

a given representative is minimal, see Chap. 8.

Remark 2.2. In Chap. 1, we proved the theorem for curves which was

analogous to Theorem 2.1, see Theorem 1.2.

Let us prove Theorem 2.1. Here we follow the Kuperberg’s proof.

Proof of Theorem 2.1. Let us generalize the definition of the destabi-

lization of a link K ⊂M × I to include two other operations:

(1) If a sublink K ′ ⊂ K is separated from the rest of K by a sphere or

disc A ⊂M × I, then we can remove K ′ from M × I and place it in a

separate thickened sphere S2 × I.
(2) If an annulus A divides M × I such that K lies entirely on one side and

some genus of M is on the other side, then we can cut M × I along

A, discard the naked component (i.e. the component not containing

K), and cap the remaining component. Both operations can easily be

reproduced by the destabilization.

Definition 2.3. We say that a surface is admissible if it is a vertical annu-

lus, a sphere, or a proper disc; and that an admissible surface is essential

if it does not bound a three-dimensional ball in (M × I) \K.

Thus, admissible, essential surfaces are those along which we can desta-

bilize K ⊂M × I.
Suppose, to the contrary of the conclusion, that some link K ⊂ M × I

has more than one minimal representative. If M has c components with

total genus g, and L has n components, assume that g + n − c is minimal

among counterexamples. (Note that n > c.) Then every destabilization

of K ⊂ M × I has a unique minimal representative, since destabilization

always reduces g + n− c.
We say that two such destabilizations, K ⊂ M1 × I and K ⊂ M2 × I,

are descent equivalent if their minimal representatives are isomorphic.

The aim is to show that all destabilizations of K ⊂ M × I are descent

equivalent. Let us prove this fact by the induction on the complexity of

intersection between two destabilization annuli by compressing one along

an innermost disc of the other.
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For example, if A1 and A2 are disjoint admissible, essential surfaces,

then the resulting destabilizations K ⊂ M1 × I and K ⊂ M2 × I are

descent equivalent. This is immediate if A1 and A2 are parallel. If they

are not, then we can destabilize each K ⊂Mi × I along A3−i to produce a

common descendant.

Definition 2.4. A circle in an annulus C is trivial if it represents the trivial

element in the fundamental group of the annulus C, otherwise the circle

is called horizontal. An arc in an annulus C is called trivial if it connects

points from the same boundary component of the annulus; otherwise it is

called vertical.

Suppose that A1 and A2 are descent inequivalent surfaces in general

position, and that they intersect in the fewest curves among descent in-

equivalent pairs in (M ×I)\K. If a curve C ⊂ A1∩A2 is a circle, then it is

either horizontal in Ai (if Ai is an annulus and C is parallel to ∂Ai), or it

is trivial (if it bounds a disc in Ai). If C is an arc, then it is either vertical

(if Ai is an annulus and C connects the two components of ∂Ai), or it is

trivial (it bounds a disc together with a part of the boundary of Ai).

If a circle of A1 ∩ A2 is trivial in, say, A1, then some such circle C is

innermost, i.e. it bounds a disc D in A1 which is disjoint from (A1∩A2)\C
(a naked disk), as in Fig. 2.2(a). In this case let A′

2 and A
′′
2 be the connected

components of the compression of A2 along the disc D, as in Fig. 2.2(b).

Both A′
2 and A′′

2 are admissible, and at least one is essential, for otherwise

A2 would not be. If A′
2 (say) is essential, then it intersects A1 less than

A2 does, and it does not intersect A2 at all. But since A1 and A2 intersect

least among descent inequivalent pairs of essential surfaces, it would follow

that A1 and A2 are both descent equivalent to A′
2, a contradiction.

The same argument applies if A1 ∩ A2 has a trivial arc in A1, and of

course it also applies to trivial circles and trivial arcs in A2. Thus A1 ∩A2

consists entirely of vertical segments or horizontal circles in both A1 and

A2. In particular, both A1 and A2 are vertical annuli and not discs or

spheres.

Suppose that A1∩A2 consists of horizontal circles. We can assume that

none of the four circles of ∂A1 and ∂A2 bounds a disc in M × I. If, say,

C ⊂ A1 bounds a naked disc D ⊂ M × ∂I, i.e. a disc being disjoint from

A2, then we replace A1 by the disc D ∪ A1 and reduce to a previous case

without worsening A1 ∩ A2. Otherwise let C ⊂ A1 ∩ A2 be an outermost

circle, i.e. it and one component of ∂A1 bound a naked annulus A ⊂ A1.

The circle C divides A2 into two annuli A′
2 and A′′

2 , one of which, say A′
2,
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1
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A
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Fig. 2.2 Compressing A2 along the disc D to simplify A1 ∩A2 (side view).

makes a vertical annulus together with A. The annulus A∪A′
2 is necessarily

essential since its boundary circles do not bound discs inM×∂I. But after
displacement, A∪A′

2 intersects A1 and A2 less than they do each other. It

is therefore descent equivalent to both.

Finally suppose that A1 ∩A2 consists of vertical arcs. The boundary of

a regular neighborhood of A1∪A2 consists of vertical annuli B1, B2, . . . , Bn.

Each Bi is disjoint from both A1 and A2, so if any of them is essential, it

is descent equivalent to both A1 and A2, a contradiction. But if they are

all inessential, then one of them, say B1, separates A1 and A2 from the

link K and bounds a ball that contains A1 and A2. This contradicts the

hypothesis that A1 and A2 are essential. �

In the case of knots or, in general, non-splitting links the corresponding

surface has to be connected, i.e. this surface has to be the sphere with g

handles, Sg.

Definition 2.5. The underlying genus of a non-splitting virtual link K is

the genus g of the minimal surface Sg such that the link K can be realized

in Sg × I.

Remark 2.3. Classical links and only them have the underlying genus

zero.
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Remark 2.4. In what follows, we shall define some more characteristics

of classical and virtual links, called a word “genus”: the underlying genus

of a link, the genus of an atom, Seifert genus. Sometimes we omit the

characteristic “underlying” and write just “genus”, if it is clear from the

context what we mean. By the genus of a thickened surface M × I we

always mean the genus of the surface M .

From Kuperberg’s theorem it follows if two virtual knots K1 and K2

have the same genus g, then they are equivalent to each other if and only

if one of them can be transformed to the other one in the class of virtual

knots of the genus g, i.e. by isotopies in Sg×I (and homeomorphisms of the

surface Sg on itself). In particular, the case g = 0 means that two classical

diagrams of knots (links) are virtual equivalent if and only if they represent

the isotopic links.

Therefore, we have the following theorem.

Theorem 2.2. Classical links form a subset in the set of virtual links. In

other words, if two classical diagrams are equivalent (in the class of virtual

diagrams), then they represent isotopic classical links.

This theorem was first proved in [114] by using the notion of the dis-

tributive groupoid. We shall concern this question in Chap. 3.

2.3 Genus of a virtual knot

Definition 2.6. A disconnected sum of virtual diagrams (of knots or links)

K1 and K2 is a planar diagram K such that there exists a line l in the

plane and the intersection of K with one of the two half-planes defined by

l consists of the diagram K1, and the intersection with the other half-plane

consists of K2. Denote the obtained disconnected sum by K1⊔K2.

It is obvious that any disconnected sum of virtual links is well defined:

The class of the virtual link generated by the diagram K1⊔K2 does not

depend on a choice of diagram-representatives of the links generated by K1

and K2, respectively.

Let us call a virtual diagram connected if it cannot be obtained from the

disconnected sum of two non-empty virtual diagrams by applying detour

move.

Let K1 and K2 be two non-intersecting diagrams of oriented virtual

knots on an oriented plane P having the property that some 2-disc E in-
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tersects K1 ⊔ K2 in two arcs AB ∈ K1 and CD ∈ K2 having opposite

orientations, i.e. the first arc is oriented from A to B, and the second one is

oriented from C to D, herewith traveling along the circle ∂E in clockwise

manner we meet four points in the order A, B, C, D. Assume that there

exists a line l intersecting the disc E and not intersecting the diagrams

K1, K2 such that the diagrams K1 and K2 lie on the opposite sides of the

line l.

Definition 2.7. A connected sum of the diagrams K1 and K2 (notation

K1#K2) is the diagram obtained from the diagram of disconnected sum

K1 ⊔K2 by deleting arcs AB and CD and adding arcs DA and CB with

extending the orientations of the diagrams K1 and K2 on the obtained

diagram K1#K2, see Fig. 2.3.

A

C

K1 2K

B

D

l
K1

2K

B

A

C

D

Fig. 2.3 An example of connected sum of virtual knots.

Note that the notion of connected sum is not well defined. In Figs. 2.4

and 2.5 we have two non-equivalent connected sums of the virtual trefoil

with itself.
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Fig. 2.4 A connected sum K#K.

Fig. 2.5 Another connected sum K#K.

The equivalence class of a connected sum of virtual knots is also not

well defined. Therefore, we shall use the term a connected sum of virtual

knots for any of connected sums obtained by considering a connected sum

of some two diagrams.

It is also interesting to consider a connected sum of long virtual knots:

it is well defined. Section 3.3 is devoted to long virtual knots.

The goal of this section is to prove the following theorem.

Theorem 2.3. If at least one of two virtual knots K1, K2 is non-trivial,

then any of their connected sums K1#K2 is a non-trivial virtual knot.

This theorem will follow from Theorem 2.5 about the (underlying) genus

and Theorem 2.1.

In the case of classical links the theorem analogous to Theorem 2.3 was

proved by Schubert [277]. In the proof of this theorem he used consid-

erations analogous to the idea of the proof of Theorem 2.5. Namely, the

additivity of the Seifert genus (a non-negative characteristic of classical

knots which is equal to zero only for the unknot) was proved.
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Recall that for any classical link K ⊂ R3 there exists an oriented con-

nected surface F ⊂ R3 such that ∂F = K. The minimal genus of such

surface is called the Seifert genus of the link K.

In the case of classical knots which diagrams lie on the opposite sides

of some line l we choose classical diagrams K1 and K2 of them in such

a way that for some disc E intersecting l in two points on the plane the

intersection E ∩ (K1 ∪ K2) consists of two non-intersecting arcs AB and

CD lying on the opposite sides of the line l and having opposite directions

inside the disc. After that the connected sum of the knots is defined by

means of the diagram K1#K2 = K1 ⊔K2\(AB ∪ CD) ∪ (DA ∪ CB) with

the obvious orientation.

This definition for classical knots gives the classical connected sum. The

obtained classical knot is well defined: Its isotopic class does not depend

on the choice of representatives K1 and K2. The proof of this fact is well-

known, see, e.g. [46, 221].

We shall call this connected sum the classical connected sum of classical

knots. By this we emphasize the choice of a connected sum in construction

of which we use classical diagrams and do not use virtual crossings. In

contrast to the general case of a virtual connected sum (which can be used

to diagrams of classical knots), the classical connected sum is well defined.

Schubert’s theorem is as follows.

Theorem 2.4 ([277]). If the classical connected sum of two classical knots

K1, K2 is the unknot, then each of the knots Ki, i = 1, 2, is the unknot.

Definition 2.8. We say that the minimal representative of a virtual knot

K as a knot in a thickened surface M × I is singular if there exists a

homotopic non-trivial circle S ⊂ M not separating the surface M into

two parts and an annulus C ⊂ M × I such that ∂C = C ∩ (M × {0, 1}),
herewith C∩(M×{1}) is homotopic to S×{1}, and the intersection C∩K
is transversal and consists of exactly one point.

Remark 2.5. The condition that the intersection consists of one point

leads to the fact that the annulus C does not separate M × I into two

connected components.

An example of singular realization is shown in Fig. 2.6.

The key assertion in the proof of Theorem 2.3 is the following.

Theorem 2.5. For any two virtual links K1, K2 and any of their connected

sums K1#K2 the inequality g(K1#K2) > g(K1) + g(K2) − 1 holds, and
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‘‘Thickened’’ meridian of 

the ‘‘thickened’’ torus 

intersecting 

the knot in one point

Fig. 2.6 A singular minimal realization.

g(K1#K2) > g(K1) + g(K2) if the minimal representative of any of the

virtual knots K1, K2 is not singular.

Remark 2.6. Note that these inequalities can be changed by the equalities.

In Chap. 4 we shall describe the Kishino knot having the underlying genus

two and being a connected sum of two trivial knots (genus zero).

In what follows, we shall need the following.

Lemma 2.1. If a connected sum of two virtual knots K1, K2 has genus

zero (i.e. it represents a classical knot), then both knots K1 and K2 have

genus zero, and this connected sum is equivalent to their classical connected

sum.

A proof of Lemma 2.1 will follow from the proof of Theorem 2.5.

From Theorem 2.5 and Lemma 2.1 Theorem 2.3 follows. Indeed, let

K1 and K2 be two virtual knots. If at least one of them (say, K1) has
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the (minimal) underlying genus greater than zero, then K1#K2 also has

the genus greater than zero and, therefore, it cannot represent the unknot.

Namely, according to Theorem 2.5, the unique possibility for which we

have g(K1#K2) = 0 is the case when g(K1) = 0, g(K2) = 1 (or g(K1) =

1, g(K2) = 0), herewith both minimal representatives have to be singular,

but this is impossible in the case of genus zero by definition (since there

are no non-trivial cycles on the sphere).

In the case when both knots are classical we can, according to

Lemma 2.1, consider their classical connected sum. The latter represents

a non-trivial knot according to Schubert’s theorem (with the assumption

that at least one of the knots is not trivial).

Let us pass to the proof of Theorem 2.5.

Remark 2.7. In what follows, we shall denote an abstract virtual knot

and a knot representing them in a thickened surface by the same letter.

For instance, a virtual knot K is represented by a knot K in a thickened

surface Sg × I.

2.3.1 Two types of connected sums

Given two virtual knots K1 and K2 represented by knots in thickened sur-

faces and let us fix their connected sum. In this case there are two natural

possibilities to represent their connected sum as a knot in a thickened sur-

face, see Figs. 2.7(a) and (b).

(a) The first way (b) The second way

Fig. 2.7 Two types of connected sums.
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The first method for making a connected sum goes as follows. We take

thickened surfaces (M1 × I) ⊃ K1 and (M2 × I) ⊃ K2 and cut two vertical

full cylinders Di × I, where Di ⊂ Mi is a disc, such that the intersection

(Di × I)∩Ki is homeomorphic to an interval. Then we paste the obtained

boundaries together (by identifying ∂D1 × I and ∂D2 × I with respect

to the orientation of manifolds, the direction of the interval I and the

orientation of the knot at the two gluing points). As a result, we obtain

(M × I) = ((M1#M2)× I) with the knot K1#K2 inside.

Clearly g(M) = g(M1) + g(M2).

Another way to construct a connected sum works only in the cases when

realizations of both knots K1 and K2 are singular. The second method goes

as follows. Suppose K1 and K2 lie inM1×I andM2×I, where both g(M1)

and g(M2) are greater than zero, and there exist two non-trivial (not zero-

homotopic) curves γ1 ∈M1 and γ2 ∈M2 such that (γi× I)∩Ki consists of

precisely one point (note that in this case such a curve cannot divide the

2-manifold into two parts). Then we cut the thickened surfaces (Mi × I)
along the annulus γi × I and paste them together (in this case we paste

together two pairs of cylinders). Here we also suppose that pasting agrees

with the position of intersection points of the knots and the orientations of

the knots.

As a result, we get the manifoldM×I, where g(M) = g(M1)+g(M2)−1
for some connected sum K1#K2 lying in M .

In what follows, we shall consider only these two types of connected

sums when we perform a destabilization and define the genus of a virtual

knot.

Kuperberg’s theorem is used by us for the notion of the genus of a

virtual knot to be well defined.

2.3.2 The proof plan of Theorem 2.5

Consider two virtual knots K1 and K2 and their connected sum K1#K2.

Let us realize this connected sum by curves in thickened surfaces by using

the first method. Denote the corresponding surfaces by M1, M2, M1#M2,

and denote the corresponding knots by K1, K2, K1#K2 (we use the same

letters for abstract virtual knots and for their representatives in thickened

surfaces). Now, we are going to transform (M1#M2)× I and knots inside

it.

To simplify the notation, let us use the same letters for closed surfaces

and surfaces with boundary. We shall write M = M1#M2, and M =
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M1 ∪M2. We prefer the second notation to emphasize that both M1 and

M2 are parts of M , while the first notation will be used when M1 and M2

are treated as separate manifolds.

We shall perform the destabilization process on the knot obtained by

the connected sum operation described in the previous section.

The process of our destabilization will consist of the following steps.

We shall show that after each step of destabilization the following asser-

tions hold (all notations stay the same during the transformation); further

M is a closed surface:

(1) The ambient manifold M × I can be represented by a connected sum

of two parts M1#M2 or by pasting M1 and M2 along two cut cylinders

(as it was in the second method of the connected sum) in such a way

thatMi×I contains the knot Ki, i = 1, 2 (i.e. if we close this manifold,

we obtain a surface realization of Ki).

Here by closing we mean the pasting of obtained cylindrical holes S1
i ×

I by three-dimensional plates D2
i × I in order to get two thickened

surfaces.

(2) The intersection M = M1 ∩M2 consists of one or two components; so

(M1 × I) ∩ (M2 × I) consists of one or two annuli.

(3) The knot K1#K2 intersects the manifold (M1∩M2)×I precisely at two

points; in the case when M1 ∩M2 is not connected, these intersection

points lie in different connected components.

(4) The process of destabilization described in the previous three items

stops for finite number of steps. In this moment g(M1#M2) gives the

minimal genus for the knot K1#K2.

Here we use Kuperberg’s theorem stating that the minimal representa-

tive is unique, and it gives the minimal genus of the knot K1#K2. The

process continues unless destabilization is possible, i.e. the genus is not

minimal.

If we organize the process as described above, we shall prove Theo-

rem 2.5. Indeed, at each moment of the process we have K1 and K2 repre-

sented by knots in thickened surfaces of genera g1 and g2, respectively. The

knotK1#K2 lies in the surface of genus g1+g2 if we deal with the connected

sum of the first type and in the surface of genus g1 + g2 − 1 if we deal with

the connected sum of the second type. So, the same holds when the process

stops, thus we have g(K1#K2) = g1+g2 or g(K1#K2) = g1+g2−1, where

the last case is possible only if we have the connected sum of the second

type (hence, both g1 and g2 are greater than zero). Taking into account
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that gi is the genus of a surface (not necessarily minimal) representing Ki,

we obtain the statement of the theorem.

2.3.3 The process of destabilization

In this subsection, we describe how this process works.

Suppose we have a connected sum of type j (j = 1 or j = 2) of the

knots K1 and K2. The main statement is the following.

Statement 2.1. If there is a possibility to decrease the genus of M1#M2

(with the knot K1#K2 inside), then one of the following holds:

(1) We can perform a destabilization in Mi (for i = 1 or i = 2) without

changing M3−i and the connected sum type. Thus, we decrease the

genus of one of the connected summands Mi by one, as well as that of

M1#M2.

(2) If we have the first type connected sum, then there is a possibility to

transform it to the connected sum of the second type, decreasing the

genus of M1#M2 by one without changing the genera of M1 and M2.

(3) If we have the second type connected sum, then there is a possibility to

transform it to the connected sum of the first type, decreasing each of

g(M1), g(M2), g(M1#M2) precisely by one.

Together with all points described above, this statement completes the

proof of Theorem 2.5.

Proof of Statement 2.1. First, consider the case of the first type con-

nected sum. We have M = M1#M2. Let A be an annulus separating the

manifold M into two parts M1 and M2. As was said before for convenience

we write M =M1#M2 and sometimes M =M1 ∪M1.

Suppose we are able to destabilize the pair ((M1#M2) × I,K1#K2).

Then there is a vertical annulus C in (M1#M2) × I (i.e. an annulus the

boundary components of which lie in different components of the boundary

(M1#M2) × {0} and (M1#M2) × {1}) which does not intersect the knot

K1#K2. If there is such an annulus which does not intersect A, then we

can destabilize one of the summands, either (M1,K1) or (M2,K2), along

C; this is the first case of Statement 2.1.

Suppose there is no such an annulus C, i.e. any (non-trivial) annulus

C we consider will intersect A. Without loss of generality we assume that

the intersection between each C and A is transverse. Let n be the minimal
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number of connected components of the intersection C ∩ A (we suppose

that n is not equal to zero).

Since C and A are manifolds with boundary (vertical annuli), their

(generic) intersection may consist of:

• trivial circles;

• trivial arcs;

• horizontal circles;

• vertical arcs.

If there is a trivial circle in the intersection C ∩A, then we can consider

the innermost (by conclusion) circle γ = ∂∆ (herewith ∆ ⊂ C). This circle
contains no intersection points with A inside. Because this disc ∆ together

with a disc from A bounds a 3-ball (see Fig. 2.8), we can slightly change

the annulus C in such a way that the total intersection between C and

A decreases, and C remains an annulus with non-contractible core (along

which we can perform the destabilization). The same situation happens

when we have a trivial arc, see Fig. 2.9.

γ

C A

The innermost disc

Disc

Fig. 2.8 Trivial circles.

Now, let us state two auxiliary lemmas.

Lemma 2.2. Suppose Sg is an oriented surface of genus g and let ∆ be

an embedded disc in Sg. Then if a closed curve γ ⊂ Sg\∆ without self-

intersection points is trivial in Sg and not trivial in Sg\∆, then it is parallel

to ∂∆ (i.e. γ ∪ ∂∆ bounds a cylinder in Sg).

Indeed, if the curve γ not having common points with ∆ bounds a disc

in Sg, then γ is contractible in Sg\∆ to the boundary.
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CA ’

’’

C

C

A

Fig. 2.9 Removing the intersection along a trivial arc.

The following lemma is evident.

Lemma 2.3. If a proper annulus C ′ is free homotopic to the annulus A (in

the class of proper annuli), then the annulus C ′ intersects the knot K1#K2.

Now, we may assume that our intersection C∩A consists only of vertical

arcs, or only of horizontal circles (the existence of a vertical arc contradicts

the existence of a horizontal circle).

Suppose we have only horizontal circles. Then C is homotopic to A and,

by Lemma 2.3, the annulus C intersects the knot K1#K2. Thus we obtain

a contradiction.

Now, suppose the intersection C∩A consists only of vertical arcs. Then

the annulus C is divided into 2k parts C1, . . . , C2k, whereas C2l−1 lies in

M1 × I, and C2l lies in M2 × I, where l ∈ {1, . . . , k}, when meaningful.

The annulus C is thus divided into 2k sectors by radii (more precisely,

radial segments); some of these sectors contain intersection(s) with the

knot (they are depicted by thick points), see Fig. 2.10. Denote all these

radii by r1, . . . , r2k.

The annulus A divides M × I into two parts. Let us call one of them

positive, and the other negative. Further, each part Ci of the annulus C

is incident to two radii rj and rk. These two radii divide the annulus A

into two parts; denote these parts (in an arbitrary order) by A+
jk and A−

jk.

There are four options with respect to the following questions:

(1) Is it true that any of the two parts A+
jk and A−

jk intersects the knot

precisely at one point?

(2) Is it true that an annulus obtained by attaching Ci to one of A+
jk or

A−
jk, cuts off a ball (so that if we attach Ci to the other fragment, we
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Fig. 2.10 The annulus C divided into sectors.

get an annulus homotopic to A)?

Remark 2.8. Here we mean that a proper surface (say, annulus) F ⊂
N cuts a ball if N\F has two connected components, one of which is a

topological ball. In other words, F bounds a ball together with a part P of

the boundary ∂N of the manifold N , so that P ∪ F is a 2-sphere.

First, consider the case when the answer to the first question is negative,

i.e. one of the parts, say, A+
jk does not intersect the knot (whence the other

part A−
jk meets the knot twice).

If the annulus obtained by gluing Ci with A+
jk cuts a ball, then we

may “pull” A+
jk through Ci; this would decrease the number of intersection

components between C and A. This leads to a contradiction.

If the annulus obtained by pasting Ci and A
−
jk cuts off a ball, then the

annulus Ci∪A+
jk is homotopic to A; thus it should intersect the knot. This

leads to a contradiction again.

If both answers are affirmative, we get a contradiction: Our knot cannot

meet the boundary of a ball precisely at one point.

If both answers are negative, then one of the gluing Ci∪A+
jk or Ci∪A−

jk

gives a non-trivial annulus not intersecting the knot. By small perturba-

tion we can change this annulus in such a way that a new annulus does

not intersect with A. Thus, we get a contradiction with the fact that C

has a minimal intersection with A among all annulus along which we can

destabilize.

Finally, if, say, A+
jk contains precisely one intersection point with the

knot K1#K2, then the number of intersection components of C ∩A should
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be equal to two.

Indeed, if it is greater than two, then it can be decreased as shown in

Fig. 2.11. More precisely, among all parts Ci of the annulus C we take only

two parts and compose a non-trivial annulus C ′, along which (M1#M2)×I
with the knot K1#K2 inside can be destabilized.

In other words, having more components Ci than two, one can find two

of them which can be repasted and thus obtain a new non-trivial annulus

C ′ intersecting A at a smaller number of curves and not intersecting the

knot K1#K2.

’C

C

Fig. 2.11 Simplifying the curve C.

Thus we see that if the intersection C∩A was minimal (over the number

of connected components), there would be precisely two connected compo-

nents.

Let us show that the destabilization along such C just transforms the

type of connected sum, i.e. we obtain the connected sum of the second type.

Indeed, the annulus A is just cut into two parts by this destabiliza-

tion, and two intersection points after the destabilization lie in different

connected components.

The proof for the case when we have the connected sum of the second

type (and the destabilization takes it to the connected sum of the first

type) goes in the same vein. Either it is possible to destabilize only one

of M1 or M2 with the corresponding knot inside or all annuli along which

the stabilization can be performed intersect M1 ∩ M2 (which consists of

two components in this case). Considering such an annulus representing

minimal intersection with M1 ∩M2, we get the only possibility when the

destabilization transforms the connected sum of the second type to the

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 2. Virtual Knots and Three-Dimensional Topology 49

connected sum of the first type.

Therefore, we have proved not only Theorem 2.5, but also Lemma 2.1.

Indeed, if we have a connected sum of genus zero in the end of destabiliza-

tion, then this connected sum is a connected sum in the thickened sphere

S2× I, this is obviously equivalent to a classical connected sum of classical

knots. �

2.4 Haken’s theory and algorithmic recognition of virtual

links

The aim of this section is to prove the following.

Theorem 2.6. There is an algorithm to decide whether two virtual links

are equivalent or not.

The main argument of the proof is an application of an algorithm recog-

nizing some class of 3-manifolds (so-called Haken manifolds) and studying

“normal surfaces” in these manifolds. This method was widely used for

solving different algorithmic problems in three-dimensional topology. In

particular, in the frame of this theory analogous (but simpler) arguments

led to a solution in the classical case.

We shall use the result by Moise [249] that each 3-manifold admits a

triangulation. In the sequel, each 3-manifold is thought to be triangulated;

herewith all considered subsets of 3-manifolds, for example, proper subsets

in it, are assumed to be subpolyhedrons of a given triangulation.

In each triangulated 3-manifold N (perhaps, with empty boundary) one

can consider proper 2-surfaces F . Recall that a surface F is called proper

if F ∩ ∂N = ∂F . In the class of proper surfaces one can pick out the class

of, so-called, normal surfaces.

A normal surface is a proper surface which, roughly speaking, respects

the triangulation. In this sense the definition depends on a triangulation,

though later properties of normal surfaces which will be described by us

will be universal.

In the class of normal surfaces one can consider the class of fundamental

or basis surfaces. All normal surfaces are obtained from them by applica-

tions of geometric summation (for details see [243]).

The notion of a normal and fundamental surface can be generalized on

manifolds with a pattern on the boundary, which is a graph without isolated

vertices.
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The main statements of Haken’s theory of normal surfaces are the fol-

lowing:

(1) the set of fundamental normal surfaces is finite and can be constructed

algorithmically;

(2) for many natural properties the following statement holds: If there

exists a normal surface F in a manifold N possessing a property P ,

then there also exists a fundamental surface possessing the property P .

From these statements it follows that the problem of finding a normal

surface possessing a “natural” property is algorithmically solvable.

Among the properties mentioned in (2) of the main statements there is

the following: the property for a surface F to be a sphere and represent a

non-trivial element of the second homotopic group of the manifoldN . There

is also a possibility of stabilization/destabilization for a given representative

of a virtual link (see below).

We are not going to give an accurate definition of a normal surface and

a fundamental surface. Our further proof of Theorem 2.6 will be based on

Kuperberg’s theorem and the sequence of lemmas from the theory of normal

surfaces (proofs of the most part of the lemmas can be found in [243]).

We shall need some additional definitions.

A manifold N is called irreducible if each embedded 2-sphere in N

bounds a 3-ball in N .

We shall use the definition of virtual knots as knots in thickened surfaces

M×I up to stabilizations/destabilizations. HereM is a compact 2-surface,

not necessarily connected. Herewith we require that for each connected

component Mi of the surface M , the 3-manifold Mi × I contains at least

one component of the link.

Recall that a representative for a virtual link is minimal if it cannot be

destabilized.

Further, we shall need Theorem 2.1 by Kuperberg [189]. Thus, in order

to compare virtual links, it is sufficient for us to be able to find their min-

imal representatives and compare them. The algorithm to be given below

uses a recognition techniques for 3-manifolds with boundary pattern (see

definition below) connected to the virtual links in question.

We shall use the following facts from Haken–Matveev theory, see [243].

A compressing disc for a surface F in a 3-manifold N is an embedded

(non-proper) disc D ⊂ N which meets F along the boundary of the disc,

i.e. D ∩ F = ∂D.
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A surface (possibly disconnected) F ⊂ N is called compressible in one

of the two cases:

• it admits a compressing disc D such that ∂D does not bound a disc in

F ;

• there is a ball B in N such that B ∩ F = ∂B.

A surface is incompressible if it is not compressible.

A surface F ⊂ N is called boundary compressible if there exists a disc

D ⊂ N such that D ∩ (∂N ∪ F ) = ∂D and D ∩ F is a non-trivial arc in

F (an arc that does not cut a disc from F ). Otherwise, a surface is called

boundary incompressible.

Also, a 3-manifold N is boundary irreducible if for any proper disc D ⊂
N the boundary ∂D bounds a disc on ∂N .

Given a 3-manifold with boundary. By a boundary pattern (first pro-

posed by Johannson [140]) we mean a fixed 1-polyhedron (graph) without

isolated vertices on the boundary of the 3-manifold (we assume this graph

is a subpolyhedron of the selected triangulation).

The existence of a boundary pattern does not change the definition of

incompressible surface and irreducible manifold.

We have straightforward generalizations of a boundary incompressible

surface and a boundary irreducible manifold for the case of manifolds with

a boundary pattern as described below. A disc D ⊂ N is called clean if it

does not intersect the pattern.

For boundary irreducibility we require that for every clean proper disc

D ⊂ N, ∂D ⊂ ∂N the boundary ∂D bounds a disc in F ⊂ N .

Further, a boundary incompressible disc (non-proper) for a surface F is

a clean disc D ⊂ N intersecting the surface F along an arc l ⊂ ∂D and

the arc F ∩ ∂N . In this case a disc D is inessential if l cuts out a disc

D′ from F such that ∂D′ consists of the arc l and a clean arc in ∂N . A

surface F ⊂ (N,Γ) is called boundary incompressible if it has no essential

boundary compressible discs.

Recall that an orientable 3-manifold N is sufficiently large if it contains

a proper incompressible boundary incompressible surface distinct from a

sphere S2 and a disc D.

It is natural to consider the notion of sufficiently large manifold together

with properties of irreducibility and boundary irreducibility. This leads to

the following definition.
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Definition 2.9. A connected 3-manifold without boundary pattern is

Haken if it is irreducible and sufficiently large.

An irreducible boundary irreducible connected 3-manifold (N,Γ) with a

boundary pattern Γ is Haken either if it is sufficiently large or if its pattern

Γ is non-empty (hence, so is ∂N), and N is a handlebody but not a ball.

Definition 2.10. Let N be an irreducible boundary irreducible 3-manifold

(without a boundary pattern). A proper annulus A ⊂ N is called inessential

if either it is parallel relatively ∂ to an annulus in ∂N , or the core circle of

A is contractible in N . Otherwise A is called essential.

Any essential (with respect to the manifold Sg × I from which the link

is deleted, see later) annulus in Sg × I with two boundary components

lying in Sg ×{0} and Sg ×{1} is precisely an annulus along which we may

destabilize.

A manifold with more than one connected component is called Haken

if any connected component of it is Haken.

We shall use the following proposition (see [243, 287]).

Proposition 2.1 (Jaco–Rubinstein–Thompson). Any connected irre-

ducible 3-manifold with non-empty boundary is either sufficiently large or

a handlebody.

Later on, we deal with manifolds with non-empty boundary pattern.

For this manifold to be Haken, it is sufficient to check that the manifold

(more accurate, each of its connected components) in question is irreducible

and boundary irreducible but not a ball.

Let us formulate lemmas (see [243, 287]) which we shall use for proving

Theorem 2.6. We do not give their proofs.

Lemma 2.4 (Jaco–Rubinstein–Thompson). There exists an algo-

rithm to decide whether a manifold N is reducible; if it is so, the algorithm

constructs a 2-sphere S2 ⊂ N not bounding a ball in N .

Lemma 2.5. Classical links are algorithmically recognizable.

This lemma follows from Haken’s theory of normal surfaces; the proof is

based on the following ideas: For each non-trivial non-split link, the com-

plement in S3 to a tubular neighborhood of this link is a Haken manifold.

Endowing the boundary with a pattern, we shall be able to restore the

initial link. After that, the problem is reduced to the recognition problem

for Haken manifolds, for details see [243].
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Lemma 2.6. There is an algorithm to decide whether a Haken manifold

N has a proper clean essential annulus. If such an annulus exists, it can be

constructed algorithmically. Moreover, for two boundary components U, V

of the manifold N the problem of finding an essential annulus such that

at least one component of its boundary lies in U and none of its boundary

components lies in V is algorithmically solved.

Remark 2.9. We shall use this lemma to define whether a given representa-

tive of a virtual link can be destabilized. For this the boundary components

which are the boundaries of tubular neighborhoods of the link components

play the role of V . Therefore, essential annuli the boundary components of

which lie on the boundary components of the thickened surface stay only.

For stabilization we shall require that the boundary components of our

annulus lie on the different boundary components of the thickened surface.

It is easy to see that the question of existence and finding of such an

annulus is also algorithmically recognizable.

Lemma 2.7. There is an algorithm to decide whether two Haken manifolds

(N,Γ) and (N ′,Γ′) with boundary patterns are homeomorphic by means of

a homeomorphism that maps Γ to Γ′.

Consider a virtual link K and an arbitrary representative of K, i.e. a

couple (N,K), where N =M × I for some closed 2-surface M , and K is a

link in N (we use the same letter K for denoting both the initial link and a

representative of the link in N). Let O be a small open tubular neighbor-

hood of the link K. Cut O from N . We obtain a manifold with boundary.

Denote it by NK . Its boundary consists of the boundary components of

N (two, if N is connected) and several tori; the number of tori equals the

number of components of the link K. Let us endow each torus with a pat-

tern ΓK on the boundary, representing the meridian of the corresponding

component with three points on it: We also add a vertex to make a graph

from the meridional circle. Thus we obtain the manifold (NK ,ΓK) with

boundary pattern.

It is obvious that the virtual link K (and the pair (N,K)) can be re-

stored from (NK ,ΓK), since we know how to restore the manifold N by

attaching full tori to the boundary components of NK knowing meridians

of these full tori.

Lemma 2.8. Suppose a link K is not a split sum of a (non-empty) classical

link and (maybe empty) a virtual link. Then the manifold (NK ,ΓK) with

the boundary pattern ΓK is Haken.
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Proof. Without loss of generality we may assume that the manifold NK

is connected. Indeed, let us consider the connected components of the

manifold N and, if the link K has no classical non-linked components, then

each of the components of the manifold (NK ,ΓK) is a Haken manifold;

then, by definition, so is the manifold (NK ,ΓK).

We consider the connected case. By virtue of Proposition 2.1, it remains

to show that (any connected component) this manifold with boundary pat-

tern is irreducible and boundary irreducible (by definition, it cannot be a

handlebody).

In the case when g = 0 we deal with classical links. Suppose g > 0.

Then, for any connected orientable 2-surface Sg the manifold Sg × I is

irreducible. Thus, if the link K is not classical (thus g ̸= 0), then for its

neighborhood O(K) the set (Sg × I)\O(K) might be reducible if and only

if it contains a sphere S2, bounding a ball in Sg ×{0, 1} such that this ball

contains some components of the linkK. This means that these components

form a classical sublink of K separated from all other components. The

contradiction proves irreducibility.

Furthermore, since K is not a split sum of the unknot with some virtual

link, the manifold NK is boundary irreducible.

Indeed, each curve in Sg × {0} or in Sg × {1} which may bound a disc

in Sg × I is contractible in the boundary. Thus, boundary reducibility can

occur only if we have a proper disc with boundary lying on some torus,

the boundary of a cut full torus. This should mean that the cut full torus

corresponds to the split unknot of the link.

Thus, the corresponding manifold is irreducible and boundary irre-

ducible and thus (by Proposition 2.1), Haken. �

Now, let us prove the main theorem. LetK andK ′ be virtual links. The

recognition algorithm consists of the successful application of the following

steps:

(1) Consider some representatives (N,K), (N ′,K ′) of the virtual links

K, K ′. Let us construct the corresponding manifolds with boundary

patterns. Denote them by (NK ,Γ), (N
′
K′ ,Γ

′).

(2) Define whether one of NK or N ′
K′ is reducible. If one of them is so,

then by Lemma 2.4, we may find a sphere not bounding a ball, and thus

separate some classical components of the corresponding link. Now,

rename the manifolds with boundary patterns accordingly, i.e. we shall

use the previous notations N, N ′ for what are left from manifolds by
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cutting off classical components. We shall keep in mind the deleted

classical sublinks.

(3) Define (by Lemma 2.6) whether it is possible to destabilize one of

(N,K) and (N ′,K ′). If it is possible, then we shall perform the desta-

bilization. Return to step (2). Let us perform steps (2) and (3) while

possible. Obviously, this process stops in a finite period of time since

at each step we either delete some number of the link components or

decrease the genus of one of the surfaces. Classical links are algorithmi-

cally recognizable. Thus, we may compare the split classical sublinks

of K and K ′. If they are not isotopic, we stop and get that the virtual

links in question are not equivalent. Otherwise, we go on. After per-

forming the first three steps, we reduce our problem to the case when

there are no split components and their representatives are minimal.

From now on, the manifolds in question are Haken manifolds (with a

boundary pattern) by Lemma 2.8.

(4) Each connected component of the manifolds (NK ,Γ) and (N ′
K′ ,Γ

′) is a

Haken manifold with boundary pattern. Thus, we can algorithmically

solve the problem whether there exists a homeomorphism f : NK →
N ′

K′ that maps Γ to Γ′ (by Lemma 2.7). If such a homeomorphism

exists, then virtual links K, K ′ are equivalent. Otherwise K and K ′

are not equivalent.

Performing the steps described above, we solve the recognition problem.

Theorem 2.6 is proved.

Remark 2.10. The proof given above works also for oriented virtual links

and framed virtual links.
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Chapter 3

Quandles (Distributive Groupoids) in
Virtual Knot Theory

3.1 Introduction

At the initial stage of knot theory development the key role was played by a

topological invariant, the fundamental group of the knot complement or the

knot group. Based on this group, a simple and more convenient invariant,

the Alexander polynomial, was constructed, see [5, 7].

The fundamental group of the knot complement can be defined com-

binatorially by using the Wirtinger presentation which was described in

Chap. 1. From Wirtinger’s presentation of the fundamental group one can

derive the Alexander polynomial in numerous ways; one of them is called the

Fox free calculus [66]. The Alexander polynomial and topological invariants

of knots are closely related with torsions, the review of the combinatorial

torsion theory can be found in [299].

A simplest way of proving non-triviality of the trefoil knot is the usage

of the so-called coloring invariant. One considers a classical diagram K

and its arcs (connected components; as usual we think of the undercrossing

branch to be broken as it is usually drawn on the plane). We shall color

all arcs of the diagram with three colors; we call this coloring proper if at

every classical crossing either all three arcs have the same color or they all

have three different colors. Let us count the number of proper colorings of

the knot diagram K. Every classical knot diagram has three monochrome

colorings. It can be easily proved (see [66]) that the number of proper

colorings is a link invariant (it can be checked straightforwardly by looking

at what happens to colorings under the Reidemeister moves).

Remark 3.1. As it will follow from the general theory, the coloring invari-

ant can be extended to virtual knots and links.
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The simplest diagram of the unknot has one (cyclic) arc. Thus, the

number of proper colorings of the unknot is equal to three since the trivial

diagram has exactly three colorings. Thus, any diagram having a coloring

with more than one color, corresponds to a non-trivial knot. Analogously,

for the m-component trivial link the number of proper colorings is equal

to 3m. One can easily count that the number of proper colorings of the

trefoil knot is equal to nine, since, except the three monochrome colorings,

it has six colorings using all three colors: we have three arcs, each of which

is incident to every crossing.

This example gives one of the simplest invariants of a deep algebraic

theory which leads to numerous invariants of classical and virtual knots

considered in this chapter.

Algebraically, the coloring invariant is described as follows: Every color

is an element from Z3; the coloring is proper if at every crossing the relation

c ≡ 2b− a (mod 3) holds, where a is the overcrossing arc, and b and c are

undercrossing arcs (say, approaching a from the right and from the left,

respectively).

It turns out that the number of colorings of a knot by elements of an

arbitrary ring (with a properly chosen operation at crossings) is a knot

invariant. This fact (even in a more general form) will be proved in the

sequel.

Both the fundamental group and the quandle can be generalized to an

almost complete1 invariant of knots, the knot quandle (distributive groupoid)

which was suggested in late 1970s and early 1980s by Matveev and Joyce.

Here one has to mention the paper by Deviatov [71], where the groupoid

structure was enlarged to recognize the left and right trefoils.

The completeness of the quandle follows from the invariance of the com-

pleteness of the fundamental group with its peripheral structure; the latter

follows from the celebrated theorem due to Waldhausen stating that for a

large class of 3-manifolds the fundamental group is a complete invariant,

see [313].

The quandle, like the fundamental group, can be defined geometrically

(as the homotopy classes of paths with fixed initial point and final point

sliding over the boundary component; for homotopy one requires the initial

point to be fixed, and the final point to lie on the boundary). The quan-

dle can also be defined algebraically by means of a formal “presentation”

analogous to the Wirtinger presentation.

1This invariant detects knots up to a simultaneous change of orientations of the knot
and of the ambient space.
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Besides its completeness, the quandle is also useful because its particu-

lar cases and “preimages” in different categories lead to various invariants

of knots, which are easy to work with. Such invariants are the Alexander

polynomial as well as some new invariants which were discovered immedi-

ately after the quandle itself.

In mid-1980s, Viro [308] and Fenn [88, 89] independently suggested fur-

ther generalizations of the notion of groupoid based on a more complicated

relation structure at classical crossings. Any stronger invariants for classical

knots were not constructed, since the quandle itself was almost a complete

invariant, however, they turned out to be useful in the case of virtual knots.

The interest to quandles and their generalizations revealed when virtual

knots were conceived by Kauffman. A generalization of a complete invariant

of classical knots to a new domain automatically shows that the set of

classical knots embed in the set of virtual knots, i.e. two virtually equivalent

classical knots are classically isotopic [114] (this was mentioned in previous

chapter, however, historically the algebraic proof by using quandles was the

first one).

However, the quandle itself turned out to be a rather weak invariant for

recognition of virtual knots, which led the first-named author [206, 208] to

the idea of a deeper approach to algebraic structures and introducing new

operations at virtual crossings; the object defined in such a way is called

the virtual quandle (other authors considered some other generalizations

of the quandle, see [85, 174, 276, 280]). Here we mention the work by

Afanasiev [1], where the author constructed a refinement of the quandle by

using parity, see Chap. 8.

The ideas from [208] were later developed by Fleming and Mellor [93]

for the construction of virtual spatial graph theory.

In the way above the first-named author has achieved a number of new

invariants of virtual knots; some invariants vanish on classical knots; this

allows one to prove non-classicality of many virtual knots. On the other

hand, our approach to distributive groupoids (together with some other

ideas) led to new invariants of long knots based on the notion of the quandle;

we shall touch on these results in Sec. 3.3.

The construction of long knot invariants by using quandles is the central

result of this chapter. The construction of Sec. 3.3 allowed the first-named

author to recognize the non-triviality of long virtual knots having trivial

closure by very simple arithmetic means, and also to construct the first

example of non-commuting long virtual knots.

Later on, in this chapter we construct a realization of the distributive
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groupoid which leads to a construction of invariants of classical and virtual

knots valued in (possibly, infinite-dimensional) Lie algebras.

Here, we construct and investigate invariants of virtual links originating

from planar diagrams. Our goal is to associate with a virtual diagram an

object to be invariant under generalized Reidemeister moves. The general

method goes as follows. We consider a virtual diagram as a framed 4-valent

graph on the plane. With edges of the graph we associate some formal el-

ements which will play the role of generators for our algebraic object to be

invariant, and crossings indicate the relations between these elements. The

invariance is proved by a direct consideration of the generalized Reidemeis-

ter moves.

Toward the end of the chapter, we shall also give some applications of

the quandle theory to the theory of flat virtual knots.

In addition, we shall describe hierarchy flat knots, combinatorial gen-

eralizations of flat virtual knots for which one can construct invariants by

methods similar to those described above.

3.2 Quandles and their generalizations

Let K be a virtual diagram. Let us delete all virtual crossings from it. We

get a (disconnected) set K̃ on the plane consisting of connected components

to be called arcs. Every arc is either a circle (a link component which has

no virtual crossings and forms an overpass at every classical crossing) or an

interval. In the second case, the initial and final points correspond either

to deleted virtual crossings or to a classical underpass. The subsequent

arcs separated by virtual crossings, form long arcs which pass from an

underpass to the next underpass. In the case of classical links the notion

of arc coincides with the notion of long arc.

We call a diagram proper if it has no cyclic long arcs. By applying a

first increasing classical Reidemeister move to a diagram, we can transform

a cyclic long arc to a long arc which is not cyclic.

Every virtual link has a proper diagram. Indeed every diagram of a

virtual link having a cyclic arc is transformed to a proper diagram by means

of several first Reidemeister moves as shown in Fig. 3.1.

The following statement allows us to restrict ourselves for the case of

proper diagrams.

Statement 3.1. Two proper diagrams generate equivalent virtual links if

and only if one of them can be transformed to the other by Reidemeister
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Fig. 3.1 Transformation of a diagram with a cyclic long arc to a proper diagram.

moves in the class of proper diagrams.

Indeed, if when transforming a diagram K to an equivalent diagram K ′

we meet diagrams with cyclic arcs, we may add auxiliary loops (by means

of Ω1) and then remove them. Thus, the chain of generalized Reidemeister

moves K = K0 → K1 → · · · → Kl = K ′ is transformed into the chain

K = K0 = K0,1 → · · · → K0,i0 → K1 → · · · → K1,i1 → · · · → Kl,1 →
· · · → Kl,il = Kl = K ′, where all diagrams Ki,j are proper, and each

diagram Ki,j is obtained from Ki by an addition/removal of loops with the

first Reidemeister move. This concludes the proof. Later in the chapter all

virtual diagrams are assumed proper, unless otherwise specified.

Long arcs are split into arcs. We may proceed with this subdivision:

We divide every arc at a classical crossing where it forms an overpass. In

this case we talk about short arcs. An example of a diagram with long

arcs, arcs and short arcs is shown in Fig. 3.2. Thus, we shall generate our

algebraic objects by arcs (long arcs or short arcs).

c
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Fig. 3.2 Long arcs, arcs, short arcs.

Let us first consider long arcs of the diagram K. At every classical

crossing, locally three long arcs meet each other where one of them forms
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an overcrossing, and the other two form an undercrossing. Globally, two or

three of these arcs can coincide.

Let the number of classical crossings of the diagram K be equal to n.

Then the number of long arcs of this diagram is also equal to n (since the

diagram K is proper).

Let us mention one important circumstance. When constructing in-

variants by using long arcs, we ignore the mutual disposition of virtual

crossings. Thus, the object we are constructing will be naturally invariant

under the detour move (see Fig. 1.7).

Let us associate our long arcs with formal letters (generators) a1, . . . , an.

Our goal is to construct an algebraic object invariant under all generalized

Reidemeister moves and satisfying some axioms. The relations imposed on

the generators a1, . . . , an of this object will be taken from classical crossings

of the diagram.

Following Matveev [242], we define a quandle (a distributive groupoid)

as a set M , endowed with a binary operation ◦, satisfying the following

properties:

(1) idempotency : for every a ∈M we have a ◦ a = a;

(2) the existence of a left inverse: for every b, c ∈M there exists a unique

element x ∈M such that x ◦ b = c (in this case we write x = c/b);

(3) right self-distributivity : for every a, b, c ∈ M the relation (a ◦ b) ◦ c =
(a ◦ c) ◦ (b ◦ c) takes place.

Analogously to groups, quandles (or distributive groupoids) can be gen-

erated by generators and relations. This is done as follows. Let a1, . . . , ak
be a finite collection of letters (generators). Let us define inductively the

set Adm of admissible words as the set obtained from the generators by

subsequent application of the operations ◦ and /. Namely, we define the

set of admissible words inductively according to the following rules:

(1) all letters ai are admissible words;

(2) if x, y are admissible words, then the words (x) ◦ (y) and (x)/(y) are

admissible as well;

(3) there are no other admissible words except for those obtained as in

(1), (2).

Remark 3.2. Sometimes in order to simplify the notation we shall omit

brackets, when the sense is clear from the context. In particular, instead

of (a1) ◦ (a2) we write a1 ◦ a2.
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Now, assume that we are given a set of l relations Ri (called defining

relations) of the type ri1 = ri2 for i = 1, . . . , l, where rij are some admissible

words.

On the set Adm of all admissible words there are well-defined operations

◦ and /.
Now, let us define the quandle generated by a1, . . . , ak subject to the

relations R1, . . . , Rl and denoted by

Γ⟨a1, . . . , ak|R1, . . . Rl⟩

to be the quotient set of the set Adm modulo the equivalence relation; the

latter is defined by the following elementary equivalence relations:

(1) A ◦A ∼ A, A/A ∼ A for any A ∈ Adm;

(2) (A ◦B)/B ∼ (A/B) ◦B ∼ A for any A, B ∈ Adm;

(3) (A ◦B) ◦ C ∼ (A ◦ C) ◦ (B ◦ C) for any A, B, C ∈ Adm;

(4) ri1 ∼ ri2 for any i = 1, . . . , l.

For the resulting set, the operations ◦ and / are induced from the set

Γ; the quandle axioms are obviously satisfied.

Now, we shall consider two definitions: geometric and algebraic defini-

tions of the knot quandle.

3.2.1 Geometric description of the quandle

Let K be an oriented knot in R3, and let N(K) be its small tubular neigh-

borhood. Let E(K) = (R3\N(K)) be the complement to this neighborhood.

Fix a base point xK on E(K). Denote by ΓK the set of homotopy classes

of paths in the space E(K) with fixed initial point at xK and endpoint on

∂N(K) (these conditions must be preserved during the homotopy). Note

that the orientations of R3 and K define the orientation of the tubular

neighborhood of the knot (right screw rule). Let mb be the oriented merid-

ian hooking an arc b. Define a ◦ b = [b̄mbb−1ā], where for x ∈ ΓK the letter

x̄ means a representative path, and the square brackets denote the class

that contains the path x̄, see Fig. 3.3.

The quandle axioms can also be checked straightforwardly. Also, one

can easily check that groupoids corresponding to different points xK are

isomorphic. This statement is left for the reader as an exercise.

There is a natural map from the knot quandle ΓK to the group

π1(R3\E(K)). Let us fix a point x outside the tubular neighborhood. Now,
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K a b

x

N(    )

a

b

K

K

Fig. 3.3 Intuitive description of the quandle operation.

with each element γ of the quandle (path from x to ∂E(K)) we associate

the loop γmγ−1, where m is the meridian at the point x.

This interpretation shows that the fundamental group can be constructed

by the quandle: All meridians can play the role of generators for the funda-

mental groups, and all relations of type a ◦ b = c have to be replaced with

bab−1 = c.

Besides, the fundamental group has the obvious action on the quandle.

The path δγ is again an element of the quandle for each loop δ and element

γ of the quandle.

3.2.2 Algebraic description of the quandle

Let K be a diagram of the knot K with n classical crossings. At each

classical crossing (with a number i) of this diagram, one of the two arcs

forms an overpass. There is a corresponding generator ai1 ; we have the

(long) arc on the right with the corresponding generator ai2 , and the arc

on the left with the corresponding generator ai3 , see Fig. 3.4.

With each classical crossing we associate a relation

ai2 ◦ ai1 = ai3 . (3.1)

Denote this relation by Ri.

Remark 3.3. Note that in Fig. 3.4 the orientation of ai2 and ai3 is not

indicated; in fact, it is immaterial. Whatever it is, we shall take the rela-
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Fig. 3.4 The quandle relation at a crossing.

tion (3.1).

Now, let us associate with the diagram K the quandle

Γ(K) = Γ⟨a1, . . . , an|R1, . . . , Rn⟩.

Theorem 3.1. The quandles ΓK and Γ(K) are isomorphic.

Before proving the theorem, let us first understand its possible interpre-

tations. On the one hand, the theorem shows how to describe generators

and relations for the geometrical quandle ΓK. On the other hand, it demon-

strates the independence Γ(K) of the choice of concrete knot diagram. Now,

the statement asserting that the number of proper colorings by elements of

any quandle Γ is a link invariant evidently follows from this theorem as a

corollary because any proper coloring of a knot diagram by elements of Γ

is a presentation of Γ(K) to Γ.

Proof of Theorem 3.1. With each arc a of the projection K, we asso-

ciate the path sa in E(K) in such a way that

(1) the path sa connects the base point with a point of the part of the torus

∂N(K) corresponding to the arc a;

(2) at all points where the projection of sa intersects that of K, the path

sa goes over the knot, see Fig. 3.5.

Obviously, these conditions are sufficient for the definition of the homo-

topy class of sa.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

66 Virtual Knots: The State of the Art

a

x

sa

Fig. 3.5 Defining the path sa.

Consequently, to each generator of Γ(K), there corresponds an element

of the quandle ΓK. Thus we have defined the homomorphism ϕ : Γ(K) →
ΓK. In order to define the inverse homomorphism ψ : ΓK → Γ(K), let us

fix s ∈ ΓK. Then, the path representing s is constructed in such a way

that the projection of the path intersects K transversely and contains no

diagram crossings.

Denote by an, an−1, . . . , a1 those arcs ofK going over the path s. Denote

by a0 the arc corresponding to the end of s. Now, for each s ∈ ΓK, let

us assign the element ((. . . (a0ε1a1)ε2 . . . an−1)εnan) of the quandle Γ(K),

where εi means the operation / if s goes under ai from the left to the right,

or the operation ◦, otherwise, see Fig. 3.6.

It is easy to check that this map is well defined (i.e. it does not depend

on the choice of a representative s for the element of ΓK) and the maps ϕ

and ψ are inverse to each other. This completes the proof. �

The following theorem holds.

Theorem 3.2. If diagrams K, K ′ represent equivalent virtual knots, then

the quandles Γ(K) and Γ(K ′) are isomorphic.

The proof of this theorem is based on the fact that the quandle axiomat-

ics corresponds to its invariance under the Reidemeister moves. Here, one

only needs to check the invariance under the classical Reidemeister moves,
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ψ(s)=(        )/ 2aa0 1a

Fig. 3.6 Constructing the map ψ : ΓK → Γ(K).

since the disposition of virtual crossings on long arcs is immaterial. Later

in this chapter we shall prove a more general theorem (Theorem 3.4).

In the classical case this theorem was first proved by Matveev [242] and

independently by Joyce [144]. A generalization of the quandle for the case

of virtual knots belongs to Kauffman [157].

Actually, Matveev and Joyce proved much more, namely the following

theorem.

Theorem 3.3 (Matveev–Joyce). If for classical knot diagrams K and

K ′ the quandles Γ(K) and Γ(K ′) are isomorphic, then either the diagram K

is equivalent to the diagram K ′, or K is equivalent to the diagram obtained

from K ′ by a simultaneous change of orientations of the knot and of the

ambient space (the latter leads to the change of crossing type: we switch

overcrossing to undercrossing and vice versa).

The latter operation is called the double involution. The invariance

under the double involution makes a significant disadvantage of the quandle.

For example, the quandle does not recognize the right trefoil and the left

trefoil because the orientation reversal operation on any trefoil transforms

this trefoil to itself, and the ambient space orientation reversal transforms

the right trefoil to the left and vice versa. A refinement of the quandle

which recognizes the trefoils is constructed in [71].
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Consequently, the quandle is an almost complete invariant of classical

knots. On the other hand, the quandle has a natural generalization to

virtual knots according to Theorem 3.2. From this observation we get

Theorem 2.2.

Remark 3.4. Taking into account the fact that the quandle is not sensitive

to the double involution, in order to make it complete, one has to add

another invariant (peripheral structure) to fix the orientation of the knot

and to be extendable for the case of virtual knots. This is done in [114].

The structure of the quandle has natural generalizations which appear

when we pass from long arcs to arcs or to short arcs. In the case of arcs, we

shall introduce the relations between arcs at virtual crossings, and when

passing to short arcs we shall modify the relations at classical crossings:

instead of one binary function we shall get two binary functions. We have

two input short arcs and two output short arcs. Unlike the case when the

invariant is constructed by using long arcs, in the case of arcs or short

arcs the invariance under the detour move is not evident, and it has to be

checked.

This leads us to the notion of virtual quandle.

3.2.3 The virtual quandle

The notion of a virtual quandle first appeared in [206, 208].

Definition 3.1. By a virtual quandle we mean a quandle (M, ◦) together
with an automorphism f : M → M , i.e. such a bijection that for every

a, b ∈M one has f(a ◦ b) = f(a) ◦ f(b).

Analogously to quandles, virtual quandles can be generated by genera-

tors ai and defining relations Rj , where the indices i and j run over some

finite sets. First we define the set of admissible words by using operations

◦, /, f and f−1.

Consider the following axiomatics for constructing virtual link invari-

ants. Given a virtual link diagram K, let a1, . . . , an be the set of arcs of

this diagram. We shall use the operation ◦ for writing relations between

arcs incident to the same classical crossing just in the same way as it was

done before, see (3.1), Fig. 3.4; besides, we shall introduce a formal (unary)

operation f for virtual crossings (this operation will be an automorphism

of the quandle), namely: Let some virtual crossing be incident to four arcs

with corresponding generators aj1 , aj2 , aj3 , aj4 as shown in Fig. 3.7.
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Fig. 3.7 A relation for a virtual crossing.

We shall construct a formal “free virtual quandle” with generators ai.

First, we consider all admissible words with respect to the operations

◦, /, f, f−1, and then take its quotient modulo the virtual quandle rela-

tions. To make the definition complete, we should also include the relations

f(aαb) = f(a)αf(b) and f(f−1(a)) = f−1(f(a)) = a into the list of ele-

mentary equivalences; here a and b are arbitrary admissible words obtained

from generators by applying ◦, /, f, f−1, and α is either ◦ or /.
Then we take the quotient by the relations:

aj2 = f(aj1) (3.2)

and

aj3 = f(aj4). (3.3)

Denote the resulting quandle by VΓf ⟨aα|Rβ⟩.
Now let us define the virtual quandle VΓ(K) as

VΓf ⟨a1, . . . , an|Ri, Rj1, Rj2⟩.

Here the relations Ri correspond to the classical crossings with numbers

i (relations of type (3.1)), and pairs of relations Rj1, Rj2 correspond to

virtual crossings (for every virtual crossing with the number j we have two

relations of types (3.2), (3.3)).

The theorem given below was first proved in [208], see also [206].

Theorem 3.4. The virtual quandle VΓ(K) is an invariant of virtual links.

More precisely, let K, K ′ be two equivalent virtual diagrams. Then there

exists an isomorphism between virtual quandles ι : VΓ(K)→ VΓ(K ′), com-

patible with the operation f .

Proof. We shall assume that all diagrams are proper (Statement 3.1).
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We have to show that when applying Reidemeister moves to a virtual di-

agram, its virtual quandle is transformed to some isomorphic virtual quan-

dle.

Consider a classical, virtual or semivirtual Reidemeister move. Let K

and K ′ be two virtual diagrams obtained from one another by applying this

Reidemeister move. This move is local, i.e. it changes the diagram only in

a small domain U of the plane. Let us split all arcs of the diagrams K and

K ′ into the following three families: The common set E of exterior arcs

belonging to both the diagram K and the diagram K ′; the common set S

of arcs intersecting the boundary circle of the disc U , and the sets I and I ′

of interior arcs (lying inside U) belonging to K and K ′, respectively. Thus,

the virtual quandle VΓ(K) has the following relations.

First, we have common relations (for all virtual quandles): distributivity

and idempotence. Denote this family of relations by ε.

The relations of the types (3.1), (3.2), (3.3), which originate from cross-

ings, for diagrams K, K ′ are also divided into sets: the exterior relations

RE are common for K and K ′, but the interior relations RI and R′
I are

related to K and K ′, respectively. Moreover, each of these quandles has the

relation ε which is common for all virtual quandles (idempotence and right

self-distributivity). Further in the proof by a relation we mean a relation

only at some crossing (but neither idempotence nor right self-distributivity).

It is easy to see that for each concrete Reidemeister move we can get

rid of the generators I with the help of the relations RI by expressing the

generators I from S. This will lead us to an addition of some “interior”

relations RS for S. The same thing can be done for I ′. Let us denote the

obtained relations by R′
S . Thus, we shall transform two virtual quandles

VΓ(K) and VΓ(K ′) to the two virtual quandles ṼΓ(K) and ṼΓ(K ′) iso-

morphic to VΓ(K) and VΓ(K ′), respectively. The quandles ṼΓ(K) and

ṼΓ(K ′) are generated by the generators E, S. They have the common set

of interior relations RE (and also ε).

The only fact that we have to prove is that the relations RS and R′
S

(with the relations ε) define the same equivalence relation on S.

Let us do it for some Reidemeister moves; the other cases are fully

analogous to those which will be described.

The invariance of the quandle VΓ under all classical moves can be

checked in the same way as that of a “general” quandle, see [144, 242].

For the first classical Reidemeister move, we have two arcs (denote them

by a′ and a′′) instead of one arc a (and the relation a = a). From the

relation at the crossing it follows that a′′ = a′ (here we applied the idem-
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potence of ◦). Therefore, by adding a loop as shown in Fig. 3.8 we shall

get the virtual quandle isomorphic to the initial one.

Definition 3.2. Here, by an isomorphism of virtual quandles (long virtual

quandles) we mean an isomorphism preserving the operation f .

The remaining cases of the first Reidemeister move are considered anal-

ogously to the preceding case.

=

a

’
’’

a a ’a’a

Fig. 3.8 The invariance of the quandle VΓ under Ω1.

For the second Reidemeister move, we have four “exterior arcs” from the

set E, see Fig. 3.9, namely, a, b, c, d. In the upper-left figure the relations

look like a = c, b = d. In the lower-right picture the relations are the

following. We have a = c = e, i.e. e is expressed from exterior generators.

Further b◦a = g, d◦e = g, from this we get b = d (here we use the existence

of a left inverse for ◦).

a b

c d

a b

c d

g e

Fig. 3.9 The invariance of the quandle VΓ under Ω2.

Analogously, for the third Reidemeister move, see Fig. 3.10, we have

three incoming arcs a, b, c and three emanating arcs d, e, g. We shall not

write down intermediate arcs; for the left picture we have a = d, b ◦ a =

g, (c◦a)◦(b◦a) = e, when for the right one we get a = d, b◦a = g, (c◦b)◦a =
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e.

The invariance follows from the distributivity relation (c ◦ b) ◦ a = (c ◦
a) ◦ (b ◦ a).

a

b

c
d

e

g

a

b

c
d

e

g

Fig. 3.10 The invariance of the quandle VΓ under Ω3.

Let us now check the invariance of the virtual quandle VΓ under purely

virtual Reidemeister moves.

The first virtual Reidemeister move is shown in Fig. 3.11. In the initial

left picture we have one local generator a. Here, we just add a new generator

b and two coinciding relations a = f(b) and b = f−1(a). The new generator

is expressed from given generators (namely, from the generator a); we do

not impose any relations on the old generators; thus, it does not change the

virtual quandle at all.

The case of the inverse orientation at the crossing gives us b = f(a),

that does not change the situation.

For each of the following relations, we shall check only one case of the

arc orientation.

The second virtual Reidemeister move (see Fig. 3.12) adds two gener-

ators c and d and two pairs of coinciding relations c = f(a), d = f−1(b).

Thus, the virtual quandle VΓ is turned into the isomorphic virtual quandle.

In the case of the third virtual Reidemeister move, we have six “exterior

arcs”: three incoming (a, b, c) and three emanating (p, q, r), see Fig. 3.13.

In both cases we have p = f2(a), q = b, r = f−2(c). The three interior arcs

are expressed from a, b, c and give no other relations.

Let us consider the move Ω′
3. We shall check the only version of it, see

Fig. 3.14.

In both pictures we have three incoming edges a, b, c and three outgoing

edges p, q, r. In the first case we have the following relations: p = f(a), q =

b, r = f−1(c) ◦ a. In the second case, we have the following relations:
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Fig. 3.11 The invariance of the quandle VΓ under the first virtual Reidemeister move.
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Fig. 3.13 The invariance of the quandle VΓ under the third virtual Reidemeister move.

p = f(a), q = b, r = f−1(c ◦ f(a)).
The distributivity relation f(x ◦ y) = f(x) ◦ f(y) implies f−1(c) ◦ a =

f−1(c◦f(a)). Hence, two virtual quandles before the mixed move and after

the mixed move coincide.

The other cases of the mixed move lead to other relations that are

equivalent to f(x ◦ y) = f(x) ◦ f(y).
This complete the proof of the theorem. �

Like quandles, virtual quandles are objects which are very difficult to

work with. Namely, if we have two virtual diagramsK andK ′, and we know
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Fig. 3.14 The invariance of the quandle VΓ under the mixed move.

some presentations of their quandles (virtual quandles), then we cannot

say immediately whether two corresponding quandles (virtual quandles)

are isomorphic or not. The problem of recognizing whether there exists

an isomorphism between two quandles given by presentations is apparently

not easier than the problem of recognition of isomorphism between groups,

which is, in general, not algorithmically solvable.

Therefore, it makes sense to find more simple invariants which are re-

alized by morphisms in the category of quandles from some more simple

category.

Simply speaking, we consider any category (say, the category of groups

or modules) and try to find operations in it, which possess the axioms of

a quandle (a virtual quandle). Having found them, we can construct more

simple invariant objects, the invariance of which follows from categorical

considerations.

Let us bring some examples of virtual quandles.

(1) A group with a distinguished element x is a quandle with respect to an

operation ◦ given by a ◦ b = bnab−n for some fixed natural number n,

where f(a) = xax−1.

(2) A group with a distinguished element x is a quandle with respect to

the operation ◦ given by a ◦ b = ba−1b, f(a) = xax−1; and also we can

define f(a) by xa−1x (with the same operation ◦).
(3) A module over the commutative ring Q[t, t−1, s, s−1], in which a ◦ b =

ta+ (1− t)b, f(a) = sa, is a virtual quandle.

In these cases the axioms of virtual quandles (and, therefore, quandles)

can be checked immediately.

This allows one to construct invariants of classical and virtual knots

(links) in two ways: The first one is to fix a given quandle (virtual quandle)
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Γ and to investigate properties of the set of morphisms from the (virtual)

quandle of the link to Γ. In the case when Γ has a finite number of elements

it makes sense to say that the number of such morphisms is an invariant.

On the other hand, we can associate with each knot (link) an invariant

quandle (a virtual quandle) in any category. For example, in the category

of groups a quandle is represented by the fundamental group, i.e. writing

the relations of a quandle of a knot in the language of groups, where instead

of a ◦ b we take bab−1, we get the fundamental group of the knot.

The virtual quandle leads to the following generalization of the funda-

mental group of the complement to a knot.

Lemma 3.1 ([208]). For each group G, the group G∗{q} (the free product

of the group G with the infinite cyclic group generated by q) is a virtual

quandle with respect to the operations ◦, f(·) defined as a◦b = bab−1, f(c) =

qcq−1 for all a, b, c ∈ G ∗ {q}.

Proof. Like the invertibility of the conjugation, the invertibility of the

operation f is obvious. Indeed, we have to show that f(a ◦ b) = f(a) ◦ f(b).
Actually, f(a ◦ b) = f(bab−1) = qbab−1q−1 = qbq−1(qaq−1)qb−1q−1 =

f(b)f(a)f(b−1) = f(a) ◦ f(b). �

Let us construct the virtual group G(K) of a virtual quandle of a virtual

diagram K. Denote all arcs of the diagram K by ai, i = 1, . . . , n. So,

the group G(K) is the group generated by a1, . . . , an, q with the relations

obtained from (3.1)–(3.3) by putting f(x) = qxq−1, y ◦ z = zyz−1. Let us

call the quotient group of a virtual group over the relation q = 1 a classical

group.

In the case of a classical diagram, we get the Wirtinger presentation

with one generator q (which does not take part in the relations); thus, the

group described above will be the free product of the knot group with the

infinite cyclic group generated by q.

Some virtual links (and their invariants) can possess properties which do

not exist in the classical case. For example, in both the classical and virtual

cases we can define upper and lower groups (in the classical case we have

the fundamental group of the complement); the lower group for a virtual

knot is defined as the group of the mirror image of the virtual knot. For

classical knots these groups are isomorphic under geometric reasons. In the

virtual case the upper and lower representations can give non-isomorphic

classical groups. In the examples given below we give a group without an
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additional generator q. The first example of such a group was given in [114].

It has the following description.

a

b

c

d

b

d

Fig. 3.15 A virtual knot with the non-isomorphic upper and lower groups.

Let us consider a virtual knot diagram shown in Fig. 3.15. Its four long

arcs a, b, c, d shown in Fig. 3.15 can be chosen as generators of the group.

Here a long arc goes from one undercrossing to the next undercrossing, and

forms overcrossings and virtual crossings during the way. We shall get the

following relations:

b = dad−1, a = bdb−1, d = bcb−1, c = dbd−1.

Thus, the generators a and c can be expressed from the generators b and

d. Therefore, we get the presentation ⟨b, d | bdb = dbd⟩, which represents

the group isomorphic to the group of the trefoil.

It is not difficult to note that the group of the mirror image of the given

knot is isomorphic to the group Z, the group of the unknot.

From the theorem of Dehn–Papakyriakopoulos [265] it follows that

among non-trivial classical knots there does not exist a knot having the

fundamental group of the complement isomorphic to Z, therefore, our knot
is not classical.

Theorem 3.5 ([208]). The pair (the group G(K), the element q ∈ G(K))

is an invariant of a virtual link. In other words, if diagrams K and K ′

give equivalent virtual links, then there exists an isomorphism h : G(K) →
G(K ′) such that h(qK) = qK′ .

The proof of the lemma follows immediately from Theorem 3.4 and

Lemma 3.1.

It is evident that for the unknot the group is ⟨a, q⟩; this is the free group
with two generators.
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From the discussion given above we get non-triviality of the virtual

trefoil: Its virtual quandle is not isomorphic to the virtual quandle of the

unknot by means of an isomorphism preserving the element q.

There exist other presentations of a virtual quandle in groups. For

example, the presentation

x ◦ y = ypxy−p, f(x) = qxq−1,

where p is a fixed integer number, and q is a fixed element. The proof of

the invariance is the same as in the general case, only instead of abstract

operations ◦, f we have to use their explicit group realizations.

Moreover, for obtaining invariants one can use one of the following pre-

sentations:

x ◦ y = yx−1y, f(x) = qxq−1,

or

x ◦ y = yx−1y, f(x) = qx−1q.

Remark 3.5. Let us consider a group with generators corresponding to

arcs of a classical knot and relations at crossings. The relations at crossings

are obtained from the relations of a quandle by the rule x ◦ y 7→ yx−1y.

It is known that this group is isomorphic to the fundamental group of the

two-sheeted covering branching over the knot.

3.2.4 The coloring invariant

The idea of the coloring invariant (by elements of some virtual quandle) is

very simple. The coloring invariant equals the number of homomorphisms

of the virtual quandle of a given link to a finite virtual quandle. More

precisely, the following lemma takes place.

Lemma 3.2. Let VΓ′ be a virtual quandle. Then the set of homomorphisms

VΓ(K) → VΓ′ is an invariant of the link represented by a diagram K. In

particular, if the set of elements of the virtual quandle VΓ′ is finite, then

the number of homomorphisms VΓ(K)→ VΓ′ is also finite and this number

is an invariant under the generalized Reidemeister moves.

Proof. The first claim is obvious by construction.

Let us prove the second claim. Consider a virtual link and its proper

diagram K. In order to construct a homomorphism h : VΓ(K) → VΓ′, we

only have to define the images h(ai) of those elements of VΓ(K) which

correspond to the arcs of K. Since the number of arcs is finite, the desired

number of homomorphisms is finite. �
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Thus, for a finite virtual quandle VΓ′ we have an integer-valued invariant

of a link, defined as the number of homomorphisms VΓ(K) → VΓ′. The

sense of this invariant is very simple. It represents the coloring number of

arcs of K with elements of the virtual quandle VΓ′. A coloring is called

proper if it satisfies the virtual quandle condition at classical and virtual

crossings.

Here is the example of a virtual quandle with four elements. Define the

operation ◦ by the following rule (in the intersection of the row ai and the

column aj the element ai ◦ aj stands):

◦ a1 a2 a3 a4
a1 a1 a3 a4 a2
a2 a4 a2 a1 a3
a3 a2 a4 a3 a1
a4 a3 a1 a2 a4

.

It is an important question: Where can we find (finite) virtual quandles?

Let us generalize the constructions of quandles proposed in [242] for the case

of virtual quandles. Let us consider some examples.

Let G be a finite group, g ∈ G be a fixed element of it, and n be an

integer. Then the set of all elements of G equipped with the operations

x ◦ y = ynxy−n, f(x) = gxg−1 is a virtual quandle.

Another way for constructing virtual quandles by using groups is as

follows: For a (finite) group G with a fixed element g ∈ G we set x ◦ y =

yx−1y, f(x) = gxg−1.

Let R be a commutative ring with a unit, and let t, s ∈ R be invertible

elements.

The following claim can be checked immediately.

Theorem 3.6 ([208]). The ring R equipped with operations ◦, /, f, f−1,

defined by rules x ◦ y = tx+ (1− t)y, f(x) = sx is a virtual quandle.

These examples give two series of integer-valued virtual link invariants.

The list of quandles of small capacity is given in the work by Carter,

Kamada and Saito [51]. In this book, we also describe the theory of quan-

dle homology which has an application in both virtual knot theory and

theories of higher dimensions (for example, for constructing invariants of

two-dimensional knots in R4). These knots are given by their projections on

R3 in R4, herewith one indicates which sheet is upper and which one is lower

in each intersecting line. It turns out that by using such projections one can

construct invariants of quandle type: associating elements of the quandle
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with sheets and writing down relations in intersections of sheets. We have

the same relations: The existence of an inverse element, the idempotence,

the self-distributivity, in order that the constructed object is invariant.

3.2.5 The Alexander virtual module and its generalization

The Alexander polynomial [5] is the oldest invariant among polynomial

invariants of classical knots. It can be defined by using the fundamental

group of the complement to the knot or the free Fox calculus, see, e.g. [66].

There are other ways to define the polynomial, see, e.g. [316].

We shall define the Alexander polynomial by using the Alexander mod-

ule.

The Alexander module (virtual or classical) of a diagram is a module

over Z[t] generated by all long arcs of the diagram (these arcs coincide with

arcs in the classical case) and the relation (3.1) at classical crossings as it

is shown in Fig. 3.4, where the operation a ◦ b means ta+ (1− t)b.
These relations can be written by using the rows of square matrices

which correspond to crossings and columns correspond to (long) arc of the

diagram.

Let K be an oriented diagram of a link with n classical crossings. Let us

construct the Alexander matrix M(K) corresponding to K in the following

manner. (We shall return to such matrices when we consider virtual knots.)

Let us enumerate all classical crossings of the diagram by natural num-

bers from 1 to n. In the general position, there exists precisely one long

arc emanating from each crossing (unless there are separated cyclic arcs).

Let us recall that we consider only proper diagrams. So, we can enumerate

outgoing long arcs by natural numbers from 1 to n by associating a number

i with the long arc emanating from the crossing with the number i. Now

we can construct the adjacency matrix, where a crossing corresponds to a

row, and an arc corresponds to a column.

Suppose that no crossing is incident twice to one and the same arc (no

loops). Then, each crossing (number i) is incident precisely to three arcs:

the arc passing through this crossing (number j), the incoming arc (number

k) and the outgoing arc (number i), see Fig. 3.16.

In this case, the ith row of the Alexander matrix consists of the three

elements at places i, j, k. If the ith crossing is positive ( ), then mii =

1, mik = −t, mij = t−1. Otherwise, we setmii = t, mik = −1, mij = 1−t.
Obviously, this matrix has determinant zero, because the sum of ele-

ments in each row equals zero. Therefore, we have constructed the classical
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Fig. 3.16 Three arcs incident to a crossing.

Alexander matrix, the relations in it give the classical Alexander module;

the generators of the latter correspond to long arcs of the given virtual

diagram.

Denote the cofactor to mij by ∆ij .

Then the following theorem holds (see, e.g. [66]).

Theorem 3.7. All ∆ij coincide with each other up to multiplication by

±tl.

Thus, we have an element of the ring Z[t±1] defined up to multiplication

by a power of the variable t. Denote this element by ∆.

It is known that the polynomial ∆ can be normalized with respect to

the variable t in such a way that the leading power and the lowest power

differ only by a sign. Moreover, by a natural way one can define the sign

such that we have an invariant polynomial of oriented links. Therefore, we

get the Alexander polynomial which is also denoted by ∆.

The following theorem is well known (a proof can be found in [221]).

Theorem 3.8. The function ∆ defined on links satisfies the following skein

relation:

∆( )−∆( ) = (t1/2 − t−1/2)∆( ).

It is easy to check that for the unknot ⃝ we have ∆(⃝) = 1.

Thus, we can conclude that the polynomial ∆ coincides with the Conway

polynomial [63] up to the variable change x = t1/2 − t−1/2. So, it is a well-

defined link invariant.

Remark 3.6. This way to derive Alexander-like polynomials from groups

can be found in, e.g. [65, 66].
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There are many ways of generalizing the classical Alexander module

for the virtual case, but we consider only two ways. One of them (an

additive way) is as follows. One adds a new generator ε in the module

itself, after which the operation f looks like x 7→ x+ ε. The second way is

a multiplicative way. Here we add a new variable to the main ring (in the

case of links with many components we add new variables the number of

which is equal to the number of components of the link), and the operation

f is defined as the multiplication by one of these new variables. It is natural

that in the case of links with many components this is a modification of the

virtual quandle.

3.2.5.1 An additive approach

Let R be the ring of Laurent polynomials in the variable t. Sometimes it

will be convenient for us to consider R to be a ring over either Z or Q.

This will be mentioned individually. We shall associate diagrams of virtual

links with modules over the ring R, with a fixed generator ε of the module,

chosen among generators of the module except of elements corresponding to

arcs of the knot. This element plays the role of a distinguished additional

generator. More precisely, let us consider a virtual diagram K. Denote

these arcs by a1, . . . , an. Let us construct a module M over the ring R

generated by arc-generators a1, . . . , an and the generator ε. This module is

defined as a virtual quandle with operations:{
x ◦ y = tx+ (1− t)y,
f(x) = x+ ε.

These operations define relations in the moduleM.

Thus, we assign to each virtual diagram K the pair (M(K), ε); the

module and a fixed element in it.

From the above consideration, we have the following theorem.

Theorem 3.9. For two equivalent diagrams K and K ′ there exists an iso-

morphism of the modules M(K) → M(K ′) sending the element ε(K) to

ε(K ′).

This module allows one to get more simple (polynomial) invariants of

links. For example, one can consider the ideal I(K) in the ring R which

annihilates the element ε from the module M(K). From Theorem 3.9 it

follows that the ideal I(K) is also an invariant of links.

The case when the ideal I(K) is a principal ideal is important. Let us

consider the case of the Euclidean ring R = Q[t, t−1]. In this case, this
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ideal is generated by some polynomial which, considered up to invertible

elements of the ring R, is an invariant of the link. Denote this polynomial

by VA and call it the VA-polynomial.

From the construction we have the following theorem.

Theorem 3.10. The VA-polynomial is a virtual link invariant up to mul-

tiplication by λtq, q ∈ Z, λ ∈ Q.

Let us pass to an explicit description of how to calculate the VA-

polynomial, see also [284].

Let us consider a (proper) virtual diagram K with n classical crossings.

Let us enumerate all classical crossings by natural numbers from 1 to n,

where we associate each long arc with the number of that classical crossing

from which it emanates.

Each long arc l begins from some arc s(l). Denote the element of the

moduleM(K) corresponding to the beginning arc s(k) of the long arc with

a number k by ak. Then all remaining arcs of the long arc with the number

k are represented in the module M(K) by elements ak + pkiε, where pki
are some integers. Therefore, the elements {a1, . . . , an, ε} form a set of

generators of the moduleM(K). In order to define the moduleM(K) we

have to describe relations in classical crossings. At a classical crossing with

a number i there are three meeting long arcs: The long arc with the number

i emanates from it, the long arc with a number j passes through it, and

the long arc with a number k comes in this crossing, see Fig. 3.16.

Moreover, three arcs which are parts of the long arcs with the numbers

i, j, k are incident to the crossing. By construction, the elements ai, aj +

pjiε, ak + pkiε of the quandle correspond to them. The relation at the

crossing looks like

−ai + t±1ak + (1− t±1)aj = ((t±1 − 1)pji − t±1pki)ε,

where, we have the sign +1 for positive crossing ( ), and the sign −1 for

negative crossing ( ).

Here we have all summands containing ε on the right side.

Let us write down the relations for all classical crossings in the same

manner. We get a square matrix of a non-homogeneous system of equations

(M) · (a) = (b) · ε. (3.4)

This matrix M is called the Alexander matrix of the diagram K, and

(a) is a column consisting of a1, . . . , an.
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The Alexander matrix is defined up to a permutation of rows and the

permutation of columns corresponding to the first permutation.

The Alexander matrix is degenerate since the sum of elements in each

of its row equals zero. This means that there exists a linear combination of

its rows equal to zero. From Eq. (3.4) it follows that taking the same linear

combinations of elements bi and multiplying it by ε we shall get zero. Such

linear combinations form the ideal I. In the case when the ideal I is trivial,

we set the VA-polynomial to equal zero.

Theorem 3.11. For a classical link the Alexander module is split into

direct sum of two summands, one of which is the module generated by the

element ε. Therefore, we have VA(K) = 0 for a diagram K of a classical

link.

Proof. Let us consider a diagram of the link not having virtual crossings,

and write down the relation of the Alexander module for it. The element

ε does not take part in them. From this fact it follows two claims of the

theorem. �

Example 3.1. Consider the virtual trefoil knot. Let us calculate its virtual

quandle. In Fig. 3.17, rightmost picture, we have two classical vertices: I

and II. They give us a system of two relations:

III III

a
b

f (a)f(b)
a+εb+ε

b b b

a

a a

Fig. 3.17 Labeled virtual trefoil.

I : (a+ ε)t+ b(1− t) = b+ ε,

II : bt+ (b+ ε)(1− t) = a,

or
at− bt = (1− t)ε,
b− a = (t− 1)ε.
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Multiplying the second equation by t and adding it to the first one, we

get: 0 = ε(t−1)(1− t). It is not difficult to show that there are no relations

having the form αε = 0 in the module. Thus, VA(K) = (1− t)2.

The following theorem holds.

Theorem 3.12 ([216]). For each virtual knot (not link) given by a dia-

gram K, the polynomial VA(K) is divisible by (t− 1)2.

Proof. Let K be a virtual knot diagram. If all crossings of the diagram

are virtual, then K represents the unknot and has the VA-polynomial equal

to zero.

Otherwise, choose a classical crossing v1 of the diagram K. Let a1
be the first arc of the long arc outgoing from v1 (according to the knot

orientation). This arc is incident to v1. By construction, all arcs belonging

to the long arc are associated with a1 + kε, k ∈ N. Let the last arc of the

long arc be marked by a1+k1ε. Denote the final point of it by v2. Now, let

us take the first arc outgoing from v2 and associate a2+k1ε to it, i.e. we can

define a new generator a′2 “by rule” and then we can make a substitution

a′2 = a2 + k1ε. Then, we set the labels a2 + kε for all arcs belonging to the

same long arc. Let the last arc have the label a2 + k2ε and have the final

point at v3. Then, we associate a3 + k2ε with the first arc outgoing from

v3, and so on, see Fig. 3.18.

1

2

0 3

0

1

0
1

1v

v

v

Fig. 3.18 Marks.
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In what follows by mark we mean the coefficient at ε.

Finally, we shall come to v1. Let us show that the process converges,

i.e. the label of the arc coming in v1 has the label aj+1 + 0 · ε, where j is

the total number of long arcs.

Indeed, let us see the ε-part of labels while walking along the diagram

from v1 to v1 according to the orientation. In the very beginning, it is equal

to zero by construction. Then, while passing through each virtual crossing,

it is increased (or decreased) by one. But each virtual crossing is passed

twice, thus each +ε is compensated by −ε and vice versa. Thus, finally we

come to v1 with 0 · ε.
Note that the process converges if we do the same, starting from any

arc with arbitrary integer number as a label.

In this case, each relation of the virtual Alexander module has the right

part divisible by ε(t− 1): the relation

(ai + pε)t+ (aj + qε)(1− t) = (ak + pε)

is equivalent to

ait+ aj(1− t)− ak = (t− 1)(q − p)ε. (3.5)

This proves that VA(K) is divisible by (t− 1).

Denote the summands for the ith vertex in the right of (3.5) by qi and

pi, respectively.

Let us seek relations on rows of the virtual Alexander matrix. Each

relation holds for arbitrary t, hence for t = 1.

Denote rows ofM byMi. So, if for the matrixM we have
∑n

i=1 ciMi = 0

then
∑n

i=1 ci|t=1Mi|t=1 = 0.

The matrix M(K)|t=1 is very simple. Each row of it (like each column

of it) consists of 1 and −1 and zeros. The relation for rows of this matrix is

obvious: One should just take the sum of these rows that is equal to zero.

So, for all i, j = 1, . . . , n we have ci|t=1 = cj |t=1.

Each relation for ε looks like(
n∑

i=1

ci(qi − pi)

)
(t− 1) = 0.

Since we are interested in whether this expression is divisible by (t−1)2,
we can easily replace ci by ci|t=1. Thus, it remains to prove that

∑n
i=1(qi−

pi) = 0 for the given diagram K. Let us prove it by induction on the

number n of classical crossings.

For n = 0, there is nothing to prove.
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Fig. 3.19 Labels of K and K′.

Now, let K be a diagram with n classical crossings, and K ′ be a diagram

obtained from K by replacing a classical crossing by a virtual one.

Consider the case of the positive classical crossing v (the “negative” case

is completely analogous to this one), see Fig. 3.19.

Denote the lower-left arc of both diagrams by a, and other arcs by b

and c, d (for K we have a = d), see Fig. 3.19. Assign the label 0 to the

arc a of both diagrams. Let us calculate
∑

(qi − pi) for K ′ and K. By the

induction hypothesis, for K ′ this sum equals 0.

Denote the label of b for the first diagram by lb1 and that for the second

diagram by lb2.

The crossing v of K has q = lb1, p = 0, thus, its impact is equal to lb1.

The other crossings of K (classical or virtual) are in one-to-one corre-

spondence with those of K ′. Let us calculate what the difference between

the p’s and q’s for these two diagrams is. The difference comes from clas-

sical crossings. Their labels differ only in the part of the diagram from d

to b (according to the knot orientation). While walking from d to b, we

encounter classical and virtual crossings. The total algebraic number is

equal to zero. The algebraic number of virtual crossings equals −q. Thus

the algebraic number of classical crossings equals q. Each of them impacts

−1 to the difference between K and K ′. Thus, we have q − q = 0, which

completes the induction step and hence, the theorem. �

3.2.5.2 Multiplicative approach

Let R be a ring of Laurent polynomial in two commutative variables t, s

(we shall consider this ring over R or Q depending on circumstances). Let

K be a virtual diagram. Associate with this diagram the moduleM over

the ring R as follows. Let a1, . . . , an be arcs of K (we shall use the same
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letters for notations of generators of the module corresponding to arcs). Let

us now consider a virtual quandle over the ring R generated by a1, . . . , an
and the relations (3.1)–(3.3) at classical and virtual crossings according to

the following formulae: {
a ◦ b = ta+ (1− t)b,
f(a) = sa.

(3.6)

Let us denote the obtained module byM(L).

Theorem 3.13. The obtained module is an invariant of virtual links.

This theorem follows from the much stronger Theorem 3.14, the proof

of which will be given later.

In the case of a virtual link with l enumerated components (a colored

virtual link) the module over the ring R[t±1
1 , . . . , t±1

l , s±1
1 , . . . , s±1

l ] is con-

structed in the same manner. Let us describe this construction more pre-

cisely. Let K be a virtual link diagram with n arcs and the components of

the link are enumerated by natural numbers from 1 to l. Associate with all

arcs of the diagram elements a1, . . . , an. Let us modify the relations between

neighboring arcs at classical/virtual crossings by replacing each appearing

of the generator t by one of the generators ti in the relations (3.6) and the

generator s by one of si. More precisely, we follow the rule. With two arcs

aj , ak separated by a long arc A belonging to a component i in a virtual

crossing we associate the relation aj = siak in the case when the arc aj is

situated on the right with respect to the orientation of the long arc A, and

aj = s−1
i ak, if the arc aj is situated on the left. At classical crossings we

shall use the relation (3.1) viewed as a ◦ b = tja+ (1− ti)b, where i is the
number of the component corresponding an arc of the overcrossing to which

the relation is related, j is the number of the component corresponding two

arcs of the undercrossing. Thus, we get the moduleMl(K).

Theorem 3.14. The moduleMl(K) is an invariant of colored virtual links.

In the case of links with unordered components, we can consider a col-

lection of modules Ml(K) under all possible orders of the components.

This collection of modules will obvious be an invariant.

It is evident that Theorem 3.14 follows from Theorem 3.13. Since in

Theorem 3.14 there is a structure which differs slightly from the structure

of a quandle, namely, the structure which a set of different operations de-

pending on link components is defined on, we have to prove independently

the invariance of the corresponding moduleMl.

Let us prove Theorem 3.14.
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Proof of Theorem 3.14. We follow the same principle as in the proof of

Theorem 3.4. The only difference is that in the given case in Reidemeister

moves different link components can take part. This is expressed by the

presence of different variables si, ti. If we set all variables si to be equal to

one variable s, and all variables ti to be equal to one variable t, then the

proof of the theorem immediately follows from the proof of Theorem 3.4

and category considerations.

Thus, the proof is reduced to those cases when in a Reidemeister move

we have different components of the link. We have classical, virtual and

semivirtual moves.

Let us consider only the most difficult case: the third classical Reide-

meister move and prove it carefully.

This proof repeats the proof (known in the classical case proof) of the in-

variance of the analogous module for classical links (without the generators

si).

In our case we have labels: monomials in the variables si on all compo-

nents. Without loss of generality we may assume that all of them are equal

to one.

Let us consider two diagrams shown in Fig. 3.20.

The numbers of crossings in this figure are labeled by Roman digits, the

numbers of arcs are labeled by Arabic digits, the numbers of components

are circled, and the monomials corresponding to incoming arcs are marked

by letters P, Q, R, see Fig. 3.20.

i

jk

i

jk

I

IIIII

III

III
4

5 6

4

5 6

P

Q R
P

Q R

Fig. 3.20 Labels of arcs for Ω3.

Let us consider the relation matrices corresponding to the diagram be-

fore applying the Reidemeister move and the diagram after applying the
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move. The matrix corresponding to the first diagram is:

1 0 0 0 (tk − 1)Q −tjR 0 . . . 0

0 1 0 (tj − 1)P −tiQ 0 0 . . . 0

−ti 0 1 (tk − 1)P 0 0 0 . . . 0

0
... W

0


.

The matrix corresponding to the first diagram looks like:

1 0 0 (tk − 1)P 0 −tiR 0 . . . 0

0 1 0 (tj − 1)P −tiQ 0 0 . . . 0

−tj (tk − 1) 1 0 0 0 0 . . . 0

0
... W

0


.

We shall perform elementary manipulations over matrices; it is evident

that these manipulations do not change the module itself.

The second rows of these matrices coincide. Let us consider their third

rows. In the first matrix let us add the first row multiplied by ti to the

third row. In the second matrix let us add the first row multiplied by tj
and the second one multiplied by (1 − tk) to the third row. We shall get

two matrices having the same third rows. Their third row looks like

(0, 0, 1, (tk − 1)P, ti(tk − 1)Q,−titjR, 0, . . . , 0).

The first columns of the new two matrices coincide and have only one

non-zero element, namely, 1 stands in the first place. Thus, by adding this

column we can make the first rows of these matrices equal to each other.

Therefore, the initial modules are isomorphic. �

Let us consider the following description of the module Ml(K). Let

the diagram K have n classical crossings. Then the number of long arcs

also equals n. Each long arc is divided into some number of arcs. Labels

associated with these arcs are obtained from each other by multiplying by

some monomials in variables si. Thus, we can do the following: First, we

take into consideration all relations at virtual crossings, thereby we left one

arc-generator for each long arc instead of all generators. Then we shall write

down relations at classical crossings in which the remaining n generators

take part. As a result, we have n generators and n relations which can
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be written in a matrix. The determinant of this matrix (up to invertible

elements of the ring R) will be a link invariant. The fact of the matter is that

Reidemeister moves do not change the moduleMl(K) and do not change

the system of relations defining the module. It can be expressed in the fact

that each Reidemeister move leads the matrix to a matrix obtained from

the initial one by elementary manipulations not changing the determinant

or multiplying the determinant by some invertible element of the ring R.

Herewith we can achieve that under right normalization we get a link

invariant up to multiplying by powers of variables ti, but not si.

Let us describe this construction more precisely (see [207, 213]).

Let K be a proper link diagram with l components and n classical

crossings representing v1, . . . , vn. Let us associate with each component

“variable-numbers” i1, . . . , il. We shall use variables si1 , . . . , sil which by

the substitution of indices give us the variables s1, . . . , sl in some order. Fur-

ther, we substitute all possible permutation over l elements for (i1, . . . , il),

this allows us to have a collection of modules (and a collection of the corre-

sponding polynomials) as an invariant of the link K. Let us enumerate all

arcs of K and all crossings by numbers from 1 to n. Let us associate with

each classical crossing the long arc outgoing from it.

We shall associate with arcs of K labels (monomials in variables

s±1
i1
, . . . , s±1

il
) by the following rule. Let us choose some long arc ai and

fix its beginning arc, i.e. the arc outgoing from the crossing vi. Let us

associate the label 1 with the latter. All other arcs of the long arc will be

marked by monomials as follows. While passing through the virtual cross-

ing with ijth component Kij of the link K we multiply the label by sij
when we pass from the left to the right or by s−1

ij
otherwise, see Fig. 3.21.

Hereby, we associated labels, monomials in s±1
i1
, . . . , s±1

il
, with all arcs

of the diagram K.

Each classical crossing vm with a number m is incident to exactly three

arcs. One of them belongs to a long arc am with the number m and have

the label equal to one by construction, the other arc belongs to the long arc

aj with a number j having the label P (m), passing through the crossing

vm and lying on the ijth component Kij of the link, the third one belongs

to the long arc ak with a number k incoming in the crossing vm and lying

on the imth component Kim of the link; the label of the arc equals Q(m).

Note that the arcs am, ak belong to the one component denoted by Kim .

Generally speaking, some of the numbers m, j, k can coincide. Let us now

write down the generalized Alexander matrix M(K) corresponding to K as
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Fig. 3.21 Labeling of arcs for a virtual diagram.

follows. In each mth row at most three elements are non-zero; namely, all

elements in this row except elements with the numbers m, j, k are equal

to zero. This row is the sum of three rows such that one of them has

exactly one non-zero element. One of them has label 1 at place m. The

second one has element −t±1
ij
Q(m) at place k, and the third one has element

(t±1
im
− 1)P (m) at place j, herewith a sign ±1 is equal to +1 if the crossing

is positive, and −1 if the crossing is negative.

The matrix constructed by this way is the relation matrix of the module

Ml(K) for a colored link (i.e. for a link with a fixed order of components).

Thus, we have constructed a collection of matrices M(K) depending on

a permutation i1, . . . , il of components of the link K. Denote the collection

of the determinants of these matrices by ζ(K).

Theorem 3.15. The collection ζ(K) of the determinants of matrices ob-

tained by performing all possible permutations of components of the link K
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is an invariant under the Reidemeister moves up to multiplying by mono-

mials in variables ti1 , . . . , til .

If we fix a numeration of components of the link K, then the obtained

determinant ζ(K) is an invariant of a colored link up to multiplying by

monomials in variables t1, . . . , tl.

Let us consider the case of colored links. It is evident that in the general

case the collection of values of the invariant under all possible colorings of

components of the link is an invariant of the link. The invariance of the

determinant in the case of colored links up to multiplying by invertible

elements of the given ring (i.e. monomials in t±1
j , s±1

k with a sign ±1)
follows from the fact that the matrix is the relation matrix of the module

which is invariant.

Remark 3.7. Here, by “natural” normalization we mean the normalization

under which normalization factors are defined by the combinatorial of a

link diagram; there is also a normalization depending on the form of the

present polynomial; for example, a polynomial, which is invariant under

multiplication by some monomial, can be normalized so that its leading

monomial (say, under all variables in lexicographic order) is equal to a

constant.

Theorem 3.15 follows from Lemma 3.3.

Lemma 3.3. The determinant ζ(K) is an invariant with respect to all

generalized Reidemeister moves except Ω1. Applying the move Ω1, it is

multiplied by a monomial in variables t1, . . . , tl, t
−1
1 , . . . , t−1

l with the sign

+1.

The proof of Lemma 3.3, in turn, follows from the proof of Theorem 3.14.

The polynomial ζ can be easily normalized with respect to variables

t1, . . . , tl in order to get a virtual link invariant.

Theorem 3.16. The polynomial ζ is multiplicative under a disconnected

sum of links: ζ(K1 ⊔K2) = ζ(K1) · ζ(K2).

Proof. Indeed, it follows from the fact that a disconnected sum of links is

associated with a block-matrix the block of which are matrices correspond-

ing to the initial links. �

Note that analogous structures appeared in works by Kauffman and

Radford [174], Silver and Williams [280], and Sawollek [276]. However, in
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contrast to the approach of this book they used another approach: Instead

of considering an additional structure at virtual crossings they used a more

complicated structure at classical crossings. As a result, it turned out

that the ζ-polynomial was equivalent to (up to a substitution of variables

and a normalization) polynomials considered in [174, 276, 280], but this

equivalence was not evident. It was proved by Fenn in [22].

In some cases different approaches to the same invariant allows one to

find its different properties. For example, Sawollek [275] showed that his in-

variant recognized the invertibility of virtual knots, i.e. the non-equivalence

of some oriented knots to its images obtained by reversing orientations.

Namely, for the knot K shown in Fig. 3.22 we have

ζ(K) =
(s2 − 1)(t− 1)

(
1 + s− 2st+ s2t(t− 1)

)
s2t

under some orientation.

Fig. 3.22 Sawollek’s example.

From the definition of the polynomial ζ, we have the following state-

ment.

Statement 3.2. If a knot K2 is obtained from a knot K1 by swapping the

orientation, then for some i, j the equality ζ(K1)(s, t) = sitjζ(K2)(s
−1, t)

holds.

It is easy to see that the polynomial ζ(K) and the polynomial ζ(K ′)

obtained from the first one by the substitution of s by s−1 cannot be ob-

tained from each other by multiplying by some monomial smtl. Therefore,

the knot K is not invertible.
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Moreover, in this work Sawollek showed that his polynomial could be

reduced to Vassiliev invariants of virtual links (see the definition in Chap. 7),

and thereby he showed that in the virtual case Vassiliev invariant could,

generally speaking, distinguish knots which differed from each other by an

orientation. In the classical case the question of whether there exists a

Vassiliev invariant recognizing the invertibility of some knots is still open,

see, e.g. [57, 73].

Note that in the case of virtual knots even Vassiliev invariants of order

zero can recognize the invertibility. We shall discuss it in Chap. 7.

There are different generalizations of a quandle in which a short arcs

take part, see [22, 44, 86, 90, 171].

3.3 Long virtual knots

This section contains one of the main results of the chapter. Namely,

the construction of strong invariants of long virtual knots recognizing non-

commutativity of long virtual knots, see [219, 221, 222].

Definition 3.3. By a long virtual knot diagram we mean a smooth immer-

sion f of the oriented line R in the plane Oxy, such that:

(1) outside some big circle, we have f(t) = (t, 0);

(2) each intersection point is double and transverse;

(3) each intersection point is endowed with a classical or virtual crossing

structure.

All long virtual diagrams are supposed to be oriented according to the

orientation of the line from left to right. In the depicting pictures we shall

not point out the orientation.

A long virtual diagram has two distinguished non-compact arcs (respec-

tively, long arcs, short arcs). Non-compact arcs are arcs containing “infinite

places”; more precisely, an arc is called non-compact if it contains the image

of a point x ∈ R such that the restriction of the map R1 → R2 on intervals

(−∞,−|x|] and [|x|,∞) is the identity embedding R1 → R1.

Definition 3.4. A long virtual knot is an equivalence class of long virtual

knot diagrams modulo generalized Reidemeister moves. A long classical

knot is a long virtual knot having a diagram without virtual crossings.

The trivial long knot is the long virtual knot having a diagram without
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crossings. This knot is unique, it has the diagram of two non-compact arcs

which coincide.

Example 3.2. An example of a long virtual knot is shown in Fig. 3.23.

Fig. 3.23 A diagram of a long virtual knot.

Usual virtual knots (not long) are also called compact virtual knots.

There are two operations turning a long knot into a compact knot and

vice versa. The first of them is called the closure of a long virtual knot,

K 7→ Cl(K), see Fig. 3.24.

K=

Cl(K)=

Fig. 3.24 The closure of a long virtual knot.
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This operation is well defined and associates a long virtual knot to the

compact virtual knot. This operation tears off two non-compact arcs in a

“neighborhood of the infinity” and connects the new arcs. Herewith the

obtained compact knot inherits the orientation of the long virtual knot.

The second operation, breaking, being the inverse operation to the first

is less natural. We pick a point on a diagram of an oriented virtual knot K

which is distinct from a crossing, break this diagram in the given point and

pull out the ends into infinity in order to get a long virtual knot. In the case,

if the ends can be pulled out into infinity so that no additional crossings

appear, we shall do it in this manner. In the case if such crossings appear,

all these crossings should be virtual crossings. Denote this operation by

Brk: K 7→ Brk(K).

Figure 3.25 shows the procedure of breaking the diagram of a virtual

knot in some points and getting long virtual diagrams.

K

K

1

2

Fig. 3.25 Getting long virtual diagrams by breaking.

It is evident that the second operation is the inverse operation to the first

in the sense that Cl(Brk(K)) = K. On the other hand, the operation Brk

is not well defined, namely, an obtained long virtual knot (its equivalence

class) depends on a selected point.

In what follows (Chap. 7) we shall show that for each compact virtual

knot K there are infinite many pairwise non-equivalent long virtual knots

K ′ such that Cl(K ′) = K. It was first noted by Silver andWilliams; in [221],

this was proved by pursuing simple consideration: Vassiliev invariants of
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order zero of compact knots.

To long knots (classical and virtual) one can apply the technique con-

structed earlier in this chapter. Here, one should pay attention to two

circumstances:

(1) A long virtual knot has the fixed beginning and ending non-compact

arcs. Therefore, not only an algebraic object (a quandle or its general-

ization) is an invariant for long virtual knots but the algebraic object

with a distinguished pair of elements is.

(2) A long virtual knot has the oriented traverse, therefore, all its classical

crossings are divided into two types depending on which arc was the

first: an arc forming an undercrossing or an overcrossing. In the first

case we shall say that the crossing is an early undercrossing, in the

second case we have an early overcrossing.

The latter allows one to construct particular delicate invariants.

It is well known that in the classical case the classifications of (compact)

knots and long knots coincide. In the virtual case, as will be shown in

the book, this is not true. The considerations described above can be

used to construct invariants of classical (long) knots and long virtual knots.

Namely, in the classical case we suggest a new approach to knot invariants

by long knots with two types of crossings. In the virtual case we shall

construct invariants distinguishing long virtual knots the closures of which

are equivalent (compact) virtual knots.

Pursuing these considerations one can construct invariant constructions

which allow one to distinguish very easily long virtual knots and find phe-

nomena not appearing in the classical case, for example, the fact that long

virtual knots, generally speaking, do not commute.

Definition 3.5. A long quandle is a set M with two distinguished ele-

ments a and b, equipped with two binary operations ◦ and ∗ and one unary

operation f(·) such that

(1) (M, ◦, f) is a virtual quandle (the reverse operation for ◦ is /);
(2) (M, ∗, f) is a virtual quandle (the reverse operation for ∗ is //);
(3) the operations ◦, ∗, /, // are right-distributive with respect to each

other;

(4) the following relations hold. Let α, β be some operations from the list

{◦, ∗, /, //}, then for any x, y, z ∈M we have the identities (the strange
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relations): {
xα(y ◦ z) = xα(y ∗ z),
xα(y/z) = xα(y//z).

The elements a and b are called initial and final elements of the long

virtual quandle.

The axioms described above correspond to the construction of an in-

variant of long virtual knots in the following way. Let K be a long virtual

knot. First, we take all arcs of it and associate elements with them, which

subsequently play the role of generators of the long virtual quandle. The

generators a and b are distinguished from all generators and they corre-

spond to the initial and final non-compact arcs. At virtual crossings we

write down the relations of types (3.2), (3.3), Rk1 and Rk2 also as in the

case of a virtual quandle. At classical crossings we write down relations

(analogous to the relation (3.1)) R◦,i of a long quandle with respect to the

operation ◦ in the case of an early overcrossing and R∗,i of a long quan-

dle with respect to the operation ∗ in the case of an early undercrossing.

Namely, by early overcrossing we mean the situation when under the tra-

verse of the long knot from the beginning to the end we first go along the

upper branch (overcrossing) and then lower branch (undercrossing) in the

crossing. Otherwise, we have early undercrossing, see Fig. 3.26.

Early 

overcrossing

Early

undercrossing

Fig. 3.26 An early overcrossing and early undercrossing.

Let us fix a common numeration {Ri} for all relations described above.

Each relation Ri looks like ri1 = ri2.

As it turns out the axioms of a long virtual quandle given above allows

one to get an invariant of long knots.

Let us describe it in detail. First, note that a long quandle like

a virtual quandle can be defined by generators and relations. For this
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we have to take generators a1, . . . , ak, and construct a set of admissi-

ble words, i.e. words obtained successively from generators by the op-

erations ◦, /, ∗, //, f . All operations of the long quandle are naturally

defined in the obtained set Admi(a1, . . . , ak). Let us now define the

quandle represented by generators a1, . . . , ak and relations R1, . . . , Rl and

denoted by DG⟨a1, . . . , ak|R1, . . . Rl|a, b⟩, as the quotient set of the set

Admi(a1, . . . , ak) over the equivalence relations given by the following ele-

mentary equivalences:

(1) A ◦ A ∼ A, A/A ∼ A, A ∗ A ∼ A, A//A ∼ A for any A ∈
Admi(a1, . . . , ak);

(2) (A ◦ B)/B ∼ (A/B) ◦ B ∼ A, (A ∗ B)//B ∼ (A//B) ∗ B ∼ A for any

A, B ∈ Admi(a1, . . . , ak);

(3) (AαB)βC ∼ (AβC)α(BβC) for any A, B, C ∈ Admi(a1, . . . , ak) and

any operations α, β ∈ {◦, ∗, /, //};
(4) Aα(B ◦ C) ∼ Aα(B ∗ C), Aα(B/C) ∼ Aα(B//C) for any A, B, C ∈

Admi(a1, . . . , ak) and any operation α ∈ {◦, ∗, /, //};
(5) f(f−1(A)) ∼ f−1(f(A)) ∼ A for any A ∈ Admi(a1, . . . , ak);

(6) f(AαB) = f(A)αf(B) for any A, B ∈ Admi(a1, . . . , ak) and any oper-

ation α ∈ {◦, ∗, /, //};
(7) ri1 ∼ ri2 for any i = 1, . . . , l.

The elements a and b are defined as some admissible words from the set

Admi(a1, . . . , ak).

Let K be a diagram of a long virtual knot and a1, . . . , ak be its arcs,

herewith a = a1 is the initial arc, b = a2 is the final arc. Define the long

quandle DG(K) as DG⟨a1, . . . , ak|R◦i, R∗j , Rk,1, Rl,2|a1, a2⟩.
We have the following.

Theorem 3.17. Let K, K ′ be diagrams of equivalent long virtual knots.

Then there exists an isomorphism

h : (DG(K), aK , bK)→ (DG(K ′), aK′ , bK′),

which respects the operations ◦, ∗ and f and sends the element aK (respec-

tively, bK) to aK′ (respectively, bK′).

Proof. The proof follows line-by-line the proof of the invariance of the

virtual quandle.

The invariance under purely virtual Reidemeister moves is evident. For

the detour move it is sufficient for us to consider its local version in which

the branch with two virtual crossings passes through a classical crossing. In
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this case we deal with the operation f and only one of the operations ∗, ◦.
Further, only one of the two operations ∗, ◦ can appear under consideration

of the first or second classical Reidemeister move.

So, the most interesting case is the third classical Reidemeister move.

In fact, it is sufficient to consider the following four cases shown in Fig. 3.27

(a, b, c, d).

α β

γ

αβ

γ

α β

γ

αβ

γp

q r

p

p

p

q q qr r r

α β

γ

αβ

γ

α β

γ

αβ

γp

q r

p

p

p

q q qr r r

a b

c d

Fig. 3.27 Checking the move Ω3.

In each of the four cases, we have three incoming arcs and three outgoing

arcs. One of the arcs, marked by p, passes upper at both crossings; so the

label at the end coincides with the label at the beginning. The other arc,

marked by q, is seen under the arc with the label p; this action is the same

in both cases corresponding to the concrete version of the move Ω3. So,

one should only check the transformation for the arc marked by r.

In each of the four cases, at each crossing we put some operation α, β

or γ from the set of operations {◦, ∗, /, //}. That will be applied to the arc

below to obtain the corresponding arc above.

Consider the case a. Each of α, β, γ is a “multiplication” ◦ or ∗ (the

operation / and // will be called “divisions”).

Thus, in the upper-left corner we shall have: (rγq)αp in the left pic-

ture and (rαp)γ(qβp) in the right picture. But, by definition, (rγq)αp =

(rαp)γ(qαp). The latter expression equals (rαp)γ(qβp) according to the

“new relation” (because both β and α are multiplications).

Now, let us turn to the case b. Here γ is a multiplication and α, β

are divisions. Thus, the same equality holds: (rγq)αp = (rαp)γ(qαp) =
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(rαp)γ(qβp).

The same equation is true for the cases shown in pictures c and d. The

only important thing is that α and β are either multiplications (as in case

c) or divisions (as in case d). The remaining part of the statement follows

straightforwardly. �

Like the case of quandles and virtual quandles, long quandles allow one

to construct more simple invariants. For this, one can fix a long quandle

(DG′, a, b) and study the set of homomorphisms from long quandles of long

knots to DG′, respecting all the operations and sending the initial element

of the long quandle to a, and the final element to b.

It may appear that the strange relations are not realizable except the

case when the operation ∗ coincides with the operation ◦. However, it is

not true. As an example of a long quandle [222] one can consider the ring

Zm and operations in it: 
a ◦ b = pa+ (1− p)b,
a ∗ b = qa+ (1− q)b,
f(a) = ka,

(3.7)

where k, p, q are invertible elements in the ring, and (1 − p)(p − q) =

(1− q)(p− q) = 0. The axioms of a quandle are checked straightforwardly.

Let us call long quandles of such type linear long quandles. As it turns

out one can recognize non-triviality of some long knots having the trivial

closure with the help of linear long quandles.

Let R be a ring with a unit, and p and q be two fixed invertible elements

satisfying the equation (p − 1)(q − 1) = (q − 1)(p − q) = 0. Let k be an

invertible element also. For a long virtual knot K, denote by M̃(K) the

module over R generated by the way described above (the generators are

arcs, the relations at crossings are (3.7)) with two distinguished elements

corresponding to the initial and final arcs.

Comparing long virtual quandles of two knots is a complicated prob-

lem. Therefore, it is useful to consider much simpler invariant objects

corresponding to long virtual knots which are invariant under the same

reasons as long quandles.

By construction for a fixed R the triple (M̃(K), a, b) is an invariant of

long knots.

Indeed, the proof repeats that of Theorem 3.17 by taking into account

that the operations (3.7) satisfy all axioms of a long quandle.

It is known (see, e.g. [66]) that classical long knots commute. Moreover,

the following theorem is true.
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Theorem 3.18. Let a long knot K have no virtual crossings. Then for

any long virtual knot K ′ the commutative property K#K ′ = K ′#K holds.

Proof. Indeed, let us make a diagram of K very small and start pulling

it through a diagram of K ′. When pulling it through the virtual crossings

we shall use the detour move, see Fig. 3.28, and when we have a pulling

through classical crossings, we shall use the classical Reidemeister moves.

Detour

move

Fig. 3.28 A classical long knot commutes with any long knot.
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As a result, we have the desirable equivalence. �

Remark 3.8. This proof does not work in the case when the knot K has

virtual crossings, since in this case we cannot draw K through arcs of K ′

consisting of classical crossings. We should have used the forbidden move,

see Fig. 1.16.

Let us show that there are long virtual knots which do not commute

with each other. This fact was first discovered in [222].

Let us consider the long virtual knots K1 and K2 depicted in Fig. 3.29.

 

 

K

K
x

y

z

a b
c

70c

70x70y

1

2

c

Fig. 3.29 Labeling the knots K1 and K2.

For R we take the ring Z112·192 and set p = 20+121 ·19, q = 20, k = 70.

Thus, in M̃(K) the operations look like a ∗ b = 20a − 19b, a ◦ b = (20 +

121 · 19)a − (122 · 19)b and f(a) = 70a. One notes that in the module M̃

for the knot K1#K2 the initial arc must be divided by 121, while for the

module corresponding to the knot K2#K1 there exists a homomorphism

to the ring Z112·192 under which the initial arc is sent to 11 · 192.
Namely, for the knot K1 (see upper part of Fig. 3.29) we have the

following relations in the linear quandle M̃(K1): a∗ (70c) = c = b◦70c; the
first relation means that 20a = (19 · 70 + 1)c = 1331c; since the element 20

is invertible in the ring Z112·192 , the elements a is divided by 121.

For the knot K2 (see the lower part in Fig. 3.29) we have: (70x) ∗ y =

z = (70y) ◦ x. It means that we can set x = 11 · 192, y = 0 (the coefficient

in x in the expression (70x)∗y− (70y)◦x is divided by 11), i.e. we can map

M̃(K2) to the linear quandle Z112·192 with the same operations. Further, in

the knot K2#K1 we can set all remaining arcs (belonging to the long knot

K1) equal to zero; this can be done since y = 0 (the value z is calculated).
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The other way to formulate the arguments above is: The set of homo-

morphisms H from DG(K1#K2) to the linear quandle which is the ring

Z112·192 with the operations (3.7) and p = 20 + 121 · 19, q = 20, k = 70

such that H(a1) is not divided by 121, is empty, and for DG(K2#K1) the

set of such homomorphisms is not empty.

Therefore, these knots do not commute, this fact confirms their differ-

ence, non-triviality, and also the fact that each of them is not equivalent to

a classical knot.

There are two obvious cases when long virtual knots commute: either

they coincide or one of them is classical. We suppose that there are, in

essence, no other reasons for long virtual knots to commute, i.e. we formu-

late the following conjecture.

Conjecture 3.1. If two long virtual knots K1, K2 commute, then there

exist a long virtual knot K, non-negative integers m, n and long classical

knots L1, L2 such that

K1 = Km#L1, K2 = Kn#L2,

where the power is understood in the sense of reiterated connected sum.

Remark 3.9. Just as in the case of compact knots the notion of a virtual

quandle is generalized to the notion of a virtual biquandle [85, 125, 171],

in the case of long knots the notion of a long virtual quandle is generalized

to the notion of a long virtual biquandle. We are not going to develop this

theme here.

3.4 Virtual knots and infinite-dimensional Lie algebras

The results of this section are also published in [220].

3.4.1 Preliminaries

Any group G can be transformed to a quandle if we decree:

(1) a ◦ b = bnab−n, where n is some fixed natural number, or

(2) a ◦ b = ba−1b,

where in the first case the structure of a virtual quandle can be defined

by an arbitrary automorphism f of the group G, and in the second case

f can be taken as an arbitrary (anti)automorphism of the group G. For
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a fixed group G we can, for example, pick out an element q ∈ G and set

f(a) = qaq−1.

Analogously, any group can be transformed to a biquandle, virtual quan-

dle, long quandle and so on.

For the group G, we may take a Lie group. In this case, according to

the general theory, the set of morphisms from a virtual quandle of a link

to a given Lie group is an invariant.

Attempts to associate with each (virtual) knot some Lie group which is

invariant by the reason of the invariance of a virtual quandle lead to some

difficulties.

However, Lie algebras can be defined axiomatically with the help of

generators and relations. We can take a free Lie algebra generated by

formal generators corresponding to arcs of the diagram. After that we have

to describe appropriate relations which turn the Lie algebra into a quandle

(a virtual quandle). It is possible because there exists the exponential map

from a Lie algebra to the Lie group, and the multiplication in the Lie group

can be lifted to the Lie algebra and can be expressed in terms of purely

algebraic operations there. This is the famous Baker–Campbell–Hausdorff

formula. We shall use this formula in the form proposed by Dynkin [80].

This formula expresses the logarithm for the product of the exponents

of x, y ∈ g from a Lie algebra g by commutators. It looks like:

log(exey) =
∞∑
k=0

∞∑
pi, qi=0,
pi+qi>0

1

k

(−1)k−1

p1!q1! . . . pk!qk!
(xp1yq1 . . . xpkyqk)◦. (3.8)

The summation is taken over k from 0 to ∞ and all possible sets of

integer non-negative numbers (p1, q1, . . . , pk, qk) connected by the relation

pi + qi > 0.

Here the operation (x) → (x)
◦

sends the formal product of non-

commutative variables xj to the commutator according to the rule

(xi1xi2 . . . xik)
◦ =

1

k
[. . . [[xi1 , xi2 ], xi3 ], . . . , xik ],

and extended linearly for their linear combinations.

In order for the operation in question to be defined, the ground ring

should contain the ring Q of rational numbers.

In this section, we suggest an algorithm which associates with a knot

(a virtual knot), a Lie algebra or a quotient space of a Lie algebra over

a subalgebra (a quotient algebra over an ideal). These objects will be

invariant with respect to the (generalized) Reidemeister moves. Lie algebras
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being obtained will be, generally speaking, infinite-dimensional because the

initial algebra (which we factorize) represents a free Lie algebra additively

generated by all commutators of arbitrary orders of given generators.

The formulae obtained with the help of the Dynkin formula and the con-

cept of virtual quandles lead us to the possibility of constructing “similar”

virtual quandles which are not explicitly related with Lie groups.

Our approach is as follows. If we have a Lie algebra g and the Lie group

G corresponding to it, then the exponential map is a one-to-one correspon-

dence of a neighborhood of zero of the Lie algebra to a neighborhood of the

unity of the Lie group. Thus, if the formula a ◦ b = bab−1 gives a virtual

quandle in the group, then the formula a ◦ b = log(exp(b) exp(a) exp(−b))
gives a virtual quandle in the Lie algebra (at least in a neighborhood of

zero). After that we can put the Dynkin formula (3.8), thereby we shall get

the expression for the operation of a quandle in the Lie algebra in terms of

interior operations of the Lie algebra (commutators).

The fact that this formula satisfies the quandle axioms can be checked

immediately. We get some identity which is true for any Lie algebra given

by formal generators and relations. Further, we can use the formula for

an axiomatic definition of an invariant quandle (a virtual quandle), a Lie

algebra corresponding to a classical or virtual link.

Moreover, besides the initial formula-series obtained by taking the stan-

dard quandle operation to Lie algebras by the exponential map and log-

arithm. It is possible to vary this formula and obtain new structures of

(virtual) quandles which are not a straight generalization of the structures

of quandles originated from groups.

Let us describe this construction in details.

Let K be a diagram of an oriented virtual link with n classical crossings.

Pick out the first arc (according to the orientation) on the long arc with

a number i and associate an element ai with the arc. Consider a formal

infinite-dimensional Lie algebra G(n, q) over a field F generated by elements

a1, . . . , an corresponding to arcs of the diagram and a separated element q.

Using the relations at virtual crossings Rj1, Rj2 (by the formu-

lae (3.2), (3.3), interpreted according to the Baker–Campbell–Hausdorff

formula (3.8)), we can define elements of the algebra G(n, q) corresponding

to all arcs of the diagram.

We shall now factorize the algebra G(n, q) over the formal relations Ri

of a quandle at classical crossings (3.1).

Herewith we shall mean the relations (3.2), (3.3) as well as the rela-

tion (3.1) in terms of the operation of the quandle defined by the Dynkin
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formula (3.8).

Namely, let us consider the following three cases:

(1) for any a, b ∈ g we have

a ◦ b = log(exp(n · b) exp(a) exp(−n · b)),
f(a) = log(exp(q) exp(a) exp(−q)),

where n is some natural number;

(2) for any a, b ∈ g we have

a ◦ b = log(exp(b) exp(−a) exp(b)),
f(a) = log(exp(q) exp(a) exp(−q));

(3) for any a, b ∈ g we have

a ◦ b = log(exp(b) exp(−a) exp(b)),
f(a) = log(exp(q) exp(−a) exp(q)).

In each of them the relations at classical and virtual crossings generate

the ideal in the free infinite-dimensional Lie algebra formed by commuta-

tors.

Denote the resulting quotient Lie algebras over the corresponding ideals

by Lien(L),Lie+(L) and Lie−(L), respectively.

Theorem 3.19. The Lie algebras Lien(L), Lie+(L), Lie−(L) are invari-

ants of virtual links.

The proof of this theorem follows line-by-line the proof of Theorem 3.2

about the invariance of (virtual) quandles.

The obtained algebras are invariants of virtual knots, but they are

infinite-dimensional, and it is difficult to work with them. Let us con-

sider in detail formulae for virtual quandles used in these algebras and try

to construct much simpler and convenient invariants of virtual links.

3.4.2 Generalizations

One of the ways to work with the constructed invariants (and to con-

struct new ones) is, for example, to consider the group of automorphisms

Hom(Lien(L) → A) to a fixed Lie group A. If this set is finite (or finite-

dimensional), then its cardinality (its dimension) can be considered as an

invariant of a (virtual) link.
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Another way is as follows. We investigate the operation ◦ and its sim-

plification.

An immediate consequence is that the factorization of the obtained Lie

algebra over any “natural” ideal (for example, the ideal generated all com-

mutators of order k) gives a link invariant. This operation leads to finite-

dimensional Lie algebras, knot invariants.

However, we can forget about the nature of the operation ◦ and use

only its formal form obtained from the Dynkin formula and modify it.

As it turns out, this leads to virtual knot invariants valued in Lie algebras,

finite-dimensional or infinite-dimensional, which, generally speaking, do not

originate from a quandle related to groups.

Let us consider the very first term of the Baker–Campbell–Hausdorff

formula:

log(exp(a) exp(b)).

The easiest approximation gives us

a+ b+
1

2
[a, b].

Thus, the easiest approximation for a ◦ b in the form

log(exp(b) exp(a) exp(−b))
looks like

a− [a, b].

The above formula defines the quandle operation if we take the quotient

of the resulting Lie algebra by the ideal generated by all commutators

[[x, y], z] of at least three terms. This follows from general considerations:

An invariant quandle-Lie algebra is factored over an ideal which does not

depend on a given link.

One can construct a more skillful example. Namely, consider the ring

R of all infinite series of (positive and negative) powers in one variable ε

over Q.

Set

a ◦ b = a+ ε[a, b]. (3.9)

Theorem 3.20. For any Lie algebra g over R and its two-sided ideal h

generated by expressions of the form [[x, z], [y, z]], the operation (3.9) is a

well-defined quandle operation on the corresponding quotient algebra; the

inverse operations is defined by the formula

a/b =
∞∑
k=0

(k + 1)(−ε)k(a · bk)◦. (3.10)
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Proof. The existence and uniqueness of the inverse operation follow from

the formula (3.10). Indeed, solving the equation c ◦ b = a step-by-step (on

degrees ε), we shall get:

• c ≡ a (mod ε),

• c ≡ a− [a, b]ε (mod ε2),

• c ≡ a − [a, b]ε + [[a, b], b]ε2 (mod ε3) and so on, and each subsequent

approximation is uniquely defined from the preceding.

The idempotence is evident, since all commutators of the variable with

itself are equal to zero.

We have

(a ◦ b) ◦ c = (a+ 2ε(ab+ ac) + 3ε2abc)◦.

Analogously,

(a ◦ c) ◦ (b ◦ c) = (a+ 2ε(ab+ ac) + 3ε2(acb− bca))◦.

In the last equality we used the fact that [[a, c], [b, c]] = 0 due to the

factorization.

The claim of the theorem now follows from the Jacobi identity. �

Denote the Lie algebra by Li(K). Thereby we obtained a map from the

set of (classical and virtual) knots to the set of (infinite-dimensional) Lie

algebras.

Example 3.3. Let us consider the knot invariant Li(K) (under construc-

tion of which we ignore all virtual crossings) factored by ε = 1. Note that

the Lie algebra Li(K) is well defined: All relations in this algebra are writ-

ten in the form of relations on diagram arcs with the operation ◦, herewith
the operation a ◦ b is a finite sum of commutators (but not infinite series).

For majority of knots it gives an infinite-dimensional Lie algebra.

Let us show that this invariant gives finite-dimensional Lie algebras for

the figure eight knot and the trefoil.

Indeed, in the case of the trefoil we have three arcs a, b, c and three

crossings; for the latter we write down commutators. We get three relations:

a + [a, b] = c, b + [b, c] = a, c + [c, a] = b. Thus, all first commutators are

expressed by the generators, it follows that the algebra is finite-dimensional.

In the case of the figure eight knot we have four generators; at crossings

we write down relations in which two commutators take part, see Fig. 3.30.

In the first crossing we get the relation d ◦ c = a; the second crossing

gives us b ◦ d = a; in the third crossing we have b ◦ a = c, and for the
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Fig. 3.30 Labeled the figure eight.

fourth one we get d ◦ b = c. Thus, we get an expression for three of six first

commutators. Therefore, [b, d] = a − b, [d, b] = c − d. It follows that the

algebra is finite-dimensional.

3.5 Hierarchy of virtual knots

Algebraic and combinatorial techniques analogous to that developed in this

book are successfully applied for other generalizations of knots and flat

curves.

This section is devoted to hierarchy flat virtual knots. The notion of

hierarchy knots was first introduced by Kauffman [86]; he formulated the

classification problem of these objects. Here we give some results in this

direction.

The main result of this section is Theorem 3.21.

3.5.1 Flat virtual knots

Algebraic structures (the Lie Goldman bracket and Lie Turaev cobracket,

see [110, 298]) arising on the set of virtual knots (or virtual strings) lead

us to the idea about a natural generalization of flat virtual knots. This is

a motivation of the section.

Flat virtual knots (see the definition in Chap. 1) represented by framed

4-valent graphs can also be interpreted as curves in surfaces considered up

to homotopy and stabilization.

Homotopy classes of curves in surfaces have the structure of Lie (Gold-

man) algebra and Lie (Turaev) coalgebra, the quantization of which leads

us to the description of the structure of skein-module knots in thickened
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surfaces [298].

Flat virtual knots can be understood in the following way: We consider

framed 4-valent graphs in the plane and say two graphs to be equivalent if

one of them can be transformed to the other by a finite sequence of special

moves which for simplicity are also called Reidemeister moves. Herewith in

the case of the first Reidemeister move, the crossing can have an arbitrary

type, for the second Reidemeister move we only require that two crossings

are either classical or virtual; for the third Reidemeister move we allow the

arc containing classical crossings passes through classical crossings, and the

arc containing virtual crossings passes through classical crossings as well as

virtual crossings, see Fig. 1.17.

In other words, the rule for Reidemeister moves for flat virtual knots

can be formulated as follows. We do not impose any restriction on the first

Reidemeister move. For the second Reidemeister move we demand that two

crossings have the same type, and for the third Reidemeister move we allow

the branch containing two crossings of type i passes through a crossing of a

type j if and only if i > j, where > is a binary relation (in our case it is an

ordinary relation > on the set {1, 2}). Here we have two types of crossings:

1 corresponds to a classical crossing, and 2 corresponds to a virtual one.

Instead of two types of crossings we can permit to note crossings from

an arbitrary partially ordered set M . In this case a branch with crossings

having a label i can pass through crossings with a label j if and only if

i > j.
So, the theory of flat virtual knots has the following reformulation.

(1) Main objects of flat hierarchy are framed 4-valent graphs in the plane

equipped with a special structure at crossings: classical crossings have

the label 1, and virtual crossings have 2.

(2) Two objects are called equivalent if one of them can be transformed to

the second one by a finite sequence of the following Reidemeister moves

shown in Fig. 3.31.

(a) For the first Reidemeister move the crossing can have an arbitrary

label.

(b) For the second Reidemeister move two crossings should have the

same labels.

(c) In the case of the third Reidemeister move we require that the branch

γ passes through a crossing with a label x if and only if the labels

of two crossings lying on γ are the same and equal to y, and y > x.
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Fig. 3.31 Reidemeister moves hierarchy knots.

The last condition for the third move means that branches containing

only virtual crossings can pass through classical crossings, and branches

containing classical crossings cannot pass through virtual crossings.

Flat virtual knots are classified geometrically (see also Theorem 1.2).

Later (Sec. 8.3.3) we shall see that virtual knots have natural hierarchy

coming from parity.

Let us now generalize the notion of flat virtual knots (virtual strings)

as follows. Let M be a set with a binary relation α 6 β (not necessary

acyclic, i.e. from the relations α 6 β and β 6 α, generally speaking, it does

not follow that α = β). Herewith the expression β > α is equivalent to the

expression α 6 β.
We shall consider framed 4-valent graphs and associate crossings with

the labels from the set. We say that two labeled framed 4-valent graphs

are equivalent if and only if one of them can be obtained from the other by

a finite sequence of the Reidemeister moves with the restrictions described

above.

We shall construct invariants of such combinatorial objects analogous

to virtual quandles.

3.5.2 Algebraic formalism

Let us fix a partially ordered set M with a binary relation 6.
LetK be a given oriented flat framed 4-valent graph all vertices of which

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 3. Quandles (Distributive Groupoids) in Virtual Knot Theory 113

are marked by elements from M . In what follows we shall call these graphs

M -hierarchy diagrams. An arc of a M -hierarchy diagram is a connected

component of the set obtained from K by deleting all vertices. Then K

represents a hierarchy diagram.

Each hierarchy diagram represents a hierarchy link with some number

of components. A component of a hierarchy link is a unicursal curve of the

corresponding graph.

Let us have a hierarchy diagram of a link with n components. Enumer-

ate components of the hierarchy link by numbers from 1 to n.

Each vertex (crossing) of this diagram has a label j and two addi-

tional numbers, the numbers of components of the link: x corresponding

to the direction southwest–northeast and y corresponding to the direction

southeast–northwest, see Fig. 3.32.

x y

j

Fig. 3.32 A crossing.

Let us enumerate arcs with natural numbers (in an arbitrary way).

Associate an element ai with the arc having a number i. These elements

will be generators of an algebraic set M , an invariant of a hierarchy link

which we construct.

After enumerating all arcs in such a way let us define relations at cross-

ings. They are defined as follows.

Let the crossing with a label j be related to arcs #x and #y (an order

of arcs does not matter). Let the elements corresponding to the incoming

arcs equal a and b (respectively, the lower-left and upper-right if the arcs

are oriented from bottom to top). Then the relations look like:

c = b− P j
xya (3.11)

and

d = a+ P j
xyb, (3.12)
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where c and d are emanating arcs, left and right, see Fig. 3.33.

We did not define P j
xy yet. What should these elements be in order that

the algebraic formalism (analogous to that developed for quandles, virtual

quandles and biquandles) leads to an invariant of hierarchy links?

a b

j

c=b-P d=a+Pa b
j

xy xy
j

Fig. 3.33 Relations for a hierarchy knot.

Let us consider a formal non-commutative associative algebra (over an

arbitrary preassigned ring of coefficients, for example, over Q) generated

by formal elements P i
xy, where x, y run the set C of link components, and

i runs the partially ordered set M in which the following relations hold.

For any i, x, y:

P i
xy = P i

yx. (3.13)

For any i, j ∈M , where i 6 j, and for any x, y, z, t:

P i
xyP

j
zt = 0. (3.14)

Denote the algebra defined by the relations (3.13), (3.14), by A(C).
As we shall see later, these relations are necessary for the invariance of

the object which is constructed by us, under Reidemeister moves.

Associate with the M -hierarchy diagram K components of which are

enumerated by elements from the set C, a module over the algebra A(C)
as follows.

Pick out all arcs a1, . . . , ak of this diagram as generators over the ring

A(C). Factorize the free module generated by arcs a1, . . . , ak over the

relations (3.11) and (3.12), and as well as relations (3.15) which are as

follows.
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For any i, j, where i > j, for any x, y, z, t ∈ C and for any l, m =

1, . . . , k under fixed i, j all elements of the module having the form

P i
xyP

j
ztal (3.15)

coincide with each other. In short, we shall denote all these elements by

P iP j∗.
In other words, we require that pairwise products are equal to zero in

some particular cases (3.14), namely, as i 6 j, which is contained in the

definition of the ring A(C). In the case when such a product is not zero,

we require that it is an element of our module, depending only on indices

i and j.

Denote this module by N(K).

Remark 3.10. In the case when we only have one component, we can

forget about lower indices and construct an analogous ring A (without C)

and a module corresponding to the link.

Theorem 3.21 (Main theorem [226]). The module N(K) is an invari-

ant of hierarchy links.

Proof. In order to prove the main theorem, we have to consider all Rei-

demeister moves. In each Reidemeister move, there is a part which is un-

dergone by changing; this part of the diagram has incoming and emanating

edges. We have to show that all output edges can be expressed in terms of

inputs (like all interior edges); moreover, for two diagrams which differ by a

Reidemeister move, the expression of output in terms of input is the same.

Labels corresponding to “intermediate edges” can be excluded from the set

of generators, since they are expressed by incoming edges (arguments are

completely analogous to the proof of Theorem 3.4).

We shall consider only one case for each Reidemeister move. All the

remaining cases are checked analogously.

For the first Reidemeister move we deal with only one component and

one crossing; thus, it follows from the invariance check that there exists only

one generator P i
pp of the ring which will be denoted by P , see Fig. 3.34.

We see that the input a is connected with the middle edge x and the

output edge by the following relations:

a+ Px = x, x− Pa = b.

Thus, we have: (1− P )x = a, where x = (1 + P )a. It follows from here

that b = (1 + P )a − Pa = a, herewith x is expressed from a, it completes

the proof of the invariance under the first Reidemeister move.
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a=b

a

x

Fig. 3.34 The first Reidemeister move.

Now, let us consider the second Reidemeister move. By definition, both

crossings taking part in the move have the same label, and in both cases

we have the same pair of arcs with numbers k, l. Thus, we can again write

P i (without any lower indices) instead of P i
kl.

The second Reidemeister move is shown in Fig. 3.35.

a b

c=a d=b

i

xy

i

Fig. 3.35 The second Reidemeister move.

We have two input edges a, b. The remaining edges are expressed from

a and b according to the following relations: x = a + P ib, y = b − P ia,

c = x− P iy = a+ P ib− P ib+ P iP ia = a, d = y + P ix = b.

Therefore, the module is generated by the arcs a and b, as well as

the exterior arcs (not depicted in the figure and identical before and after

applying the second Reidemeister move). This leads us to the invariance

under the second Reidemeister move.

Let us pass to the third Reidemeister move shown in Fig. 3.36.

Here we have three input edges a, b, c, labels at vertices (r > s), and

numbers of components (i, j, k in our case). It is easy to see that all middle

edges in the left case as well as the right are expressed from the input edges.

Thus, we have to check the equality of the expressions of emanating
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i

j k

i

j ka b

c

r

s

a b

c

s

r

r r

Fig. 3.36 The third Reidemeister move.

edges from the input edges for the right and left pictures (which are obtained

from each other by applying the third Reidemeister move).

In the left pictures the output edges are a+P s
jkb−P r

ijc, b−P s
jka−P r

ikc

and c+ P r
ik(b− P s

jka) + P r
ij(a+ P s

jkb).

In the right pictures the output edges are a + P r
ijc + P s

jkb, b − P r
ik(c +

P r
ija)− P s

jk(a− P r
ijc) and c+ P r

ija+ P r
ikb.

It is easy to see that the corresponding values coincide in view of the

axioms (3.13), (3.14) of the ring M , and the relation (3.15). Thereby, we

have completed the invariance check under the third Reidemeister move

and, therefore, the proof of the theorem. �

3.5.3 Examples

The simplest example of a hierarchy link is the trivial link with any number

of components. It is obvious that for the trivial hierarchy link with k

components we get the free module with k generators over A.
The natural shadow of the trefoil for which two of three crossings have

the same labels represents a hierarchy knot reduced to the unknot, see

Fig. 3.37. Indeed, first we apply the second Reidemeister move to two

vertices with the same label, and then we delete the remaining loop by the

first Reidemeister move.

However, if we have three distinct labels, see Fig. 3.38, then we shall

have a non-trivial hierarchy knot.

Namely, denote two leftmost arcs by x and y, as shown in Fig. 3.38.

Let us show that the module corresponding to this knot is not free.

Indeed, since we have only one component, we can use the notation P j ,

where j = 1, 2, 3, instead of P j
11.

Let us factorize our module by all triple relations P iP jP k = 0. The aim

is to show that even after such a factorization the module turns out to be

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

118 Virtual Knots: The State of the Art

1
2 2

1

Ω

1

2

Ω

Fig. 3.37 The trivial hierarchy knot.

1 2 3

x

y

Fig. 3.38 A non-trivial hierarchy knot.

non-trivial. From this it follows that the initial module is also non-trivial.

We have the pair (x, y) of arcs which is transformed to (y−P 1x, x+P 1y)

(here on we first indicate the upper arc and then the lower arc).

The second crossing gives us

(x+ (P 1 − P 2)y + P 2P 1∗, y + (P 2 − P 1)x+ P 2P 1∗).
Finally, after the third crossing we get(
y + (P 2 − P 1 − P 3)x+ (P 2P 1 + P 3P 2 − P 3P 1)y,

x+ (P 1 − P 2 + P 3)y + (P 2P 1 + P 3P 2 − P 3P 1)x
)
.

These two elements correspond to the rightmost arcs, i.e. they equal x

and y, respectively.
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Denote P 1 − P 2 + P 3 by P and denote P 2P 1 + P 3P 2 − P 3P 1 by Q.
Note that P2 = −Q, P3 = 0. Then we get

y − Px+Q∗ = x, x+ Py +Q∗ = y.

Thus we have x = y − Py − Q∗, from which we get y − Py + P2y =

y −Py +Q∗. These relations make our module non-trivial. Moreover, the

relation does not follow from the relation by which we factorized.

Therefore, the hierarchy flat diagram depicted in Fig. 3.38 is non-trivial.

Analogously, one can prove that the “hierarchy Borromean rings” with

labeling shown in Fig. 3.39 are not equivalent to the flat diagram consisting

of three disjoint circles.

1

2

3 1

2 3

Fig. 3.39 Hierarchy Borromean rings are not equivalent to the trivial link.

Let us picture the Borromean rings in the following way (in view of the

“braid closure”), see Fig. 3.40.

On the left we have three labels (a, b, c). After the first crossing (labeled

by 1) they pass to the following three crossings (we write down from top

to bottom): (b− P 1a, a+ P 1b, c).

Further, we have (b − P 1a, c − P 3a − P 3P 1∗, a + P 1b + P 3c), then

(c−P 3a−P 3P 1 ∗−P 2b+P 2P 1∗, b−P 1a+P 2c, a+P 1b+P 3c), after that

(after the crossing labeled by 1), we get: (c−P 3a−P 3P 1∗−P 2b+P 2P 1∗, a+
P 3c, b+P 2c), further (a+P 3P 2∗, c−P 3P 1 ∗−P 2b+P 2P 1∗, b+P 2c) and,

finally, (a+ P 3P 2∗, b, c− P 3P 1 ∗+P 2P 1∗).
From this the non-trivial relations follow: P 3P 2∗ = 0 and P 3P 1 ∗

−P 2P 1∗ = 0.
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1
2

3a

b
c

23 1

Fig. 3.40 Labels on Borromean rings.
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Chapter 4

The Jones–Kauffman Polynomial:
Atoms

4.1 Introduction

The Jones polynomial (in the normalized Kauffman bracket form) is a sim-

ple but at the same time fundamental construction of a classical knot in-

variant. Based on the Jones polynomial, several remarkable invariants of

classical knots were constructed: quantum invariants, Khovanov homology,

etc., as well as some invariants of 3-manifolds and knots in 3-manifolds (the

Jones–Witten invariants). Here, one should also mention various general-

izations of the Jones polynomial for the case of virtual knots. The original

Jones’ construction was first suggested in [141], the Kauffman bracket ver-

sion first appeared in [155]. In the sequel, we shall also call this invariant

the Jones–Kauffman polynomial.

In the end of 20th century, Khovanov [176] invented and developed a

powerful construction generalizing the Jones polynomial. Nowadays this

construction is called the Khovanov complex (Khovanov homology).

This construction is related to the Jones polynomial approximately as

the cohomology ring of some topological space is related to the Euler char-

acteristic of this space. More precisely, the Khovanov complex of a link

is some formal algebraic complex whose homology groups are invariants of

the link in question, and the (graded) Euler characteristic coincides with

the Jones–Kauffman polynomial in some other normalization suggested by

Khovanov.1 We shall devote the next chapter to the Khovanov homology.

One should note that the Khovanov homology detects the unknot, which

was recently proved by Kronheimer and Mrówka, see [187]. Chapter 4 is

preparatory for Chap. 5.

1This polynomial is obtained from the Jones polynomial by a variable change and a
multiplication by a fixed polynomial factor.
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In the next chapter we shall describe various ways of generalizations of

the Khovanov complex for the case of virtual knots belonging to the first-

named author, see [218, 221, 223]. Based on the properties of the Jones

polynomial and the Khovanov homology, in Chap. 5 (see also [211]) we shall

prove theorems about minimality and non-classicality of some virtual links

(i.e. the absence of a classical diagram for a given virtual link), which es-

timate some characteristics of the links in question (the atom genus, etc.).

Note that in the case of knots with non-orientable atoms (see the definition

below and Chap. 8), the Khovanov construction requires serious modifica-

tions. The geometric generalizations constructed in Chap. 5 are based on

geometric modifications of the initial knot.

In Chap. 5 (where the main construction of the Khovanov homology

is introduced) with each diagram of an arbitrary virtual link we shall as-

sociate a chain complex whose homology groups are invariant under the

Reidemeister moves. In the case of classical links and links with orientable

atoms, this complex will be equivalent (quasiisomorphic) to the original

Khovanov complex.

Herewith, a major part of the results of Chap. 5 related to modifica-

tions of Khovanov’s construction, remains true for the new complex to be

constructed in that chapter.

Besides its preliminary role, the present chapter contains results of its

own interest. We construct an invariant Ξ justifying the Jones polynomial.

In the end of this chapter we touch upon minimal problems.

In the last few years many new invariants refining the Jones polynomial

for virtual knots and long virtual knots appeared, see, e.g. [135, 247].

4.2 Basic definitions

Given an oriented diagram K of a virtual link with n classical crossings.

Consider the unoriented diagram |K| obtained from K by forgetting the

orientation. Each crossing of |K| can be smoothed in one of the two ways:

positive A : → or negative B : → . The choice of smoothings

for all crossings is called a state of the diagram. Thus, the diagram |K| has
2n states. After smoothing the diagram with respect to some state, we get

a diagram of a virtual link without classical crossings. Thus, the obtained

virtual link will be trivial. To each state s we assign the following three

numbers: α(s) is the number of A-smoothed classical crossings, β(s) =

(n−α(s)) is the number of B-smoothed classical crossings, and γ(s) is the
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number of components of the link in the state s.

Define the Kauffman bracket [158] ⟨·⟩ of a non-oriented diagram |K|
according to the formula:

⟨|K|⟩ =
∑
s

aα(s)−β(s)(−a2 − a−2)(γ(s)−1), (4.1)

where the sum is taken over all states s of the diagram |K|.
The Kauffman bracket is invariant under all generalized Reidemeister

moves except for the first classical Reidemeister move Ω1.

It follows from the definition that the Kauffman bracket satisfies the

relation

⟨ ⟩ = a⟨ ⟩+ a−1⟨ ⟩.
The Kauffman bracket which is “almost” an invariant of unoriented

virtual links leads to an invariant of oriented virtual links.

To this end, the Kauffman bracket has to be normalized as follows. Let

K be an oriented virtual diagram. Set

X(K) = (−a)−3w(K)⟨|K|⟩, (4.2)

where w(K) is the writhe number of K.

It is known [158] that in this way we can get an invariant (Laurent) poly-

nomial for oriented links to be called the Jones–Kauffman polynomial [141].

Looking at the Jones–Kauffman polynomial, one can partially answer the

following questions:

(1) Is a given link classical?

(2) What can we say about the atom genus of the link, see the definition

in Sec. 4.2.3?

(3) Which are the lower estimates for the crossing number?

Let us describe some well-known important properties of the Jones–

Kauffman polynomial.

Example 4.1. From definitions, it follows immediately that the value of

the Jones polynomial on the unknot is equal to one, and on the trivial link

with (n+ 1) components it is equal to (−a2 − a−2)n.

Furthermore, the Jones–Kauffman polynomial is multiplicative with re-

spect to a connected sum operation X(K1#K2) = X(K1) ·X(K2).

Here we mean that for every connected sum of virtual knots K1#K2

the value of the invariant is equal to the product of the Jones–Kauffman

polynomial on virtual links, which are summands in this connected sum.

Furthermore, for the disconnected sum (which is well defined) we have

X(K1 ⊔K2) = X(K1) ·X(K2) · (−a2 − a−2).
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The Jones–Kauffman polynomial, however, is not very strong invariant

for virtual knots. One can easily construct, for example, non-trivial (and

non-classical) knots where the Jones–Kauffman polynomial is equal to the

unit.

Example 4.2. Let us consider the Kishino knot as shown in Fig. 4.1.

Fig. 4.1 The Kishino knot split into two long knots.

It represents a connected sum of two unknots. This yields that its Jones

polynomial is equal to 1. In the sequel we shall demonstrate non-triviality

of the Kishino knot by using the polynomial Ξ, a generalization of the Jones

polynomial, which takes into account the geometry of virtual knots. In fact,

the flat knot corresponding to the Kishino knot is not trivial either.

Each of the two parts of the Kishino knot closes to the unknot (see

Fig. 3.29); however, each of these two parts is non-trivial as a long knot; if

at least one of these knots were trivial, then the Kishino knot itself would

be trivial.

The question about the existence of non-trivial classical knots with the

trivial Jones–Kauffman polynomial is an open problem.

In this section, we shall give several results allowing one to answer par-

tially to the questions stated above, and formulate several conjectures con-

cerning the unknot recognition by the Jones–Kauffman polynomial.

Note that for every n > 2 there exists a classical n-component link

sharing the Jones–Kauffman polynomial with the n-component trivial link,

namely, (−a2−a−2)n−1. These examples were constructed in the paper by

Eliahou, Kauffman and Thistletwaite [82].
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Moreover, in this work it is shown that for every classical n-component

link K there exist infinitely many classical links with (n + 1) components

having the Jones–Kauffman polynomial equal to X(K) · (−a2 − a−2).

In this chapter we shall give generalizations of the Jones–

Kauffman polynomial which are stronger in the case of virtual knots,

see [210, 212, 214, 221].

One can easily prove the following proposition.

Proposition 4.1 (see, e.g. [149]). For a classical n-component link K all

non-zero monomials of the Jones–Kauffman polynomial X(K) have expo-

nents congruent to 2n+ 2 modulo four.

In the case of virtual links one can just say that all monomials have

exponents congruent modulo two. This follows explicitly from (4.1). This

immediately yields the following well-known corollary.

Corollary 4.1. Let K be a virtual link for which the polynomial X(K)

has at least one non-zero monomial of degree 4k and at least one non-zero

monomial of degree 4l + 2 for some integers k, l. Then the virtual link K

is not classical.

This is the simplest example how to prove the non-classicality of a vir-

tual link.

The property of having exponents of monomials all congruent modulo

four, belongs not only to classical links but also to virtual links having dia-

grams with orientable atoms, see the definition ahead, though this property

is not an orientability criterion of the corresponding atom. Note that the

orientability of the corresponding atom is a key property for defining the

Khovanov homology. We shall discuss it in the next chapter.

4.2.1 Virtualization and mutation

There are transformations changing a virtual link diagram and the equiva-

lence class of the virtual link, but not changing the Jones–Kauffman poly-

nomial. These transformations are important for the study of properties

of the Jones–Kauffman polynomial of classical and virtual knots and for

construction of stronger invariants.

One such transformation consists of the change of a classical crossing

by one classical and two virtual crossings, as it is shown in Fig. 4.2.

This transformation is called the virtualization. It is easy to see that
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Fig. 4.2 Two variants of virtualization.

each of the two diagrams changed by a virtualization at classical crossings

is expressible as a combination of the other virtualization move and the

detour move.

The set of classical knots is a subset of the set of virtual knots. Then

the natural question [86] arises. We want to take the quotient of the set of

virtual knots in such a way that the set of classical knots remains the same

(we shall talk about simplifications also in Chap. 8). Namely, we state the

following conjecture.

Conjecture 4.1 (Virtualization conjecture). If two classical knots are

equivalent by means of generalized Reidemeister moves and virtualization

moves, then they are isotopic.

Note that the virtualization applied twice to the same crossing v of a

diagram K (more exactly to the crossing v of the diagram K and to the

crossing v′ replacing it in the virtualized diagram K ′) leads to the diagram

K ′′ obtained from the diagramK by detour moves. The following statement

is well known.

Statement 4.1 (Kauffman [158]). The virtualization does not change

the value of the Jones–Kauffman polynomial.

Corollary 4.2. There are infinitely many non-trivial virtual knots with

unit Jones polynomial, and that it is natural to conjecture that they are all

non-classical. This problem is well known and still wide-open.

A more interesting example of a transformation which does not change

the Jones–Kauffman polynomial is a mutation.
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It is defined as a deletion of a fragment (called a 2–2 tangle) from the

diagram and an insertion of this tangle (i.e. a part of the diagram having

four emanating ends) rotated by π to the obtained diagram, see Fig. 4.3.

Note that mutations were first considered by Conway in [63].

T

R

T

R

180
o

Fig. 4.3 Mutation.

Diagrams obtained from each other by applying mutations are called

(mutually) mutants.

The notion of mutation and mutant is verbatim generalized for virtual

knots and links (herewith 2−2 tangles appearing in the view of subdiagrams

can be virtual).

It is well known (the proof can be found in, e.g. [221]).

Proposition 4.2. Mutations do not change the value of the Jones–

Kauffman polynomial.

It follows from the fact that there exists a one-to-one correspondence be-

tween states of mutantsK1 andK2 such that the number of circles in a state

s of the diagram K1 is equal to the number of circles in the corresponding

state s′ of the diagram K2. Since the writhe numbers of (oriented) mutants

coincide, then the values of their Jones–Kauffman polynomials coincide, see

Fig. 4.3.

Note that the Khovanov complex (the next chapter is devoted to this

complex) can sometimes feel mutations in the case of links. This was first

discovered by Wehrli (see [314]).
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4.2.2 Atoms and knots

Given a classical alternating diagram K. Its shadow divides the plane into

cells C1, . . . , Cn which can be colored in the checkerboard coloring. Here-

with the set of circles in the A-state (a state in which all classical crossings

are A-smoothed) is in one-to-one correspondence with the set of cells hav-

ing the same coloring, and the set of circles in the B-state (all crossing are

B-smoothed) corresponds to the remaining circles. Thus, an alternating

diagram represents a framed 4-valent graph generating the checkerboard

coloring of the two-dimensional sphere (the plane with the additional infi-

nite point).

In the case of an arbitrary classical diagram, the resulting tiling of the

sphere is not checkerboard colorable. As it turns out one can associate with

each virtual diagram a 2-surface divided into cells admitting a checkerboard

coloring in such a way that white cells correspond to circles in the A-state

and black cells correspond to circles in the B-state. A particular case of

this construction is the tiling of the sphere described in the beginning of

this section.

This surface (with the graph and checkerboard coloring) is called an

atom. Having an atom we can restore more information about the link, in

particular, its Jones–Kauffman polynomial and the Khovanov homology.

Important characteristics of a link diagram are the orientability of the

corresponding atom and its genus.

The notion of an atom was first introduced by Fomenko in [98] (see

also [43, 94–97]) for the classification purposes of integrable Hamiltonian

systems of low complexity. A connection between atoms and knots was

investigated by the first-named author in the series of works [203–205, 221].

In [294] Turaev was using a similar construction (hence, the atom genus

is also called the Turaev genus [199]).

Definition 4.1. An atom is a pair (M,Γ): a connected closed 2-manifold

M and an embedded 4-valent graph Γ ⊂ M such that M\Γ is a disjoint

union of cells that admits a checkerboard coloring (with black and white

colors), i.e. two components of M\Γ being adjacent by an edge of Γ have

always distinct colors.

The graph Γ is said to be the frame of the atom. A vertex of the atom

is a vertex of this frame.

The genus (respectively, Euler characteristic) of the atom is that of its

first component, i.e. the surface. An atom is called orientable (respectively,

connected) if the corresponding manifold is orientable (respectively, con-
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nected). An atom of genus zero is called spherical, oriented atoms of genus

one are called torus.

Remark 4.1. Atoms can be represented as a 2-surface (with boundary) on

which a Morse function with distinguished critical levels with some saddle

points under the condition that there are no critical points of other types

(the initial definition by Fomenko [98]) is defined. In this case the frame of

the atom represents a critical level, black cells are domains of values above

the critical level (a supercritical level), and white cells are domains of values

below the critical level (a subcritical level). Further, we shall use the term

“subcritical circles” and “supercritical circles” to describe circles in states

of the corresponding knot.

Remark 4.2. Atoms are usually assumed to be connected, but we admit

that an atom can have more than one connected component.

The example of a torus atom is depicted in Fig. 4.4.

Fig. 4.4 A torus atom.

If an atom is orientable, then we can equip it with an orientation. Thus,

it makes sense to say about oriented and unoriented atoms.

Atoms are considered up to the natural isomorphism. Two atoms are

called isomorphic if there exists a one-to-one map of their first components

taking frame to frame and black cells to black cells.

Each atom (more precisely, its equivalence class) can be completely

restored from the following combinatorial structure:

(1) the frame (a 4-valent graph);

(2) the A-structure or the structure of opposite edges (dividing the four

outgoing half-edges into two pairs, called opposite, according to their

disposition on the surface); and
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(3) the B-structure (for each vertex, we indicate some two pairs of adjacent

half-edges (also: two angles) which constitute a part of the boundary

of black cells).

If an atom (M,Γ) is not orientable, then we can consider its orientable

covering, i.e. an atom, (M̃, Γ̃), being the preimage of the pair (M,Γ) under

the two-sheeted orientable covering; in the case when the atom (M,Γ) is

orientable, we define the atom (M̃, Γ̃) to be two disjoint copies of (M,Γ)

(with a fixed isomorphism taking one atom to the other).

Atoms are very convenient for describing links and virtual links.

Among all atoms one can single out the class of height atoms which

correspond to diagrams of classical links. According to [205], an atom is

called a height atom if its frame can be embedded into the plane in such

a way that the A-structure of the atom corresponds to the A-structure

inherited by the atom from the plane, i.e. at each atom vertex opposite

edges remain opposite under the embedding of the frame into the plane.

In the general case, the height h of an orientable atom (M,Γ) is the

minimal genus of an orientable surface S, in which the frame Γ of the atom

can be embedded with the A-structure preserved. From the definition of

an atom, it follows that the height of an orientable atom does not exceed

its genus: h(M,Γ) 6 g(M,Γ).

The frame of each atom is a framed 4-graph: The framing (the struc-

ture of opposite edges) is inherited from the embedding of the graph into

the 2-surface. Otherwise we can say that an atom is an embedding of a

framed 4-graph (without cycle components) in a surface in such a way that

connected components of the complement of the surface to the graph admit

a checkerboard coloring.

The planarity problem of framed 4-graphs (i.e. whether a given framed

4-graph is a frame of an atom with genus zero) is considered in [224], and the

problem of finding the genus of an atom having a fixed frame is considered

in [232, 238].

4.2.3 Virtual diagrams and atoms

Given a virtual diagram K (each connected, in the sense of atoms, com-

ponent of K has at least one classical crossing), let us construct the atom

At(K) associated with K. Vertices of At(K) are in one-to-one correspon-

dence with classical crossings of the diagramK. Classical crossings ofK are

connected to each other by branches of K which may intersect each other
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only at virtual crossings. At each classical crossing we have four emanat-

ing half-edges e1, e2, e3, e4 in clockwise-ordering such that the pair (e1, e3)

forms an undercrossing and the pair (e2, e4) forms an overcrossing. These

edges are in one-to-one correspondence with edges of At(K) connecting the

corresponding vertices. The 1-cycles of the frame pasting black and white

cells are constructed as follows. Each boundary of a 2-cell is a rotating

circuit on the frame, i.e. a circuit which passes every edge at most once

and switches at each vertex from an edge to an adjacent (non-opposite)

one. Black cells are glued to the angles formed by (e1, e2) and (e3, e4), and

white cells are glued to the angles formed by (e2, e3) and (e1, e4).

Define the genus, cf. [283], of a virtual link as the minimum of val-

ues g(M,Γ) over all atoms (M,Γ) corresponding to diagrams of the link,

and the height as the minimum of values h(M,Γ) over all atoms (M,Γ)

corresponding to diagrams of the link (see also Chap. 7).

From the definition it follows that classical links have height zero. Ac-

tually, if a link is classical, then its shadow is a framed 4-graph embedded

in the plane which is the frame of the corresponding atom. On construction

the A-structure of the atom coincides with the A-structure induced from

the plane. Thus, a height atom is assign to each classical diagram.

Note that the inverse procedure of constructing a virtual diagram from

an atom is not well defined, for we get a virtual diagram up to detour

moves and virtualizations, see, e.g. [221]. The latter follows from the fact

that the framing of the frame of an atom does not give a cyclic structure

on outgoing half-edges: Knowing that the half-edges e1, e3 are opposite to

each other, we have two possible cyclic orders for embedding a neighbor-

hood of this vertex into the plane: e1, e2, e3, e4 and e1, e4, e3, e2. The

diagrams corresponding to them differ from each other by (detour moves)

and virtualizations.

Having an atom (M,Γ), we can construct an oriented diagram of a

virtual link as follows. Let us consider a generic immersion of the frame Γ

in the plane with the A-structure preserved. The image of this immersion

will be a framed 4-graph, vertices of which are images of atom vertices and

intersections of interior points of edges. The latter will be considered as

virtual crossings, and images of vertices as classical crossings. For restoring

the structure of classical crossings we shall use the B-structure of the atom.

Namely, an edge forms an overcrossing if while moving inside an angle of

the supercritical level in clockwise ordering, it moves from an undercrossing

to an overcrossing edge.

Denote all possible classes of virtual links obtained from an atom At by
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L(At).

An ambiguity appears when an immersion is specified, see Theorem 4.2.

In the case of height atoms one can restrict by considering embeddings.

Denote the corresponding subset of the set L(At) by Lemb(At).

We have the following theorem.

Theorem 4.1 ([205]). The isotopic type of a link from Lemb(At) does not

depend on the embedding of the frame of the atom At into the plane with

the A-structure preserved.

Note that with such an approach the tautological embedding of flat

atoms into the plane is associated with alternating diagrams; they divide

the plane (the sphere) into black and white cells.

In the case of immersions there is no well definedness.

Theorem 4.2 ([221]). Diagrams of links from the set L(At) constructed

from an atom At are obtained from each other by applying the detour move

and virtualization.

Proof. Let us first embed neighborhoods of vertices of the frame with the

A-structure preserved. After that, edges connecting atoms vertices can be

immersed in the plane in an arbitrary way. This corresponds to the fact

that a diagram of the virtual knot is defined up to the detour move.

Here, the choice of an embedding of a neighborhood of a vertex is not

unique. Namely, for each vertex v with a cyclic order of four emanating

half-edges p, q, r, s on the atom, we can choose two ways of an embedding

with the A-structure specified: In the first way the order of emanating half-

edges in the plane is p, q, r, s in clockwise order, and in the second way we

have p, s, r, q, see Fig. 4.5.

The obtained diagrams differ from each other by the virtualization of

the corresponding crossing. �

4.2.4 Chord diagrams

An important object which is used in many problems of knot theory (in

particular in studying combinatorial structures of Vassiliev invariants) is a

chord diagram.

All considered graphs are finite, multiple edges and loops are available.

Let us give formal definitions of considered graphs.
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Fig. 4.5 Different embeddings of the frame of an atom and virtualization.

Definition 4.2. Let M be an oriented one-dimensional manifold (not nec-

essarily connected). A chord diagram of order n on M is an embedding of

unordered disconnected sum of n zero-dimensional circles S0⊔· · ·⊔S0 →M

considered up to an isotopy.

It is usual the manifold M is depicted as a collection of circles and lines

in the plane, and pairs of points, images of zero-dimensional circles, are

connected with each other by segments, chords.

Definition 4.3. A framed chord diagram is a chord diagram with each

chord having framing 0 or 1.

If a chord diagram has no framing, then we assume that all framings

are equal to zero.

In knot theory chord diagrams on one (non-oriented) circle are often

considered (called just chord diagrams).

Namely, the following definition is more convenient.

Definition 4.4. By a chord diagram we mean a cubic graph consisting

of one selected non-oriented Hamiltonian cycle (a cycle passing through all

vertices of the graph exactly once) and a set of non-oriented edges (chords),

connecting points on the cycle. Moreover, distinct chords have no common

points on the cycle. We call this cycle the core circle of the chord diagram.

Edges of a chord diagram, not being chords, are called arcs.
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Remark 4.3. We shall also consider oriented chord diagrams, i.e. chord

diagrams with their core circles to be oriented. In that case we consider

chord diagrams up to isomorphisms of graphs preserving the orientation of

the core circle.

In what follows, by a chord diagram we mean a chord diagram on one

circle unless otherwise specified.

4.2.5 Passage from atoms to chord diagrams

Atoms having exactly one black circle holds great interest. In this case,

they can be encoded by a framed chord diagram as follows. Let us consider

the sole black cell. Consider a circle lying inside this cell and passing near

the boundary of the cell. This circle approaches to each atom vertex from

two sides. Near each vertex let us pick out a pair of points on the circle and

connect them by a chord. Define framing 0 or 1 on each chord as follows.

Orient the circle in some (arbitrary) way. If neighborhoods of two points

connected by a chord are oriented with respect to each other (i.e. either in

clockwise order or in counterclockwise order), then we shall give this chord

a framing 0, otherwise we shall give a framing 1.

Examples of two different orientations are shown in Figs. 4.6(a)

and 4.6(b), respectively.

(a) (b)

Fig. 4.6 Orientations.

If we consider a circle with chords as an abstract graph, then we shall

get a framed chord diagram. In the case of an oriented atom, all framings

of a chord diagram are equal to 0.

Definition 4.5. We say that two chords a and b of a chord diagram D

are linked if the ends of the chord b belong to two different connected

components of the complement to the ends of a in the core circle of D.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 4. The Jones–Kauffman Polynomial : Atoms 135

Otherwise we say that the chords are unlinked.

Remark 4.4. As a rule, a chord diagram is depicted on the plane as the

Euclidean circle with a collection of chords connecting endpoints of chords

(intersection points of chords are not, of course, vertices). If we place all

chords inside the core circle, then two chords are linked if and only if they

intersect each other in the plane.

We get the following theorem.

Theorem 4.3. For each equivalence class of virtual links there exists a

virtual diagram having the corresponding atom with one black cell. Herewith

for classical knots this diagram can be chosen as a classical one.

Proof. Let us consider an arbitrary diagram of a virtual diagram and the

corresponding atom. Assume that the atom has k supercritical circles. If

k = 1, then we have the claim of the theorem.

If k > 1, then there exists a vertex v of the atom such that in a small

neighborhood of it we have two different supercritical circles.

Apply move Ω2 to this diagram as shown in Fig. 4.7.

Surguring a supercritical level

Fig. 4.7 A link diagram (upper) and supercritical circles (lower).

It is easy to see that after this application, two circles shown in Fig. 4.7

emerge as one circle: Supercritical circles are depicted in Fig. 4.7 by thick
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lines, and their behavior outside the transformation domain is depicted by

a dash line. Thus, we decrease the number of supercritical circles by one

without changing the isotopy class of our link. Iterating this operation as

many times as we need, we get a diagram with precisely one supercritical

circle.

Since the transformations described above are only applied to classical

crossings and they create no virtual crossings, then classical diagrams will

be transformed to classical ones. �

A virtual knot up to detour moves and virtualizations is defined from a

framed chord diagram (on several circles, see Definition 4.3). Herewith, in

the case of unframed chord diagrams we shall get an oriented atom and a

virtual knot corresponding to it (up to detour moves and virtualizations).

In the sequel (see Sec. 4.5) we shall give a more explicit construction of

a virtual knot from an unframed chord diagram by dividing the set of its

chords into two sets. In that case, a virtual diagram will be well defined

(up to detour moves), and, therefore, the virtual link will be well defined.

As it was shown, Sec. 4.2.3, by having a virtual link diagram we could

restore the corresponding atom (recall that the operation of constructing

the atom from a virtual link diagram is well defined), and, if the diagram is

classical, then the atom is height. Indeed, in the case of a classical diagram,

by definition, we have the frame of the atom, embedded in the plane with

the A-structure preserved.

Corollary 4.3. If an atom At corresponding to a virtual diagram K is

height (i.e. have the height zero), then the diagram K is obtained from a

classical diagram by detour moves and virtualizations.

Indeed, a diagram K ′ corresponding to a height atom At is classical by

construction. The diagrams K and K ′ are obtained from each other by

detour moves and the virtualizations according to Theorem 4.2.

Definition 4.6. A d-diagram is a chord diagram such that its chords can

be divided into two sets in such a way that the chords from each set are not

linked with each other. Examples of chord diagrams not being d-diagrams

are shown in Fig. 4.8.

A framed d-diagram is a d-diagram having all chords with framing 0.

If an atom is height and has exactly one black cell, then the obtained

chord diagram will be a framed d-diagram. By Jordan’s theorem, a circle

divides the plane into two parts. Further, all chords correspond to the
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Fig. 4.8 Chord diagrams not being d-diagrams.

points where the circle embedded in R2 approaches itself. All these places

of approach are of two sorts: interior and exterior (with respect to the circle)

which correspond to two sets of chords of the d-diagram. Neighborhoods

of two points connected by a chord are oriented with respect to each other,

therefore, we have chords with framings equal to zero.

By a framed chord diagram the atom is restored uniquely. Indeed, a

chord diagram defines the frame of the atom with the A-structure and the

rule of pasting the sole black cell, i.e. the B-structure.

In the case when an atom has more than one black cells, we have to place

one circle inside each cell, orient these circles arbitrarily and give framings

to chords depending on coordinations of orientations of circle parts joined

to a given vertex.

A passage from atoms to cubic graphs with framing was suggested by

Oshemkov [261]. The constructed graph is called a f -graph.

An abstract f -graph is a framed chord diagram (i.e. a diagram with

framing) on several circles. f -Graph is defined up to the following oper-

ation: Swapping the orientation of some circle and swapping framing of

each chord connecting a vertex of the given circle with a vertex on another

circle (if a chord connects the circle with itself, then the framing changes

twice, i.e. it stays unchangeable). In the case when the surface is oriented,

orientations of circles can be chosen accordingly such that all framings are

equal to zero.

The atom is uniquely restored from the f -graph (more precisely, its

equivalence class), see [261].

If orientations of circles and framings of edges are not pointed, then we

assume that circles of all f -graphs are oriented accordingly and framings

are zero. When depicting chord diagrams and f -graphs in the plane, the

orientations of circles of chord diagrams and f -graphs will not be pointed

out. If there is no framing on a diagram, then we assume that the framing
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is equal to zero.

When depicting one circle in the plane, we shall not point out its orien-

tation, by assuming that it is oriented in counterclockwise order.

For oriented diagrams K, K ′ of virtual links there are two (formally

different) equivalence relations: The general virtual equivalence and the

oriented equivalence, in which the existence of a chain of oriented diagrams

K = K0, . . . ,Kn = K ′ is required, where two neighboring diagrams differ

from each other by one generalized Reidemeister move.

In [86] the following theorem was formulated as the conjecture of ori-

entability.

Theorem 4.4 ([86]). These two equivalence relations coincide.

The proof of Theorem 4.4 follows from Kuperberg theorem (Theo-

rem 2.1), and we shall also prove it in Chaps. 8 and 9.

4.2.6 Spanning tree for the Kauffman bracket polynomial

Let us give a fast way for computing the Kauffman bracket polynomial

suggested by Thistlethwaite [285] for classical knots. For virtual knots, it

can be generalized straightforwardly. In the sequel, this method will be

especially useful for working with the Khovanov homology.

Given a virtual link diagram K. The relation

⟨ ⟩ = a⟨ ⟩+ a−1⟨ ⟩

allows one to smooth classical crossings step-by-step. If having chosen

some order of a smoothing of all crossings, we smooth our diagram com-

pletely, then we shall get a collection of circles having no classical crossings

(i.e. a collection of immersed circles having intersection points and self-

intersections at virtual crossings).

In other words, by this method we reduce the Kauffman bracket poly-

nomial of the initial link diagram to a linear combination of values of the

Kauffman bracket polynomial for simplest diagrams of trivial links which

are equal to (−a2 − a−2)(γ−1), where γ is the number of circles in the cor-

responding state. Thus, we get the formula (4.1), where the sum is taken

over all states.

The idea of Thistlethwaite is as follows. We smooth a link diagram not

to a diagram without classical crossings but to some intermediate diagrams

which still have classical crossings and are trivial links.
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This construction works for virtual knots. We smooth classical cross-

ings and as a result, we have a collection of diagrams of virtual links with

classical and virtual crossings.

Let us describe this construction in more detail. Let Q be the state

cube of K, i.e. the set of states written as the discrete cube {0, 1}n, where
each zero (respectively, one) corresponds to the A-smoothing (respectively,

B-smoothing) of the corresponding crossing.

Let us call a collection of states obtained by fixing values of some coordi-

nates, zero or one, a subcube of the state cube. Let Q1, . . . , Qk be subcubes

of Q not sharing common vertices such that the set of vertices of all Qi

gives the set of vertices of Q, see Fig. 4.9.

Q

1

2

3

Q

Q

4
Q

Fig. 4.9 Splitting a four-dimensional cube into subcubes.

Each subcube is obtained from Q by specifying the value for some set

of coordinates, i.e. a choice of smoothings in all vertices of this set. Each

subcube Qi gives the link KQi obtained from the initial link by smoothing

those crossings of the diagram, to which coordinates being constant on all

vertices of Qi correspond. Further, we shall write ⟨Qi⟩, keeping in mind

⟨KQi⟩.
Herewith, each smoothing of K lies in some cubes of Qi. Then by

definition of the Kauffman bracket polynomial we have:

⟨K⟩ = ⟨Q⟩ =
∑

af(i)⟨Qi⟩,

where f(i) means the sum of signs (the sign +1 if we have the A-smoothing,
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and the sign −1 if we have the B-smoothing) of those crossings the smooth-

ings of which correspond to the ith cube.

Let us consider the cube Q and denote by V1 the set of states, in which

the number of circles is equal to one.

Let us now enumerate all classical crossings of K by numbers from one

to n. The general process of a smoothing is as follows. At the ith step we

smooth the classical crossing with the number i in two ways. At length we

come to all 2n states.

Instead of this, in some steps we shall not smooth classical crossings

but we shall make them unchangeable. Thus, at the ith step each diagram

either splits into two diagrams at the ith crossing or passes to the next level

with non-smoothed ith crossing. More precisely, at the kth step we shall

get a collection of diagrams where each of them has a smoothing of some

crossings with numbers from the set {1, . . . , k}.
In each step some subcube corresponds to each such diagram. Herewith,

the union of subcubes at each level gives the initial state cube.

Note that the following formulae and the algorithm depend on the nu-

meration of crossings, but in the end we shall get a formula for computing

the Kauffman bracket polynomial of the initial link, i.e. the final result will

be the same.

Definition 4.7. A splitting point of a connected virtual diagram is a cross-

ing of it such that after removal of the vertex of the frame of the correspond-

ing atom At(K), which corresponds to this crossing, this frame decomposes

into more than one connected components.

The rule for crossings with or without smoothings is as follows. We

shall smooth those crossings which are not splitting points.

Thus, in the end we shall get some collection of “middle smooth-

ings”(diagrams) which will be denoted by SK . Each of these smoothings

gives some virtual link, here the subcubes corresponding to these virtual

diagrams exhaust the whole state cube. To each middle smoothing S ∈ SK
corresponds a diagram. This diagram represents a link KS . According

to [285], we assert that:

(1) each of the links KS is the unknot;

(2) elements of the set SK is in one-to-one correspondence with elements

of the set V1.

Indeed, each diagram corresponding to a smoothing from SK possesses

the property that at each classical crossing one of the smoothings of this
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diagram leads to a tiling. From this it follows that each such diagram

can be reduced to the trivial diagram by applying only first decreasing

Reidemeister moves (and the detour move at virtual crossings).

If we smooth the diagram KS further, then a “splitting” smoothing at

any crossing leads to the splitting of the diagram. Therefore, from all states

of the diagram KS , only one will correspond to the state with one circle.

Namely, this will be the state obtained by smoothing all crossings by “non-

splitting” ways. It is easy to see that in this case we actually have exactly

one circle.

Note that the Thistlethwaite’s construction also works when we divide

the state cube into subcubes corresponding to trivial diagrams. Whatever

tiling of the state cube into subcubes we take, we shall get an analogous

decomposition of the Kauffman bracket polynomial.

Since all states of the diagram K are obtained by further smoothings of

KS , we shall get the required correspondence.

For a state s from V1 denote by Ks the diagram corresponding to a

smoothing from the set SK , a further smoothing of which leads to the

state s.

Thus, by computing the Kauffman bracket polynomial of the initial

diagram K, we can summarize all states from V1 by meaning herewith the

corresponding diagrams from the set SK . Both diagrams in states of V1
and diagrams from SK give the unknot (the one-component link). Here,

the diagram Ks corresponding to a state s ∈ V1 has some (not necessarily

equal to zero) writhe number w(Ks), which leads us to the additional term

(−a)3w(Ks) when we compute the Kauffman bracket polynomial. Besides

this, when we pass from the diagramK to the diagramKs, we smooth some

number of crossings positively, and some number of crossings negatively.

Denote the corresponding difference by r(s).

In the end we get the formula for computing the Kauffman bracket

polynomial:

⟨K⟩ =
∑
s∈V1

(−a)3w(Ks)ar(s).

An example of evaluating the Kauffman bracket polynomial by

Thistlethwaite’s method for the trefoil is shown in Fig. 4.10.

From this picture we get:

⟨K⟩ = (−a)3a2 + (−a)−3 + (−a)−6a−1 = −a5 − a−3 + a−7,

the value of the Kauffman bracket polynomial in the right trefoil.
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Fig. 4.10 Evaluating the Kauffman bracket polynomial by Thistlethwaite’s method.

4.3 The polynomial Ξ: minimality problems

Definition 4.8. A reduced diagram is a connected diagram of a virtual link

without splitting points.

In this section, all diagrams are assumed to be connected, and link

diagrams are assumed to be reduced, unless otherwise specified.

Definition 4.9. The span of a Laurent polynomial P (x) in one variable x

is the difference between its leading degree and lower degree occurring in it

with non-zero coefficients. Notation: spanP (x).

Theorem 4.5. Let K be a reduced diagram of a virtual link with n classical

crossings. Then span ⟨K⟩ 6 4n+ 2(χ− 2), where χ is the Euler character-

istic of the corresponding atom.

Proof. We have to estimate the difference between its leading degree and

lower degree occurring in the Kauffman bracket polynomial with non-zero

coefficients.

Consider the A- and B-states of the diagram K: In the first state,

all crossings are smoothed positively, and in the second, all crossings are

smoothed negatively. Let us denote the numbers of circles in these states

by γmax and γmin, respectively. It is easy to see that no state can contain

a monomial with the degree more than the degree of the leading term in
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the A-state (α = n, β = 0), and no state can contain a monomial with the

degree less than the degree of the lowest term in the B-state (the opposite

state to the A-state at all crossings).

In the maximal state let us consider the leading term with the degree

n+ 2(γmax − 1), and in the minimal state the lowest term with the degree

−n− 2(γmin − 1).

It is evident that the span of the Kauffman bracket polynomial ⟨K⟩ does
not exceed 2n+ 2(γmax + γmin − 2).

Taking into account χ = n − 2n + (γmax + γmin), we shall obtain the

desired claim. �

Definition 4.10. We call a virtual diagram K with n crossings 1-complete,

if span ⟨K⟩ = 4n+ 2(χ− 2).

An orientable diagram is 1-complete if so is the non-orientable underly-

ing diagram.

Definition 4.11. A minimal diagram of a virtual link with n classical

crossings is a diagram such that any diagram of this link has at least n

classical crossings.

Remark 4.5. Note that on the set of classical links there are two formal

different definitions of a minimal diagram. One of them means the mini-

mality in the classical category, the second one in the virtual category. If

a classical diagram is minimal in the virtual category, then it is minimal

in the classical category by definition. The question whether the inverse

statement is true is still unsolved. This question is one of the problems

formulated in [86].

From Theorem 4.5 one can get a series of corollaries concerning the

estimations of the number of classical crossings.

Let K be a virtual diagram with n classical crossings, and let the

corresponding atom have the Euler characteristic χ, and span ⟨K⟩ =

4n+ 2(χ− 2).

Then if there exists a diagram K ′ with n′ classical crossings and n′ < n,

then the atom corresponding to the diagram K ′ must have the Euler char-

acteristic more than the Euler characteristic of the atom corresponding to

K. From this the minimality of many diagrams having non-negative Eu-

ler characteristics (for example, diagrams lying in the sphere, torus, Klein

bottle, projective plane) follows. A particular case of this is the famous

Kauffman–Murasugi–Thistlethwaite theorem about the minimality alter-

nating diagrams of classical links.
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This theorem was independently proved by Kauffman, Murasugi [253]

and Thistlethwaite [285] in the year 1987.

Theorem 4.6 (Kauffman–Murasugi–Thistlethwaite). The span of

the Jones–Kauffman polynomial for links with connected shadow and n

classical crossings is less than or equal to 4n. The equality holds only for

alternating diagrams without splitting points or connected sums of such di-

agrams.

Kauffman–Murasugi–Thistlethwaite theorem was proved for classical

links. Here we give the proof of this theorem for virtual links.

However, for some reason or other the span turns out to be less than

4n+2(χ−2) (the leading and the lowest terms cancel). In this case we can

appeal to stronger invariants: the polynomial Ξ or the Khovanov complex

which will be defined further.

On the other hand, the leading term of the Kauffman bracket polynomial

is interesting by itself. We shall say about it in Chap. 7 devoted to graphs

and Vassiliev invariants and flat curves.

Let us give an example of a “simple” minimality theorem.

Theorem 4.7 ([221]). Let K be a virtual diagram with n classical cross-

ings representing a virtual link not having unconnected diagrams. Let one

of the following two conditions hold :

(1) span ⟨K⟩ = 4n− 2;

(2) span ⟨K⟩ > 4n− 4, herewith in ⟨K⟩ we have monomials having degrees

not congruent to each other modulo four.

Then the diagram K is minimal (in the class of non-split diagrams).

Proof. Let us assume that there exists a diagram K ′ with m classical

crossings and m 6 (n− 1).

In the first case let us consider the atom corresponding to the diagram

K ′. Since K ′ is connected, the atom corresponding to it is connected and

has the Euler characteristic not exceeding two. From Theorem 4.5 we get

span ⟨K⟩ = span ⟨K ′⟩ 6 4(n− 1), a contradiction.

In the second case any atom corresponding to a diagram of the link

generated by the diagramK ′ is unoriented, since ⟨K ′⟩ = ⟨K⟩ has monomials

with degrees not congruent to each other modulo four. Therefore, the Euler

characteristic χ of this atom does not exceed one (as we have a non-split
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diagram). According to Theorem 4.5, we have span ⟨K⟩ = span ⟨K ′⟩ 6
4(n− 1)− 2, a contradiction. �

Definition 4.12. A quasialternating diagram is a diagram of a virtual link

obtained from an alternating diagram of the classical link by virtualizations

and detour moves, see Fig. 4.11.

Fig. 4.11 An alternating classical diagram (the figure eight knot) and a quasialternating
diagram.

From the definition of spherical atom and Theorem 4.2, we have the

following proposition.

Proposition 4.3. An atom corresponding to a connected diagram of a vir-

tual link is spherical if and only if the diagram is quasialternating.

In terms of atoms, the definition of a connected diagram can be refor-

mulated as follows.

Definition 4.13. A virtual diagram is called connected if the frame of the

corresponding atom is connected.

For the estimate from Theorem 4.5 to be sharp, it is sufficient to have

the coefficients of the leading term with degree n+2(γmax−1) and the lowest

term with degree (−n−2(γmin−1)) not to be equal to zero. This condition

is easily formulated in terms of atoms. Moreover, from non-cancellation of

the leading term and lowest term one can obtain the non-cancellation of

the leading term and lowest term for cables, see definition below.
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Definition 4.14. A virtual diagram K is called adequate [285], if every

vertex of the corresponding atom At(K) is incident to exactly four different

cells. In other words, no cell touches itself at a vertex.

The adequacy is a sufficient (but not necessary) condition for the leading

monomial in the A-state of the Kauffman bracket not to cancel with other

monomials and the lowest monomial in the B-state not to cancel with other

monomials. This follows from the fact that in the expansion (4.1) none of

the states other than the A-state gives monomials having degree equal to

the leading degree. Analogously, none of the states other than the B-state

gives monomials having degree equal to the lowest degree.

This property is one of the key properties for detecting minimality of

some diagrams.

Let us fix one of the two colors, black or white.

Definition 4.15. A semiadequate (white or black) diagram is a diagram for

every vertex of which the two adjacent white (respectively, black) cells are

different. Adequate diagram is white-semiadequate and black-semiadequate

at the same time.

An important role in classical and virtual knot theory, and in three-

dimensional topology is played by the notion of a framed link.

By a framed link (see Definition 1.1) we mean the equivalence class of

virtual knots modulo generalized Reidemeister moves, where instead of the

first classical Reidemeister move Ω1 we consider the “double move” Ω2
1,

shown in Fig. 4.12.

Ω1
2

Fig. 4.12 The double loop.
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We call Ω2
1, Ω2, Ω3 and the detour move the (generalized) framed Rei-

demeister moves.

Framed classical diagrams have the following geometric meaning. With

each link component of such a diagram one can associate a number called

the self-linking number. This number will be invariant under all framed

Reidemeister moves.

For each virtual link diagram K with n classical and m virtual crossings

one can define its cables: the double diagram D2(K), the triple diagram

D3(K) and so on. This is done as follows. Consider the diagram K and

draw (p−1) parallel copies of it near it. One can assume, for example, that

every point on a branch of the diagram is transported by small intervals

of lengths ε, 2ε, . . . , (p − 1)ε along the normal vector on the plane. The

resulting diagram Dp(K) will have p2n classical and p2m virtual crossings;

instead of each crossing we get p2 new ones; if at a classical crossing of K

some branch a forms an overcrossing when it intersects another branch b,

then in the diagram Dp(K) each of the p “parallel” branches corresponding

to a will form an overcrossing with each of the p branches parallel to b; the

double of the simplest trefoil diagram is shown in Fig. 4.13.

Fig. 4.13 Doubling the trefoil: the parallel copy is shown by a thin line.

Let us give a geometric sense why we forbid the first Reidemeister move

for framed links. Consider a classical knot diagramK and its doubleD2(K).

We can view the latter as a locally flat band in the three-space, whose

boundaries are the two parallel knots K and K ′. The band in the space

is uniquely defined by the knot (one boundary component) and the linking

index between the boundary components.

Thus, the first Reidemeister move Ω1 does not change the knot isotopy

class but it does change the isotopy class of the band since it switches by
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one the linking coefficient for the boundary components of this band. The

move Ω2
1 does not change the linking coefficient.

Analogously, in the case of virtual knots the replacement of Ω1 with Ω2
1

leads to framed virtual knots given by bands in stabilized 3-manifolds of

the form Sg × I.
If we apply a detour move to the diagram K, the diagrams Dp(K)

are operated by a composition of detour moves. If we apply to K the

second or third classical Reidemeister move, then the diagram Dp(K) is

also transformed to an equivalent diagram. Consequently, for an arbitrary

natural p the p-cabling operation K 7→ Dp(K) is a well-defined operation

for framed virtual links.

As mentioned above, this operation is not well defined for virtual links.

When applying the move Ω1 to the diagram K, the two “parallel” compo-

nents D2(K) change its linking coefficient.

Lemma 4.1. Assume that a virtual diagram K with n classical crossing

is adequate. Then for every p, the diagram Dp(K) is adequate, i.e. the

following equality holds:

span ⟨Dp(K)⟩ = 4p2n+ 2(χp − 2),

where χp is the Euler characteristic of the atom corresponding to Dp(K).

Proof. Every crossing v of the diagramDp(K) originates from some cross-

ing v′ of the diagram K: to the latter, one assigns p2 crossings of Dp(K).

We shall show that for every p the diagram Dp(K) is adequate. Indeed,

if there is a crossing v of Dp(K) that some white circle attaches from two

sides, then the crossing v′ is also incident to one white circle from two sides.

Thus, the diagram K would be inadequate, too. Furthermore, the equality

described in the lemma follows from the count of the difference between the

leading and lowest monomials of the Kauffman bracket ⟨K⟩ of K. �

From Lemma 4.1 we get the following theorem.

Theorem 4.8. Let a (non-split) diagram K of a framed virtual link be

adequate. Then the framed link has no (non-split) diagrams with number

of crossings strictly less than that of the diagram K.

In the case of classical knots this theorem was known to Thistleth-

waite [286]; this statement also follows immediately from Khovanov homol-

ogy arguments. We shall give an elementary proof of this statement based

on the cabling techniques.
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Proof of Theorem 4.8. Let us consider diagrams D2(K), D3(K), . . . .

With them we can associate framed links, cables of our framed link: a

double diagram, a triple diagram and so on. We shall investigate the span

of ⟨Dp(K)⟩ which is an invariant of K depending on the parameter p.

Let the atom corresponding to the diagram K have the Euler charac-

teristic χ. It means that the number Γ of cells of the atom is equal to

Γ = χ+ n. Let us consider the atom corresponding to the diagram Dp(L).

We have p2n vertices, 2p2n edges and pΓ 2-cells (for each vertex of the

initial atom we have p2 vertices for the cable, the number of edges is twice

more than the number of vertices, and the number of sub- and supercritical

circles under cabling increases by p times). Thus, the Euler characteristic

of the atom equals

χp = −p2n+ pn+ χ.

From Lemma 4.1 it follows that the leading and lowest degrees of the

Kauffman bracket polynomial of the diagram Dp do not cancel (all cables

of the initial diagram are adequate diagrams). Therefore, according to

Theorem 4.5, the span of the Kauffman bracket polynomial of the diagram

Dp equals

span ⟨Dp(K)⟩ = 4p2n+ 2(χp − 2) = 2(p2 + p)n+ 2pχ− 4.

Assume that the framed link has a diagram K ′ having n′ classical cross-

ings such that the corresponding atom has the Euler characteristic χ′ and

n′ < n. Then according to Theorem 4.5, arguing by the same reason, we

have

span ⟨Dp(K
′)⟩ = 2(p2 + p)n′ + 2pχ′ − 4.

Therefore,

(2p+ 2)(n′ − n) = 2(χ− χ′).

Since n′−n 6 (−1), and p can be chosen to be arbitrary large, we shall

get that the Euler characteristic χ′ is bigger than an arbitrary preassigned

number, a contradiction. �

Remark 4.6. Note that in the proof it is sufficient for us that the adequate

property is true only for some set of diagrams Dpi(K), i ∈ N. The diagram
K can be inadequate at the same time.

Minimality Theorems 4.7 and 4.8 can be strengthened after introducing

more powerful invariants generalizing the Jones polynomial: a Ξ polyno-

mial, the Khovanov homology.
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For this reason it is sufficient for us to replace the span of the Kauffman

bracket polynomial with the span (with respect to the variable a) of the

polynomial Ξ or with 2(h − 2), where h is the height of the Khovanov

homology, see Definition 5.3.

4.3.1 The leading and lowest terms of the Kauffman

bracket polynomial

Let K be a virtual diagram. Let us find the lowest term in the Kauffman

bracket polynomial ⟨K⟩ according to the formula (4.1). In the case of

quasialternating diagrams of links (without splitting points) it is equal to

one since a supercritical circle of the corresponding atom (lying in the

sphere) cannot touch itself; by the same reason the term is equal to one for

adequate diagrams.

We are interested in cases when it is not equal to zero (but not necessary

equal to one).

In the general case, the atom At(K) corresponds to a virtual diagram

K, this atom is not necessarily spherical. If a diagram is not adequate,

then some supercritical circle can approach itself without forming splitting

points in the atom. The way of approaching the circle to itself is naturally

described by a chord diagram (which in the classical case is a framed d-

diagram). If we have exactly one supercritical circle, then the lowest term

of the Jones–Kauffman polynomial is described by some function on such

d-diagrams which after natural extending to arbitrary chord diagrams gives

symbols of some Vassiliev invariants.

The description of this function is given in [14, 15, 201]. This function

is related to Vassiliev invariants. This theme will be discussed in Chap. 7.

Let K be a diagram of a link with n classical crossings, At(K) be the

atom corresponding to it, having n vertices. Let us consider supercritical

circles c1, c2, . . . , cl of At(K). Let these circles correspond to the B-state of

At(K). The impact of this state in the lowest degree of the expansion (4.1)

of the Kauffman bracket polynomial equals (−1)l−1a−n−2l+2. Let us cal-

culate the coefficient at this degree in ⟨K⟩.

Remark 4.7. This coefficient, generally speaking, is not a knot invariant.

The problem is that saying the “lowest” term of a polynomial we mean

its lowest non-zero coefficient. However, it turns out that the “lowest”

coefficient in the expansion of the Kauffman bracket polynomial is equal to

zero, and at the same time for some other diagram (for example, a diagram
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with less number of crossings) the analogous expansion gives a “real”, i.e.

non-zero, lowest coefficient.

A state s′ at which m crossings are A-smoothed gives the minimal pos-

sible degree of a monomial if and only if in this state the number of circles

equals l+m. This means that under passing from the B-state to the state

s′ by successively swapping smoothings at classical crossings we have to

make transformations “splitting” one circle into two at each step. Let us

connect by bridges arcs of circles in the state s′ which pass in neighbor-

hoods of classical crossings (atom vertices). We get a chord diagram on

several circles.

Let us consider crossings in which the state s′ differs from the B-state,

and the chords corresponding to these crossings. It is clear that each such

chord connects points in the same circle, otherwise having changed the

smoothing in the corresponding crossing we should have obtained l − 1

circles in the first step. From this it follows that in the mth step we cannot

obtain more than l +m− 2 circles.

Let us consider one circle C in the B-state and one chord c connecting

a pair of points in the circle C. If we rebuild the B-state along the chord

c, we shall get two circles. Further, in order that after rebuilding along the

chord the obtained state gives a monomial with possible minimal degree

both ends of each successive chord d in the diagram C have to lie on the

same side from the chord c, since otherwise we can change the state s′

with chords c and d and we get l circles but not l + 2 circles, therefore,

any changing along m chords, amongst which there are c and d, gives no

more l+m− 2 circles. We can conclude by continuing arguing in the same

manner. To each circle of the B-state a chord diagram is assigned.

Definition 4.16. An admissible, i.e. leading to minimal degree of the

monomial, collection of chords is a collection of chords in which any two

chords corresponding to the same circle (of the chord diagram) are not

linked.

Having an admissible collection of chords consisting of a1 chords on

the first circle, a2 chords on the second circle and so on, ak chords on the

kth circle we shall get a state which gives the impact to the lowest coeffi-

cient a−n−2k+2 equal to (−1)
∑

i ai(−1)k−1. Factorizing (−1)k−1 (further,

we shall not take into account this coefficient), we get that the leading

coefficient equals the sum
∑n

l=0(−1)lNl, where Nl is the number of admis-

sible collections with l chords. Thus, for calculating the lowest coefficient
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of the Kauffman bracket polynomial, chords connecting different circles do

not matter and the problem is reduced to considering a collection of chord

diagrams not connecting with each other. It is obvious that the final coeffi-

cient M1(D) is equal to the product of coefficients over all chord diagrams,

where for each chord diagram it is equal to

n∑
i=0

(−1)i(the number of collections of i non-intersectiong chords).

Similarly the leading term of the Kauffman bracket polynomial is found.

4.3.2 The polynomial Ξ

It turns out that in the formula (4.2) for the Kauffman bracket polynomial

we can add a “geometry of virtual knots”, which leads to a much stronger

invariant of virtual links, see, e.g. [76, 248].

This is done by the following way. Let us consider the set S of all pairs

(a smooth orientable surface, an unordered finite system of closed curves

immersed in the surface). Here by a surface we mean an oriented closed

manifold with a finite number of connected components (if the surface is

not connected, then each of its components is assumed to be oriented).

Some curves can also be oriented. Let us define an equivalence relation on

S partially described in Chap. 1, but with some specifications (herewith we

preserve the same notations: S and S).
We shall consider elements from S up to equivalence relation generated

by the following elementary equivalences:

(1) an orientation-preserving homeomorphism of surfaces sending curves to

curves with the orientation preserved;

(2) stabilization (an addition of handles in such a way that respects the

surface orientation and does not intersect curves) and destabilization

(inverse to stabilization);

(3) a free homotopy of curves on the surface;

(4) an addition/deletion of simple unoriented curves bounding discs on the

surface and not intersecting with other curves.

Denote the set of equivalence classes on S by S. It is evident that this
set is countable.

The question about whether two elements from S generate the same

equivalence class in S is recognized algorithmically, since in the fundamental

group of a 2-surface the problem of conjugacy is solved.
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The basic idea of this invariant is the following. We construct a function

on oriented virtual links valued in SZ[a, a−1]; values of this function should

be linear combinations of elements from S with coefficients from Z[a, a−1],

here, coefficients are constructed like monomials in the expansion of the

Kauffman bracket polynomial, and elements from S represent a “geometry”

of virtual knots.

LetK be a virtual link diagram. Let us consider the surface presentation

of the virtual diagram as a diagram in an oriented 2-surface M , described

in Chap. 1.

More precisely, each virtual link can be represented like a link in some

thickened surface Sg × I. Under the projection in Sg along I it represents

a collection of curves, the number of curves is equal to the number of

components of the link.

In this case all smoothings of the diagram can be performed on the

surface M . Let us fix the shadow of the link K on M . It is a collection δ of

oriented closed curves. Further, to each state s of the unoriented diagram

|K| (which can also be considered on the surface M) some collection δ′(s)

of unoriented closed curves on M is assigned.

Thus, we get a collection of curves (some of them are oriented and the

other part is not oriented) p(s) = δ ⊔ δ′(s), which can be treated as an

element from the set S and, therefore, as an element from the set S. Let us
consider the formal free module M = SZ[a, a−1] over the ring of Laurent

polynomials in a; generators of this module will be elements from S.
Let us assign an element Ξ(K) ∈M to the diagram K by the following

formula:

Ξ(K) = (−a)−3w(s)
∑
s

p(s)aα(s)−β(s)(−a2 − a−2)(γ(s)−1). (4.3)

Theorem 4.9. The function Ξ defined by the formula (4.3) is an invariant

of virtual links under the generalized Reidemeister moves.

Proof. It is obvious that purely virtual Reidemeister moves and the

semivirtual move (i.e. detour moves) applied to K do not change Ξ(K)

at all: by construction all terms of (4.3) stay the same.

The proof of the invariance of Ξ(K) under the first and third classi-

cal Reidemeister moves is quite analogous to the same procedure for the

classical Jones–Kauffman polynomial, see, e.g. [221]; one should accurately

check that the corresponding elements of S coincide and, therefore, they

cancel each other in the formula for Ξ(K).
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In fact, if K and K ′ are two diagrams obtained one from the other

by some first or third Reidemeister move, then for the diagrams |K| and
|K ′|, the corresponding surfaces M ′(K) and M ′(K ′) with boundaries are

homeomorphic, and the behavior of the system of curves γ for M(K) and

M(K ′) differs only inside the small domain where the Reidemeister moves

take place.

For the first move Ω1, the two situations (corresponding to the twisted

curls with local writhe number +1 or −1) are considered quite analogously.

Let K be a diagram and K ′ be the diagram obtained from K by adding

such a curl . To each state s of |K| there naturally correspond two

states of |K ′|. Fix one of them and denote it by s′. Let K ′ = K ⊔ ⃝ be

the disconnected sum of K and a small circle. Then we have: p(s) = p(s′).

Indeed, both surfaces for |K| and |K ′| are homeomorphic to each other

and the only possible difference between the corresponding curve systems

is one added circle (the elementary equivalence (4)). So, we have to com-

pare terms with the same coefficients from S. The comparison procedure

coincides with that for the classical Jones–Kauffman polynomial. Namely,

⟨ ⟩ = a⟨ ⟩+ a−1⟨ ⟩ = (−a)3⟨ ⟩,

herewith (−a)3 is compensated by the corresponding factor (−a)−3 origi-

nating from the writhe number.

Now, if we consider two diagrams K and K ′ obtained one from the

other by using the third Reidemeister move, we see again that their surfaces

coincide. Let us select the three vertices P, Q, R of the diagram K and the

corresponding vertices P ′, Q′, R′ of the diagram K ′, as shown in the upper

part of Fig. 4.14.

So, both diagrams K, K ′ differ only inside a small disc D in the plane.

The same can be said about the surfaces M(K) and M(K ′) corresponding

to the diagrams. They differ only inside a small disc DM in M . Thus,

one can indicate six points on the boundary ∂D such that all diagrams of

smoothings (in M) of K, K ′ pass through these and only these points of

∂D.

Consider the three possibilities X, Y, Z of connecting these points

shown in the lower part of Fig. 4.14. In fact, there are other possibilities to

do it but only these will play a significant role in the future calculations of

the expression (4.3).

We shall need the following three elements from S represented by

KX , KY and KZ , see Fig. 4.15. The element KX contains the three lines

of the third Reidemeister move (with fixed six endpoints) inside DM . It
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Fig. 4.14 Diagrams and lines after smoothings.

also contains X. Analogously, KY contains the three lines and Y , and KZ

contains the three lines and Z. The only thing we need to know about the

behaviors of KX , KY and KZ outside DM is that they coincide.

X Y ZKK K

Fig. 4.15 Parts of diagrams KX , KY , KZ .

We have to prove that Ξ(K) = Ξ(K ′). Obviously, we have w(K) =

w(K ′). So, we have to compare the terms of (4.3) for |K| and |K ′|. With

each state of K, one can naturally associate the state of K ′. We associate

the crossings P, Q, R with the crossings P ′, Q′, R′ and in a natural way

we identify the others. For each state of |K| having the crossing P in

position A (A-smoothing), the corresponding state of |K ′| gives just the

same contribution to (4.3) as |K| since diagrams |K| and |K ′| coincide
after smoothing P (respectively, P ′) in position A.

So, we have to compare all terms of (4.3) corresponding to the smooth-

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

156 Virtual Knots: The State of the Art

ing of P in position B. We shall combine these terms (for |K| and |K ′|) in
fours, the terms from each “four” differ only in the way of smoothing the

vertices Q and R. Now, let us fix the way of smoothing for |K| and |K ′|
outside D in the same way and compare the corresponding four terms. If

we delete the interior of the disc D and insert there X, Y or Z, we obtain a

system of curves in the surface M . Denote the numbers of curves in these

three systems by νX , νY and νZ , respectively.

Now, the four terms for |K| give us the following:

aKX(−a2 − a−2)(νX−1) + a−1
(
KZ(−a2 − a−2)(νZ−1)

+KX(−a2 − a−2)νX
)
+ a−3KX(−a2 − a−2)(νX−1)

= a−1(−a2 − a−2)(νZ−1)KZ .

Analogously, for |K ′| we have a similar formula with terms containing KZ

and KY . The latter terms are reduced, so we obtain the same expression:

a−1(−a2 − a−2)(νZ−1)KZ .

Let us now check the invariance of Ξ under the second classical Rei-

demeister move. Let K ′ be the diagram obtained from K by applying

the second classical Reidemeister move by adding two classical crossings.

Obviously, w(K) = w(K ′).

Consider the manifoldM(K). The image of K divides it into connected

components. We have two possibilities. In one of them, the Reidemeister

move is applied to one and the same connected component. More precisely,

in this case on the surface M(K) there exists a connected component M̃

(as a result of dividing the surface by the link diagram) such that two

projection branches of K taking part in the Reidemeister move are parts of

the boundary of the component M̃ , herewith under the second Reidemeister

move both branches are directed inside M̃ .

ThenM(K ′) is homeomorphic toM(K), and curves from the sets δ(K)

and δ(K ′) represent the same homotopy type, but under the application of

the move we get two more crossings. In this case the proof of the equality

Ξ(K) = Ξ(K ′) is just the same as in the classical case (the reduction here

treats no polynomials but elements from S with polynomial coefficients).

Moreover, the proof is even simpler than that for the third move: We have

to consider the sum of four summands for |K| and |K ′|.
In each case, three of them vanish, and the remaining ones (one for |K|

and one for |K ′|) coincide, namely,

⟨ ⟩ = a⟨ ⟩+ a−1⟨ ⟩ = (a2 + a−2)⟨ ⟩+ 1⟨ ⟩+ 1⟨ ⟩ = ⟨ ⟩.
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Taking into consideration that w(K) = w(K ′), we get the desired result.

Finally, let us consider the case of the second Reidemeister move, where

M(K ′) is obtained from M(K) by adding a handle. On this handle, two

extra points P and Q appear, see Fig. 4.16.

P

Q

Fig. 4.16 Adding a handle while performing Ω2.

Consider all states of the diagram |K ′|. They can be split into four

types depending on smoothing types of the crossings P and Q. Thus,

each state s of |K| generates four states s++, s−−, s−+ and s+− of |K ′|.
Note that p(s) = p(s+−) (because of handle removal, see Fig. 4.16), and

p(s++) = p(s−−) = p(s−+).

Besides, for each s, we have the following equalities:

α(s)− β(s) = α(s+−)− β(s+−), γ(s) = γ(s+−),

γ(s++) = γ(s−−) = γ(s−+)− 1.

Thus, all terms of (4.3) for K ′ corresponding to s−−, s++ and s−+ will be

reduced because of the identity a2 + a−2 + (−a2 − a−2) = 0. The terms

corresponding to s+− give just the same as (4.3) for K. �

It is important to note that this invariant is constructive, since elements

of the set S are algorithmically recognizable.
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4.3.3 Examples of applications of the polynomial Ξ

On the one hand, the polynomial Ξ was constructed by using Vassiliev

invariants of order zero for virtual knots.

On the other hand, it is a generalization of the Jones–Kauffman poly-

nomial. We shall give examples showing that the polynomial Ξ is stronger

than Vassiliev invariants of order zero and the Jones–Kauffman polynomial

taken one with another, i.e. we give examples of links which cannot be

distinguished from each other by Vassiliev invariants of order zero and the

Jones–Kauffman polynomial, but the polynomial Ξ takes different values

on them.

Moreover, the invariant Ξ gives an obstruction to destabilization.

Statement 4.2. If a virtual link K can be represented by a link on the

surface of genus g, herewith in Ξ(K) there exists an element s ∈ S with

non-zero coefficient such that the minimal representative of it has the genus

g, then the link K has the underlying genus g.

This statement follows from the definition of the polynomial Ξ.

Example 4.3. Let P ∈ S be the element represented by the sphere without

curves. It is obvious that for each classical linkK, we gave Ξ(K) = P ·V (K).

So, for the two-component trivial link K̃ we have Ξ(K̃) = ·(−a2 − a−2).

It is known that the two-component trivial link and the link K shown in

Fig. 4.17 have the same Jones polynomial. Indeed, the link K is obtained

from K̃ by virtualizations.

Fig. 4.17 A link with the trivial Jones–Kauffman link polynomial.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 4. The Jones–Kauffman Polynomial : Atoms 159

Consider the following two elements from S (for the sake of simplicity,

we shall draw the elements of S), see Fig. 4.18. Here we consider the torus

as the square with identified opposite sides.

HHHHHHHHHHH

HHHHHHHHHHH HHHHHHHHHHH

HHHHHHHHHHHQ = R =

(0, 0)

(0, 1)

(1, 0) (2, 0)

Fig. 4.18 Two elements from S.

The element Q ∈ S is initially represented by the same diagram shown

in Fig. 4.18 with two additional circles (which appear under constructing

Q from the diagram and are not shown in the figure) which can be re-

moved by the equivalence (4) from Sec. 4.3.2. For the sake of simplicity we

shall not distinguish elements from S with the collection of curves from S

representing it.

Let us show that Q ̸= P, R ̸= P and Q ̸= R in S. Actually, Q ̸= P

because Q has two curves with non-zero intersection (+2 or −2 accord-

ing to the orientation); thus, none of these curves can be removed by the

equivalences described above. So, R ̸= P either. Besides, R ̸= Q because R

contains three different curves on the torus (in coordinates from Fig. 4.18

they are (0, 1), (1, 0), and (2,−1)); each two of them has non-zero inter-

section. Thus, none of them can be removed. So, the simplest diagram

representing the class [R] in S cannot have less than three curves.

Now, for the link K, we have

Ξ(K) = Qa2 + 2R(−a2 − a−2) +Qa−2 = (2R−Q)(−a2 − a−2).

Thus, Ξ(K) ̸= Ξ(K̃).

Discussion. The invariant Ξ has the following disadvantage. The fact of

the matter is that for each state s the element p(s) in the formula (4.3)

meets only once, i.e. curves δ′(s) are considered disjoint from curves δ′(s̃)

of any state. This can lead to the fact that each element p(s) is individually
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undergone by simplifying equivalence (destabilization) in S while the initial

knot cannot be destabilized.

For example, the knot K shown in the upper part of Fig. 4.19 has the

polynomial Ξ reduced to the Jones polynomial, i.e. equals X(K) · P .

Fig. 4.19 A non-trivial virtual knot having the trivial polynomial Ξ.

Indeed it suffices to check that for the knotK in each state s the element

p(s) is trivial. Note that the element p(s) consists of two collections of

curves, one of them is δ′(s) consisting of non-intersecting arcs with each

other; therefore, in S the element δ′(s) is trivial. Thus, if δ consists of

contractible circles, then, whatever curves are in states s, the polynomial

Ξ will have the “classical” view X(K) · P .
The triviality of the collection δ in the given concrete case is easily

checked. From this it follows that Ξ(K) = X(K) · P .
Thus, we have the degeneration of the polynomial Ξ whenever the col-

lection of curves δ′(s) is contractible on the surface.

Therefore, with the help of the polynomial Ξ we cannot say whether the

knot K is equivalent to a classical knot (for example, the trefoil knot) or

not.

The fact that the knot K is not classical will be shown in the sequel:

For this we have to construct an invariant taking into consideration all col-

lections δ(s) for different s simultaneously and, thereby, being more stable

to such degenerations. Curves from δ(s) do not intersect each other for the

same s, but curves from δ(s) and δ(s′) can intersect each other as s′ ̸= s.

By means of new ideas the latter can give an obstruction to destabilization.

Therefore, the following problem is actual: How does one use the infor-

mation about curves δ′(s) of all states simultaneously? This idea belongs
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to Dye and Kauffman [76]. Further in this chapter we shall give a general-

ization which combines the idea with an idea of constructing the invariant

Ξ, thereby, leading to a stronger invariant.

4.3.4 A surface bracket and the invariant Ξ

Let g > 0 be an integer. We begin with the construction of a knot invariant

in sickened surfaces Sg × I, where Sg is a closed oriented 2-surface of fixed

genus g.

Let us consider the following module SurfM over the ring Z[a, a−1].

Generators are homotopy classes of unordered sets of unoriented curves

in Sg (the empty set is called the unity) with the unique relation: α =

(−a2 − a−2)β if β is obtained from α by deleting a closed curve homotopic

to the trivial one. In this section we shall construct a knot invariant in

thickened surfaces valued in SurfM.

Oriented links in these thickened surfaces and oriented links in R3 are

represented by their diagrams, herewith the equivalence relation is defined

by the Reidemeister moves. Diagrams of these links are framed 4-valent

graphs in the surface Sg with the over/undercrossing structure specified

at each crossing and an orientation for each unicursal component is given.

The Reidemeister moves are local moves and look like the usual (classical)

Reidemeister moves.

For unoriented links one can define the surface bracket polynomial [76]

as follows. Let |K| be a diagram of an unoriented link in the surface Sg

with n crossings (all crossings are classical; there are no virtual crossings on

the surface). Define its state in the same manner as in the classical case. At

each state we have α(s) crossings smoothed positively, and β(s) = n−α(s)
crossings smoothed negatively. For each state s we have some collection

C(s) of closed curves (for the polynomial Ξ this collection is denoted by

δ′(s)) corresponding to this state. Some of these curves are contractible

into a point in the surface Sg, and the others are not contractible. Let us

pick out from C(s) all null-homotopic circles; replace each of them with the

factor (−a2 − a−2). Summing up over all states we shall get an element of

the module SurfM which is denoted by C̃(s). Let us now set (for the sake

of simplicity we shall use the brackets ⟨ · ⟩ for denoting the new invariant

different from the Kauffman bracket polynomial; the Kauffman bracket

polynomial will not meet till the end of this section)

⟨|K|⟩ =
∑
s

aα(s)−β(s)C̃(s).
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After that for the oriented link K we can define the surface Kauffman

SurfK with the help of the same formula as for (4.2):

SurfK(K) = (−a)−3w(K)⟨|K|⟩.

The obtained function SurfK is a link invariant in thickened surfaces.

It can be slightly simplified by considering C(s) (and, therefore, C̃(s))

homologically, but not homotopically, herewith we have to replace all null-

homological circles with (−a2 − a−2).

The main disadvantage of this function is that it cannot be treated as

an invariant of virtual links, since it is not invariant with respect to stabi-

lization/destabilization and surfaces homeomorphisms. Having a concrete

surface, we can define some coordinates on it (for example, we can choose

basis in the linear space of one-dimensional homology), and write values of

this invariant SurfK in these coordinates. But if we apply the stabilization

and surface automorphisms many times, then it will be very difficult to

keep track of these coordinates.

An advantage of this function is that we can consider it as an obstruction

to destabilization (the polynomial Ξ has the same advantage).

Let us consider the set of minimal realizations of virtual links (in the

sense of Chap. 2). On this set the surface bracket evaluated on such minimal

surfaces is an invariant of virtual links by virtue of Theorem 2.1.

Let K be a virtual link having a realization on the surface Sg × I. Let
SurfK(K) look like

∑
αiγi in this realization, where γi is a set of non-

trivial curves (obtained from C̃(s)), and αi are non-zero coefficients from

Z[a, a−1]. Let Ψ =
∪

i γi be the collection of all curves from all sets γi.

The main result of the paper [76] is the following theorem.

Theorem 4.10. If a stabilization of K ⊂ Sg×I is possible, then there exist

a curve ψ on Sg not homotopic to the trivial curve and representatives of

homotopy classes of all elements from Ψ: ψ1, . . . , ψN such that ψ intersects

with no curve ψi.

In contrast to the polynomial Ξ which is also an obstruction to desta-

bilization, the polynomial SurfK considers simultaneously all non-trivial

curves of states.

Based on these ideas (the polynomial Ξ and the surface bracket) let us

construct a link invariant (the surface bracket is not that) as follows.

Let T be a set of collections: (M,α1, . . . , αn, δ, δ1, . . . , δn), where M

is an oriented closed 2-surface, α1, . . . , αn are elements from the ring of

Laurent polynomials Z[a, a−1], δ is a (finite) collection of oriented closed
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curves in M , and δ1, . . . , δk are collections of closed unoriented curves in

M , with which Laurent polynomials αi are associated. The surface M is

closed and has a finite number of connected components.

Let us define the set T of equivalence classes on the set T by means of

the following elementary equivalences:

(1) Renumbering of the collections δi with the corresponding renumbering

of the coefficients αi.

(2) Manifold homeomorphism sending the corresponding collections of

curves to the corresponding collections of curves and preserving the

manifold orientations and curve orientations.

(3) Free homotopy of curves in the manifold M .

(4) Removal of a null-homotopic curve from some collection δi and the

multiplication of each element αi by (−a2 − a−2).

(5) The operation inverse to the preceding one.

(6) Let two collections δi and δj be homotopic to each other (under co-

incidence of homotopy classes of all curves from the collections with

multiplicities of curves taken into account). Let us delete these two

collections and remain only one with the coefficient αi + αj associated

to it, and renumbering the corresponding indices (in an arbitrary or-

der). Assume that the obtained collection is equivalent to the initial

one.

(7) Removal (an addition) of a collection with zero coefficients.

(8) An addition to the surface (a removal from the surface) M handles

which do not intersect any curve of any collection.

Let K be a diagram of a virtual link with n classical crossings. Let

us consider a realization of K on the 2-surface M (described in the first

chapter, see Fig. 1.20). The surface M inherits the orientation from the

plane, and the image K ′ of the link diagram K in the surface is a finite

collection of oriented curves. This collection will play the role of δ. Further,

for each state si, i = 1, . . . , 2n, we have a collection of curves δi. Set by

definition

αi = (−a)−3w(si)aα(si)−β(si),

κ(K) = (M,α1, . . . , α2n , δ, δ1, . . . , δ2n).

As well as values of Ξ, we shall call values of the function κ by polyno-

mials.

Analogously to Theorem 4.9, the following theorem can be proved.

Theorem 4.11. The polynomial κ is an invariant of virtual links.
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For the detour move κ does not change by construction. The proof of

the invariance of κ under the classical Reidemeister moves is analogous to

the proof of Theorem 4.9.

Thus, the invariant κ is stronger than the polynomial Ξ and with it, is

not weaker than the surface bracket as an obstruction to the reduction of

the underlying genus.

4.4 Rigid virtual knots

Quantum invariants play an important role in the theory of knot invariants.

These invariants are obtained from knots by putting special 4-valent vertices

at crossings of a knot diagram, 2-valent tensors at local maxima and local

minima (with respect to some height function on the plane) of the knot

diagram and contracting these tensors along edges.

The invariance under the third Reidemeister move corresponds to the

so-called Yang–Baxter equation, see, e.g. [259].

An important question is the question of extending quantum invariants

of classical knots to invariants of virtual knots. A famous theorem due

to Kauffman [158] claims that this is possible to do not for virtual knots

themselves, but for another version of knots, called rigid virtual knots (and

links); rigid virtual knots are equivalence classes of virtual knot diagrams

modulo all generalized Reidemeister moves (local versions) except the first

virtual Reidemeister moves. Rigid virtual knots were first introduced by

Kauffman in [158]. For virtual crossings, we just put the permutation

tensor. The reason behind the impossibility of extending quantum knot

invariants is the following. If we allow both the first classical and first

virtual Reidemeister moves, it will lead to three possibilities of “capping” a

couple of vertical strands: We can either add a usual cap without crossings,

or add a classical crossing and then a cap, or add a virtual crossing and

then a cap. After contracting the tensors, this should lead to the same

tensor. In the classical case this is not quite the same, because contracting

the R-matrix by a “cap” does not give quite the same as the cap itself.

However, in the classical case this is handled by adding a normalization

factor corresponding to the writhe number of the knot. But if we try to look

at rigid knots, we shall have to handle the similarity of a classical crossing

and a virtual crossing at the level of similarity for the corresponding 2–2

tensors, which is generally impossible.

There is no such problem when we forbid the first virtual Reidemeister
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move.

A natural question arises: Which quantum invariants extend to virtual

knots themselves without restrictions? Certainly, there are such ones, e.g.

the Kauffman bracket polynomial and the Jones polynomial.

Thus, rigid virtual knots deserve special attention, since one can extend

a large and important class of invariants to them. Besides, since we dimin-

ished the class of moves (deleted the first virtual Reidemeister moves), we

did not change the equivalence relation for classical knots: If two classical

diagrams are equivalent in the class of rigid knots, then they are equivalent

in the class of virtual knots, and consequently, they are equivalent in the

class of classical knots.

Below, we construct a refinement for the Kauffman bracket for rigid

knots.

4.4.1 The Kauffman bracket for rigid knots

Below, we present a slightly modified idea due to Kauffman on how to

construct the bracket for rigid knots.

As in the case of usual virtual knots, for rigid knots we can define a

bracket invariant (we shall denote it by ⟨⟨ · ⟩⟩); axiomatically, this bracket

is defined according to the rules{
⟨⟨ ⟩⟩ = a⟨⟨ ⟩⟩+ a−1⟨⟨ ⟩⟩,
⟨⟨L ⊔⃝⟩⟩ = (−a2 − a−2)⟨⟨L⟩⟩.

(4.4)

These equations are responsible for the invariance of the bracket to be

constructed, under the second and third classical Reidemeister moves (we

do not require the invariance under the detour move!). By using the rela-

tion (4.4), we shall represent the bracket of every virtual link diagram as

a linear combination of the bracket for diagrams without classical cross-

ings. In the case of usual virtual knots, when we dealt with all generalized

Reidemeister moves, every diagram without classical crossings represents a

trivial link. In our case it is not so: We may “pull away” the components

of the link K, however, it is impossible to reduce every component to the

unknot. Namely, if we have a curve on the plane without classical crossing,

and allow one to apply virtual moves Ω′
2 and Ω′

3, Ω
′′
3 to it, but not Ω′

1, then

the classifying invariant for such curves is the Whitney index. This invari-

ant indicates the total rotation angle of the tangent vector when walking

along the curve (the angle is a multiple of 2π). Since the curve in question

corresponds to some state of the link diagram K, it is not oriented. Thus,
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the Whitney index is defined only up to a sign ±.
In the case of classical links, all curves turn out to be non-intersecting,

thus, the curve may have the Whitney index equal to one. In the virtual

case it may be any arbitrary integer. Curves with Whitney index equal

to one play a special role for us. They appear in the second equation

of (4.4), and the value of the bracket ⟨⟨⃝⟩⟩ for them has to be equal to

(−a2 − a−2). In the case of a curve γi with arbitrary Whitney index we

have ⟨⟨K ⊔ γi⟩⟩ = Ai(−a2 − a−2) · ⟨⟨K⟩⟩.
Now let us define the rigid virtual knot Kauffman bracket according to

the rule

⟨⟨|K|⟩⟩ =
∑
s

aα(s)−β(s)(−a2 − a−2)(γ(s)−1)

γ(s)∏
j=1

A(s,j), (4.5)

where the sum is taken over all states s, and the product is taken over all

circles (the number of circles is γ(s)) for a given state; for each of them we

write down the factor A(s,j), where (s, j) denotes the Whitney index of the

corresponding circle. Herewith, A1 is set to be equal to one.

We end up with a function defined on unoriented links and valued in

Z[a, a−1, A0, A2, A3, . . . ].

A straightforward check shows that this bracket is invariant under all

generalized Reidemeister moves except the first virtual Reidemeister move.

This yields the following lemma.

Lemma 4.2. The bracket ⟨⟨ · ⟩⟩ is an invariant under all generalized Rei-

demeister moves, except for the first classical one and the first virtual one.

The normalization of the bracket with respect to the first classical Rei-

demeister move is the same as in the case of the usual Kauffman bracket.

Namely, let K be an oriented virtual diagram with writhe number w(K),

and let |K| be the diagram obtained fromK by “forgetting the orientation”.

We set

X⟨⟨K⟩⟩ = (−a)−3w(K)⟨⟨|K|⟩⟩.
Then the following theorem takes place.

Theorem 4.12. The (Laurent) polynomial X⟨⟨·⟩⟩ is an invariant of rigid

virtual links.

The following statement is evident.

Statement 4.3. For every rigid virtual link diagram we have

X⟨⟨K⟩⟩
∣∣
A0=A2=···=1

= X(K).
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4.4.2 Minimality properties

The behavior of the polynomial X⟨⟨ · ⟩⟩ allows one to estimate the number

of virtual crossings of some rigid virtual knots from below by looking at

powers of variables A0, A2, A3, A4 . . . .

We define the span of the polynomial X⟨⟨K⟩⟩ (in variable a) as the

difference of the leading degree and the lowest degree (with respect to a)

of monomials in X⟨⟨K⟩⟩. Notation: spanaX⟨⟨L⟩⟩. For every monomial

Ai0
0 A

i2
2 A

i3
3 . . . A

in
n we define its width as the sum i0+i2+2i3+· · ·+(n−1)in.

We define the width of the polynomialX⟨⟨K⟩⟩ as the maximum of all widths

of non-zero monomials of it. Notation: widX⟨⟨K⟩⟩.
Then the following statement holds.

Proposition 4.4 (Kauffman). Assume for a rigid link diagram K one

has widX⟨⟨K⟩⟩ = m. Then there are no planar diagrams of the rigid link

generated by K with less than m virtual crossings.

Proof. Indeed, for every diagram K of the rigid link, we have

widX⟨⟨K⟩⟩ = m, or, in other words, wid ⟨⟨|K|⟩⟩ = m. From (4.5), we

see that there exists a Kauffman state s of the diagram |K|, for which∑γ(s)
j=1 |j − 1| = l > m. Assume in this state we have a0 circles of the

Whitney index zero, a2 circles of the Whitney index two, a3 circles of the

Whitney index three, etc. Let us count the number of virtual crossings

of the diagram K in the state s (which is equal to the total number of

crossings in K). Every circle of index zero or index two has at least one

self-intersection; every circle of index three has at least two intersections;

every circle of index four has at least three intersections, etc. This means

that the total number of virtual crossings of the diagram K cannot be less

than l. �

The following statement is evident.

Statement 4.4. For every virtual diagram K the following equality takes

place: spanaX⟨⟨K⟩⟩ > spanX(K).

Thus, the width allows one to make an estimate for the minimal number

of virtual crossings. On the other hand, the span of the polynomial X⟨⟨ · ⟩⟩
allows one, just as in the case of classical or usual virtual knots, to estimate

the minimal number of classical crossings of the given rigid link.

Example 4.4. Consider the two-component “trivial” link K̃, shown in

Fig. 4.20.
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Fig. 4.20 A virtual diagram which is non-trivial in the rigid category.

Let us show that this virtual link is non-trivial in the rigid category.

The bracket of this link looks like:

⟨⟨K̃⟩⟩ = a2 + (A2
0 +A0A2)(−a2 − a−2) + a−2. (4.6)

Thus, we see that the first virtual Reidemeister move Ω′
1 is not express-

ible in terms of the remaining Reidemeister moves.

If in the formula (4.6) we set A0 = A2 = A3 = · · · = 1, then we

get the usual Kauffman bracket of the two-component trivial link, namely,

(−a2 − a−2).

From ⟨⟨K̃⟩⟩ = (−a2 − a−2)(A2
0 + A0A2 − 1) it follows that the number

of virtual crossings of the rigid diagram K̃ cannot be less than two. On

the other hand, the number of classical crossings of this link cannot be less

than two either. The latter follows from the fact that this rigid link is not

representable as the disconnected sum of two trivial links with indices i

and j (in the latter case we would get the value of the bracket equal to

AiAj(−a2 − a−2)).

4.5 Minimal diagrams of long virtual knots

In the case of classical knot theory, Theorem 4.8 leads us to the proof of

the classical Thistlethwaite theorem stating the minimality of the adequate

diagrams of classical links. In order to get rid of the framing condition in

Theorem 4.8, we may pass to the connected sum of the link with its mirror

image (for details, see ahead). Thus, the techniques of detecting minimality

of knot diagrams described above in Theorems 4.5, 4.7, 4.8 work in the
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case of long virtual knots because for long virtual knots the connected

sum operation is well defined. Unlike the case of classical knots, where

only adequate diagrams satisfy this criterion, the minimality was proved by

Thistlethwaite by using the Kauffman polynomial, where we establish new

series of minimal diagrams of long virtual knots by using the same methods.

Let us touch upon these questions in more detail. Consider long vir-

tual knots and their closures (see Definition 3.4 and Fig. 3.24). Note that

some results concerning the minimality problem for long virtual knots were

established in [2] by using a generalization of the Alexander polynomial.

Recall that the cable diagram Dp(K) was defined in Fig. 4.13.

Then the following theorem takes place.

Theorem 4.13. Let K be a long virtual knot diagram such that for every

p > 1 the virtual diagram Dp(Cl(K)) is 1-complete. Then the diagram K

is minimal with respect to the number of classical crossings.

Proof. We shall prove the theorem analogously to Theorem 4.8. Let

L = K#K ′ be the connected sum of the long virtual knot diagram with its

mirror image. By definition we set Cl(Dp(K)) = Dp(Cl(K)). Obviously,

we have Dp(L) = Dp(K)#Dp(K
′). Moreover, with each long virtual knot

diagramK one can uniquely associate the link diagram L with zero framing.

Thus, the operation K 7→ Dp(L) is well defined.

Furthermore, one may check that 1-completeness of the diagram

Cl(Dp(K)) yields 1-completeness of Cl(Dp(L)). This follows from the fact

that every circle in the A-state of the diagram Cl(Dp(L)) leads to circles

from the A-state of the diagram Cl(Dp(K)) and circles from the B-state

of the diagram Cl(Dp(K
′)). By virtue of 1-completeness of B and B′,

the self-incidence (i.e. the incidence with itself at some crossing) for each

of these diagrams gives zero coefficient (M1, see Sec. 4.3.1), consequently,

the leading coefficient in the Kauffman bracket extension ⟨Cl(Dp(K
′))⟩ is

non-zero.

Arguing as in the proof of Theorem 4.8, we see that we can decrease

the number of classical crossings of the diagram K only at the expense of

the genus of the atom corresponding to Cl(L), by any prefixed integer. The

contradiction completes the proof of the theorem. �

Now let us construct concrete examples of such long virtual knots. For

example, in the case of classical knots the 1-completeness for Dp(K) may

take place only in the case when the initial diagram is adequate and all

diagrams Dp(K) are adequate as well (see Definition 4.14). In the case
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considered below we do not assume 1-completeness for the initial diagram,

but the diagrams Dp(K) may be 1-complete but not adequate and even not

semiadequate.

The point is that the “leading” coefficient of the Kauffman bracket

polynomial (as well as its “lowest” coefficient) for all diagrams Dp(K) for

all p > 1 is calculated from the same formula. Here we mean the leading

coefficient of the expansion (4.1); in the case whenD2(K) is not 1-complete,

i.e. this coefficient is equal to zero, the “real” leading coefficient is much

more difficult to calculate.

Thus, it is important to find good combinatorial formulae for the leading

and lowest coefficients of the Kauffman bracket (4.1) for cables Dp(K).

This coefficient is closely connected to the function M1 (see Sec. 4.3.1).

More precisely, let D be a chord diagram on several circles. Let us split the

set of chords of the diagram D into two sets; consider the chord diagrams

D′ and D′′ composed of the chords from these sets; let us calculate the

coefficients M1(D
′) and M1(D

′′). This leads us to the expansion (4.1) of

the leading coefficients for all diagrams Dp(K) for all p > 1 simultaneously.

The latter easily follows from the statement (first proved in [201]) that

if a chord diagram D′ is obtained from a chord diagram D by adding a

parallel chord to some chord (never mind, which), then M1(D
′) =M1(D).

This yields, in particular, the fact that the value of the function M1 will

not change if instead of every chord we take a set of m parallel chords.

When we take the pth cable Dp(K), in the A-state we get two circles

whose chord diagrams are diagrams obtained from D′ and D′′ by taking p

parallel copies of every chord. The latter is shown in Fig. 4.22: The triple

cable for the figure eight knot at every crossing gives three chords either

for the innermost circle or for the outermost circle.

In the classical case the situation is the following: The initial chord

diagram is a d-diagram, and the resulting splitting of the set of chords into

two families leads to two families of pairwise disjoint chords. Thus, if the

initial diagram is non-empty (at least one of the two sets is non-empty)

then none of the diagrams Dp(K), p > 1, will be 1-complete. From this

we see that in the classical case the 1-completeness of Dp(K) yields the

adequacy of the diagram K.

Let us concentrate ourselves on the case when the atom has exactly one

subcritical (respectively, one supercritical) circle.

In the case of virtual diagrams this way of splitting can be arbitrary

for a given chord diagram D. The construction of diagrams corresponding

to arbitrary splittings is obtained by using virtualization. Namely, when
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applying a virtualization of some crossing in the initial diagram K, the

chord corresponding to this crossing in the diagram Dp(K) is moved from

one family to the other.

We shall use the following auxiliary construction. In this chapter, all

atoms corresponding to diagrams of virtual links are assumed oriented.

Let D be a chord diagram on one circle having n chords, and let At(D)

be the corresponding atom with one black cell and n vertices. Assume

the frame of the atom At(D) has one unicursal component, i.e. for every

projection of the frame to the plane, preserving the A-structure, we get a

knot but not a multicomponent link.

Now let D′ and D′′ be two chord diagrams obtained by splitting the set

of chords of the diagram D into two subsets.

Let us define the virtual diagram KD;D′,D′′ in the following way (the

resulting diagram will be defined up to detour moves). For the atom defin-

ing this diagram we take the atom At(D); from this atom, the diagram

is restored uniquely up to virtualizations and detour moves. To avoid the

ambiguity coming from virtualization, let us use the splitting of D into

subdiagrams D′ and D′′.

Namely, let us immerse the chord diagram D in R2 in the following

way. We embed the core circle of this diagram in R2 in a standard way

and locate those chords coming from D′ inside the circle, and those chords

coming from D′′ outside the circle (e.g. we may draw the inner chords

by straight intervals and the outer chords by images of straight segments

under the immersion). Certainly, some chords of the diagram D′ may be

linked with each other (as well as chords of D′′). After that, we replace a

neighborhood of each of the embedded chords by two arcs lying close to each

other forming a classical crossing. In a neighborhood of every intersection

point of the initial chords, we shall get four virtual crossings; we mark all

such crossings as virtual, see Fig. 4.21.

It is clear that the obtained diagram (up to detour moves) is defined by

positions of chords of the chord diagrams D′, D′′.

We denote the obtained diagram by KD;D′,D′′ . We shall use this con-

struction for constructing minimal diagrams of some virtual links.

Consider the nth cable Dn(KD;D′,D′′).

Then the following lemma takes place.

Lemma 4.3. For every n > 1, for the diagram Dn(KD;D′,D′′) the lowest

coefficient in the Kauffman bracket expansion (4.1) is equal to ±M1(D
′) ·

M1(D
′′).
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D
1

2D D

Fig. 4.21 Constructing the knot diagram KD;D′,D′′ .

We say that in some Kauffman state a state circle touches itself at a

crossing, if this circle is incident to this crossing twice.

Lemma 4.3 follows from the following arguments: The cable

Dn(KD;D′,D′′) has n circles in the B-state corresponding to every circle

of the B-state of KD;D′,D′′ . Two of these circles, the “innermost” and

the “outermost” may touch themselves at some crossings; the others are

“clutched” between these two, see Fig. 4.22. One of these outer circles

touches itself according to the chord diagram D′, and the other touches

itself according to D′′. Thus we get the desired statement of Lemma 4.3.

By virtue of Lemma 4.3, it is to find a way of splitting the diagram

D into two diagrams D′ and D′′ such that M1(D
′) ·M1(D

′′) ̸= 0. This

happens often even in the case when M1(D) = 0.

A natural problem is to construct such examples of virtual knot dia-

grams for which both the leading and the lowest term in the expansion (4.1)

are non-zero.

In order to handle both coefficients, let us assume that we deal with an

atom with one subcritical circle and one supercritical circle.

Besides, we restrict ourselves for the case of orientable atoms. Moreover,

we shall make one more constraint. Let D be an oriented chord diagram

with the corresponding atom At(D) with one supercritical circle (according

to the diagram D) and one subcritical circle. From the point of view of
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Fig. 4.22 B-state for the triple cable of the figure eight knot.

the subcritical circle, the atom can also be encoded by the chord diagram

coming from the atom At∗(D), which differs from the atom At(D) by colors

of the cells.

We shall call this diagram dual to the diagram D and denote it by

D∗. Then there exists a bijective correspondence between chords of D and

chords of the diagram D∗ (both the former chords and the latter chords

correspond to vertices of the atom At(D)). Thus, every way of splitting of

the chord diagram D into two subdiagrams D′, D′′ generates a splitting of

D∗ into D′
∗, D

′′
∗ .

From the arguments above we get the following lemma.

Lemma 4.4. Assume the atom corresponding to the chord diagram D has

one black cell and one white cell. Then for the diagram Dn(KD;D′,D′′)

the leading coefficient in the Kauffman bracket extension (4.1) is equal to

M1(D
′
∗) ·M1(D

′′
∗ ).

Thus, we are led to the following theorem.

Theorem 4.14. Let D be a chord diagram corresponding to an oriented

atom with one black cell and one white cell, and assume that there is some
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way of splitting of the corresponding set of chords into two sets leading to

two chord diagrams D′, D′′. Assume that the diagram D generates a knot

(not a link) and M1(D
′) ·M1(D

′′) · M1(D
′
∗) ·M1(D

′′
∗ ) ̸= 0. Then every

diagram of a long knot obtained by breaking the diagram KD;D′,D′′ at any

point is minimal with respect to the number of classical crossings.

This theorem is convenient for constructing examples for Theorem 4.13.

Note that if the diagram D generates an atom with one black cell and

one white cell, then the diagram KD;D′,D′′ is neither adequate nor semiad-

equate (if the set of chords of D is not empty).

Let n ∈ N. Consider the chord diagram D consisting of (4 + 6n) + 4

chords, constructed as follows. The first (4 + 6n) chords form a non-closed

chain where each chord with a number i is linked with the chords having

adjacent numbers i− 1 (if i > 1) and i+ 1 (if i < 4 + 6n). The remaining

four chords are denoted by letters a, b, c, d. The whole diagram is shown

in Fig. 4.23.

a b
c
d

4+6

3+6

2+6

1
2

3

...

n

n

n

Fig. 4.23 A chord diagram for which the corresponding long knot diagram is minimal.

Remark 4.8. The chords a, b, c, d are drawn by dashed lines for visual-

ization purposes. They all have framing 0, as well as all the other chords

of this chord diagram.

Now, we are ready to split chords of D into two families in the following

way. The chords a, d go to the family D′, the chords b, c go to the subdia-

gram D′′. For the remaining chords we have: the initial three chords 1, 2, 3

are in D′, then the chords 4, 5 are in D′′, the next two chords are in D′,

then we alternatively put pairs of adjacent chords to one or another family,

until we are left with three chords. The chords 2 + 4n, 3 + 4n, 4 + 6n will

also be in one family (different from the family the preceding two chords
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belong to).

It is not difficult to see that M1(D
′) ·M1(D

′′) ·M1(D
′
∗) ·M1(D

′′
∗ ) = ±1.

Thus we have constructed an infinite sequence of examples of minimal

diagrams for long virtual knots, which are neither adequate nor semiad-

equate. It can also be easily verified that the critical diagonals of the

Khovanov homology for such series of diagrams are empty (see Chap. 5),

which means that the minimality of these diagrams cannot be established

just by looking at the difference between the top and bottom heights of the

Khovanov homology, as in Lemma 5.11.
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Chapter 5

Khovanov Homology

5.1 Introduction

One of the most outstanding achievements of knot theory of past years is

the construction suggested by Khovanov [176], which associates with each

diagram of an oriented virtual link some bigraded chain complex. The

homology of this complex is an invariant of the link. One of the most strik-

ing applications of the Khovanov homology was Rasmussen’s combinatorial

proof of the Milnor conjecture, see [269].

Khovanov’s idea is to replace the Kauffman bracket ⟨K⟩ of a link dia-

gram K with a chain complex of graded vector spaces (Khovanov complex )

whose graded Euler characteristic is ⟨K⟩. The chain complex is defined by

the axioms:

[[∅]] = 0→ Z→ 0, [[⃝K]] = V ⊗ [[K]],

[[ ]] = F
(
0→ [[ ]]

d→ [[ ]]{1} → 0
)
.

Here V is a vector space of graded dimension q + q−1 (see below), the

operator {1} is the operation of grading shift by 1, F is the flatten operation

which sets a double complex to a single complex by taking direct sums

along diagonals, and d is a differential. The Khovanov invariant is the

homology of a renormalization of the Khovanov complex. The Khovanov

invariant is indeed a link invariant and its graded Euler characteristic is the

unnormalized Jones polynomial.

This passage from polynomials to (bi)graded complexes is also called

categorification: Complexes form a category in which there are natural

morphisms generated, for example, by cobordisms.

This theory has many generalizations and led to solutions of many prob-

lems in classical knot theory (for example, a simple proof of Milnor’s con-

jecture about the Seifert genus of torus links, [269]). It was also shown
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that the Khovanov homology detected the unknot, see [187]. For more

details see [13, 19, 20, 101, 176–182, 262, 269, 278, 279, 309, 315] and

references therein.

As it follows from the paper by Bar-Natan [20], the Khovanov complex

can be considered as a complex of cobordisms: The chain space consists of

framed states (circles with labels ±) instead of abstract graded modules,

and differentials are linear combinations of cobordisms. This considera-

tion led Bar-Natan to the “universal topological” theory of the Khovanov

homology. Note that chains in the universal topological theory, generally

speaking, are not chains of a cell complex; they just admit a combinatorial

description by means of topology of two-dimensional cobordisms connected

with knots. Note that the question about a “real” topological interpreta-

tion, the spectrification of the Khovanov homology (to find a topological

space related to the knot such that the homology of this space coincides

with the Khovanov homology of the knot), is still open. Partial attempts

to answer this question belong to Seidel and Smith [278].

In [178] Khovanov constructed the universal algebraic theory by using

ideas similar to those of Bar-Natan. In this theory, two rings R and A are

considered, where A has a structure of the Hopf algebra over R. It turns

out that under some natural algebraic assumptions on the structure of the

ring A one can construct an extraordinary theory of link homology in which

R is the ring of coefficients, and A is the homology ring of the unknot.

An important generalization in the theory of extraordinary homology

of links was the construction of categorification for a set of polynomials of

type HOMFLY, made by Khovanov and Rozansky [180, 181]. Polynomials

of type HOMFLY have more difficult relations and the problem of categori-

fication for them was elegantly solved by means of instruments of matrix

factorizations and Koszul complex. Khovanov and Rozansky [182] devoted

their paper to the categorification of the so(N)-type Kauffman polynomial

in which virtual knots are also used besides matrix factorizations.

The Khovanov homology possesses important properties coming from

algebraic topology: the (projective) functoriality. In the given case, the

morphisms are cobordisms of knots. Thus, the Khovanov homology is ex-

tended to invariants of knot cobordisms representing two-dimensional sur-

faces with boundary in R3×I. The projective functoriality (i.e. functoriality

up to the overall minus sign) was first established by Jacobsson [138], see

also [20].

The functoriality allows one to construct invariants of cobordisms of

two-dimensional surfaces in R4 from the Khovanov complex; a particular
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case of cobordisms is the cobordism between two links consisting of an

empty set of components. In the case of projective functoriality, a cobor-

dism invariant is defined up to an inverse element of the main ring. In

this case the Khovanov construction gives an invariant of two-dimensional

knots, and two-dimensional surfaces embedded in R3 × I ⊂ R4. The accu-

rate functoriality was established in [61], see also [35].

In [20] an interesting construction was suggested. This construction de-

scribes a topological Khovanov complex, a formal chain complex, in which

linear combinations of labeled sets of circles in the plane play the role of

chains, where linear combinations of cobordisms are differentials. For in-

variance, some relations originating from the topology of two-dimensional

complexes are imposed on such cobordism complexes. The general (alge-

braic) Khovanov complex is obtained from the geometrical one by “substi-

tution” of concrete graded spaces for sets of circles, and concrete maps for

elementary cobordisms; and it also requires that the relations originating

from the relations on cobordisms hold.

Note also the paper [179] where Khovanov constructed a homology the-

ory for colored links, connected with the Jones polynomial for cables, by

using the cobordism theory and combinatorial analysis of the representation

of the Lie algebra sl2.

One of the most natural problems in the theory of virtual knots is the

problem of generalization of the Khovanov complex for virtual knots. An

immediate attempt to generalize the theory leads to an algebraic difficulty:

By writing down all necessary equations for the Khovanov complex to be

invariant, we conclude that the main ring of coefficients should be the two-

element ring. The indicated generalization was done in [218]. Some dif-

ficulties of the immediate approach can be avoided by using geometrical

constructions connected with atoms.

The main goal of this chapter is the construction of a chain complex for

a virtual diagram with the homology being invariant under the generalized

Reidemeister moves.

Note that the Khovanov homology for knots in thickened surfaces and in

bundles over surfaces Sg whose fiber is an interval (by using some additional

gradings for curves in a given surface) was also constructed by Asaeda,

Przytycki and Sikora [13]. This homology does not lead to the Khovanov

homology for virtual knots, since it depends on a concrete surface Sg and

is not invariant under destabilizations and homeomorphisms of the surfaces

onto itself.

A further development of the Khovanov homology theory for virtual
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knots representing a generalization of the paper [13], and the results of this

chapter, are given in [230, 231], see also [79]. In these papers topological

and combinatorial coefficients at terms in the Kauffman bracket polynomial

are “lifted” to new gradings in the Khovanov homology.

Note also the paper by Turaev and Turner [303], in which a “topolog-

ical” theory of cobordisms for virtual knots is constructed (with different

restrictions). Namely, in [303] a homology theory with coefficients from Z2

was constructed. Different theories with coefficients from Z in which one

of the gradings disappeared were also constructed.

Besides Khovanov homology, there are other link homology theories:

The theory [263, 268] which categorifies the Alexander polynomial, dia-

gramless link homology [244], etc.

In this chapter, we shall first describe four ways of constructing the

Khovanov complex for virtual knots with some restrictions. First, we con-

struct the Khovanov complex for arbitrary virtual knots with coefficients

from Z2; in the second case, we show how one can construct the Khovanov

complex for framed virtual links (by means of double diagrams) with coeffi-

cients from an arbitrary ring; in the third case, we construct the Khovanov

complex of two-sheeted coverings over virtual knots (in the sense of atoms)

with coefficients from an arbitrary field. The fourth way is connected with

the projective map, see Chap. 8 and Definition 8.11, which sends all virtual

knots to knots with orientable atoms and remains knots with orientable

atoms. This projective map allows one to “lift” all invariants defined for

virtual knots with orientable atoms to all virtual knots.

In the second part of the chapter with each ring of each diagram of

a virtual link we associate a complex with the homology being invariant

under the generalized Reidemeister moves (this construction first appeared

in [228, 229]). Moreover, in the classical case, the complex has the same

homology as the ordinary Khovanov complex, and the particular cases con-

structed in this chapter give the complexes with the homology being iso-

morphic to the homology constructed for all virtual knots. The graded

Euler characteristic of this complex coincides with the Jones polynomial Ĵ

of the virtual link. Proceeding with this construction and using the parity

arguments, see Chap. 8, we get the invariance of the Khovanov homology of

two-sheeted coverings over virtual knots with coefficients from an arbitrary

ring.

The main difficulty in constructing a Khovanov homology for virtual

knots is how to define the differential for complexes corresponding to ar-

bitrary virtual knots. Here one must consider many more cases than for

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 5. Khovanov Homology 181

classical knots (the corresponding atoms are considered in Sec. 5.9.1). This

difficulty is overcome by means of a construction of a new complex having

the same homology as the usual Khovanov complex. The first key idea is

to change the basis of the Frobenius algebra representing the Khovanov ho-

mology of the unknot (it is connected with a choice of a local orientation of

the corresponding circle originating from the crossing) as we pass from one

crossing of the knot diagram to another. The second key idea is to replace

the usual tensor product (corresponding to several circles in a given state)

by the exterior product of the corresponding graded spaces. This enables us

to avoid the “artificial” procedure of transforming the commutative cube

into an anticommutative one, as was done in [17, 176] and in the first part

of the chapter.

We mention some important properties of this construction.

(1) The construction of the complex uses atoms. The complex is invariant

under virtualization. This is proved in Lemma 5.6.

(2) There is a natural map from the set of “twisted virtual knots” in the

sense of Bourgoin and Viro [42, 310] (see below) to the set of virtual

knots modulo virtualization. Therefore, our approach yields invari-

ants of twisted virtual knots. The set of twisted virtual knots (knots

in oriented thickenings of non-orientable two-dimensional surfaces up

to stabilization) contains all knots in the punctured three-dimensional

projective space. A particular case of this theory is the theory of

knots in the three-dimensional projective space RP 3. Note that the

Kauffman bracket polynomial for knots in RP 3 was constructed by

Drobotukhina in [72]. Moreover, this theory admits different general-

izations constructed for the ordinary Khovanov homology: Lee’s the-

ory [193, 194], Wehrli’s and Champanerkar–Kofman spanning tree ex-

pansion [54, 315], etc.

(3) For the coefficient field Z2, our complex coincides precisely with the

complex constructed in Sec. 5.3.

(4) For orientable atoms (in particular, for classical knots), the homology

of our complex is the same as the homology of the complex constructed

in Sec. 5.4.

(5) The proof of invariance of the homology is local. It repeats the proof of

the invariance in the classical case (see, e.g. [17]). The main difficulty

is in defining the differential: How can one choose signs that make the

cube anticommutative? We overcome this difficulty by constructing

a new complex which is homotopy equivalent to Khovanov’s original
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complex.

In the next part of the chapter we show that the approach using atoms

can be applied for the general Khovanov homology theory (Frobenius ex-

tensions) [223], and we describe algebraic equations and structures which

appear under the attempt of generalizing the universal theory of the Kho-

vanov homology directly (as opposed to the simplest (initial) Khovanov

complex it turns out that this theory is richer).

An important question in the theory of classical and virtual knots is

the problem of defining minimal diagrams of links, diagrams with minimal

number of classical crossings in a given class.

At the end of the chapter, we give the construction of a spanning tree for

the Khovanov complex, first suggested by Wehrli [315] for classical knots

(much stronger result in the classical case was obtained by Champanerkar

and Kofman [54]) and the first-named author [227] (for virtual knots). We

show how one can establish the minimality of link diagrams by using the

Khovanov complex. Different minimality theorem [221, 227] will be for-

mulated which are based on the Jones polynomial as well as the Khovanov

complex.

5.2 Basic constructions: The Jones polynomial Ĵ

In the sequel, we shall deal with bigraded complexes C =
⊕

i,j Ci,j , where i
is called the height, and j is called the (quantum) grading. The differential

in the complex does not change the grading and increases the height by

one. Sometimes the height is also called the homological grading.

Since the differential increases the height, it would possibly be more

appropriate to talk about cohomology, but Khovanov homology is a well-

established terminology, so we shall use the terms chains, cycles, boundaries

instead of cochains, cocycles, coboundaries.

Let a linear spaceM (or a free moduleM over a ringR) have a preferred
quantum grading q. Then one has the following decompositionM =

⊕
iMi,

where Mi is the homogeneous component of grading i. By the graded

dimension of the spaceM we mean the polynomial qdimM =
∑

i q
idimMi.

For such complexes there are naturally defined operations of the height

shift C 7→ C[k] and the grading shift C 7→ C{l} defined according to the fol-

lowing rules: (C[k])i,j = Ci−k,j ; (C{l})i,j = Ci,j−l. In the first case, together

with chains, all differentials are shifted accordingly (i.e. the differential ∂i,

which was acting from Ci,∗ to Ci+1,∗, will now act in the same way from
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Ci−k,∗ to Ci+1−k,∗). By the graded Euler characteristic of the complex Ci,j
we mean the alternating sum of the graded dimensions of the chain spaces,

or, which is the same, the graded dimension of the homology groups. For

chain spaces, we have:

χ(Ci,j) =
∑
i

(−1)iqdim Ci =
∑
i,j

(−1)iqjdim Ci,j .

For such complexes, for every bigraded dimension (i, j) there is the

(co)homology group Hij(C) which is defined as the quotient module of the

corresponding module of cycles by the submodule of boundaries.

Definition 5.1. Two graded (respectively, bigraded) complexes C and C′
are called quasiisotopic, if there exist two bigrading preserving maps f : C →
C′, g : C′ → C together with a map u decreasing the height by one and

preserving the second grading if such exists, such that f ◦ g = IdC′ , and

g ◦ f − IdC = d ◦ u + u ◦ d. Here, IdC : C → C, IdC′ : C′ → C′ denote the

corresponding identity maps.

Homology groups of quasiisomorphic complexes are isomorphic.

Let us describe the normalization of the Jones polynomial suggested by

Khovanov which differs from the one described in the previous chapter.

Let us make the substitution a =
√
(−q−1) in the Kauffman bracket.

Then, instead of the Jones polynomial we shall get its modified version J .

Let us consider the polynomial Ĵ = J · (q + q−1). More precisely, Ĵ is

defined as follows. Let K be an oriented virtual diagram, and let |K| be the
corresponding unoriented virtual diagram obtained from K by forgetting

the orientation, let n+ and n− be the numbers of positive and negative

classical crossings of K, and n = n++n− be the total number of crossings.

We set:

Ĵ(K) = (−1)n−qn+−2n− [K],

where [K] is the modified Kauffman bracket defined according to the rule

[⃝] = (q + q−1), [K ⊔⃝] = (q + q−1) · [K], [ ] = [ ]− q[ ].

The polynomial Ĵ has the following conceptually important descrip-

tion in terms of the state cube. Taking away the normalizing fac-

tor (−1)n−qn+−2n− , we get a (slightly modified) Kauffman bracket∑
s(−q)β(s)(q + q−1)γ(s). This means that we take the sum over all ver-

tices of the cube, of the following products (−q)h × (q + q−1)#⃝, where h

is the height of the vertex, and #⃝ is the number of circles in the state

corresponding to the given vertex of the cube.
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Thus, in order to compute the polynomial, one has to associate with

every circle the Laurent polynomial (q + q−1), and then multiply these

polynomials taken with some coefficients of the form ±qk, and take the

sum of the obtained polynomials over all vertices of the cube.

Consequently, the Jones polynomial can be restored from the informa-

tion about the number of circles in each of the Kauffman states. If we also

take into account the way how these circles interfere when passing from one

state to another, we would be able to construct the Khovanov complex.

5.3 Khovanov homology with Z2-coefficients

Let K be an oriented diagram of a virtual link with n classical crossings.

Definition 5.2. By bifurcation cube we understand the cube {0, 1}n where

each vertex is assigned the number of circles (as in the state cube), and

each edge indicates which circles bifurcate when passing from a state to an

adjacent one. The height of a state (a vertex of the cube) is the number of

B-smoothings.

We orient the edges of the cube as the sum of coordinates increases

(i.e. from an A-smoothing to a B-smoothing). With each circle in each

state we associate the linear space V over the field Z2 generated by two

vectors v+ and v− where vectors v± have grading ±1 respectively. Thus,

qdimV = (q+ q−1). For each vertex s = {a1, . . . , an} of the cube, we have

a certain number of circles to be denoted by γ(s). With such a vertex, we

associate the vector space V ⊗γ(s){
∑n

i=0 ai} obtained from the tensor power

of the space V by a grading shift.

Remark 5.1. In the sequel, we shall use the same notation V for the two-

dimensional free module generated by the elements v+, v− of grading ±1
considered over an arbitrary ring of coefficients.

Remark 5.2. In the first part of the chapter, we consider the symmetric

tensor product for which for elements xi ∈ Vi, i = 1, . . . , n, the following

equality xσ(1) ⊗ · · · ⊗ xσ(n) = x1 ⊗ · · · ⊗ xn holds for any arbitrary permu-

tation σ. We shall also call this product unordered. In the second part, we

shall consider the tensor product where the sign is the sign of the permuta-

tion when identifying products in different orders (this is also called signed

tensor product).
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The replacement of (q + q−1) with the space V such that qdimV =

(q + q−1) is an important step towards categorification. We define the

chain space of chains of height k as the direct sum of spaces corresponding

to all vertices of height k of the bifurcation cube.

We have defined the chain groups of our graded complex. This yields

that whatever differentials we take for this complex (provided that ∂2 = 0),

the Euler characteristic of this complex will not depend on them. Namely,

χ(Kh(K)) = Ĵ(K), where Kh(K) denote the bigraded homology of the

complex we are going to construct.

Let us define the partial differentials between the chain groups, acting

along the edges of the cube according to the edge directions, i.e. from a

smoothing of type A to a smoothing of type B, in the following way. Let

an edge of the bifurcation cube correspond to a passage from a state s to

a state s′ in such a way that l circles are not incident to the crossing in

question. These circles do not change when passing from s to s′. At the

crossing of |K|, corresponding to the edge either one circle splits into two

circles or two circles merge into one. In the first two cases, we shall define

the partial differential as it was defined in the case of classical knots [19],

namely, on an edge increasing the number of circles we set ∆⊗ Id⊗l{1} and
on an edge decreasing the number of circles we set m⊗ Id⊗l{1}. Here the

identical mapping Id is referred to the circles which are not incident to the

crossing in question, and the maps m : V ⊗V → V and ∆: V → V ⊗V are

defined according to the rule.

The map m: {
v+ ⊗ v+ 7→ v+, v+ ⊗ v− 7→ v−,

v− ⊗ v+ 7→ v−, v− ⊗ v− 7→ 0.

The map ∆: {
v+ 7→ v+ ⊗ v− + v− ⊗ v+,
v− 7→ v− ⊗ v−.

For those chains corresponding to the fixed vertex of the cube, the

differential ∂ is a sum of all partial differentials (each to be denoted by

∂′, possibly, with an index indicating to the edge along which the partial

differential acts) along all edges emanating from the given vertex of the

cube (oriented in a way increasing the sum of coordinates).

In the general case, the main problem is to define the differential of type

(1→ 1) in a way compatible with differentials of types (1→ 2) and (2→ 1)

to make the cube anticommutative. For coefficients from Z2 this difficulty

is easy to overcome.
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Namely, in the case of bifurcation of type (1→ 1) we define the partial

differential on the edge as the map taking the whole space to zero. Thus,

we get the bifurcation cube, where in comparison with the state cube we

additionally indicate how the partial differentials ∂′ act. Denote the ob-

tained set of the bigraded groups (the cube) by [[K]]. In order for the

differential to be well defined, the cube has to be anticommutative, i.e. for

every two-dimensional face of the cube, the composition of the maps corre-

sponding to one pair of consecutive edges is equal to minus the composition

of the maps corresponding to the other pair of consecutive edges connect-

ing the same pair of points. Note that in this case (for the field Z2) the

anticommutativity and commutativity are the same.

Let us define the differential ∂ as the sum of all differentials ∂′.

Lemma 5.1. The cube [[K]] defined above is commutative.

This statement is verified by a routine check analogous to that from

Bar-Natan’s paper [19]. Namely, we check the anticommutativity for every

face of the cube.

Here we give an example of such a check (the most interesting one), see

Fig. 5.1.

∆ m

0 0

1

2

Fig. 5.1 The commutativity check for a 2-face of the cube.
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Later on, we shall see (Secs. 5.4 and 5.7.2) that every 2-face of the cube

generates a certain atom.

In the present case (Fig. 5.1), it is necessary to check that the map

m ◦∆: V → V takes the whole space V to zero. Indeed, for such a map we

have: v− 7→ v− ⊗ v− 7→ 0, v+ 7→ v+ ⊗ v− + v− ⊗ v+ 7→ 2v− = 0 over Z2.

Note that this case is the only essential “non-classical” case where a

bifurcation of type 1→ 1 takes place. Indeed, from the parity arguments it

follows that on every 2-face of the cube the number of 1 → 1-bifurcations

is either equal to zero or it is at least two. For more details see Sec. 5.7.2.

If there are no such bifurcations, then the problem is reduced to one of the

classical cases (all such cases were considered by Bar-Natan).

If we consider the case when there are two or four such bifurcations,

then in the 2-face of the cube in question,

V ⊗a{1} s−→ V ⊗b{2}
r ↑ ↑ t
V ⊗c p−→ V ⊗d{1},

either each of the compositions t ◦ p and s ◦ r contains a zero map corre-

sponding to 1 → 1-bifurcation (for example, in the case a = b, c = d the

maps p and s are both zero) or the above case takes place.

We set (cf. [176]), C(K) = [[K]]{n+ − 2n−}[−n−]. In this case C(K) is

a well-defined chain complex. Denote the homology groups of the complex

C(K) by Kh(K) (or by KhZ2(K) in the case when we have to emphasize

that the Khovanov complex is considered over the field Z2).

Theorem 5.1 ([218, 221]). The graded homology Kh(K) is an invariant

of the link K; the graded Euler characteristic χ(Kh(K)) is equal to the

Jones polynomial.

The second statement of the theorem follows from the fact that the

Euler characteristic defined as the alternating sum of (graded) dimensions

of homology groups is equal to the alternating sum of the graded dimensions

of chain spaces.

The proof for the homology to be invariant under the Reidemeister

moves just repeats the proof of the Khovanov homology for the case of

classical links.

To prove the invariance, Bar-Natan used the so-called cancellation prin-

ciple which means the following.

Let C be a (bigraded) chain complex, and let C′ be a subcomplex of the

complex C.
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Then,

• if the complex C′ is acyclic, then H(C) = H(C/C′);
• if the complex C/C′ is acyclic, then H(C) = H(C′).

Here H stays for homology groups. Later on, for any of Reidemeister

moves, the bifurcation cubes (corresponding to the diagram before the move

is applied and to the diagram after the move is applied) are split into

subcubes; the set of vertices of the whole cube is the disjoint union of sets

of vertices of these subcubes; the subcubes refer to those sets of vertices the

corresponding Reidemeister move is applied to. Thus, for example, in the

case of the move Ω3 the cube of dimension n is split into eight subcubes,

each of dimension (n − 3). Then, applying the cancellation principle and

taking into account the “locality” of partial differentials (corresponding to

the maps ∆ and m), we may reduce the homology of the cube of dimension

n to a simpler form. It turns out that this simpler form is the same for the

diagrams before the Reidemeister move and after the Reidemeister move.

Herewith, in the proof we never use the global information about the

differentials, i.e. we never say that some edge of the bifurcation cube is a

comultiplication (∆) or multiplication (m) if it is clear from the picture.

The invariance under the first classical Reidemeister move repeats Bar-

Natan’s arguments from [17] verbatim. The complex corresponding to the

diagram with an added curl looks like:

[[ ]] =
(
[[ ]]

m→ [[ ]]{1}
)
.

The map m is surjective; herewith the subcomplex of the complex

in the left part, where the small circle is marked by ±v+, is mapped by m

to the whole complex in the right part. Thus, we see that the whole

complex has the same homology as its quotient complex by the acyclic part

described above. This quotient complex has the same homology as [[ ]].

Analogously, one can consider the other curl; in that case one has to

use the injectivity of ∆.

Like the case of the first Reidemeister move, the invariance proof under

the second Reidemeister move repeats Bar-Natan’s proof in the classical

case. We shall give it here because it will be useful for us when we prove

the invariance under the third Reidemeister move.

The initial complex C looks like:

[[ ]]{1} m−→ [[ ]]{2}
∆ ↑ ↑
[[ ]] −→ [[ ]]{1}.
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This complex contains the following subcomplex C′:

C′ =
[[ ]]v+{1}

m−→ [[ ]]{2}
↑ ↑
0 −→ 0.

Here and further, the lower index v+ (in the leftmost part) denotes the

mark on the small circle.

The acyclicity of the complex C′ is evident.
Taking the quotient of C modulo C′, we get:

[[ ]]{1}/v+=0 −→ 0

∆ ↑ ↑
[[ ]] −→ [[ ]]{1}.

In the upper-left angle, we have v+ = 0, which means that the space

V = {v+, v−} corresponding to the small circle is taken modulo the relation

v+ = 0, i.e. in the corresponding (signed) tensor product instead of the usual

two-dimensional space we take just the one-dimensional space generated by

v−.

In the latter complex, the arrow ∆ directed upwards, is an isomorphism.

Consequently, this complex has the same homology as [[ ]]. This com-

pletes the invariance proof under Ω2 (up to a height shift and a grading

shift).

The transformation of the Khovanov complex under the third Reide-

meister move is shown in Fig. 5.2. Here on each of the two cubes we have

one map of type ∆ and one map of type m; we do not make assumptions

about the other maps.

The invariance of the Jones polynomial in one variable under the third

Reidemeister move Ω3 is usually proved as follows. We smooth one crossing

for two diagrams, after that we see that the resulted diagrams either co-

incide or are obtained from each other by applying a second Reidemeister

move Ω2. We shall act in the same manner: Let us consider the three-

dimensional cube (each vertex of it is a cube of the codimension three); two

of these cubes, which are distinguished from each other by the third Rei-

demeister move, have the same low levels (subcubes) and different upper

levels by a second Reidemeister move.

Let us consider the special case of the second Reidemeister move Ω2

related to the upper level in Fig. 5.2. The corresponding complex C/C′
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m

1

2

3

m
∆

∆

1
1

2

2 3

3

Fig. 5.2 The alteration of the Khovanov complex under Ω3.

contains the following subcomplex:

C′′′ =

β −→ 0

∆ ↑
τ=d∗0∆

−1

↘ ↑
α

d∗0−→ τβ.

The latter is acyclic since the map ∆ is a monomorphism.

Remark 5.3. Here the arrow τ is not a partial differential. Later on, an

arrow of the form β → ±τβ on the diagonal means that we identify two

elements of the cube. A sign ± depends on where the additional sign minus

stands on the two-dimensional face. In the case of coefficients from Z2 the

presence of this sign is inessential.

In the case of coefficients from a ring with characteristics different from

two, a sign can appear; all arguments are analogous to those of Bar-Natan.

We shall consider the problem with signs under the third Reidemeister move

in Sec. 5.7.

After that we see that the complex C looks like:

(C/C′)/C′′′ =
β −→ 0

↑ ↘ ↑
0 −→ γ.
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By virtue of the cancellation principe, we can apply this operation (fac-

torizing the upper face of the three-dimensional cube over the corresponding

complexes C′ and C′′′) for two cubes shown in Fig. 5.2 (only for their upper

faces). As a result, we shall get the cubes shown in Fig. 5.3.

0 0

0 0

γ β

τ

d

v 

1

2
γ

β1

2

τ1 2

=0+
/

v =0+
/

1*01

1*10

2*01

2*10d

d d

β1 = β1
β2 =β2

Fig. 5.3 The invariance under Ω3.

The two obtained complexes are actually isomorphic to each other (an

isomorphism can be defined by the map, which preserves low levels shown

in Fig. 5.3 and maps the pair (β1, γ1) to the pair (β2, γ2) in the upper level).

The fact that the map is actually an isomorphism of linear spaces is evident.

To prove that this map is also an isomorphism in the level of complexes,

we have to prove that their maps commute with the maps on the vertical

edges. It is sufficient to note that τ1 ◦ d1∗01 = d2∗01 and d1∗10 = τ2 ◦ d2∗10.
Theorem 5.1 is proved.

Remark 5.4. The same local arguments can be applied to any cubes (e.g.

to those which have differentials of any form related to bifurcations of type

1→ 1).

Definition 5.3. Let us call by the height h(Kh(K)) of the Khovanov ho-

mology of a virtual link K the difference between the leading and lowest

non-zero quantum gradings of non-zero Khovanov homology of K.

The height of the Khovanov homology justifies the estimates coming

from the span of the Kauffman bracket polynomial. The latter is responsi-

ble for non-cancellability of the leading and lowest terms in the decomposi-

tion (4.1); in the same time chains of the Khovanov complex are in natural
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one-to-one correspondence with monomials of the bracket multiplied by

(−a2 − a−2).

By construction it is clear that

h(Kh(K))− 2 > span⟨K⟩
2

.

Note that the complex C(K) splits into the direct sum of two complexes:

the complex with an even grading and the complex with an odd grading

(recall that the differential preserves the grading).

We get two types of the Khovanov homology: the even one Khe and odd

one Kho.

They correspond to monomials of the Jones polynomial, having degrees

congruent to two modulo four (Kho), and monomials the degrees of which

are divided by four (Khe). A classical link has only one of these two types,

more precisely, the following theorem holds.

Theorem 5.2. For a classical link with even number of components the

isomorphism Kho ∼= 0 holds. For a classical link with odd number of com-

ponents the isomorphism Khe ∼= 0 holds.

This theorem is completely analogous to Proposition 4.1 about degrees

of monomials occurring in the Jones polynomial.

Moreover, it is easy to check that this theorem is true not only for

classical links but also for virtual links having a diagram with orientable

atom.

Example 5.1. Let us consider the diagram K depicted in Fig. 5.4 (left).

Fig. 5.4 A virtual knot with orientable atom with genus 2.
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The chord diagram corresponding to the leading state of the Kauffman

bracket polynomial is depicted in the picture on the right. In this state there

exists one circle, and in any of four crossings this circle can be transformed

into one circle by using the corresponding dashed chord (with framing 1).

We assert that this link has no diagrams with orientable atoms. Indeed,

for the given diagram both complexes Kho and Khe (with coefficients in

Z2) have non-trivial homology. Actually, the A-state of the diagram with

one circle with a label 1 gives non-trivial cycle (since all differentials coming

from the A-state to neighboring states are zero). Further, in states where

one crossing is B-smoothed and the other three crossings are A-smoothed

there exists exactly one circle. Let us consider the chain equal to the sum

of chains having label 1 at each of these four states. It is easy to check that

this chain is a cycle. Further, it cannot be a boundary, since all chains in

the A-state are cycles.

There are two homology groups, whose quantum gradings differ by 1,

therefore, the link has no diagram with orientable atoms.

In particular, we have shown that the atom genus (the Turaev genus)

of the link is equal to one.

Note that this fact cannot be revealed by using the Kauffman bracket

polynomial. Indeed, in the A-state (as well as in the B-state) there exists

exactly one circle, at each state with one (or three) crossing A-smoothed

we have one circle, and if we have two A-smoothed crossings and two B-

smoothed crossings, then in two cases we shall have one circle and in the

remaining four cases we shall have two circles. Therefore, the Kauffman

bracket polynomial of K looks like:

⟨K⟩ = a4 + 4a2 + 2 + 4(−a2 − a−2) + 4a−2 + a−4 = a4 + 2 + a−4.

All terms of this Kauffman bracket polynomial have degrees congruent to

each other modulo four. Therefore, in the given case the Khovanov ho-

mology is more sensitive to non-orientability of atoms than the Kauffman

bracket polynomial.

Note that the constructed Khovanov complex with coefficients in the

field Z2 is completely defined by the structure of the bifurcation cube

and the numbers n+, n−. Therefore, the Khovanov Z2-homology does not

change under the virtualization of the given link.

In the next section, we shall give another approach to the construction

of the Khovanov complex (for framed links) which is sensitive to the vir-

tualization. The Khovanov complex given here coincides with the general

Khovanov complex with coefficients in Z2 in the classical case; in this case
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it is easy to overcome the difficulty with bifurcations of type 1 → 1. In

the next two sections we shall construct the Khovanov complex for not all

diagrams of virtual links but only for “right” virtual diagrams, which have

no partial differentials of type 1 → 1 on the cube. As we shall see later,

“right” virtual diagrams are those diagrams which orientable atoms corre-

spond to. Later on, we shall construct a “right” virtual diagram for each

virtual diagram by some invariant way and see how the Khovanov homology

of the corresponding “right” virtual diagram changes under the generalized

Reidemeister moves applied to the initial diagram (not necessarily “right”).

In the next section we shall construct the Khovanov complex for framed

links where the double diagram plays the role of a “right” diagram.

Example 5.2. Let us consider the virtual knot diagram shown in Fig. 5.5.

This knot was first considered by Kauffman.

Fig. 5.5 A virtual knot reduced to the unknot by the virtualization and the generalized
Reidemeister moves.

This knot can be reduced to the unknot with virtualizations and gener-

alized Reidemeister moves, see Fig. 5.6.

In Fig. 5.6 by the transformation B′ we mean a move applied to one

classical and one virtual crossing; it represents a composition of the vir-

tualization and the second Reidemeister move, see Fig. 5.7. For each of

the transformations shown in Fig. 5.6, we pick out a domain which this

transformation is applied to.

Thus, the Khovanov Z2-homology of the knot depicted in Fig. 5.5 coin-

cides with the Khovanov Z2-homology of the unknot. One can show (e.g.

using the techniques of virtual quandles) that this virtual knot is not trivial.
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Fig. 5.6 Reducing to the unknot by virtualizations and generalized Reidemeister moves.

5.4 Khovanov homology of double knots

In the next three sections, we shall use the construction connecting atoms

with virtual knots. Recall this construction given in Chap. 4 which assigns

to a height atom a classical link. This construction is as follows. We embed
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Ω2

B’

’Virtualization Move

Fig. 5.7 The move B′ is expressed in terms of the virtualization.

the frame of an atom in the plane with its A-structure preserved, and each

crossing is equipped with the over/undercrossing structure according to the

B-structure of the atom.

Let an arbitrary atom be given. Let us immerse its frame in the plane

with the A-structure preserved, construct a virtual diagram K from the

atom in the way given in Chap. 4.

As it was shown in Theorem 4.2 the equivalence class ofK is well defined

up to virtualizations.

Definition 5.4. Let us call a diagram of a virtual link orientable, if the

corresponding atom is orientable, and non-orientable otherwise. Call a

virtual link orientable, if it can be represented by an orientable diagram.

The notion of an orientable diagram under another name was in Ka-

mada’s papers [149, 150, 152]; it said about a possibility to swap some

classical crossings (overcrossing to undercrossing and vice versa) such that

we got an alternating diagram. It is not difficult to check that the class of

such diagrams coincides with the class of orientable diagrams.

Remark 5.5. It is not worth to confuse the notion of an orientable di-

agram (in the sense of orientability of the corresponding atom) with the

orientability (in the sense of existence of an orientation for each component

of a link).

Let K be a virtual diagram with an orientable atom.

Define the complex C(K) as follows. Fix a ring R of coefficients and

two-dimensional free module V over this ring such that qdimV = q + q−1.
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The chain space of our complex is the same as in the case of coefficients

from Z2. After that a differential is defined as the sum of partial differentials

with signs, and partial differentials are defined with the maps m and ∆.

Definition 5.5. The cube with partial differentials ∂′ going along edges

in the coordinate increasing direction is called commutative, if each two-

dimensional face of this cube is a commutative diagram and anticommuta-

tive, if each two-dimensional face is an anticommutative diagram.

In the case of coefficients from the field Z2 the commutativity of each

face is equivalent to its anticommutativity. In the case of coefficients from

Z one can make an anticommutative cube from a commutative cube in the

following way.

Assign to all edges of the cube {0, 1}n sequences consisting of elements

from {0, 1, ∗} and having the length n and one element ∗. Each such edge

connects two vertices obtained by replacing ∗ by one and zero.

Definition 5.6. The height |ξ| of an edge ξ is the smallest height among

two heights of its ends.

Thus, if we denote the map corresponding to an edge ξ by ∂′ξ, then the

differential looks like:

∂r =
∑

{|ξ|=r}

(−1)ξ∂′ξ.

Now we have to explain what the sign (−1)ξ means and define the map

∂ξ. To well define the operator ∂ such that the property ∂ ◦ ∂ = 0 holds,

it is sufficient to show that partial differentials ∂′ξ on two-dimensional faces

of the cube are anticommutative diagrams.

A commutative cube can be transformed to an anticommutative cube

as follows. First, we have to construct maps on edges such that each two-

dimensional face is a commutative diagram, and then we shall equip partial

differentials ∂′ξ with signs. A sign is defined by the following rule. Vertices

of the cube are ordered (the homology will not depend on an order). To

each vertex of the cube we assign the numbers of all its unit coordinates

in the increasing order: i1, i2, . . . , ik and the formal exterior product xi1 ∧
xi2 ∧ · · · ∧ xik . For example, for n = 3 we assign to the vertex {1, 0, 1}
the exterior product x1 ∧ x3. Each edge of the cube, increasing some jth

coordinate, can be treated as the exterior multiplication in the right by

xj . If as a result of application of this exterior multiplication to a “lower”

vertex we get an exterior product assigned to an “upper” vertex, we put the
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sign “plus” on the edge, and the sign “minus” otherwise. For example, for

the edge {1, ∗, 1} we have the sign minus since (x1∧x3)∧x2 = −x1∧x2∧x3.
Thus, we got a collection of chain groups [[K]] with the differential ∂.

Let an atom be given. Assume that for the A-structure of the atom

there exists an orientation of all edges of the atom such that at each vertex

two opposite edges are emanating and two other opposite edges are coming.

Definition 5.7. We call this structure the source–sink structure.

Remark 5.6. The same structure was investigated in the theory of virtual

knots by Kamada, see, e.g. [150]. This structure was called an alternating

orientation for a graph (in the present work we call this graph a frame of

an atom).

Proposition 5.1. The frame of an atom admits a source–sink structure if

and only if the atom is orientable.

Proof. Assume that the A-structure of an atom admits a source–sink

structure. Let us consider black (supercritical) cells of the atom. We define

the orientation of all black cells in such a way that at each vertex two local

orientations defined by the black cells incident to this vertex agree with each

other (i.e. at a vertex incident to two black cells two orientations defined by

consecutive edges are directed either clockwise manner or counterclockwise

manner). It is easy to see that in this case the atom is orientable.

The boundary of each black cell of the atom is a cycle consisting of con-

secutive edges, and each edge in this sequence is not opposite to its prede-

cessor accordingly to the A-structure. Since at each vertex the source–sink

condition holds, the cycle is oriented. The orientation of the cell boundary

gives the orientation in the interior of the cell: It suffices to choose a basis,

the first vector of the basis is oriented along an edge and the second one

is directed to the interior of the cell. Perform the same procedure for each

cell. The existence of a source–sink structure at each vertex means that

the orientation of cells incident to the same vertex agree with each other.

The orientation can be easily extended to all white cells.

Let us suppose that the atom is orientable. Fix an arbitrary orientation

of the atom and define the orientation of edges of the atom in such a way

that for each cell C and each edge e incident to C the orientation of the

pair e⃗, ν is positive, where ν is a normal vector pointing from a point on

the edge e inward the cell C, and e⃗ is a vector directed along the edge

accordingly to the selected orientation.
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It is evident that the obtained orientation of edges gives a source–sink

structure. �

Remark 5.7. It follows from Proposition 5.1 that if an atom (M,Γ) with

a frame Γ is orientable, then each atom (M ′,Γ) with the same frame and

A-structure is orientable, too.

Remark 5.8. The source–sink structure given on the whole atom defines

an orientation for circles at all states of the Kauffman bracket polynomial

of the corresponding link. Thus, if one constructs a diagram obtained

by smoothing of some crossings and deleting unlinked circles not being

incident to chosen crossings, then the frame of the atom corresponding to

the new diagram will inherit the source–sink structure from the initial one.

Therefore, the obtained atom will be orientable.

From Proposition 5.1, it follows that if the atom corresponding to a

virtual diagram is orientable, then there is no bifurcation of type 1→ 1 in

the bifurcation cube corresponding to the diagram. Indeed, let us consider

the frame Γ of the corresponding atom. Each state of the diagram is an

atom having the frame Γ. Circles of the state serve for pasting black cells to

the frame Γ. According to Proposition 5.1, the new atom is also orientable.

Therefore, this atom cannot have a black cell approaching to itself in the

non-orientable way (the way the smoothing at the crossing where this cell

touches itself, does not change the number of circles).

Thus, bifurcation cubes are well defined for virtual diagrams with ori-

entable atoms, namely, all bifurcations have the following types 1→ 2 and

2→ 1; partial differentials are defined by the mapsm and ∆; the differential

is defined as the sum of partial differentials with signs, and the statement

that ∂2 = 0 is checked analogously to the classical case.

Note the following two important lemmas.

Lemma 5.2. Let K be a virtual diagram with an orientable atom. Then

the collection of the groups [[K]] together with the differential ∂ gives a

complex, i.e. ∂2 = 0.

Proof. We have to check that each two-dimensional face of the cube [[K]]

is anticommutative. This is equivalent to the verification of the commuta-

tivity of two-dimensional faces before putting the signs ±1.
Each two-dimensional face of the cube [[K]] represents the atom with

two vertices. Each two-dimensional face of the cube corresponds to a

smoothing of some (n−2) classical crossings of the diagramK, see Fig. 5.23.
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The remaining two crossings can be smoothed arbitrarily; four possibilities

of such a smoothing correspond to vertices of the two-dimensional face.

In these four states there are some number of common circles not being

incident to the two crossings under consideration. After deleting these

circles, we get an atom with two vertices.

Thus, we have to check that each two-dimensional face which can cor-

respond to some atom with two vertices represents an anticommutative

diagram.

Since the atom corresponding to K is orientable, then the atom corre-

sponding to any two-dimensional face of the corresponding complex is also

orientable (according to Remark 5.8).

Let us now use the theorem from [205] which tells us that all orientable

atoms with two vertices are height atoms.

This means that each atom corresponding to a two-dimensional face

of the bifurcation cube corresponding to an orientable atom occurs in the

classical case. All such two-dimensional faces are sorted out in [17] and for

them the commutativity of the corresponding diagrams is proved (before

placing sings in differentials).

After that the proof follows line-by-line the proof in the classical case

(see, e.g. [17]) and from the verification of properties of the maps m and

∆. �

Thus, we have shown that the collection of chains [[K]] with the differ-

ential ∂ represents an anticommutative cube. Therefore, the complex C(K)

is well defined.

Denote the homology of the complex by Kh(K).

Lemma 5.3. Let K, K ′ be two virtual diagrams with orientable atoms,

herewith K ′ differs from K by applying a detour move or one of the three

classical Reidemeister moves. Then there exist an isomorphism of the Kho-

vanov homology Kh(K) ∼= Kh(K ′).

Proof. By applying the detour move, the structure of classical crossings

does not change. Thus, the state cube does not change either, and, there-

fore, the complex does not change.

In the case of the classical Reidemeister moves we use the same proof

(following Bar-Natan) based on the cancellation principle which was earlier

used for the Khovanov homology with coefficients from Z2. It was local, i.e.

it used only the local structure of Reidemeister moves (not depending on

the fixed part of the link under the move). Note that in that proof we did
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not use the fact that the ring of coefficients was the field Z2 (we only used

the injectivity of the map ∆ and the surjectivity of the map m). Therefore,

the proof passes word-for-word for virtual knots under the condition that

all complexes are well defined. �

Proposition 5.2. Let K be a diagram of a virtual link. Then the atom

corresponding to the double diagram D2(K) is orientable.

Proof. The proof follows from Proposition 5.1 in the following way.

Let K be a virtual diagram. Let us orient the diagram D2(K) such that

for each point A on the link diagram the basis (∂KA, τA) gives the positive

orientation of the plane, see Fig. 5.8.

6

?

-

�

6
τAq
A

∂KA

Fig. 5.8 Local orientation for the double diagram.

Here, ∂KA is a tangent vector to the link, and τA is a vector from the

point A to a point on the neighboring component and normal to the vector

∂LA.

The desired source–sink structure can be obtained in the following man-

ner: All edges (i.e. the images of edges of the corresponding atom) of the

shadow of the double diagram D2(K) are partitioned into “long” edges

(which originate from edges of the atom corresponding to K) and “short”

ones (four short edges correspond to each crossing of K, see Fig. 5.8). Let

us change the orientation of all short edges and leave the orientation of
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long edges. It is evident that the new orientation gives the source–sink

structure. �

Taking into account Proposition 5.2 and Lemma 5.2 we conclude that

the Khovanov complex for cables D2n(K) is well defined for any ring of

coefficients. The map K 7→ D2n(K) is almost invariant (it is invariant

under all combinations of Reidemeister moves which do not change the

writhe number). Therefore, it is natural to expect that the homology of

the Khovanov complex for double diagrams (the double, triple diagrams

and more general the operation of taking l-cable of a diagram K 7→ Dl(K)

were defined in Sec. 4.3) of a knot is an invariant of framed links. Namely,

the following lemma is true.

Lemma 5.4. Let K, K ′ be two diagrams of equivalent framed virtual links.

Then there exists a collection of diagrams D2(K) = K0, K1, . . . ,Kn =

D2(K
′) such that :

(1) all atoms corresponding to the diagrams Ki are orientable;

(2) for each i = 0, . . . , n−1 the diagram Ki+1 is obtained from the diagram

Ki by applying one of the generalized Reidemeister moves.

Proof. The detour move applied to the diagram K induces the composi-

tion of detour moves for the diagram Dm(K).

Let us pass to the classical Reidemeister moves.

2Ω

Ω3

2Ω

1Ω

1ΩTwice Twice

Twice

Fig. 5.9 Doubling the move Ω1.

Let us use Proposition 5.2. For each double Reidemeister move from

the chain from D2(K) to D2(K
′) we shall point out how the source–sink

structure changes. It was done in Figs. 5.9–5.11.

In some evident cases, arrows in Figs. 5.9 and 5.11 mean not one but two

“symmetric” classical Reidemeister moves or several Reidemeister moves,
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2Ω 2Ω

2Ω

2Ω

Fig. 5.10 Doubling the move Ω2.

Ω3 Ω3

Ω3

Ω3Ω3

Fig. 5.11 Doubling the move Ω3.

where the sequence of their applications is evident. They can be applied

one by one and in the case of any move depicted in Figs. 5.9–5.11 it is

easy to see that this successive transformation leads to an unambiguous

transformation of the source–sink structure. �

Note the following. Under the construction of the complex C for virtual

diagrams, it is worth to consider only classical Reidemeister moves, since

the detour move does not change an atom.

So, let us consider all classical Reidemeister moves.
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If diagrams K and K ′ are differed by applying the first or third Rei-

demeister move, then the local source–sink structure for the diagram K is

in one-to-one correspondence with the local source–sink structure for K ′

such that outside the domain of the application of the move these diagrams

coincide. Here the source–sink structure of lines depicted by dashed lines

is defined as opposite to “thick” lines joining to them, see Fig. 5.12.

Fig. 5.12 Labeling for the doubling moves Ω1 and Ω3.

The second Reidemeister move has two principal different cases, de-

picted in Fig. 5.13.

Admissible variant of the second Reidemeister move 

Inadmissible variant of the second Reidemeister move 

Fig. 5.13 Labeling for the doubling move Ω2.

In the first case (the upper picture), we have two opposite directed
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arcs (according to the orientation of the source–sink structure), and in the

second case we have two codirectional arcs.

In the first case, it is mentioned how the local labeling and the source–

sink structure change.

The second case is not possible, i.e. it can lead to the fact that after

applying the second Reidemeister move the atom becomes non-orientable.

Thus, the (increasing) Reidemeister move is the only move from the

classical Reidemeister moves which can violate the orientability of the atom.

There is no such move among moves described in the proof of Lemma 5.4.

Remark 5.9. One can consider the set of diagrams of virtual knots with

orientable atoms and the set of moves on it consisting of all Reidemeister

moves not violating the property of orientability (i.e. the detour move, the

first and third classical Reidemeister moves and the “orientable” version of

the second classical Reidemeister move).

This set was investigated by Kamada under the name alternating virtual

links.

In particular, from the arguments given above (Lemma 5.3), it follows

that the Khovanov complex is well-defined over any ring of coefficients and

invariant in the category of orientable virtual links.

Theorem 5.3. Let n be a natural number. Then Kh(D2n(K)) is an in-

variant of framed virtual links.

Proof. According to Proposition 5.2, C(D2n(K)) is a well-defined com-

plex. Let K, K ′ be two diagrams of equivalent framed virtual links.

Then by virtue of Lemma 5.4, there exists a collection of virtual diagrams

D2n(K) = K0, . . . ,Km = D2n(K
′) corresponding to orientable atoms such

that the diagram Ki+1 is obtained from the diagram Ki by applying gener-

alized Reidemeister moves. By Lemma 5.2 for each of the diagrams Kj the

homology Kh(D2n(Kj)) is well defined. The invariance of the homology

Kh under the detour move is obvious by construction. Thus, by virtue of

Lemma 5.3 (which asserts the invariance under the classical Reidemeister

moves), we get Kh(D2n(K)) = Kh(K1) = · · · = Kh(D2n(K
′)). �

Note that the double diagram of K and the double diagram of K ′ ob-

tained fromK by virtualizing one crossing, have different state cubes. Thus

the complex constructed in the section can a priori distinguish framed vir-

tual diagrams obtained from each other by virtualization.

However, the “double” Khovanov complex constructed in this section

essentially differs from the “general” Khovanov complex for classical knots.
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In the classical case as well as in the virtual case we have to double and

after that we have to calculate the Khovanov homology.

It is natural to raise the question whether the “general” Khovanov ho-

mology Kh(K) is invariant in the case of diagrams with orientable atoms.

The positive answer to this question will be given (with some restrictions) in

the next section and (completely) in the sections devoted to the Khovanov

homology for virtual links.

5.5 Khovanov homology of two-sheeted coverings and

atoms

The main goal of this section is the construction of the Khovanov homology

with the help of two-sheeted coverings. From this construction we have the

following statement.

Statement 5.1. Let F be a field, and let K, K ′ be two equivalent virtual di-

agrams with orientable atoms. Then there exists an isomorphism of graded

homology KhF(K) ∼= KhF(K
′).

Note that the general assertion about the invariance of this homology

with arbitrary coefficients follows from the parity arguments (see below)

and from the explicit construction of the Khovanov homology for virtual

knots.

The main construction is as follows. For each virtual diagram K one

can consider the atom At(K) corresponding to it. Later on, we shall use the

techniques of orientable covering. Namely, if the atom At(K) is orientable,

we consider two copies of At(K), if it is not, then we consider the atom

Ãt(K) which is the orientable two-sheeted covering above the atom At(K).

It is defined as the two-sheeted covering above the corresponding surface;

here, the preimage of the frame is a graph which we consider as the frame,

the preimage of a black cell is a pair of black cells, and the preimage of a

white cell is a pair of white cells. The atom obtained in such a way can be

either two-component or one-component, and it depends on the orientation

of the initial atom.

Denote the virtual diagram corresponding to the atom Ãt(K) by K̃.

If we apply a classical Reidemeister move Ωi to the initial diagram K,

then the move Ωi will be applied to the diagram K̃ in two places; here in

the case of the move Ω2, the admissible variant of the second Reidemeister

move will be applied to K̃ twice.
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This construction can be treated as follows: We consider two sets of

vertices of the atom with the A-structure at them and connect vertices by

edges.

Thus, for each virtual knot we can consider its “covered version”:

K → At(K) 7→ Ãt(K) 7→ KhF(K̃).

In terms of a knot diagram, this construction is described as follows.

Let a virtual diagram K be given, this diagram has n classical crossings

v1, . . . , vn. These crossings are connected with each other in some way.

Thus, we have a graph Γ immersed in the plane. Each crossing vi has

four (adjacent) ends vi1, vi2, vi3, vi4 enumerated, for example, in clockwise

manner, with crossings connected by branches of the diagram which edges

of the atom correspond to. Let an edge ej connect the ends vj1j2 and vj3j4 ,

where j2, j4 ∈ {1, 2, 3, 4}.
The diagram K̃ is constructed as follows. It contains 2n crossings

v′1, . . . , v
′
n, v

′′
1 , . . . , v

′′
n, which are connected by branches. Each edge ej of

the initial diagram has two preimages: e1j and e2j . Each of two edges eij
connects the end v′j1j2 or v′′j1j2 with the end v′j3j4 or v′′j3j4 . For each edge e1j
we have to choose which ends are connected (v′ or v′′). Here we have an

arbitrariness in the description. The matter is that before describing edges

we have not had a natural ordering of vertices: Which vertex of the ver-

tices v′i or v
′′
i is the “first” and which one is the “second”. To overcome this

difficulty let us choose some maximal tree T in Γ and say that all edges e1j
corresponding to edges of this graph connect ends v′j1j2 with v′j3j4 (thereby

edges e2j connect ends v′′j1j2 and v′′j3j4).

The choice of another tree will correspond to changing notations: v′j
and v′′j swap places in some pairs. After that the rule for connecting the

remaining ends by edges e1i and e
2
i is the following. Pointing out which pairs

of ends are connected by an edge eαi , we shall either connect them by the

edge e1i or e2i : the “symmetric” pair of ends corresponding to it obtained

by swapping v′ ←→ v′′ will also be connected by an edge. Henceforth, for

constructing a virtual diagram it is not important for us to remember the

notation of these edges.

We shall not pay attention to how we place edges eαi on the plane. The

resulting class of the virtual link will not depend on it (by construction,

diagrams will differ from each other by applying a finite sequence of detour

moves).

So, we have fixed a maximal tree T ⊂ Γ. Each edge ej not belonging to

this tree represents the minimal cycle on the subgraph T ∪ ej ⊂ Γ. In the
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case when this cycle is right (see below), we connect the ends v′j1j2 and v′j3j4
by the edge e1j , and the ends v′′j1j2 and v′′j3j4 by the edge e2j . In the case of a

bad cycle we connect the ends v′j1j2 and v′′j3j4 by the edge e1j , and the ends

v′′j1j2 and v′j3j4 by the edge e2j . The notion of right and bad edges goes back

to orientable and non-orientable cycles on the corresponding atom. An edge

is called right if the corresponding cycle is oriented. Under the covering of

the atom, orientable cycles are sent to cycles, and non-orientable cycles

are sent to unclosed paths (with some ends in v′k, v
′′
k ). Let us define the

notion of a right edge (for edges not belonging to T ), and the notion of a

right (orientable) cycle in terms of a diagram of the virtual link. For this

we consider all edges of the given cycle ej1 , ej2 , . . . , ejk , ejk+1
= ej1 , where

edges eji , eji+1 meet at a vertex (the indices i are taken modulo k) and let

us try to define locally the source–sink structure along them. Let us orient

the edge ej1 in some way. Further, if the edge ej2 is opposite to the edge

ej1 at a vertex, then we orient ej2 such that either both edges ej1 and ej2
come into the vertex, or both edges emanate from it; in the case when the

edges are not opposite, we shall make one of them come into the vertex and

the other emanate from it. Further, we shall make the same thing at the

orientation of the edges ej3 , ej4 , . . . . If the process succeeds, i.e. we have

defined on the edge eji+1 = ej1 an orientation coinciding with the initial

one, we call the cycle right, and bad otherwise. Namely, a cycle is called

right (oriented) if the number of its transversal passing through classical

crossings, vertices of the atom, is even.

Remark 5.10. For a plane diagram the parity of the number of transver-

sal passing through classical crossings coincides with the parity of passing

through virtual crossings (all these passings are transversal).

It is easy to check that this definition of a right cycle coincides with the

definition of an orientable cycle on the atom defined by the A-structure.

Setting successively orientations of edges according to the source–sink struc-

ture we define orientations of black cells approaching (locally) to these

edges. The first vector of the basis is directed along the orientation of the

edge, and the second one is directed inward the black cell. If we return to

the initial edge with the same orientation, then this means that we have

traveled along an orientable cycle, and a non-orientable cycle otherwise.

Indeed, if we pass through a classical crossing, then orientations of neigh-

boring cells defined in such a way, are opposite to each other. Thus, getting

a compatible orientation means precisely that our path goes transversely

evenly many times.
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So, we have defined the notion of a right (orientable) cycle and a right

edge (for edges not belonging to the tree T ). Therefore, we have completely

constructed the virtual diagram K̃. Note that the definition of a right cycle

does not depend (up to detour moves) on the choice of the tree T .

Moreover, by the atom Ãt(K) the knot corresponding to the two-sheeted

covering is restored up to virtualizations (it does not change the Khovanov

homology by the way); we have already mentioned the explicit way of con-

structing the diagram K̃ with the diagram K; it corresponds to some im-

mersion of the frame of the atom Ãt(K) (with preserving the A-structure).

It is easy to see that the detour move in the initial diagram K of the

link induces some combinations of the detour moves on the diagram K̃.

Moreover, the following lemma takes place.

Lemma 5.5. By applying one of the classical Reidemeister moves to a

diagram K the diagram K̃ will change in the following way : The same

Reidemeister move is applied to it in two places. Herewith, the atom corre-

sponding to the “middle” diagram obtained from K̃ by applying the second

Reidemeister move in one place (any of two places) is orientable.

Proof. We shall denote diagrams before and after applying Reidemeister

moves by K and K ′, respectively, the framings of the corresponding atoms

by Γ, Γ′, and the corresponding diagrams of the coverings by K̃, K̃ ′.

Each Reidemeister move represents a transformation of a diagram in-

side some domain; inside this domain the diagram K has some form P ,

and the diagram K ′ has some form Q. Here, we have some collection of

tails t1, . . . , tm connecting the subdiagram P (of the diagram K) or the

subdiagram Q (of the diagram K ′) with the remaining (fixed) part of the

diagram. In the case of the first Reidemeister move m is equal to two, in

the case of the second Reidemeister move this number equals four, and it

equals six in the case of the third Reidemeister move. On the diagrams K̃

and K̃ ′, each tail ti is lifted to two tails t′i, t
′′
i . When the subdiagram P or

the subdiagram Q does not contain non-orientable cycles, on K̃ we get two

copies of the subdiagram P , and on K̃ ′ we get two copies of the subdiagram

Q. The claim of the theorem is that these copies are connected by tails in

a compatible way. An example of two connections is given in Fig. 5.14.

In the first case, all vertices t′i, t
′′
i are connected in the same manner

when we lift the diagrams K and K ′, namely, all t′j are connected with

each other, and t′′l are connected with each other. In the second case in

Fig. 5.14 the connection is the first one when we lift the diagram K, and

the connection when we lift the diagram K ′, is another. For example, one
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Fig. 5.14 Two different connections.

copy is connected with vertices t′1, t
′
2, t

′′
3 , t

′′
4 , t

′
5, t

′
6, and the second one is

connected with t′′1 , t
′′
2 , t

′
3, t

′
4, t

′′
5 , t

′′
6 . We have to show that the second case

cannot occur.

When we apply the increasing first Reidemeister move, a loop appears

which consists of one edge ej , the initial point (it is also the final point)

of which splits some edge el. It is obvious that the edge ej considered as

cycle is right. Moreover, the edge el is split into two edges el1 and el2 which

are not opposite at the crossing of splitting. Let us consider the cycle C

on the graph Γ′ containing the edge el. The cycle C ′ containing the edges

el1 and el2 on the graph Γ′ corresponds to it in a natural way. If the cycle

C is orientable, then the cycle C ′ is also orientable, and vice versa. This

follows from the fact that if the edges el1 and el2 are not opposite, then

under the definition of a cycle one can define the orientation successively

originating from the orientation of the edge el on these edges. Therefore,

if on the diagram K̃ the edge e1l connects, say, ends v′pq with v′′rs, then the

pair of the edges e1l1 , e
1
l2
will connect the ends corresponding to them (with

the same notations) v′pq and v′′rs. This means that the connection has the

first type.

We have the same situation with the remaining two Reidemeister moves.

Each of these moves, Ω2 or Ω3, represents a transformation of some domain

in the plane; from this domain several tails come out (in the case of the

second Reidemeister move we have four tails and in the case of the third

Reidemeister move we have six tails). Let us consider the collection of ends

{vij} of these tails.
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Let us consider the second Reidemeister move. The diagram K ′ has the

bigon cd and four emanating edges a, b, e, f , see Fig. 5.15.

a b

c d

e f

K=’K= A B

Fig. 5.15 The case of the second Reidemeister move.

This bigon, considered like a cycle, is right, since it has no transversal

passing through crossings. Thus, the whole collection of edges is uniquely

lifted on the diagram K̃ ′. As a result, we get two collections of branches

a′, b′, c′, d′, e′, f ′ and a′′, b′′, c′′, d′′, e′′, f ′′. The branches c′, d′ form a

bigon to which we can apply the decreasing second Reidemeister move. We

can also make the bigon with branches c′′d′′. By applying the decreasing

second Reidemeister moves to them, we get the diagram K̃. For this it is

sufficient to note that after this decreasing Reidemeister move, the edge a′

is connected with the edge e′, and the edge b′ with the edge f ′ (herewith a′′

is connected with e′′, and b′′ with f ′′). The latter follows from the fact that

any cycle on K ′ passing successfully through a, c, e has as many transversal

passings through vertices as the cycle on K corresponding to it and passing

through the edge A has.

From this the second claim of the lemma follows.

In the case of the third Reidemeister move on the diagram K as well as

on the diagram K ′ we have a triangle (h, i, f) and (k,m, n) and six exterior

branches (a, b, g, d, c, e) and (a, b, l, d, c, j).

Both triangles represent right cycles, since they do not contain transver-

sal passings through classical crossings. Therefore, the corresponding do-

mains P and Q are lifted to two copies of the domains P and Q. It remains

to check that their lifts have the first type.

For this we have to show that any two paths γ ⊂ K and γ′ ⊂ K ′

connecting ends ti, tj are “equally” lifted on K and K̃. For example, if one

of two preimages γ̃ of the path γ connects points t′i, t
′
j and passes inside

the domain P , then for each path γ′ having the same ends as the path γ
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has one of the preimages γ̃′ connects the same points t′i, t
′
j (but not t′i, t

′′
j ).

In Fig. 5.16 an example of such paths is shown.

a b

c d

e

f

K= ’K=

a b

cd

g
h i

X

Y

j
m n

l

X

Y

k

Fig. 5.16 The case of the third Reidemeister move.

Namely, let us consider two paths between points X and Y on the

diagrams K and K ′. We assert that they are lifted in the same manner

on K̃ and K̃ ′, respectively. This follows from the fact that the number

of points passed transversally is the same for these paths (it equals zero).

Analogously, one can prove the sameness of the lifting of any two paths in

Fig. 5.16 with the same ends. �

According to Lemma 5.2, the homology Kh(K̃) is well defined.

Therefore, by Lemma 5.3 the Khovanov homology of a “covered” knot

does not change under applying Reidemeister move to the initial knot. From

here we get the theorem.

Theorem 5.4. The map K 7→ Kh(K̃) gives a well-defined invariant of

virtual links.

Remark 5.11. Note that only the second Reidemeister move Ω2 can

change the type of the corresponding atom (i.e. it can convert a non-

orientable atom to an orientable one and vice versa). If, for example, we

have an orientable atom At(K) and two components of the atom Ãt(K),

then the application of the second Reidemeister move (inadmissible ver-

sion) to K can “connect” these components into one (this corresponds to

the fact that after applying the second Reidemeister move, the atom may

be non-orientable).

Herewith the moves Ω1, Ω3 preserve the orientability of the atom.

Now let the atom corresponding to a diagram K be orientable. Then K̃

consists of two copies of the atom corresponding to K. Since F is a field,
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we have KhF(K̃) = KhF(K)
⊗2

.

Therefore, the homology Kh(K) is obtained from the invariant homol-

ogy Kh(K̃) by “extracting of the tensor square root”. In the case when

the ring of coefficients is a field, we have the Poincaré polynomial P in two

variables with all integer non-negative coefficients. From this polynomial

we have to extract the “square root”, i.e. to find the Laurent polynomial Q

in the same two variables with integer non-negative coefficients (coefficients

are non-negative since they are the ranks of Khovanov homology groups)

such that the equality Q2 = P holds. It is obvious that if we can do this,

then it can be done uniquely. Since this operation is unique, if it exists, we

get the claim of Theorem 5.1.

Moreover, from these discussions we get the following theorem.

Theorem 5.5. Let F be a field, and let for a virtual diagram K the graded

homology KhF(K̃) cannot be represented as the tensor square. Then K has

no diagram with an orientable atom. In particular, the virtual link generated

by K is not classical.

It is natural that the Khovanov complex constructed in this section

cannot detect non-triviality of the virtual knot depicted in Fig. 5.5, since

this knot is obtained from the unknot by generalized Reidemeister moves

and virtualizations.

The question about whether two non-isotopic classical links can be ob-

tained from each other by a finite sequence of generalized Reidemeister

moves and virtualizations is an important and interesting conjecture. The

Khovanov complex gives a partial answer to this question.

From Theorem 5.1 and the invariance of the Khovanov homology under

virtualization, we have the following theorem.

Theorem 5.6. If a classical link is obtained from a classical link by ap-

plying generalized Reidemeister moves and virtualizations, then these links

have the same Khovanov homology with coefficients from any preassigned

field.

Later in this chapter we shall show that this theorem is true for arbitrary

coefficients (e.g. from the ring Z), see Theorems 5.11 and 5.12.
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5.6 Khovanov homology and parity

Let us have a map f̃ sending the set of diagrams of virtual knots into itself

and having the following properties:

(1) for each virtual diagram K the diagram f̃(K) is a virtual diagram with

an orientable atom;

(2) if a diagram K has an orientable atom, then f̃(K) = K;

(3) if two diagrams K and K ′ are equivalent by means of Reidemeister

moves, then f̃(K) and f̃(K ′) are equivalent by means of Reidemeister

moves, where all middle diagrams connecting the diagrams f̃(K) and

f̃(K ′) have orientable atoms.

Theorem 5.7. The map K 7→ Kh(f̃(K)) is an invariant of virtual links.

The map f̃ is constructed by means of consecutive application of the

following operation: For a virtual diagram we replace all odd classical cross-

ings with virtual crossings, and continue this operation until all crossings

are even, for more details see Chap. 8.

5.7 Khovanov homology for virtual links

5.7.1 Atoms and twisted virtual knots

Bifurcations of types 2 → 1 and 1 → 2 in the Khovanov complex will

(see Sec. 5.7.2) correspond to partial differentials ∂′ which the differential

∂ consists of (see below); the bifurcation of type 2→ 1 corresponds to the

multiplication m, and the bifurcation of type 1 → 2 corresponds to the

comultiplication ∆.

In Sec. 5.2 by the following variable change a =
√
−q−1 we got instead

of the Jones polynomial X its modified version J , and also the polynomial

Ĵ = J · (q + q−1).

In this chapter we deal with the polynomial Ĵ and call it the Jones

polynomial.

As it was shown earlier, all necessary information for calculating the

Jones polynomial is contained in the atom corresponding to a virtual dia-

gram.

The whole information about the number of circles in states of the

diagram can be extracted from the corresponding atom. In other words,

the state cube can be completely restored from the atom.
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An actual problem is the problem of finding the genus of a virtual link :

the minimal genus of atoms corresponding to diagrams of the virtual link.

From the definition, it follows that diagrams of classical links having the

genus zero represent connected sums of alternating diagrams.

This genus is also called the Turaev genus due to [294]. It turned

out [199] that this genus had an important significance in studying

Heegaard–Floer homology of classical knots.

We shall construct the Khovanov complex starting with a given virtual

link diagram. As we shall see, the homology of the complex constructed

in this way really depends only on the corresponding atom. Thus the

homology will be invariant under virtualization. This supports the virtual-

ization conjecture (see Conjecture 4.1) saying that if two classical diagrams

are equivalent by a chain of generalized Reidemeister moves and virtual-

izations, then the corresponding links are isotopic in the usual (classical)

sense.1 From arguments above it follows that the corresponding links have

isomorphic Khovanov homologies. Note that the virtualization conjecture

is true for the unknot (i.e. if a classical diagram of a knot is obtained

from a diagram of the unknot by applying a finite sequence of the general-

ized Reidemeister moves and the virtualization, then the classical diagram

represents the unknot), since the Khovanov homology detects the unknot,

see [187].

Twisted virtual knots [42, 310] are close relatives of virtual knots. They

are represented by knots in oriented thickenings of not necessarily orientable

surfaces modulo stabilization/destabilization.

A particular case of the theory of twisted virtual knots is the theory of

knots in RP 3.

Definition 5.8. An orientable thickening of two-dimensional surface M is

an orientable three-dimensional manifold I-bundled over M , where I is a

segment.

Let us consider a non-orientable surface S and construct the canonical

oriented I-bundled over it. It represents a three-dimensional manifold S×̃I
with boundary.

A nice example of such a thickened surface is RP 2×̃I, which is home-

omorphic to RP 3\{∗}. Thus, by constructing the Khovanov homology for

such knots, we shall get the Khovanov homology theory for knots in RP 3.

1Note that if two classical diagrams are virtual equivalent, then they are equivalent in
the ordinary case; this follows, for example, from Kuperberg’s theorem [189].
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Given a surface M and its thickening M×̃I. Then links in M×̃I can be

considered by means of their diagrams: projections on M .

There are two types of stabilization/destabilization of such thickening

surfaces: along orienting cycles and along non-orienting cycles. In the

second case, we add/remove a thickened Möbius band.

In general position, one gets a framed 4-graph. In order to restore the

link, one should indicate for each crossing how the two branches behave in

a neighborhood of this crossing. In the orientable case, one just indicates

which branch should be over, and which branch should be under. However,

in the non-orientable case this indication is relative. While walking along a

non-orienting circuit, the direction upwards changes to the direction down-

wards. So, for example, knots in RP 3\∗ = RP 2×̃I can be represented by

diagrams in RP 2 such that all crossings lie inside the disc D2 ⊂ RP 2; by

passing the boundary of the disc the direction changes, see Fig. 5.17. To

handle this, we choose an affine chart such that the complement to this

chart in S is one-dimensional. For this chart we have a well-defined notion

of an over/undercrossing.

A B A B

Fig. 5.17 A branch AB forms overcrossing in the left picture and undercrossing in the
right picture.

Note that links in such surfaces are well described by atoms. Indeed, fix

(once for all) an orientation on M×̃I. Now, for a link diagram in M , we

already have the frame of the atom: a framed 4-graph.

Now, the way for attaching black cells is the following (see Fig. 5.18).

For a vertex v, we take two emanating non-opposite half-edges a and b.

The corresponding virtual link contains two points projected in the vertex

v, one of which is incident to the edge corresponding to a, and the other one

is incident to the edge corresponding to b. In a neighborhood of v, denote

by c the small vector going from a point on the edge a to a point on b. If

the basis (a, b, c) is positively oriented in our three-dimensional manifold,
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then the angle between half-edges a and b is decreed to be white, as well as

the opposite angle. Otherwise they are both black.

Note that this choice does not depend on the ordering of the pair (a, b),

nor on their directions.

In the case of general virtual links which are a particular case of twisted

virtual links, the way of pasting black cells described above is agreed with

the way described in Chap. 4.

a

b

c

Black

White

Black

White

Fig. 5.18 Constructing the atom from a diagram.

This leads to the following theorem.

Theorem 5.8. There is a well-defined map from the set of twisted virtual

knots to the set of virtual knots modulo virtualization.

Knots in such surfaces were considered by Asaeda, Przytycki and Sikora

in [13], and Viro [310] (Bourgoin first considered stabilizations that led

to twisted virtual knots). In [13] a Khovanov homology theory for such

surfaces was constructed by using an additional topological information

coming from surfaces.

From Theorem 5.8 and the invariance of the Khovanov homology under

virtualization (Lemma 5.6, see below), it follows immediately that the Kho-

vanov homology constructed below can be generalized for twisted virtual

knots.

5.7.2 Khovanov complex for virtual knots

Our aim is to define a homology theory for virtual knots (with arbitrary

atoms) over an arbitrary ring in such a way that:

(1) the homology we are defining is invariant under the (generalized) Rei-

demeister moves;
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(2) for the case of virtual knots with orientable atoms (also known as al-

ternatible virtual knots) this homology theory coincides with the one

constructed in the previous sections;

(3) the tensor product of the complex with Z2 coincides with the theory

constructed in Sec. 5.3;

(4) the graded Euler characteristic of the complex which will be constructed

coincides with the Jones polynomial.

Remark 5.12. The coefficient ring might be an arbitrary abelian group

with unit, for example, Z.
For the sake of simplicity we shall sometimes call modules over rings

“linear spaces”, not depending on whether the ring is a field or not.

We have constructed the Khovanov homology theory for orientable vir-

tual knots with arbitrary coefficients. The main obstruction to extend this

theory over non-orientable atoms is the possibility of 1→ 1-bifurcations on

edges of the cube. Here, we used a two-dimensional graded module V with

the graded dimension (q + q−1) over the main coefficient ring.

If no 1 → 1-bifurcations occur, we may construct the Khovanov cube

by using the standard differentials, the multiplication m (for 2 → 1-

bifurcations) and the comultiplication ∆ (for 1→ 2-bifurcations).

The situation with the 1 → 1-bifurcation (the essential phenomenon

of the theory of virtual knots appearing because of the existence of non-

orientable atoms) makes the problem more complicated. Indeed, if we wish

to construct a grading-preserving theory without introducing any new grad-

ing, this partial differential should be identically equal to zero because of

the grading reasons (there should be a map from V to V that lowers the

grading by one). In the space V , the basis consists of two elements with

gradings +1 and −1. If we set this partial differential to be equal to zero

with all other differentials (m and ∆) defined in the standard way, we get

a straightforward generalization for the Z2 case.

In this section, we involve two additional structures: The basis change

in the space V corresponding to a circle and generated by {1, X} (the

homology group of the unknot) while passing from one crossing to another

and the exterior product of “circles” instead of their usual tensor products.

Notational agreement. Given an unordered set of vector spaces. Enu-

merate them arbitrarily: V1, . . . , Vn. We shall define a new space not

depending on the ordering of the spaces, which will be denoted2 by
2In the case of coincidence of the linear spaces V = V1 = · · · = Vn we shall use also the

notation V ∧n.
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V1 ∧ V2 ∧ · · · ∧ Vn as follows. Consider all possible tensor products

of these spaces and identify them according to the following rule. Let

xi ∈ Vi, i = 1, . . . , n. We set xσ1 ⊗ · · · ⊗ xσn = sign(σ)x1 ⊗ · · · ⊗ xn.
We shall denote such tensor product x1 ⊗ · · · ⊗ xn of elements xi ∈ Vi

by x1 ∧ x2 ∧ · · · ∧ xn. We call this space the ordered tensor product.

Remark 5.13. To avoid confusion, note that, in writing X ∧X, we always

assume that the first X and the second X belong to different (but possibly

isomorphic) spaces; thus X ∧ X is not zero (unlike the wedge product of

1-forms in the commutative case).

Let us consider a virtual diagram K.

To handle it and to make the whole cube anticommutative we have to

add two ingredients, sensitive to orientability of the atom.

(1) With each circle C in each state we associate a vector space of graded

dimension3 equal to q+q−1. Namely, given an orientation o of the circle

C; we associate with this circle the graded vector space generated by

elements 1 andXC,o of gradings 1 and −1, respectively. The orientation
change of the circle (passing to −o) leads to XC,−o = −XC,o.

(2) Given a state s of a virtual link diagram K having l circles C1, . . . , Cl.

With this state, we associate an ordered tensor product V ∧l; as a basis

of this product we take the product (p1)Ca1
∧ (p2)Ca2

∧ · · · ∧ (pl)Cal
,

where (pi)Cai
represents an element from VCai

.

Thus, we have defined the chain space of the complex corresponding to

the virtual diagram K. We denote it by [[K]]. All the basis elements of

this space correspond to some states of K with an additional choice of the

elements ±1 or ±X. Let s be a state of K with the set of circles C1, . . . , Cl,

whence for these circles we have chosen elements γ1, . . . , γl, each of them

being ±1 or ±X. Then these elements form a chain of the complex [[K]]

having the height h, where h is the number of B-smoothings of s, and the

grading which is equal to h+#1−#X, where #1 is the number of elements

of type ±1 among γ1, . . . , γl, and #X is the number of elements ±X among

γ1, . . . , γl.

Our next goal is the description of the differential ∂ in this complex,

which increases the height by one and does not change the grading.

3From now on, we have passes from the notation v+ and v− to the notation 1 and
X (before v+ play the role of unity). This leads to the same homology theory up to a
grading shift and a normalization. In the sequel we should not pay attention to these
normalizations and shifts, this agrees with [178] in verbatim.
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Set n+ = the number of crossings , n− = the number of crossings

.

Denote by C(K) the complex obtained from [[K]] by the height shift

and the grading shift: C(K) = [[K]]{n+ − 2n−}[−n−], i.e. the height of

each chain decreases by n−, and the grading increases by (n+ − 2n−); all

differentials remain coordinately. Here we assume that [[K]] is a complex,

this fact will be proved below.

Whatever the differential ∂ is, from the construction of chains of the

complex C(K) follows Theorem 5.9.

Theorem 5.9. For any virtual diagram K we have χ(C(K)) = Ĵ(K).

We shall think of all classical crossings as oriented upwards.

Consider a state s of a diagram of an oriented virtual link. Choose

a classical crossing and consider all circles of the state s incident to this

crossing. There are one or two such circles. Fix orientations on these cir-

cles according to the orientation of the edge emanating upwards to the right

(and opposite to the orientation of the edge incoming to the crossing from

the bottom left, see Fig. 5.19, upper part). As we shall see further, in the

case of one circle, these two orientations defined locally can be uncoordi-

nated, but this case will not be under our consideration.

Thus, the orientations of these circles of the state s locally agree with

the orientation of the edge emanating upwards to the right (as well as with

the edge incoming from the bottom-right) and disagree with the orientation

on the left side. We orient the half-edges as shown in the lower-left part of

Fig. 5.19. Thus, we have fixed a choice of the generator X for any circle

incident to a given crossing. Note that for another crossing for the same

circle the choice of X may differ from this one by a sign.

Differentials will be defined according to the orientations of circles at

classical crossings and local orderings of components with the following

rule.

The orientations described above are well defined unless the case when

the edge corresponding to the crossing of the diagram bifurcates one circle

to one circle. In such cases, we set the partial differential to be zero.

Assume we have a 1→ 2 or 2→ 1-bifurcation at a crossing.

If we deal with two circles incident to the crossing from the opposite

sides, we order them in such a way that the upper (respectively, left) circle

is locally first; the lower (respectively, right) one is thus, the second. In

the sequel, when defining partial differentials we assume that all circles are
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X

-X

X

X

X

-X

-X

-X

Fig. 5.19 Definition of a basis at a crossing.

ordered in such a way that the circles we deal with are in the very first

position in our tensor product; this can always be obtained by means of

a permutation, which might lead to a sign change. The map on the other

circles is identical.

Let there be given an edge of the bifurcation cube where the number of

circles is changed by one. This bifurcation corresponds to a certain crossing;

we have two options 2 → 1 or 1 → 2. In those states when we have two

circles incident to the crossing, the circles are ordered. Moreover, all three

circles are oriented, thus, we have chosen a basis for the space corresponding

to each of these circles.

Now we define the maps ∆: V → V ∧ V and m : V ∧ V → V locally

according to the prescribed choice of generators at the crossing and local

ordering:

∆(1) = 11 ∧X2 +X1 ∧ 12; ∆(X) = X1 ∧X2 and

m(11 ∧ 12) = 1; m(X1 ∧ 12) = m(11 ∧X2) = X; m(X1 ∧X2) = 0, see

Fig. 5.20.

Note that the map m is surjective and the map ∆ is injective.

If we have some circles C1, . . . , Cl not incident to the crossing in ques-

tion, and elements γ1, . . . , γl on them, the formulae for the partial differen-
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m∆
1

2

2

1

1 2

m 1 2
∆

Fig. 5.20 Defining operations m and ∆.

tials ∂′ are written as:

∂′(1 ∧ γ1 ∧ · · · ∧ γl) = ∆(1)∧γ1 ∧ · · · ∧ γl
= 11 ∧X2 ∧ γ1 ∧ · · · ∧ γl +X1 ∧ 12 ∧ γ1 ∧ · · · ∧ γl,

∂′(X ∧ γ1 ∧ · · · ∧ γl) = ∆(X)∧γ1 ∧ · · · ∧ γl = X1 ∧X2 ∧ γ1 ∧ · · · ∧ γl

(in the case of a 1→ 2-bifurcation) and

∂′(11 ∧ 12 ∧ γ1 ∧ · · · ∧ γl) = m(11 ∧ 12) ∧ γ1 ∧ · · · ∧ γl
= 1 ∧ γ1 ∧ · · · ∧ γl,

∂′(X1 ∧ 12 ∧ γ1 ∧ · · · ∧ γl) = ∂′(11 ∧X2 ∧ γ1 ∧ · · · ∧ γl)
= m(X1 ∧ 12) ∧ γ1 ∧ · · · ∧ γl
= m(11 ∧X2) ∧ γ1 ∧ · · · ∧ γl
= X ∧ γ1 ∧ · · · ∧ γl,

∂′(X1 ∧X2 ∧ γ1 ∧ · · · ∧ γl) = m(X1 ∧X2) ∧ γ1 ∧ · · · ∧ γl = 0

(in the case of a 2→ 1-bifurcation).

After that we define the differential ∂ on the chain space corresponding

to the state s as the sum of partial differentials acting on the state s.

Example 5.3. Thus, if we wish to comultiply the second factor X2 in

X1∧X2, we get X1∧X2 = −X2 ∧X1 → −X2∧X3∧X1 = −X1∧X2∧X3,
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where X3 belongs to the newborn third component (under the condition

that at the crossing of splitting the circle X2 is locally first (i.e. upper and

left), and the circle X3 is locally second).

Given an oriented diagram K of a virtual link, we have constructed a

set of bigraded groups with differential ∂. Denote the set of groups by [[K]].

The differential increases the height and does not change the grading.

In this section, we shall prove the main theorem.

Theorem 5.10. The set of groups [[K]] together with the differential ∂

is a well-defined bigraded complex, i.e. ∂2 = 0. Herewith the differential

preserves the grading and increases the height by one.

The complex C(K) is obtained from [[K]] by the height shift and grading

shift. From the constructions it will follow that the homology of the complex

C(K) coincides with the homology constructed for the case of virtual knots

with orientable atoms.

Further, from the proof of Theorem 5.10 by construction the claim of

Theorem 5.9 follows.

The complex with coefficients in the field Z2 coincides with the complex

over Z2 described in Sec. 5.3.

Theorem 5.11. The homology of the bigraded complex C(K) is an invari-

ant of the virtual link K under the generalized Reidemeister moves.

We first prove Theorem 5.10. After that, we shall prove Theorem 5.11;

its proof will be more technical and it will follow the standard scheme of [17],

however, some additional sign checks for partial differentials, appearing

while ordering and orienting the circles, will be needed. We shall also show

that the homology of C(K) coincides with the homology constructed for the

case of virtual knots with orientable atoms.

Let us pass to the proof of Theorem 5.10.

We first prove two lemmas that establish some properties of our complex

C(K) and simplify further arguments.

Let K be a virtual diagram. Consider a classical crossing v of it. Let

the diagram K ′ be the diagram obtained from K by the virtualization

of v. Then there exists a one-to-one correspondence between the sets of

classical crossings of the diagrams K and K ′. It generates a one-to-one

correspondence ϕ between the states (for the corresponding vertices we

have either A-smoothings or B-smoothings). Note that such a bijection

does not change the number of circles in the states; it follows from the fact
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that all states can be restored from the atom, and the atom does not change

under virtualizations. Let us orient circles of corresponding states equally

outside the crossing v. This identification defines the map g : [[K]]→ [[K ′]]

of the chain spaces according to the following rule. For any state s and the

corresponding state ϕ(s), the diagrams K and K ′ look identical outside a

neighborhood of v. Thus, we can establish the bijection between oriented

circles of s and oriented circles of ϕ(s), that leads to the definition of g.

We shall use the same notation g for maps of vector spaces (modules)

corresponding to the circles in states s and ϕ(s).

With each state s of the diagram K we associate the subspace of the

space [[K]]; we denote it by Cs. Denote the corresponding space for K ′

by Cs′ .

Lemma 5.6. Let K, K ′ be two diagrams obtained one from another by the

virtualization. Then there is a grading-preserving chain map f : [[K]] →
[[K ′]] that maps Cs isomorphically to Cs′ and commutes with the local dif-

ferentials.

In particular, if [[K]] is a well-defined complex, then so is [[K ′]]; herewith

their homology groups are isomorphic.

Proof. Suppose the diagram K ′ is obtained from the diagram K by the

virtualization at a crossing v.

The map f is constructed according to the crossing type of v ( or

). By construction, partial differentials of the complex [[K ′]] coincide

with the images of partial differentials of [[K]] under g, except, maybe,

those partial differentials corresponding to the crossing v. Furthermore,

differentials corresponding to v split our cube to the “lower subcube” and

the “upper subcube”, as shown in Fig. 5.21.

Now, the remaining partial differentials differ possibly by signs on edges

corresponding to the crossing v. Our goal is to show that they either all

agree or all differ by −1 sign, as shown in Fig. 5.21.

Indeed, the bases at all crossings but v agree for K and K ′. This

leads to the identification of chains of the corresponding complexes. For

this isomorphism for every circle C incident to v and the circle g(C) cor-

responding to it in the corresponding state of the diagram K ′ we have

g(XC,oK ) = −Xg(C),oK′
, where oK and oK′ are the orientations of the cir-

cles C and C ′ at the crossing v of the diagrams K and K ′ chosen according

to the rule depicted in Fig. 5.19. The latter identity holds because in any

state s the circle C that tends from the upper-right to the crossing v of K,

corresponds to the circle ϕ∗(C) in the state ϕ(s) that tends to v from the
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a b
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d

ja jb

jc
jd

j=+-1

Fig. 5.21 The behavior of the cube under the virtualization.

upper-left, this corresponds to the change X to −X in the local basis of

spaces V corresponding to circles of the state incident to the given crossing,

see Fig. 5.19. If we dealt with the usual tensor product case regardless of

the circle ordering, the transformation X → −X would leave m invariant

and change ∆ to −∆.

Assume now that the crossing v is positive ( ). All maps of type m

corresponding to v, represent bifurcations of two circles (a left one and a

right one) into one circle. After the virtualization, the circles interchange

their roles, see Fig. 5.22.

Globally we get a sign change for all m-type partial differentials. For

partial differentials of type ∆ we have one circle that bifurcates into two

ones, the upper one, and the lower one; the “up-down” position remains

unchanged under virtualization, that preserves all ∆-type partial differen-

tials. The first component is shown locally by solid line, whence the second

component is shown by a dashed line.

Summing up (and reminding about the sign change of the partial differ-

ential ∆ because of passing X → −X), we see that the virtualization of a

positive crossing changes the signs of all partial differentials corresponding

to this crossing.

Now divide [[K]] and [[K ′]] into two parts each, according to the smooth-

ing of v; we call one part of the cube “upper”, the remaining part being

lower. Now set f : [[K]] → [[K ′]] as g for all elements from the lower sub-

cube and as −g for the upper subcube.

Evidently, this map commutes with partial differentials. Indeed, the

commutativity of the map f with partial differentials inside one of the

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

226 Virtual Knots: The State of the Art

Fig. 5.22 Virtualization.

subcubes follows from the fact that the map g is anticommutative, therefore,

the map f commutes.

Thus if the initial cube were anticommutative, then the constructed

map would be an isomorphism in homology.

Analogous reasonings show that the virtualization of a negative crossing

does not change the cube at all. The minus sign that appears on edges

corresponding to ∆ is canceled by the minus sign caused by the permutation

of circles (the right one and the left one). This completes the proof of the

lemma. �

This lemma means that the homology of a virtual diagram with two

classical crossings (if well defined) can be restored from an atom endowed

with an orientation of the link components.

Thus, to prove that the cube [[K]] anticommutes, we can make some

preliminary virtualizations for classical crossings of K and consider the

analogous question for the obtained diagram K ′.

To check the anticommutativity of the cube [[K]] we have to consider

all 2-faces of it. Each 2-face is represented by fixing a way of smoothing

some (n − 2) classical crossings of K, see Fig. 5.23. The remaining two

crossings can be smoothed arbitrarily; the four possibilities correspond to

the vertices of the 2-face.
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Fig. 5.23 A 2-face generates an atom.

In Fig. 5.23 the bifurcation cube is shown in the left part and the 2-face

and the corresponding atom are shown in the right part. The atom can be

restored from a knot diagram, as described above in Sec. 4.2.3.

Now, for these four states, there are some “common” circles which do not

touch any of the two vertices in question (in the case depicted in Fig. 5.23

there are no such circles). After removing these circles, we get an atom

with two vertices.

What we actually have to check is that any face corresponding to any

possible atom with two vertices anticommutes.

For the two vertices of such an atom, we have some local orientations of

the link at each of these vertices; they are needed to fix the local ordering

of components (see Fig. 5.19) while defining the differentials.

Note that globally these orientations might not agree on the circles;

namely, an edge of the atom with two vertices consists of several edges of

the diagram which might have opposite orientations, see Fig. 5.24.

It turns out, however, that these local orientations can be chosen arbi-

trarily without losing the anticommutativity property and without changing

the homology.

Namely, fix an atom with two vertices. All possible occurrences of this

atom in the cube correspond to local orientations of edges at these vertices.

Fix an orientation for one crossing v1 and choose two distinct orientations
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1

2

1

1
1

2

2

2

Fig. 5.24 Orientation for atom crossings.

for the second crossing v2 that differ from each other by the clockwise
π
2 -turn of the arrows, see Fig. 5.25. Thus, we get two pictures and two

two-dimensional discrete cubes, Q1 and Q2. These cubes coincide as sets of

linear spaces. Let Vs and Vs′ be linear spaces of Q1 and Q2 corresponding

to some fixed state s and the state s′ corresponding to it.

v1 2v
2

  vv 1

Fig. 5.25 Q1 and Q2.

Lemma 5.7. If Q1 is anticommutative, then so is Q2. Moreover, there

exists a grading preserving chain map f : Q1 → Q2 that takes Vs isomor-

phically to Vs′ and commutes with partial differentials.
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Proof. The proof of Lemma 5.7 is very much similar to that of Lemma 5.6.

A sketch of the proof goes as follows. After rotating all arrows at v2
in the clockwise direction, we get the local sign change of X for all cir-

cles incident to this crossing. Analogously to Lemma 5.6, we consider two

complexes and identify their chain spaces by means of the map g (analo-

gous to the map g from Lemma 5.6) in such a way that the differentials

corresponding to any other crossing coincide.

After that we shall correct g, as in Lemma 5.6, to get a map f that

commutes with all partial differentials, which would yield the statement of

the lemma. If we dealt with the usual unordered tensor product, this would

lead to the sign change of all partial differentials of type ∆ corresponding

to v2.

Furthermore, in the case of a positive crossing, all differentials of type

m corresponding to this crossing, change their sign, too.

In the case of negative crossings, partial differentials of type 2 → 1

do not change, and 1 → 2-bifurcations change the sign again. Thus, we

have the same situation as in Lemma 5.6, which completes the proof of

Lemma 5.7. �

Let us continue the proof of Theorem 5.10.

Lemma 5.7 means that in order to check the anticommutativity of all

possible faces, it is sufficient to enumerate all atoms with two vertices and

check the anticommutativity for each of them. We first fix a representation

of such an atom in R2 (i.e. an immersion of its frame preserving the A-

structure); such immersions differ by a possible virtualization which does

not change the complex (up to isomorphism) by Lemma 5.6; then we choose

a local orientation, which does not matter either by Lemma 5.7.

Note that among atoms with two vertices there are disconnected atoms,

i.e. those for which each edge connects some vertex with itself. For such

atoms in the case of ordinary tensor product we get by evident reasons com-

mutative 2-faces. In the case of ordered tensor products the corresponding

faces will obviously anticommute.

Some (connected) atoms with two vertices are inessential in the follow-

ing sense. We have set the 1→ 1 differential to be zero. By parity reasons,

in the 2-face of any atom there might be 0, 2 or 4 such edges. The case

when we have no such edges is orientable. When we have four edges repre-

senting differentials of type 1→ 1, then the proof follows from the identity

0 = 0. The same takes place in the case when in the diagram, the anticom-

mutativity of which we prove, we have two compositions of maps and one
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of the maps at each composition is zero.

There are some inessential atoms, where two vertices are not connected

to each other. For any of them, anticommutativity is obvious. There are

six essential connected atoms with two vertices, as shown in Fig. 5.26. All

these atoms except the first one are orientable.

2

 v 1

 v 2 v

2 v
2 v

 v1

 v1  v1

 v1
 v1

2 v
2 v

Fig. 5.26 Essential atoms with two vertices.

For the first one, an accurate calculation corresponding to Fig. 5.27

shows that both compositions give zero.

Indeed, the lower composition is zero. Substituting X into the upper

composition, we get ±X∧X at the first step and zero at the second step. If

we start with 1, we get 11,ov1 ∧X2,ov1
+X1,ov1

∧12,ov1 at the first step; here

the first index is the local number of the circle (the first circle is big and the

second one is small), and the second index is the name of the vertex. When

passing to the second vertex v2, the first and second circles change their

roles: The circle number 1 becomes the lower one and number 2 becomes

the upper one. Also, for the big circle, X changes to −X. Thus we get

−X ∧ 1 + 1 ∧X which is transformed by m to zero.

Let us now check orientable atoms. For any of them, we fix an ori-

entation as shown in Fig. 5.26. Such an orientation gives a coordinated
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1

1

2

2

2 v

 v1

Fig. 5.27 The non-orientable atom.

orientation of circles at two crossings which are under consideration in the

sense of Fig. 5.19. After that, we can fix the bases {1, X} for all circles at
vertices according to the rule shown in Fig. 5.19.

Now, the anticommutativity is checked as follows. If we dealt with the

usual (unordered) tensor product case, everything would commute. Now,

the enumeration of circles might cause minus signs on some edges. We have

to check that for any of these five atoms the total sign would be minus.

For instance, in Fig. 5.28 we have an oriented atom with two vertices.

The analogous check of the unordered tensor product case means the usual

associativity m ◦ (m⊗ 1) = m ◦ (1⊗m), where the circles are enumerated

from the left to the right. In the left part of the figure, one pair of numbers

of the circles 1 and 2 is drawn upside down to underline which circle is

assumed to be locally the first (left); the other one is the second (right).

Here we have to take into account the global ordering of the components.

Note that for three components, we always have to applym∧Id first, taking

those components to be multiplied with the first and second positions.

Thus, m◦ (m∧ Id) applied to A1∧A2∧A3 gives us m(m(A1, A2), A3) =

−(A1 ·A2 ·A3); here · means the usual multiplication in Khovanov’s sense:

X · X = 0; X · 1 = 1 · X = X; 1 · 1 = 1. Here the minus sign appears at

the second crossing, we have two branches oriented downwards, thus, the

rightmost circle occurs to be locally the left one.
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1 2

2 1

2 1

1 2

v 1 2v

Fig. 5.28 An orientable two-vertex atom.

On the other hand, if we consider the second crossing first, we get

A1 ∧ A2 ∧ A3 = (A2 ∧ A3) ∧ A1 = −(A3 ∧ A2) ∧ A1 → −(A2 ·A3) ∧ A1 =

A1 ∧ (A2 ·A3). Applying m to that, we get A1 ·A2 ·A3.

All other atoms are checked analogously. Note that our setup gives di-

rectly an anticommutative cube, unlike the Khovanov original setup, where

we got an anticommutative cube from a commutative one by adding some

minus signs on edges. Thus, Theorem 5.10 is proven. Therefore, Theo-

rem 5.9 is also proven.

Let us prove Theorem 5.11.

Remark 5.14. Throughout the rest of the proof of Theorem 5.11, we shall

not care about height and degree shifts. The proof of their coincidence

for diagrams differed by Reidemeister moves repeats verbatim that in the

classical case, see, e.g. [17].

Proof of Theorem 5.11. First, note that the complex C(K) itself does

not change at all if we perform the detour move. Therefore, the homology

does not change.

In the case of classical Reidemeister moves, the proof goes along the line

of the proof from the previous section.

Let us be more specific. The case of the first Reidemeister move is

evident. The complex corresponding to a diagram with a curl looks like:

[[ ]] =
(
[[ ]]

m→ [[ ]]{1}
)
.
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Thus, recalling that m is surjective, we see that the left subcomplex

of the complex [[ ] generated by ±1 on the small circle is mapped onto

the right subcomplex [[ ]]. Thus, we see that the whole complex has the

same homology as its quotient by its acyclic part. The latter one has the

same homology as [[ ]].

Analogously, one treats the other curl; here one should take into account

the injectivity of ∆.

As in the case of the first Reidemeister move, the invariance under the

second Reidemeister move repeats that by Bar-Natan in the classical case.

We give it here because we shall need this proof for proving the invariance

under the third Reidemeister move.

As opposed to the case in the first part of this chapter, we should pay

attention to orientations of circles when we prove the invariance under the

second Reidemeister move.

For the second Reidemeister move we note that we can choose orien-

tations of all circles incident to a given crossing locally agreed (such that

under passing along one circle from one crossing to the other one the vari-

able X does not change the sign), see Fig. 5.29.

Fig. 5.29 Orientations of upper-right agrees for Ω2.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

234 Virtual Knots: The State of the Art

Now, we proceed our discussion by taking into account that the sign in

X does not change under passing from one vertex to the second one under

moving along a circle of any state. The initial complex C looks like:

[[ ]]{1} m−→ [[ ]]{2}
∆ ↑ ↑
[[ ]] −→ [[ ]]{1}.

(5.1)

This complex contains the following subcomplex C′:

C′ =
[[ ]]1{1}

m−→ [[ ]]{2}
↑ ↑
0 −→ 0.

Here and further the subindex 1 in the upper-left angle means the label

on the small circle.

The acyclicity of C′ is evident.
Factorizing C by C′, we get

[[ ]]{1}/1=0 −→ 0

∆ ↑ ↑
[[ ]] −→ [[ ]]{1}.

(5.2)

In the upper-left angle 1 = 0 means that we have factorized the space

{1, X} corresponding to the small circle by the subspace spanned by 1, i.e.

in the corresponding (ordered) tensor product instead of 2-space we have

one-dimensional space generated by X.

In the last complex, the arrow ∆ directed upwards, is an isomorphism.

Thus, this complex (after some normalization) has the same homology as

[[ ]]. This proves the invariance under Ω2 (up to height and grading

shifts).

This argument will be used later for proving the invariance of the Kho-

vanov homology under the third Reidemeister move.

Returning to the initial (5.1) complex C we see that its homology groups

are in one-to-one correspondence with those from the lower-right corner

of (5.2). Also note that in the initial complex all non-trivial cycles have

“local” height corresponding to the lower-right and upper-left angles. Thus,

in the initial complex, every element α staying in the upper left corner of

the initial complex, is homologous to precisely one element −τ(α) staying
in the lower-right corner. The map τ is obtained by composing (∆−1)

downwards and the map directed to the right. For the case of the third

Reidemeister moves, we shall simplify subcomplexes, corresponding to the
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second Reidemeister moves. This simplification will be performed twice,

and it will lead to two maps analogous to τ , denoted by τ1 and τ2.

Let us now consider the third Reidemeister move shown in Fig. 5.30.

m

1

2

3

m
∆

∆

1
1

2

2 3

3

Fig. 5.30 The third Reidemeister move.

It is well known (see, e.g. [259]) that any variant of the third Rei-

demeister move can be obtained as a composition of Ω1, Ω2 and one

prefixed version of the third Reidemeister moves, in which a choice for

over/undercrossing and orientations of edges is chosen. Consider only one

case, shown in Fig. 5.32, with crossing smoothings as in Fig. 5.30.

At any crossing in Fig. 5.32 there is a local rule for orientations for all

edges incident to it, according to the rule shown in Fig. 5.19. If two crossings

are adjacent, the orientation might or might not be coordinated. We see

that the orientation (defined according to Fig. 5.19) in the third crossing

(left picture) does not agree with the orientations in the first and second

crossings analogously, for the right picture, the second crossing disagrees

with the first one and with the third one. Note that the rule in Fig. 5.19

does not depend of types of crossings, but does depend on the orientations

of branches.

Apply virtualizations to crossings 1, 2 of the first diagram and to the

second crossing of the second diagram; after that, all local orientations (in
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the sense of variable X) will be coordinated, see Fig. 5.31.

0 0

0 0

γ

β

τ

d

1

2
γβ1

2

τ1 2

/

v =0+
/

1*01

1*10

2*01

2*10d

d d

β1 = β1
β2 =β2

1=0

Fig. 5.31 The diagrams after the virtualization.

The positive smoothings at crossing 1 are the same (up to virtualiza-

tions) for both diagrams. The negative smoothing of them gives two pic-

tures obtained one from another by a sequence of (virtualizations and) two

classical Reidemeister moves.

Thus, the complexes of the two diagrams in question can be rearranged

to have coinciding bottom levels, and top levels have the same homology

(in both cases we applied Ω2).

1
2

32

2

2

1

1

1

3

3

3

Fig. 5.32 Virtualizing crossings under Ω3 to make all bases agreed.
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The main thing to check is that the differentials going upwards agree

for these complexes, i.e. the “upwards” maps in both cases either coincide

or differ by a sign. These complexes are shown in Fig. 5.3.

In our situation, the only difference from the classical case which may

occur is that they differ by a minus sign (because of ordered tensor products

taken instead of the usual tensor products).

In the classical case the final complexes (after factorizing) have the form

shown in Fig. 5.3.

In Fig. 5.3 the virtualization applied by us in Fig. 5.32 is not designated.

The picture shows only what circles are transformed, but does not show

what circle is the first at a crossing, and what circle is the second (for this

it is necessary to take into consideration the virtualization in Fig. 5.32.

Here v+ = 0 (in our case 1 = 0) in the left upper corner of Fig. 5.3

means that the space corresponding to the given state is factorized by the

subspace where the small circle is marked by 1. Here τ1 and τ2 are not

differentials; they are chain maps taking an element to the element which

is minus homologous to the initial one.

To establish the isomorphism in homology, it is sufficient to show that

τ1 ◦ d1∗01 = d2∗01 and d1∗10 = τ2 ◦ d2∗10. In this case we shall show

that all the maps “upwards” in both complexes differ by a sign (since in

both cases τi is minus the identity in homology). After that the homotopy

equivalence of the two complexes corresponding to the third Reidemeister

move is proved as in Lemma 5.6: By means of a natural map that identifies

lower subcubes and minus that map that corresponds to the complex which

the upper subcube is reduced to.

The ordered tensor product case differs from the usual one, possibly, by

signs on edges.

Let us check that the signs agree in our setup. We shall show that

τ1 ◦ d1∗01 = d2∗01 (the remaining case d1∗10 = τ2 ◦ d2∗10 is completely

analogous).

Let us view Fig. 5.3 and take into account the virtualization of the

right and left diagrams at crossings. The required identity will look like

p = q ◦∆−1 ◦∆, see Fig. 5.33.

Here d1∗01 is a 1 → 2-bifurcation (we denoted it by ∆); τ1 = ν ◦∆−1,

where ν is a partial differential and ∆−1 is assumed as an operation inverse

to ∆ (note that the space in the upper-left corner in which the element β1
stays is factorized by 1 = 0; i.e. the space associated with the small circle

C, is one-dimensional with generator X). Then, the comultiplication map

for which C is a resulting circle becomes an isomorphism.
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Fig. 5.33 Checking the invariance under Ω3.

Consider Fig. 5.33. For each of the maps in the brackets the number of

a crossing is indicated which this map is applied to.

The maps p and q are just the usual local differentials, either both

multiplications, or both comultiplications, or both zeros.

If p = q = 0, there is nothing to prove.

Consider the remaining cases. We have three fragments of circles

α, β, δ. In the very initial state (which the map p in the right picture

and ∆ in the left picture are applied to) they may belong to one, two or

three different circles. We shall first consider the case when all fragments

containing α, β, δ belong to three different circles.

For simplicity we denote the elements of the algebra V (of type 1 or

±X) related to these circles, by the same letters as fragments α, β, δ.

In our case, both operations p and q are multiplications.

Starting with α ∧ β ∧ δ, we get on the right picture the map d2∗01:

p : α ∧ β ∧ δ → (α · β) ∧ δ,

where (α · β) means an ordinary product in the Frobenius algebra.

On the left picture we have:

α ∧ β ∧ δ = δ ∧ α ∧ β ∆→ δ ∧X ∧ α ∧ β.

Here we applied the comultiplication to δ to get two circles at the crossing

number 1; the two resulting circles are denoted by δ (the upper one) and

X (the lower one).
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Now, δ ∧ X ∧ α ∧ β = −β ∧ X ∧ α ∧ δ. We then perform ∆−1 at the

crossing 3. This map joins the two circles marked by β and X.

At this crossing the generator X is related to the left circle, and β is

related to the right circle. Thus, we have

−β ∧X ∧ α ∧ δ = X ∧ β ∧ α ∧ δ ∆−1

→ β ∧ α ∧ δ.

Now, the operation q is the comultiplication at the crossing 2, where

the circle marked by β is the first (upper), and the one marked by α is the

second one (lower). Thus, we get: (α · β) ∧ δ.
Now assume that α and β form one circle (in the initial state), and δ

forms a separate circle. Denote the mark (an element from V ) correspond-

ing to the first circle by A, and the mark corresponding to the second circle

by δ.

The map p looks like:

A ∧ δ ∆→
∑
i

Ai,1 ∧Ai,2 ∧ δ,

where
∑

iAi,1 ⊗ Ai,2 is the result of application of the comultiplication

to A in the ordinary sense (in the case of unordered tensor product), see

Fig. 5.34.
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Fig. 5.34 Checking the invariance under Ω3.

In the further proof for simplicity of writing we shall not use the sum

sign
∑

i.
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In the left picture we have

A ∧ δ = −δ ∧A→ −δ ∧X ∧A

(at the first crossing the marking δ corresponds to the upper circle and X

corresponds to the lower circle).

Then for the map ∆−1 at the crossing 3 we have

−δ ∧X ∧A = −X ∧A ∧ δ → −A ∧ δ

(here X was on the left side, and A was on the right side).

Finally, the map q at the crossing 2 gives us

−A ∧ δ → −Ai,1 ∧Ai,2 ∧ δ.

Here Ai,1 corresponds to the locally upper component s at the crossing

2, and Ai,2 is locally lower component t. But, in the right picture they have

opposite ordering. More precisely, we have

−Ai,1,s ∧Ai,2,t ∧ δ.

In the first case (the map p) we had

Ai,1,t ∧Ai,2,s ∧ δ = −Ai,2,s ∧Ai,1,t ∧ δ.

These two results coincide because of cocommutativity of ∆ in the or-

dinary case.

One can consider the remaining cases analogously.

Suppose that α and δ belong to one circle (the corresponding element

being denoted by α), and β belongs to another circle. Then we have the

following maps.

In the simplest case (the map p) we have

α ∧ β → (α · β).

On the left picture we have

α ∧ β → α ∧X ∧ β = X ∧ β ∧ α→ β ∧ α→ (β · α).

Consider the case of multiplication when β and δ form one circle (the

corresponding element being denoted by β). We get:

α ∧ β → (α · β)

on the right picture (the map p) and

α ∧ β = −β ∧ α→ −β ∧X ∧ α = X ∧ β ∧ α→ β ∧ α→ (β · α)

on the left picture.
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Finally, consider the case when at the beginning we had exactly one

diagram, we get two comultiplications:

A→ Ai,1,t ∧Ai,2,s

in the simplest case (the map p) and

A→ A ∧X = −X ∧A→ −A→ −Ai,1,s ∧Ai,2,t = Ai,2,t ∧Ai,1,s.

Thus, we have proved the equality τ1 ◦ d1∗01 = d2∗01. The proof of the

equality d1∗10 = τ2 ◦ d2∗10 is completely analogous. �

Theorem 5.12. Let K be a virtual diagram for which the corresponding

atom is orientable. Then the homology Kh(K) coincides with the Khovanov

homology constructed in the previous chapter.

During the proof of this theorem, we denote our complex and our ho-

mology by C(K) and Kh(K), respectively, and the ones constructed in the

previous sections by C′(K) and Kh′(K) respectively.

Proof of Theorem 5.12. First we note that the normalizations for C
and C′ are performed in the same manner. Thus, we can forget about

additional normalizations of type [−n−]{n+ − 2n−}.
First, we assume the diagram of K is chosen in such a way that all X’s

for all crossing and circles agree (that is, for a given state circle, while pass-

ing from one classical crossing P to another one Q, we get XC,oP = XC,oQ ,

not XC,oP = −XC,oQ). This is possible since the atom corresponding to K

is orientable. Indeed, since the atom corresponding to K is orientable, we

can globally define the orientation of all edges to be compatible with the

orientation of the circles in each state. At each crossing of K this orienta-

tion may agree or disagree with the local orientation of edges determined

by Fig. 5.19 (the orientation originates from the source–sink structure). Let

us apply the virtualization to all crossings of K where these orientations

disagree. By Lemma 5.6, the homology of the complex C(K) remains the

same, and the orientations of circles given locally at crossings according to

the rule in Fig. 5.19 become compatible.

After that, we should just care about signs of local differential and

enumeration of circles for any crossing.

We construct a homology-preserving map between two cubes. Fix an

enumeration of the classical crossings of K. Let us associate a maximal

spanning tree for the cubes C(K) and C′(K) as follows. This tree consists

of all edges of the form (α1, . . . , αl, ∗, 0, . . . , 0), αj ∈ {0, 1}, i.e. an edge in
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1

2

3

Fig. 5.35 Choosing a spanning tree.

the direction xl+1 belongs to this tree if all the coordinates of xl+2, . . . , xn
vanish, see Fig. 5.35.

With each state s of the complex C(K) we associate the ordered tensor

power V ∧l, and with the corresponding state for the complex C′(K) we

associate V ⊗l, where l is the number of circles in the state s. Enumerate

the circles in the A-state in some way. Then the ordering determines a map

between the space corresponding to the A-state s in C(K) and the space

corresponding to some state g(s) of the complex C′(K). After that we can

successively renumber the circles at all vertices of the tree in order that

the identification of the chains in the corresponding states of the complexes

C(K) and C′(K) commute with the partial differentials acting along the

edges of the spanning tree. Thus we have constructed a map between the

whole chain space of C(K) and the chain space of C′(K).

This map g commutes with all the partial differentials for the following

reasons. Let ∂′, ∂′′ be the partial differentials corresponding to the same

edge of the complexes C and C′. Then we have g ◦ ∂′ = ±∂′′ ◦ g.
If the compatibility holds for three of four edges of some two-dimensional

face, then it also holds for the fourth edge, since both complexes are anti-

commutative and no one of the partial differentials is the identical zero.

To complete the proof, we note that all the edges of the cube can be

exhausted if we start from the maximal tree and successively add the miss-

ing edges of the two-dimensional faces (add the fourth edge provided that

we have three). �
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As it was done in Definition 5.3 we call by the height h(Kh(K)) of the

Khovanov homology of a virtual link K the difference between the lead-

ing and lowest non-zero quantum gradings of non-zero Khovanov homology

groups of the virtual link K. From Theorem 5.12 it follows that the defi-

nition given in Sec. 5.3 (using Khovanov homology for orientable atoms) is

agreed with the definition for the ordinary case based on the construction

of the present section.

5.8 Spanning tree for Khovanov complex

In this section we shall show how the model of the spanning tree for the

Kauffman bracket polynomial given in Sec. 4.2.6 is categorified. We shall

describe slightly different approach to calculating (more precisely, to esti-

mation) of the Khovanov homology for classical and virtual links, thanks

to which some properties of the Khovanov homology became clearer.

Let us formulate the lemma from the theory of algebraic complexes, we

shall follow Wehrli [315].

Lemma 5.8. Let C0 and C1 be graded complexes and Ci = Ai⊕Bi, where

the complexes Bi have zero homology. Let w : C0 → C1 be a map of chains

preserving the grading, and let wAA : A0 → A1 be a “part” of the map w, i.e.

the composition of the map w with the evident projection and embedding.

Let A be a cone of the map wAA, C be a cone of the map w, and B be

(contractible) complex of type B0⊕B1[1]. Then the complexes C and A⊕B
have the same homology.

The proof of this theorem is pure algebraic, it does not concern the

“internal” structure of differentials in the complexes Ai and Bi. The lemma

is a key point in the proof of Theorem 5.13 about the spanning tree for the

Khovanov complex of classical links.

The main idea of constructing the spanning tree leading to the proof

of the theorem is the same as the Thistlethwaite idea which was used for

constructing the spanning tree of the Kauffman bracket polynomial: It is

necessary to take the bifurcation cube and split it into small subcubes cor-

responding to states from V1 (see Sec. 4.2.6). After that we have to consider

the Khovanov homology for each of these subcubes, i.e. the copies of the

homology groups of the unknot and apply Lemma 5.8 to them repeatedly.

We should apply this lemma at each splitting of the cube into two parts.

We asserts that this proof is fit for all models of the Khovanov complex
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of virtual knots in those cases when this complex is well defined.

Let us describe this construction in more details. We shall consider a

non-normalized Khovanov complex of virtual knots. In what follows we

should take the “common normalizing factor” out, i.e. shift the height and

the grading.

Let K be a virtual diagram. Let us consider its non-normalized bifur-

cation cube [[K]] with the differential ∂. Enumerate all crossings of K and

we shall split the cube [[K]] successively into cubes according to Thistleth-

waite’s scheme (see Sec. 4.2.6). Namely, in the first step we investigate

whether the first crossing is splitting (we call a crossing splitting, if under

deleting the corresponding vertex from the frame of the atom, the new

frame is not connected) and, if it is not splitting, we pass to considering

two cubes obtained from [[K]] by fixing the first coordinate. These two

cubes represent non-normalized Khovanov complexes for the diagrams K0

and K1 obtained from K by smoothings of type A and B. The Khovanov

complex (non-normalized) for Ki has some set of homologies; if we con-

sider K0 and K1 as non-separated complexes but compound parts of the

Khovanov complex corresponding to K, we get some new differentials cor-

responding to passing from K0 to K1. Lemma 5.8 asserts that the initial

(non-normalized) Khovanov complex for the diagram K has the same ho-

mology as the complex made only from homology of the complexes K0 and

K1 (and as well as some acyclic part).

Further, we apply the second step: We consider the complexes K0 and

K1 (as compound parts of the new complex the homology of which coincides

with the Khovanov homology of the link K) and investigate whether the

corresponding diagrams split in the second crossing. If some of them (say,

K0) does not split, then we reconstruct the complexK0 and get the complex

of type (K00 → K01)⊕ ⟨acyclic part⟩.
We continue the process until we reach a diagram from the set SK (see

Sec. 4.2.6). Each of these diagrams represents the unknot, therefore, we

conclude that the Khovanov homology can be calculated with the help of a

complex consisting of the Khovanov homology of the unknot. In terms of

formula it looks like the following.

Theorem 5.13. The non-normalized Khovanov complex of a diagram K

of a virtual link is isomorphic to some complex whose chain group looks like⊕
s∈V1

A[β(s) + w(Ks)]{β(s) + 2w(Ks)},

where A is the homology group of the unknot.
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Note that here we have not used the fact that a link is classical. There-

fore, everything can be generalized word by word for virtual links in the

case of field on which the initial Khovanov complex is well defined.

Later on, we shall use also the phrase Wehrli’s complex, by bearing in

mind the complex which is quasiisotopic to the Khovanov complex, the

existence of the latter is given by Theorem 5.13.

5.9 The Khovanov polynomial and Frobenius extensions

The Khovanov theory of virtual knots described earlier in this chapter is

not unique what one can get with the help of the Kauffman model and

the (anti)commutative state cube. The present section is devoted to a

generalization of the Khovanov theory which uses Frobenius extensions for

classical and virtual links.

5.9.1 Frobenius extensions

Let R, A be commutative rings, and let ι : R → A be an embedding

of the commutative rings such that ι(1) = 1. The restriction func-

tor taking A-modules to R-modules has right and left adjoint functors:

the induction functor Ind(M) = A ⊗R M and the coinduction functor

CoInd(M) = HomR(A,M). One says that ι is a Frobenius mapping, if

the induction functor coincides with the coinduction functor. Equivalently:

the embedding ι is Frobenius if the restriction functor has a 3-sided dual

functor. In this case one says also that the ring A is a Frobenius extension

over R by means of ι.

The following proposition takes place.

Proposition 5.3 ([145]). The embedding ι is Frobenius if there exist a

mapping A-bimodules ∆: A → A⊗RA and a mapping R-modules ε : A →
R such that ∆ is a coassociative and commutative multiplication, herewith

(ε⊗ Id)∆ = Id.

A Frobenius extension with a choice ε and ∆ is denoted by F =

(R,A, ε,∆) and called a Frobenius system, [145].

Frobenius extensions are convenient for constructing the Khovanov ho-

mology theory for the following reasons. In the module A defined over the

ring R there are two natural operations: multiplication and comultiplica-

tion, the operation ∆.
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We are going to use these operations for constructing the Khovanov ho-

mology theory for virtual links. Meanwhile we (by evident reasons) restrict

ourselves only with the case of commutative rings; moreover, we forget

the operator ε (this operator is used for defining invariants of cobordisms

and proving functoriality). In other aspects we follow the paper [178] by

Khovanov.

5.9.2 Khovanov construction for Frobenius extensions

As it was described earlier in this chapter the standard Khovanov theory is

constructed over some arbitrary ring R (for example, the ring Z or the field

Q, or the field Zp), herewith the homology of the unknot is a graded two-

dimensional moduleA over this ring, generated by vectors v+ and v− having

gradings +1 and −1, respectively. Two maps are defined on these vectors:

the multiplication m and comultiplication ∆. If one shifts the gradings of

vectors (this requires a slight change (renormalization) in the construction

of the homology theory), then one can set deg v+ = 0, deg v− = 2. Then

the element v+ can be considered as unit (let us denote it by 1, and denote

v− by X), and the multiplication and comultiplication defined earlier turn

the module A into a Hopf algebra over R, in which the multiplication

is defined by rules X2 = 0, and the comultiplication looks like ∆(1) =

1⊗X +X ⊗ 1, ∆(X) = X ⊗X.

In [178] Khovanov solved the following problem: How can one find a

condition for a couple of linear spaces (A,R) to get a link homology theory,

where R is the basic coefficient ring and A (some Hopf algebra over R)
is the homology of the unknot (the main building bricks)? That means

that we consider the state cube, with each vertex associated with a tensor

power of A (over R), with exponent equal to the number of circles in the

given state, and define partial differentials by means of multiplication and

comultiplication, and then add signs on edges and normalize the whole

construction by grading shifts.

Khovanov showed that the invariance under the first Reidemeister move

requires that A is two-dimensional as an R-module and gave necessary and

sufficient conditions for the existence of such a link homology theory.

In the same paper [178], it is shown that any such theory can be obtained

by some operations (base change, twisting and dualtiy) from the following

solution:

(1) R = Z[h, t],
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(2) A = R[X]/(X2 − hX − t),
(3) deg X = 2, deg h = 2, deg t = 4,

(4) ∆(1) = 1⊗X +X ⊗ 1− h1⊗ 1,

(5) ∆(X) = X ⊗X + t1⊗ 1.

As we see, the multiplication in the algebra A preserves the grading,

and the comultiplication raises it by two.

We omit normalizations regulating these gradings.

We call this construction the universal (R,A)-construction. The cor-

responding homology of a (classical oriented) link K will be denoted by

KhU (K).

Khovanov proved that all other cases followed from the universal (R,A)-
construction. First, he investigates Frobenius extensions for the invariance

of the obtained homology theory under the first classical Reidemeister move

Ω1. This leads it to two-dimensional A as an R-module.

Later, Khovanov considers the universal topological construction by

Bar-Natan [20], and constructs a functor from the topological category

of Bar-Natan to the category of Frobenius extensions of rank two. The

constructed functor is neither injective nor surjective, but it enjoys all nice

properties needed for the invariance under the Reidemeister moves.

Thus Khovanov shows that any rank two Frobenius extension as above

defines an extraordinary link homology theory. He shows also that any such

theory without loss of information can be reduced to the universal theory

described above by some algebraic operations.

We shall not go into the details of Khovanov’s and Bar-Natan’s con-

structions. We shall just take the universal (R,A)-construction together

with some structural statements from Khovanov’s theory for building a

theory for virtual links.

Also, note that Khovanov also studied functoriality of his new homol-

ogy theory, for example, its “good behavior” under cobordisms (projective

functoriality). To this end, besides multiplication and comultiplication op-

erations, he also defined the unit and counit map and their transformations;

we shall not touch on this subject. We shall use only the fact that Kho-

vanov’s proof is local, i.e. under that and other Reidemeister moves the

invariance does not use any assumption about the structure of the link

outside a part of the plane where the move is performed (and, per se, it

repeats the proof of the invariance given earlier for the “general” Khovanov

homology, in which the injective of the map ∆ and the surjective of the

map m were used).
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In this section, we show that Khovanov’s universal construction works in

the case of orientable atoms straightforwardly, and write down the algebraic

equations the partial differentials have to satisfy for the case of arbitrary

virtual links.

5.9.3 Geometrical generalizations by means of atoms

With each virtual link diagram having an orientable atom, the universal

(R,A)-construction associates some bifurcation cube, the bigraded chain

space with partial differentials, whose homology leads to an invariant of

virtual links (after a normalization).

Here, with the state cube and the bifurcation cube we associate bigraded

complexes with tensor powers of the ring A over the ring R staying in

vertices of the cube; the tensor power corresponds to the number of circles

in the given state; partial differentials in these cubes are defined by using

m and ∆, and differentials are sums of partial differentials with signs.

From Khovanov’s theory [178] it follows that there exists a local proof of

the invariance for the universal (R,A)-construction, i.e. there is a number

of algebraic steps (equivalences, analogous to the cancellation principle and

short exact sequences) which leads to the following.

Let us fix a classical Reidemeister move Ωi. Then for any classical dia-

grams K and K ′ which differ locally by a Reidemeister move Ωi, there ex-

ists, see ahead, a consequence of algebraic transformations taking KhU (K)

to KhU (K
′) and not depending explicitly on the behavior of partial differ-

entials of the Khovanov complexes for K and K ′ except for those whose

explicit form (µ or ∆) follows from the structure of our Reidemeister move

Ωi.

This argument leads to the fact that the universal (R,A)-construction
can be generalized for virtual diagrams with orientable atoms. Namely,

given a diagram K with an orientable atom, we can construct the cor-

responding bifurcation cube with differentials, corresponding to the mul-

tiplication and comultiplication operations (with signs) and calculate its

homology. Furthermore, if two diagrams K, K ′ have orientable atoms and

are obtained from each other by some classical Reidemeister move Ωi, then

according to the principle described above, there is an isomorphism be-

tween the graded homologies KhU (K) ∼= KhU (L
′). Since the universal

(R,A)-construction is tautologically invariant under the detour move (the

bifurcation cube does not change), the following analogue of Lemma 5.3

holds.
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Lemma 5.9. Let K, K ′ be two diagrams with orientable atoms such that

K ′ differs from K by an application of a detour move or one of the three

classical Reidemeister moves. Then KhU (K) ∼= KhU (K
′).

This argument together with Lemmas 5.4, 5.5 yields that the universal

(R,A)-construction works for

• the construction of the Khovanov homology theory KhU for framed

virtual links by taking the 2l parallel copies;

• the construction of the Khovanov homology theory KhU for virtual

knots by taking two-sheeted orienting coverings over the corresponding

atoms;

• the construction of the Khovanov homology theory KhU for virtual

knots obtained by taking parity projections, see Chap. 8 ahead.

More precisely, the following theorem holds.

Theorem 5.14. (1) Let l be a natural number. Then KhU (D2l(K)) is an

invariant of the framed virtual link K.

(2) The map K 7→ KhU (K̃) gives a well-defined invariant for virtual links.

5.9.4 Algebraic generalizations

As we have shown before, for virtual knots with orientable atoms the Kho-

vanov homology with Z2-coefficients can be defined straightforwardly if we

set all partial differentials of type 1→ 1 to be zero.

Let us now consider the universal (R,A)-construction, and let us gen-

eralize it for the case of virtual knots.

Note that if with each knot we associate a well-defined complex, then

the homology of this complex will be automatically invariant under classical

Reidemeister moves (according to the locality of the invariance proof) and

the detour move (there is nothing to prove in this case).

Thus, we have reduced the problem of finding the extension for the

ring A in order to construct the Khovanov homology theory for arbitrary

virtual link diagrams, to the following problem. Find an operator (a homo-

morphism of R-modules) I : A → A corresponding to maps of type 1 → 1

in such a way that for every virtual diagram the bifurcation cube with

partial differentials obtained from m, ∆, I, is anticommutative.

Thus, we require the commutativity of the cube in order to turn it into

an anticommutative cube (just as it was done in the usual case).
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This problem is purely algebraic. In order to solve it, one has to con-

sider all possible 2-faces of the bifurcation cube for a diagram K; there are

finitely many such types (with each face, one associates some atom with

two vertices). For each face, one has to check some algebraic conditions for

the maps I, ∆ and m.

For the space A, let us take the basis {1, X}, and for the space A⊗A
we take the basis {1⊗ 1, 1⊗X,X ⊗ 1, X ⊗X}.

Then in these bases the maps ∆ and m are represented by the following

matrices:

∆ =


−h t
1 0

1 0

0 1

 , m =

(
1 0 0 t

0 1 1 h

)
.

After that we shall use the sign of matrix multiplication instead of the

composition of the operators. So, for example, we write µ · ∆ instead of

µ◦∆. One of the particular cases given here, is considered in detail in [303].

We look for a matrix

I =

(
p q

r s

)
,

which corresponds to bifurcations of type 1→ 1 and give, at the same time,

the (anti)commutativity of the bifurcation cube.

Let a coefficient ring R containing elements h and t with gradings 2

and 4, respectively, be given. Denote the obtained bifurcation cube by

[[K]]R. Let us define the differential as the sum of the partial differentials

corresponding to edges (of typem, ∆, I) with signs arranged as it was done

on page 197.

Lemma 5.10. The bifurcation cube [[K]]R is anticommutative if and only

if the following properties hold :

m ·∆ = (I)2,

∆ · I = (I⊗ 1) ·∆ = (1⊗ I) ·∆, (5.3)

I ·m = m · (I⊗ 1) = m · (1⊗ I). (5.4)

Proof. For checking the (anti)commutativity of the state cube it is nec-

essary for us to consider every possible sorts of faces of the cube. Later on,

we disregard additional signs on edges and prove the commutativity.
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In the “simple” case where we have the field Z2 and null-differentials

corresponding to bifurcations of type 1→ 1, everything was reduced to the

“classical” cases, and as well as to the case depicted in Fig. 5.1.

For the (R,A)-theory we have to check more cases, since maps of type

1→ 1 are not assumed to be zero, and the maps m (multiplication) and ∆

(comultiplication) are more complicated than in the case of the homology

Kh.

Each two-dimensional face of the cube represents a collection consisting

of four states, see Sec. 5.4. Under a passage from one state to another, some

circles are reconstructed and the others remain. Denote these four states by

s00, s01, s10 and s11 depending on the values of two changing coordinates.

Delete “common components” of the states sij , i.e. those components of

the state s00 which do not adjoin to the crossings at which the substitution

of the smoothing occurs. Then the given two-dimensional face of the cube

will represent some virtual knot and, therefore, the atom corresponding to

it. This atom will have exactly two vertices. If the atom is height, then the

corresponding diagram is realized by a bifurcation of embedded circles into

the plane, thus, the (anti)commutativity of the corresponding face belongs

to the number of classical cases checked by Khovanov.

For atoms with disconnected frames the check is obvious. Further, each

orientable atom with the connected frame having two vertices is height.

Thus, the required checking is reduced to sorting out unoriented atoms with

two vertices (all of them by definition are not height). Sorting out these

atoms, eventually we shall come to relations which are satisfied identically,

e.g. I ◦ µ = I ◦ µ, see Fig. 5.36. Three atoms giving non-trivial relations

pointed out in the claim of the lemma are given in Figs. 5.37, 5.38 and (the

example considered above), Fig. 5.1. �

We met the first equation already in the case of the general Khovanov

homology C (there the composition m ·∆ looks more simple). In the case

of the universal (R,A)-theory we have:

m ·∆ =

(
−h 2t

2 h

)
.

If we want to construct a Z-graded theory, then it is necessary for us

that the matrix I increases the grading of elements of the ring R by one.

This means that all elements p, q, r, s ∈ R should be homogeneous. In

this case deg p = 1, deg q = 2, deg r = 0, deg s = 1, herewith it is possible

that any of the elements p, q, r, s are equal to zero (in this case the grading
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m

m





Fig. 5.36 Bifurcation corresponding to tautological relation.





∆ ∆

Fig. 5.37 Relations ∆ · I = (I⊗ 1) ·∆ = (1⊗ I) ·∆.

is not defined). Then from the equality (I)2 = m ·∆ it follows deg (2t) =

deg t = 3, which leads us to a contradiction, if 2 ̸= 0.

Thus (as well as in the case of the general Khovanov homology), under

this approach the Z ⊕ Z-bigraded homology theory is possible only in the

case of a field with characteristic two.

Let us consider the case of a field with characteristic two. It turns out

that in this case we have a simple non-trivial solution. Namely, in the case
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mm

Fig. 5.38 Relations I ·m = m · (I⊗ 1) = m · (1⊗ I).

2 = 0 the matrix m ·∆ is turned into the diagonal matrix

m ·∆ =

(
h 0

0 h

)
.

Let us add to the ring R a new element u =
√
h, deg u = 1. Now

set R′ = Z2[u, t], herewith the algebra A takes the form A′ = R′[x]/

(X2 − u2X − t), where deg X = 2, deg t = 4, deg u = 1.

Set

I =

(
u 0

0 u

)
. (5.5)

In this case the matrix I is scalar, and Eqs. (5.3) and (5.4) are satisfied

automatically.

Thus, we conclude with the following theorem.

Theorem 5.15. Over the field Z2 the pair of algebras (R′,A′) together

with multiplication m, comultiplication ∆ defined by ∆(1) = 1 ⊗X +X ⊗
1−u2 ·1⊗1, ∆(X) = X⊗X+t1⊗1 and the scalar map I looking like (5.5),

gives an invariant homology theory for virtual links.

In the general case, i.e. in the case of the Khovanov homology for virtual

links, we have the following theorem.

Theorem 5.16. The restriction of Khovanov’s universal theory for the case

h = 0 (no restrictions on t) can be extended to virtual links by the method

suggested in Sec. 5.7.
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The main idea of the proof of Theorem 5.16 is the following. ∆ and m

behave nicely under the involution I : 1 7→ 1, X 7→ −X that takes place

while inverting the circle: The multiplication m does not change, and ∆

changes the sign. Note that this takes place only for h = 0 (for arbitrary

t). The case when h ̸= 0 can be handled by using a more sophisticated

twisting.

This generalizes straightforwardly for the case when h = 0 (where all

differentials of type 1 7→ 1 are assumed to be zero). As a particular case,

this leads to an analogue of Lee’s theory, see [193, 194].

5.10 Minimal diagrams of links

In the classification and tabulation of (virtual) knots the important step is

to describe diagrams having a minimal number of (classical) crossings. One

of the main achievements in the development of knot theory is Kauffman–

Murasugi–Thistlethwaite theorem (Theorem 4.6) and the classification of

alternating links by Menasco and Thistlethwaite [246] following from this

theorem. In Chap. 4 we also proved some minimality theorems (Theo-

rems 4.5, 4.7, 4.8).

In this section we shall prove theorems establishing the minimality of

virtual and classical diagrams, see also [137, 227]. We refine results about

the minimality of diagrams of virtual links described in Sec. 4.3 by us-

ing Khovanov complex. The main idea is as follows. Theorem 4.5 (the

inequality span ⟨K⟩ 6 4n+ 2(χ− 2)) for a virtual diagram K with n clas-

sical crossings and the atom with the Euler characteristic χ allowed one to

prove the minimality in those cases, when the Euler characteristic could not

be increased. If the inequality turns into the equality, then to decrease the

number of crossings we have to increase the Euler characteristic of the atom

or, the same, to decrease its genus. It turns out that by using Khovanov

homology one can make estimation on the atom genus, at the same time

in some cases one can see that this genus cannot be decreased. In this case

the previous arguments together with non-reducibility of the genus lead to

the minimality of the diagram.

We shall first mention the spanning tree theorem for Khovanov homol-

ogy, proved independently by Wehrli [315] and Champanerkar and Kof-

man [54].

More precisely, in [315] it is shown that the Khovanov homology is

isomorphic to the homology of a certain complex. Recall that V1(K) (see
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Sec. 4.2.6) is the set of states of the virtual diagram K, where the number

of circles equals one. From this a generalization of Theorem 5.13 for the

case of arbitrary virtual knots follows.

Lemma 5.11. The non-zero Khovanov homology Kh(K) can have the bi-

grading only of the form (C1 + β − w,C2 + β − 2w ± 1), where w belongs

to some finite set of integers, β belongs to the set of values β(s) over all

states s ∈ V1(K), and C1, C2 are constants.

The proof of Lemma 5.11 given in [315] is generalized verbatim for

the case of virtual diagrams. An important particular case of this lemma

is the statement of the Khovanov homology thickness (thickness was first

introduced by Shumakovitch [279]). Let us define this notion accurately by

extending it for all virtual diagrams with arbitrary coefficients.

Consider a virtual diagramK and its Khovanov homology over a certain

non-graded ring R. Denote by tmax and tmin the maximal and minimal

values of 2x− y over all pairs x, y such that the homology group of K with

the bigrading (x, y) is non-trivial.

Definition 5.9. The thickness (width) TR(K) of the Khovanov complex is

(tmax − tmin)/2 + 1.

Remark 5.15. This quantity is integer in the case of orientable atoms,

and might be half-integer in the case of non-orientable atoms.

Later on, by a diagonal we call the set of pairs of integer numbers (x, y)

for which the number 2x − y is constant. Among diagonals there are the

extreme left and the extreme right, at which the number 2x− y is minimal

and maximal, respectively. Thus, the thickness measures the number of

diagonals between two extreme diagonals.

Definition 5.10. By thickness (width) T (K) of the virtual diagram K we

mean the maximum of all TR(K) over all R without additional grading.

From Lemma 5.11 and the definition of atom, we get the following

lemma.

Lemma 5.12. For any connected (in the sense of atoms) diagram K of

a virtual link we have: T (K) 6 g(K) + 2, where g(K) is the genus of the

atom corresponding to K.

The notion of the 1-complete virtual diagram was defined in Chap. 4,

see Definition 4.10.
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Definition 5.11. Let us call a virtual diagram K 2-complete, if T (K) =

g(K) + 2.

Indeed, for an estimation of the number of diagonals of the Wehrli com-

plex (see Theorem 5.13) it is necessary for us to estimate the range of

numbers β(s) over all states s ∈ V1(L). It is easy to see that in the case of

alternating link diagrams all these numbers equal each other (this leads to

the presence of two diagonals tmax and tmin such that tmax = tmin + 2), in

the case of atoms with genus one the numbers β(s) can equal x, x+1, x+2

for some x; in the case of atoms with the Euler characteristic χ they can

take values in an interval from some number x to x+ (2− χ).
From Theorem 4.5 and Lemma 5.12, we have the following theorem.

Theorem 5.17. Let T (K) = g + 2, span ⟨K⟩ = s. Then the number of

classical crossings of a connected diagram of the virtual link generated by

K cannot be smaller than s/4 + g.

In particular, if a diagram with n crossings and the atom with genus g

is 1-complete and 2-complete, then it is minimal.

The last assertion means that all diagrams for which two properties

of “natural non-reducibility” hold (in the decomposition of the Kauffman

bracket polynomial the leading and lowest terms are not equal to zero and

in the Wehrli complex each of the two extreme diagonals has at least one

non-trivial element of the Khovanov homology) are minimal.

Theorem 5.17 holds in any category in which the Khovanov complex is

well defined and invariant. So, if we are interested in the invariance of a

classical diagram in the category of classical diagrams, we can consider the

thickness in the classical category.
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Chapter 6

Virtual Braids

6.1 Introduction

This chapter is devoted to virtual braids and its connection to the theory

of virtual knots. The main result of the present chapter is the construction

of an invariant for virtual braids, whose restriction to classical braids is

a complete invariant. This invariant was first constructed by the first-

named author and it is a generalization of a complete invariant of classical

braids for the virtual case. The statement that this invariant is complete

in the case of classical knots follows from the faithfulness of the Hurwitz

action [126] on free groups; the invariance was first proved by Artin [12].

The question whether the invariant is complete for the case of virtual braids

with the number of strands more than two, is still an open problem.

From the existence of an invariant of virtual braids generalizing a com-

plete invariant of classical braids it follows that the natural mapping from

the group of classical braids to the group of virtual braids is an inclusion.

This result was first proved by Fenn, Rimanyi and Rourke in [87].

The present chapter is organized as follows. First we give all necessary

definitions in the theory of classical and virtual braids and formulate known

results about virtual braids. The remaining part of the present chapter is

devoted to the invariant of virtual braids. We also show that this invariant

is complete for virtual braids with two strands.

6.2 Definitions of virtual braids

Classical braids have many different definitions: the geometrical defini-

tion uses diagrams on the plane, considered up to Reidemeister moves; the

algebraic definition uses a concrete presentation; the algebro-geometric def-
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inition says that the braid group is the fundamental group of the space of

polynomials without multiple roots; and the topological definition says that

the braid group is the fundamental group of the configuration space for a

set of distinct points on the plane.

Virtual braids, a generalization of classical braids, were first mentioned

by Kauffman in his first talk about virtual knots [157]. The first papers

about virtual braids belong to Kamada [153] and Vershinin [307]. In the

papers [166, 167] by Kauffman and Lambropoulou Markov’s theorem is

proved for the case of virtual braids.

Virtual braids admit a combinatorial definition. They are defined as

equivalence classes of virtual braid diagrams by virtual Reidemeister moves

(all Reidemeister moves except the first classical and virtual moves, are ad-

mitted). The fact that we forbid the first virtual Reidemeister move leads

to a remarkably simple construction generalizing all quantum invariants

of classical knots for the case of “virtual knots” with the following clause.

Here one should consider the theory where virtual knot diagrams are fac-

tored by all generalized moves except the first virtual one. In this case, one

talks about rigid virtual knots. While considering virtual braids there exists

a canonical way for generalizing all quantum invariants (here we add the

operator of transposition of tensor summands, which corresponds to a vir-

tual crossing, to the given operator which is a solution of the Yang–Baxter

equation). However, this generalization cannot be canonically extended to

the case of virtual knots: In the classical case there exists some normaliza-

tion which turns an invariant of braid into an invariant of knots, closures

of braids, and the new invariant is obtained by adding some tensor which

regulates the invariance under the first classical Reidemeister move. In the

case of virtual knots this construction fails since we have to require the

invariance under the first virtual Reidemeister move under the same con-

ditions. However, in the case of rigid virtual knots the theory of quantum

invariants works. For more details concerning this theory see [158].

Definition 6.1. A virtual braid diagram on n strands is a union of n

smooth curves in general position on the plane connecting points (i, 1)

with points (ai, 0), these curves are monotonic with respect to ordinate

(here (a1, . . . , an) is some permutation of the numbers (1, . . . , n)), herewith

some crossings are marked as virtual crossings, and at the other (classical)

crossings the under/overcrossing structure is specified, i.e. it is indicated

which branch forms an overcrossing and which one forms an undercrossing,

see Fig. 6.1. In this case it is said that the braid realizes the permutation
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a : 1 7→ a1, . . . , n 7→ an.

Fig. 6.1 A virtual braid diagram.

Definition 6.2. A virtual braid is an equivalence class of virtual braid

diagrams by planar isotopies and all virtual Reidemeister moves except the

first classical move and the first virtual move.

Remark 6.1. The first classical and virtual Reidemeister moves are im-

possible because a strand of a braid cannot be ascending.

Definition 6.3. Let us call a virtual braid pure (even), if the permutation

corresponding to it is trivial (even).

Like classical braids, virtual braids form a group (with respect to juxta-

position and rescaling the vertical coordinate). The unit element e of this

group is the braid represented by all vertical parallel strands. The reverse

element for a given braid is just its mirror image with respect to a hori-

zontal line. The generators of the group of virtual braids with n strands

are: σ1, . . . , σn−1 (classical crossings) and ζ1, . . . , ζn−1 (virtual crossings),

see Fig. 6.2.

It is evident that for each i = 1, . . . , n− 1 the following equality ζ2i = e

holds (by virtue of the second virtual Reidemeister move).

One can show that the following set of relations [307] generates the

group of virtual braids with n strands:

(1) the relations of the (classical) braid group:

σiσj = σjσi for i, j = 1, . . . , n− 1, |i− j| > 2;
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i+i 1

... ...

... ...

i+i 1

Fig. 6.2 The generators of the group of virtual braids: σi (up) and ζi (below).

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2;

(2) the relations of the symmetric group:

ζiζj = ζjζi for i, j = 1, . . . , n− 1, |i− j| > 2;

ζiζi+1ζi = ζi+1ζiζi+1 for i = 1, . . . , n− 2;

ζ2i = e for i = 1, . . . , n− 1;

(3) the mixed relations:

σiζi+1ζi = ζi+1ζiσi+1 for i = 1, . . . , n− 2;

σiζj = ζjσi for i, j = 1, . . . , n− 1, |i− j| > 2.

It is not difficult to show that the group of virtual braids is generated

by one classical generator, for example, σ1 and all virtual generators. Then

all the other generators σi will be conjugate with the generator σ1. For

example, σ2 = ζ1ζ2σ1ζ2ζ1.

Other questions related to presentations of the group of virtual braids

and the presentation of virtual knots by closures of virtual braids for arbi-

trary number of strands were described in works by Kauffman and Lam-

bropoulou [166, 167, 169, 170] (see also [105]).

The group of virtual braids with n strands is denoted by VB(n). If we

consider the subgroup of VB(n) consisting of those braids with no occur-

rence of the generators σn and ζn, then we shall get the subgroup isomorphic

to VB(n − 1). Therefore, we have the inclusions VB(1) ⊂ VB(2) ⊂ · · · ⊂
VB(n) ⊂ · · · .
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Thus, we can say about the stably group of virtual braids VB(∞) as the

direct limit of the groups of virtual braids with respect to the inclusion.

6.3 Virtual braids and virtual knots

Before formulating main results about braids and virtual braids we recall

some structural moments.

6.3.1 Closure of virtual braids

Analogous to the case of classical braids virtual braids have the closure, see

Fig. 6.3.

Definition 6.4. We say that a (smooth) virtual diagram K on the plane

is braided with respect to some point A if A /∈ K and at each point of K

the tangent vector (oriented along the orientation of K) is directed coun-

terclockwise manner if we look from the point A.

Fig. 6.3 Closure of a virtual braid.

A braided (with respect to some point) diagram can be turned into a

diagram of the closure of a virtual braid: For this we have to “cut” the

diagram along neighboring radii, the sector between them does not contain
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crossings, and straighten the diagram, see Fig. 6.4.

Fig. 6.4 Construction of a virtual braid by a braid diagram.

It is evident that equivalent virtual braids give isotopic virtual links.

Moreover, all equivalence classes of virtual links can be represented as clo-

sures of virtual braids.

Alexander’s theorem [6] asserts that any link can be obtained as the

closure of a braid. The virtual analogue of this theorem (see, e.g. [166])

asserts that any virtual link is obtained as the closure of a virtual braid.

Markov’s theorem [241] gives the set of moves for braids (virtual braids)

such that two braids β1 and β2 represent isotopic links, i.e. Cl(β1) ≡ Cl(β2),

where Cl(βi) is the closure of βi, if and only if the braid β1 can be trans-

formed into the braid β2 by a finite sequence of these moves. In the classical

case there are only two transformations (moves); they are called Markov’s

transformations (moves).

Herewith in the classical case we may assume that all braids in any

chain from β1 to β2 are classical.

In the classical case Markov’s theorem holds.

Theorem 6.1. The closures of two braids β1 and β2 are isotopic if and

only if β1 can be obtained from β2 by a finite sequence of transformations

shown in Fig. 6.5 (in the right picture the crossing added below can be either

or ).

A proof of this theorem was first announced by Markov [241], but this

proof contained some disadvantages. The first unexceptionable proof of

(classical) Markov’s theorem is due to Birman [26], see also [252, 288].
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Fig. 6.5 Markov’s moves.

In [153] Kamada proved an analogue of Markov’s theorem for the case

of virtual braids. Namely, he proved the following.

Theorem 6.2. Two virtual braid diagrams have isotopic closures as virtual

links if and only if they are related by a finite sequence of the following moves

(VM0)–(VM3):

• braid equivalence;

• conjugation (in the virtual braid group);

• right stabilization (adding a strand with an extra positive, negative or

virtual crossing), and destabilization (the operation being inverse to a

stabilization);

• right/left virtual exchange move, see Fig. 6.6.

b1

2b

1

...

+1mm

b1

2b

1

...

+1mm 1

...

+1m 1

...

+1m

b1

2b

2 2

b1

2b

Fig. 6.6 Virtual moves.

The moves (VM0)–(VM2) are analogous to those in the classical case

with the only difference that a conjugacy element (the move (VM1)) can

be any virtual braid with the same number of strands. The “new” move

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

264 Virtual Knots: The State of the Art

(VM3) has two variants: right and left. Each of the virtual exchange moves

replaces two classical crossings between which a strand without classical

crossings inside passes, with two virtual crossings. These moves do not

change the equivalence class of braid closures, since the corresponding clo-

sures are obtained from each other by applying the second classical and

virtual Reidemeister moves.

The necessity of the moves listed above is obvious; it is left for the

reader as a simple exercise. For sufficiency, we refer the reader to the

original work [153].

The set of moves introduced by Kauffman and Lambropoulou

in [167, 168] is more convenient.

Namely, it is proved.

Theorem 6.3. Two virtual braid diagrams β1 and β2 have isotopic closures

as oriented virtual links if and only if β2 is obtained from β1 by applying a

finite sequence of the following moves:

(1) an isotopy of braids;

(2) a conjugacy by means of classical braids;

(3) the right virtual Lv-move;

(4) the right classical Lv-move;

(5) the right and left under-threaded Lv-moves.

These moves are schematically depicted in Figs. 6.7–6.9.

Fig. 6.7 Virtual Lv-moves: right and left.

Note that the proof of Markov’s theorem in the formulation of [167] is

easier and more convenient than the proof of [153]. It is based on the so-

called L-move which is used both under constructing the closure of a virtual
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Fig. 6.8 Classical Lv-moves: right and left.

Fig. 6.9 Right and left under-threaded Lv-moves.

braid and describing simplest virtual equivalences for links translated in the

language of braids.

Note also that in the list of moves by Kauffman and Lambropoulou

there are no conjugacy by means of virtual braids; with intelligent trick the

authors showed that a conjugacy with the help of virtual braids could be

expressed by using the detour move and L-moves.

Moreover, in [167] the following algebraic reformulation of Markov’s

theorem which allows one to replace the moves from the list by local moves

is given. Namely, the list of elementary algebraic equivalences for virtual

braids (besides an isotopy of braids) is the following:

(1) The classical and virtual conjugacies: ζiαζi = α = σ−1
i ασi.

(2) The right stabilization (classical and virtual): αζn ∼ α ∼ ασ±1
n .

(3) The algebraic under-threaded move (top and bottom): α ∼
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ασ±1
n ζn−1σ

∓1
n .

(4) The algebraic left under-threaded move (top and bottom): α ∼
αζnζn−1σ

∓1
n−1ζnσ

±1
n−1ζn−1ζn.

In the second, third and fourth cases the initial braid α has n strands;

the resulting braid has n+ 1 strands.

6.3.2 Burau representation and its generalizations

The (classical) braid group has a natural representation. This represen-

tation is called the Burau representation [45]. It is closely related to the

Alexander polynomial of the closure.

The more natural way to find representations of the braid group is the

following. One can consider the braid group Br(n) (the group of classical

braids with n strands) and try to represent braids by n×n matrices. More

precisely, one can associate with the element σi a block-diagonal matrix

with (2×2)-blocks situated in two rows (i, i+1) and in two columns (i, i+1),

and the remaining blocks have the size (1×1) and equal 1 and are situated

on the principal diagonal. It is evident that for such a matrix we have

the commutative relation between the images σi, σj , where |i − j| > 2. If

we take two matrices corresponding to σi, i = 1, 2, with equal diagonal

(2 × 2)-blocks (but in different places), then we only have to check the

relation σ1σ2σ1 = σ2σ1σ2 for matrices of the size 3 × 3. We get easily the

representation in which a (2× 2)-block looks like:(
1− t t
1 0

)
. (6.1)

This representation is called the Burau representation of the braid group.

It was first proposed by Burau [45].

The Alexander polynomial of a classical link is restored from the Burau

representation of a braid whose closure gives the given link.

The faithfulness of this representation was an open problem for a long

time. In [26] Birman proved the faithfulness of this representation for the

group of braids with three strands.

In [250] Moody constructed the first example of a non-trivial element

from the kernel of the Burau representation (the group of braids with more

than three strands).

For the time being the problem of the faithfulness of the Burau represen-

tation is solved: positive for n 6 3 and negative for n > 5; see, e.g. [24]. The

case n = 4 is still open. In [25] Bigelow mentioned a connection between
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the problem of recognition of the unknot by the Jones polynomial with one

variable and the problem of faithfulness of the Burau representation for

braids with four strands.

It is known that the Burau representation is reducible. Namely, it has

the eigenvector (1, . . . , 1).

Vershinin [307] suggested the following generalization B of the Burau

representation [45] for virtual braids. The virtual braid group VB(n) is

represented by n × n matrices where the generators σi, ζi are represented

by block-diagonal matrices with the unit on the main diagonal and the only

non-trivial (2× 2)-block on lines and columns (n, n− 1). The block for σi
is shown in (6.1). For ζi we use permutations, namely, the matrix(

0 1

1 0

)
.

The proof that it really gives a representation is left to the reader as an

exercise.

The trivial generalization of the Burau representation for virtual braids

under which a transposition is associated with a virtual crossing leads to a

generalization of all quantum invariants for virtual braids, see [158]. There-

fore, we obtained a representation of the virtual braid group which is de-

noted by B.

However, this representation is rather weak, it has a non-trivial ker-

nel in the case of braids with two strands. It is easy to check that

for the non-trivial virtual two-strand braid represented by the word β =

(σ2
1ζ1σ

−1
1 ζ1σ

−1
1 ζ1)

2 we have

B(β) = B(e) =

(
1 0

0 1

)
,

where e is the unit element. Indeed, the matrix B(σ1) has the following

eigenvalues: 1 and 1− t. More precisely,

CB(σ1)C
−1 =

(
1 0

0 1− t

)
,

where

C =

(
0 1

1 −1

)
.

In this case we have

CB(ζ1)C
−1 =

(
1 1

0 −1

)
.
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We shall write just ζ instead of CB(ζ1)C
−1 and σ instead of CB(σ1)C

−1.

Set H(k, l,m) = σkζσlζσmζ. Then H is an upper triangular matrix

with 1 and −1 on the main diagonal if k + l + m = 0. Set k = 2, l =

−1, m = −1. Then B(H(2,−1,−1)2) = e.

Further, we shall show that the virtual braid β = (σ2
1ζ1σ

−1
1 ζ1σ

−1
1 ζ1)

2 is

non-trivial.

One has the following generalization of the Burau representation [209]:

We take polynomial matrices in two variables, t and q (and their inverse),

the same image of elements σi as before and the matrix(
0 q

q−1 0

)
to be the block for expressing images of elements ζi. Denote the map,

defined above on generators of the braid group, by R.

Theorem 6.4. The map R can be generated as a representation of the

braid group.

Proof. Obviously, the matrix R(σi) is invertible, and for the matrix R(ζi)

we have (R(ζi))
2 = e.

Furthermore, the relations of the braid group for the σ’s can be easily

checked as in the case of the “weaker” Burau representation.

So, we only have to check the relations R(ζiζi+1ζi) = R(ζi+1ζiζi+1) and

R(ζiζi+1σi) = R(σi+1ζiζi+1).

They can be checked straightforwardly by direct calculation with 3× 3

matrices. �

Now, we can prove the following theorem.

Theorem 6.5. The group Br(3) is naturally embedded in the virtual braid

group VB(3).

Proof. Let β1, β2 be some braid-words written in σ1, σ2, σ
−1
1 , σ−1

2 . Sup-

pose they represent the same braid in VB(n). Then their Burau matrices

coincide. Hence the Burau representation of the classical braid group is

faithful for the case of braids with three strands (see [25, 26]), and we

conclude that β1 and β2 represent the same word in Br(3). �

The question about the existence of a faithful representation of the

group of virtual braids with arbitrary number of strands is still open. Re-

cently, Bigelow and Krammer independently constructed a faithful repre-

sentation of the classical braid group for any number of strands [24, 186].
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6.4 The Kauffman bracket polynomial for braids

Analogous to the Kauffman bracket polynomial for classical and virtual

knots, one can define the Kauffman bracket polynomial for classical and

virtual braids.

Namely, let D be a diagram of a virtual braid with n strands. Let us

consider the set of its classical crossings. At each classical crossing we have

two smoothings: A : → or B : → (the same situation we

had for knot diagrams). After a smoothing a braid diagram can be trans-

formed to a diagram which is not a braid diagram. After a smoothing of all

crossings we get some state s of the diagram. In this state we have (possi-

bly, empty) the set of closed circles and the set of n segments connecting

endpoints of the given braid. We have 2n endpoints, therefore, there are

(2n − 1)!! possibilities for their pairwise connection (possible, with virtual

crossings). Let us denote such diagrams by αi.

In contrast to virtual links, where after smoothings of any diagram

we get a set of circles, and the Kauffman bracket polynomial is a Laurent

polynomial; in the case of braids the final results of smoothings are diagrams

consisting of αi and a finite set of free-standing circles.

Let us define now the Kauffman bracket polynomial for D in a state s

as the corresponding diagram αi taken with the coefficient (−a2−a−2)γ(s),

where γ(s) is the number of free-standing circles in the state s.

After that for D we set

⟨D⟩ =
∑
s

aα(s)−β(s)⟨D|s⟩,

where ⟨D | s⟩ is the diagram obtained from D by smoothing according to

the state s.

The obtained Kauffman bracket polynomial is an invariant of braids,

since we do not have the first Reidemeister move Ω1; the invariance under

the second and third Reidemeister moves Ω2, Ω3 can be checked straight-

forwardly.

One can also consider the Kauffman bracket polynomial for closures of

braids; in this case one has to normalize it by the standard way, multiplying

by (−a)−3w, where w is the writhe number of the braid (the number of

crossings minus the number of crossings).
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6.5 Invariants of virtual braids

In this section, we are going to present an invariant F of virtual braids.

Its restriction on the class of classical braids is a complete invariant; this

follows from the fact that this restriction corresponds to a faithful action

of the group of classical braids on a free infinite-generated group. From the

completeness of the restriction of the invariant F on the case of classical

braids, it follows that the classical braid group is a subgroup of the vir-

tual one with the same number of strands. More precisely, since we have

an invariant of virtual braids which is a complete invariant for classical

braids, then for two classical braids which are equivalent as elements of the

virtual braid group, the values of this invariant coincide; by virtue of the

completeness, we conclude that these classical braids represent the same el-

ement in the corresponding classical braid group. The question of whether

the invariant is complete remains open so far.

Definition 6.5. A virtual braid diagram is called regular if any two differ-

ent intersection points have different ordinates.

Let us start with basic definitions and introduce the notation.

Remark 6.2. In the sequel, the number of strands for a virtual braid

diagram is denoted by n, unless otherwise specified.

Remark 6.3. In the sequel, regular (virtual) braid diagrams and corre-

sponding braid words will be denoted by Greek letters (possibly, with in-

dices). Virtual braids will be denoted by Latin letters (with indices, maybe).

Remark 6.4. We shall also treat braid words and braids familiarly, saying,

for example, “a strand of a braid word” and meaning “a strand of the

corresponding braid”.

Let us describe the construction of the word for a given regular virtual

braid diagram. Let us walk along the axis Oy from the level {y = 1} down
to the level {y = 0} and watch all those levels y = t ∈ [0, 1] having crossings.

Each such crossing permutes strands with local numbers i and (i+ 1) for

some i = 1, . . . , n − 1. If the crossing is virtual, we write the letter ζi, if

not, we write σi if the overpass is the “northwest–southeast” strand, and

σ−1
i otherwise.

Thus, we have got the braid word for a given regular virtual braid

diagram, see Fig. 6.10.
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Fig. 6.10 A virtual braid and the corresponding word.

Thus the main question is the word problem for the virtual braid group:

How can one recognize whether two different (regular) virtual braid dia-

grams β1 and β2 represent the same braid or not?

One can apply the virtual braid group relations to one diagram without

getting the other, and one does not know whether he has to stop and say

that they are not isomorphic or he has to continue.

In a natural way the problem of constructing complete invariants ap-

pears. A partial answer to this question is the construction of a virtual

braid group invariant, i.e. a function on virtual braid diagrams (or braid

words) that is invariant under all virtual braid group relations. In this case,

if for an invariant F we have F(β1) ̸= F(β2), then β1 and β2 represent two

different braids.

6.5.1 The construction of the main invariant

Let G be the free group with generators a1 . . . , an, t. Let Ei be the quotient

set of right residue classes {ai}\G for i = 1, . . . , n.

Definition 6.6. A virtual n-system is a set of elements {x1 ∈ E1, x2 ∈
E2, . . . , xn ∈ En}.

The aim of this subsection is to construct an invariant map F (non-

homomorphic) from the set of all virtual n-strand braids to the set of virtual
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n-systems.

Let β be a braid word. Let us construct the corresponding virtual n-

system F(β) step-by-step. Namely, we shall reconstruct the function F(βψ)
from the function F(β), where ψ is σi or σ

−1
i or ζi.

First, let us take n residue classes of the unit element of G: {e, e, . . . , e}.
Let ε be the unit braid word, set

F(ε) = {e, e, . . . , e}.

Now, let us read the word β. If the first letter is ζi, then all words

but ei, ei+1 in the n-system stay the same, ei becomes equal to t and ei+1

becomes t−1 (here and in the sequel, we mean, of course, residue classes, for

example, [t] and [t−1], but we write just t and t−1 for the sake of simplicity).

Now, if the first letter of our braid word is σi, then all classes but ei+1

stay the same, and ei+1 becomes a−1
i . Finally, if the first letter is σ−1

i , then

the only changing element is ei: it becomes ai+1.

The procedure for each next letter (generator) is the following. Denote

the index of this letter (the generator or its inverse) by i. Assume that the

left strand of this crossing originates from the point (p, 1), and the right

one from the point (q, 1). Let ep = P, eq = Q, where P, Q are some words

representing the corresponding residue classes from Ep, Eq. After that all

residue classes but ep, eq should stay the same.

If the letter is ζi, then ep becomes P · t, and eq becomes Q · t−1. If the

letter is σi, then ep stays the same, and eq becomes QP−1a−1
p P . Finally, if

the letter is σ−1
i , then eq stays the same, ep becomes PQ−1aqQ. Note that

these operations are well defined, i.e. they do not depend on the choice

of representatives of the corresponding residue classes, it can be checked

straightforwardly.

Actually, if we take the words alpP, a
m
q Q instead of the words P,Q,

we get: alpPt ∼ Pt, amq Qt
−1 ∼ Qt−1 in the first case and alpP ∼

P, amq QP
−1a−l

p a−1
p alpP = amq QP

−1a−1
p P ∼ QP−1a−1

p P in the second case.

In the third case we obtain alpPQ
−1a−m

q a−1
q amq P = alpPQ

−1a−1
q Q ∼

PQ−1a−1
q Q, amq Q ∼ Q.

Thus, we have defined the map F from the set of all virtual braid

diagrams to the set of virtual n-systems.

Theorem 6.6. The function F defined above is a braid invariant. Namely,

if β1 and β2 represent the same braid, then F(β1) = F(β2).

Proof. We have to demonstrate that the function F defined on virtual

braid diagrams is invariant under all virtual braid group relations. It suffices
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to prove that, for the words β1 = βγ1 and β2 = βγ2, where γ1 = γ2 is a

relation we have proved, we can also prove F(β1) = F(β2). During the

proof of the theorem, we shall call it the A-statement.

Indeed, having proved this claim, we also have F(β1δ) = F(β1δ) for

arbitrary δ because the invariant F(β1δ) (as well as F(β2δ)) is constructed
step-by-step, i.e. knowing the value F(β1) and the braid word δ, we easily

obtain the value of F(β1δ). Hence, for braid words β, δ and for each braid

group relation γ1 = γ2 we have F(βγ1δ) = F(βγ2δ). This completes the

proof of the theorem.

Now, let us return to the A-statement.

To prove the A-statement, we must consider all virtual braid group

relations. The commutation relation σiσj = σjσi, σiζj = ζjσi, and as well

ζiζj = ζjζi for |i − j| > 2, is obvious: All four strands involved in this

relation are different, so the order of applying the operation is immaterial.

The same can be said about the other commutation relations, involving one

σ and one ζ or two ζ’s.

Now let us consider the relation ζ2i = ε which is pretty simple too.

Actually, let us consider a braid word β, and let the word β1 be defined as

βζ2i for some i. Let F(β) = {P1, . . . , Pn}, F(β1) = {P ′
1, . . . , P

′
n}. Let p and

q be the numbers of strands coming to the crossing from the left side and

from the right side, respectively. Obviously, for j ̸= p, q we have Pj = P ′
j .

Besides, P ′
p = (Pp · t) · t−1 = Pp, P

′
q = (Pq · t−1) · t = Pq.

Now let us consider the case β1 = β · σi · σ−1
i (obviously, the case

β1 = βσ−1
i σi is quite analogous to this one).

As before, denote F(β) by {. . . Pi . . . }, and F(β1) by {. . . P ′
i . . . }, and

the corresponding numbers of strands by p and q. Again, we have P ′
j = Pj

for j ̸= p, q. Moreover, Pp = P ′
p by definition of F (since the pth strand

makes an overcrossing twice), and P ′
q = (PqP

−1
p a−1

p Pp)P
−1
p apPp = Pq.

Now let us check the invariance under the third Reidemeister move. Let

β be a braid word, β1 = βζiζi+1ζi, and β2 = βζi+1ζiζi+1. Let p, q, r be

the global numbers of strands occupying positions n, n + 1, n + 2 at the

bottom of the braid.

Denote F(β) by {P1, . . . , Pn}, F(β1) by {P 1
1 , . . . , P

1
n}, and F(β2) by

P 2
1 , . . . , P

2
n . Obviously, for any i ̸= p, q, r we have Pi = P 1

i = P 2
i . Direct

calculations show that P 1
p = P 2

p = Pp · t2, P 1
q = P 2

q = Pq and P 1
r = P 2

r =

Pr · t−2.

Now, let us consider the mixed move by using the same notation:

β1 = βζiζi+1σi, β2 = σi+1ζiζi+1. As before, P 1
j = P 2

j = Pj for

all j ̸= p, q, r. Now, direct calculation shows that P 1
p = Ppt

2, P 1
q =
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Pqt
−1, P 1

r = Prt
−1(Pqt

−1)−1a−1
q (Pqt

−1) = PrPqa
−1
q Pqt

−1 and P 2
p =

Ppt
2, P 2

q = Pqt
−1, P 2

r = PrP
−1
q a−1

q Pq.

Finally, consider the “classical” case β1 = βσiσi+1σi, β2 = βσi+1σiσi+1;

the notation is the same. Again, we have P 1
j = P 2

j = Pj for any j ̸= p, q, r.

Besides this, since the pth strand forms two overcrossings in both cases

then P 1
p = P 2

p = Pp. Then, P 1
q = PqP

−1
p a−1

p Pp, P
1
r = (PrP

−1
p a−1

p Pp) ·
(PqP

−1
p a−1

p Pp)
−1a−1

q (PqP
−1
p a−1

p Pp) = PrP
−1
q a−1

q PqP
−1
p a−1

p Pp; by con-

struction we have P 2
q = PqP

−1
p a−1

p Pp, P
2
r = PrP

−1
q a−1

q PqP
−1
p a−1

p Pp.

As we see, the final results coincide and this completes the proof of the

theorem. �

Thus, we have proved that F is a virtual braid invariant, i.e. for a given

braid the value of F does not depend on the diagram representing a braid

b. So, we can simply write F(b).

Remark 6.5. In fact, we can think of F as a function valued not in

{E1, . . . , En}, but in n copies of G: All these invariances were proved for

the general case of (G, . . . , G). The present construction of {E1, . . . , En} is
considered for the sake of simplicity.

6.5.2 Representation of virtual braid group

The above described invariant F gives a representation ψ of the group

VB(n) into the group of automorphisms of the free group Fn+1 with gen-

erators a1, . . . , an, t by (i = 1, . . . , n− 1):

ψ(σi) =


ai 7→ aiai+1a

−1
i ,

ai+1 7→ ai,

al 7→ al, l ̸= i, i+ 1,

t 7→ t,

ψ(ζi) =


ai 7→ tai+1t

−1,

ai+1 7→ t−1ait,

al 7→ al, l ̸= i, i+ 1,

t 7→ t.

(6.2)

From the immediate checking we get the following theorem.

Theorem 6.7. Let F(β) = {x1, . . . , xn} for a braid word β realizing the

permutation π. Then the mapping ai 7→ x−1
π(i)aπ(i)xπ(i), t 7→ t coincides

with the action ψ described above.

Thus the formula (6.2) gives a pure representation of the classical braid

group in the group of automorphisms of the free group.

This theorem is a proof of the fact that F is a well-defined invariant.
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6.5.3 On completeness in the classical case

In the case of classical braids let us define an n-system as the following

simplification of the notion of a virtual n-system. Let us consider the free

product G of n groups isomorphic to the group Z with generators a1, . . . , an.

Denote by E′
i the quotient set of left residue classes of the group G over

the group generated by {ai}, i.e. g1, g2 ∈ G represent the same element in

E′
i if and only if g1 = aki g2 for some k.

Definition 6.7. An n-system is a set of elements {x1 ∈ E′
1, . . . , xn ∈ E′

n}.

Definition 6.8. An ordered n-system is a pair: ⟨an n-system and a per-

mutation from Sn⟩.

In a natural way the invariant F is simplified to the invariant f taking

values in ordered n-systems: we “forget” the generator t. Herewith for the

case of classical braids there is no loss of information: For any classical

braid given by a word β the expression F(β) does not contain occurrences

of the variable t.

Thus, we associate with each classical braid given by a word β a set of

elements f(β) = {x1, . . . , xn}. Each element xi is defined up to left multi-

plication by some power of the generator ai. Therefore, the transformation

of generators ai → x−1
π(i)aπ(i)xπ(i) is well defined. Thus, we obtain an ac-

tion of the braid group on a free group; this action is known and called

the Hurwitz action. In [12] it was proved that the invariant f was com-

plete. Therefore, the Hurwitz action is faithful. From here we get that the

invariant f (and the invariant F) is complete in the case of classical braids.

6.5.4 First fruits

Like classical knots, classical braids (i.e. braids without virtual crossings)

can be considered up to two equivalences: classical (modulo only classical

moves) and virtual (modulo all moves). Now, by using the invariant F we

can prove that they are the same (as in the case of classical knots). This

fact is not new. It follows from [87].

Setting t = 1 in the invariant F and passing to the invariant f , which

is complete in the case of classical braids, we get a generalization of the

complete invariant f of classical braids to the case of virtual braids.

Thus, the natural map of the group of classical braids into the group of

virtual braids (taking σi to σi) is an inclusion. More precisely, we have the

following theorem.
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Theorem 6.8. Two virtually equivalent classical braids b1 and b2 are clas-

sically equivalent.

Proof. Since b1 is virtually equivalent to b2, we have f(b1) = f(b2). Now,

taking into account that f is a complete invariant on the set of classical

braids, we have b1 = b2 (in the classical sense). �

Analogous to the case of virtual knots, in the case of virtual braids there

exists a forbidden move, namely, σiσi+1ζi = ζi+1σiσi+1, see Fig. 6.11.

Fig. 6.11 A forbidden move for virtual braids.

Now, we are going to show that it cannot be represented by a finite

sequence of the virtual braid group relations.

Statement 6.1. A forbidden move (relation) cannot be represented by a

finite sequence of legal moves (relations).

Proof. Actually, let us calculate the values F(σ1σ2ζ1) and F(ζ2σ1σ2). In
the first case we have

{e, e, e} → {e, a−1
1 , e} → {e, a−1

1 , a−1
1 } → {e, a

−1
1 t, a−1

1 t−1}.

In the second case we have

{e, e, e} → {e, t, t−1} → {e, t, t−1a−1
1 } → {e, ta

−1
1 , t−1a−1

1 }.

As we see, the final results are not the same (i.e. they represent different

virtual n-systems); thus, the forbidden move changes a virtual braid. �

Remark 6.6. When passing from the invariant F to the invariant f (if we

put t = 1), we get f(σ1σ2ζ1) = f(ζ2σ1σ2). Therefore, the variable t feels

the forbidden move.
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Here we give two more examples showing the advantages of the invariant

F .
Consider the 3-strand braid b given by the word

β = ζ2σ
−1
2 ζ2σ1σ2ζ1σ1ζ1σ

−1
2 σ−1

1 .

Direct calculations show that for this braid F(β) ̸= F(ε). However, this

braid is not distinguished by the virtual Jones–Kauffman polynomial pro-

posed in [157]. More precisely, consider the link Cl(b) obtained as the

closure of b and the Kauffman polynomial X(Cl(b)) of this link. It is well

known that the Kauffman polynomial does not distinguish links which differ

from each other by the virtualization, see Fig. 4.2.

∼ ∼

Fig. 6.12 A pair of diagrams not distinguished by the polynomial.

The virtualization is expressed in the language of virtual braids. Thus,

it is easy to see that if for some braid we substitute σ±1
i for ζiσ

±1
i ζi, then

the closures of both braids will have the same Kauffman polynomial, see

Fig. 6.12.

So,

X(Cl(b)) = X(Cl(σ−1
2 σ1σ2σ1σ

−1
2 σ−1

1 )).

The transformed braid is trivial, so X(Cl(b)) = X(Cl(e)).

Now, we give another example of the strength of the invariant F . We

showed that the braid β = (σ2
1ζ1σ

−1
1 ζ1σ

−1
1 ζ1)

2 lay in the kernel of the Burau

representation B. It is easy to see that the invariant F feels non-triviality

of this braid.

6.5.5 Completeness for the case of two-strand braids

As we have shown above, the new invariant is stronger than the link coef-

ficient, sometimes it recognizes virtual braids, which cannot be recognized

by the Jones–Kauffman polynomial or by the Burau representation.
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Besides this, the restriction of the invariant F for the case of classical

braids (factorizing t = 1) coincides with the complete classical braid group

invariant f .

The invariant F gives us an example of a map from one algebraic object

(braid group) to another algebraic object (n copies of the free group or n

residue classes in free groups). However, this map is not homomorphic.

Nevertheless, it can be reconstructed to be the Hurwitz action, see (6.2).

Thus, in order to understand the strength of the invariant F , we are

going to establish some properties of this map.

From Theorem 6.7 we have the following theorem.

Lemma 6.1. If F(β1) = F(β2) for some braids b1, b2 given by words β1
and β2, then for any two braids a and c given by words α and γ we have

F(αβ1γ) = F(αβ2γ) (all braids are taken to have the same number of

strands).

The next step is how to describe all possible values of the invariant F .
In the general case, this problem is very difficult; we restrict ourselves only

to the case of n = 2 strands and, thereby, we classify these braids. However,

the group of virtual braids with two strands is organized very easily. It is

isomorphic to the group Z ∗ Z2.

Notation change: Instead of generators a1, a2 we shall write a, b;

instead of σ1, ζ1 we simply write σ, ζ.

Recall that the invariant f is obtained from F by “forgetting” the vari-

able t. Denote the free group with the generators a, b by G′, and let

E′
1 = {a}\G′, E′

2 = {b}\G′.

In the case of two strands, f is a map from VB(2) to (E′
1, E

′
2) or, simply,

to (G′, G′).

For a braid α, denote f(α) by (P (α), Q(α)).

First, let us consider some examples of virtual two-strand braid words

and values of f on them:

(1) for the trivial word we have {e, e};
(2) for σ we have {1, a−1};
(3) for σ−1 we have {b, 1};
(4) for ζ we have {1, 1}.

It is not difficult to prove the following theorem.

Theorem 6.9. Let β be a braid word (a virtual braid with two strands).

Then P (β)Q(β)−1 = akbl for some k, l.
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Proof. We shall use the induction on the number of crossings. For zero

crossings there is nothing to prove. Now, let β be a braid word with n

crossings, β′ = βα, whence α = ζ, σ or σ−1. Let P (β)Q(β)
−1

= anbm.

For α = ζ we have P (β′) = P, Q(β′) = Q(β). Thus P (β′)Q(β′)
−1

=

anbm.

For α = σ we have P 7→ P, Q 7→ QP−1a−1P , PQ−1 7→ a−1PQ−1 if β

is even, and we have Q 7→ Q, P 7→ PQ−1b−1Q, PQ−1 7→ PQ−1b−1 if β is

odd.

For α = σ−1 we have Q 7→ Q, P 7→ PQ−1bQ, PQ−1 7→ PQ−1b if β is

even, and we have P 7→ P, Q 7→ QP−1aP, PQ−1 7→ aPQ−1 if β is odd.

Thus, we have made the induction step that completes the proof of the

theorem. �

The condition on PQ−1 is, indeed, quite natural. It means that there

exists an element g ∈ G′ such that g ∈ [P ] ∈ E′
1 and g ∈ [Q] ∈ E′

2. Obvi-

ously, this element g is unique. Thus, g can be considered as an invariant

of the group VB(2).

Obviously, for any braid b with two strands represented by a word β

we have f(β) = f(βζ). Besides, for each even virtual braid b in VB(2)

there exists the unique braid bζ, corresponding to it. Thus, it is sufficient

to consider only the even subgroup EVB(2) of the group VB(2).

Theorem 6.10. The invariant g (as well as the invariant f) of the virtual

braid group EVB(2) is complete.

It suffices to prove that g is complete. To prove this theorem, we shall

need an auxiliary lemma.

Lemma 6.2. For any even two-strand braid words π, ρ ∈ VB(2) we have

g(πρ) = g(ρ)g(π) and g(π)−1 = g(π−1), thus g is an antihomomorphism

on VB(2).

Proof. First, let us note that the group VB(2) is a free group with two

generators ζσ and ζσ−1.

It can easily be checked that g(ε) = e, g(ζσ) = b−1, g(ζσ−1) =

a−1, g((ζσ)−1) = b, g((ζσ−1)−1) = a.

The assertion about antihomomorphism of the map g is evidently

checked on the generators ζσ and ζσ−1. �

Let us return to the proof of Theorem 6.10.
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Proof of Theorem 6.10. Lemma 6.2 shows that g is an antihomomor-

phic map mapping the free group EVB(2) to the free group with generators

a, b. This map takes generators ζσ, ζσ−1 to the generators a, b−1. Thus,

it has no kernel. So, g is a complete invariant of EVB(2), and so is f . �

Certainly, F is a complete invariant of the group EVB(2) too. Besides,

this invariant “feels” multiplication by ζ on the right side, thus F recognizes

all elements of VB(2) as well. In order to recognize whether a pair of

elements {x1 ∈ E1, x2 ∈ E2} is a value of the invariant F on some braid, we

just factorize them by the relation t = 1, take the preimage β (if this exists)

of the obtained couple {x′1, x′2} under f , and see whether F(β) = {x1, x2}
or F(βζ) = {x1, x2}.

The simplest example of {x1 ∈ E1, x2 ∈ E2} that is not a value of F
on a virtual braid is {b, a}. In this case PQ−1 = ba−1 which is not equal

to akbl for any integer numbers k, l.
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Chapter 7

Vassiliev’s Invariants and Framed
Graphs

7.1 Introduction

In the end of 1980s, Vassiliev [304, 305] and, independently, Goussarov [113]

gave a definition of a special sort of invariants of classical knots, which

were, in the sequel, called Vassiliev’s knot invariants or finite-type in-

variants. These definitions turned out to be extremely useful because all

known polynomial invariants of knots [99, 141], as well as quantum invari-

ants [259, 297], turned out to be expressible in terms of finite-type invari-

ants, see [17, 28]. Vassiliev’s invariants can be valued in any abelian group.

In this chapter we deal with Vassiliev’s knot invariants valued in Q.

At the very beginning it turned out to be clear that Vassiliev’s knot

invariants are closely connected to functions on chord diagrams of some

special sorts, so-called weight functions (see Sec. 7.2): with each invariant

one associates such a function. Thus, the following natural question arose:

Is it true that all weight systems generate Vassiliev’s invariants?

The work by Kontsevich [184] allowed one to understand the structure

of Vassiliev’s knot invariants. The integral formula suggested by Kontse-

vich leads to the universal Vassiliev–Kontsevich invariant which restores

the initial invariant of knots from a given weight system. In this sense the

Kontsevich integral is equivalent to the collection of all Vassiliev’s invari-

ants. As it turned out (see, e.g. [27]) the Kontsevich integral was universal

also for quantum invariants of knots. From this, one can see that quantum

invariants are not stronger than Vassiliev’s knot invariants (in the paper

by Vogel [311], it is shown that they are strictly weaker, i.e. in this pa-

per explicit examples of Vassiliev’s knot invariants are given which are not

expressible in terms of quantum invariants). The combinatorial approach

to the Kontsevich integral turned out to be possible after the work by Le
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and Murakami [192], who gave a combinatorial definition of the Kontsevich

integral for classical knots (nevertheless, these formulae are not completely

explicit because they rely on Drinfeld’s associator which needs additional

calculations), for more details, see [259].

After this the combinatorial description was extended to a wider class

of knots, in particular, to knots in thickened surfacesM×I with boundary;

this was done in the paper by Lieberum [196] and in [8, 9].

From reviews devoted to the theory of Vassiliev’s knot invariants (of

classical) knots, we recommend the paper by Bar-Natan [17].

After Kontsevich’s work, it became clear that there should be some com-

binatorial approach to all Vassiliev’s knot invariants. This combinatorial

approach was explicitly formulated in the paper by Polyak and Viro [266]

for some particular cases; after that the question of the existence of such

combinatorial formulae for all Vassiliev knot invariants of classical knots

arose. A combinatorial formula is a formula counting a linear combina-

tion of the algebraic number of occurrences of some sample diagrams as

subdiagrams in a given Gauss diagram.

The invention of virtual knot theory made a new prospective to the the-

ory of finite-type invariants. One should especially mention the paper by

Goussarov, Polyak and Viro [114]. The main result of this paper is Gous-

sarov’s theorem on the existence of combinatorial formulae for all Vassiliev

invariants of classical knots, see also Sec. 7.3. It is worth to mention that

among Gauss diagrams which appear in such formulae one cannot do it

without non-realizable Gauss diagram, i.e. those Gauss diagrams not cor-

responding to any classical knot. In this paper, the authors were led to the

notion of virtual knot in a way different from the usual Kauffman approach.

In the paper [306], Vassiliev made a justification of this result answering

the question about the existence of combinatorial formulae with integral

coefficients.

The existence of virtual knot diagrams in combinatorial formulae en-

couraged the authors of [114] to search for a construction of Vassiliev’s knot

invariants for virtual knots; in fact, this was another approach to the defi-

nition of virtual knots themselves, where a finite-type invariant was treated

as an invariant expressible by an invariant having combinatorial formula

counting occurrences of Gauss diagrams with appropriate coefficients.

In the same paper, the Polyak algebra naturally arose. It is the universal

algebra from which all invariants of finite type for virtual links appear;

elements of this algebra are, in fact, linear combinations of virtual links

themselves (see, e.g. [60]).
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Such a definition of the (Vassiliev) finite-type invariant for virtual knots

turns out not to be very convenient, though such finite-type invariants

can be easily classified. The point is that any finite-type invariant (in

the sense of Polyak and Viro) of virtual knots restricts to a finite-type

invariant of classical knots, but not every extension of classical finite-type

invariants to virtual finite-type invariants is representable in the Polyak

algebra. For example, any of the coefficients of the Jones polynomial are

not representable [59].

As a reply to this work, one can consider the last version of the pioneer-

ing work by Kauffman [158] where he suggested a more formal approach to

finite-type invariants, by using the notion of rigid isotopy.

It became clear that many polynomial invariants of rigid knots fitted into

Kauffman’s conception, and led to many finite-type invariants, see [8, 9].

However, the set of virtual knots is much larger than the set of classical

knots, and as it turned out, on the set of virtual knots one could easily

find counterexamples to some problems about Vassiliev’s knot invariants,

yet unsolved in the classical case.

For example, Vassiliev’s knot invariants of virtual knots allow one

to distinguish non-invertibility of knots (this was first mentioned by

Sawollek [275]). For detecting non-invertibility by means of Vassiliev’s in-

variants in the classical case, see, e.g. [57, 73]. Actually, in the virtual case

even degree zero invariants detect non-invertibility, since flat knots (and

even free knots) are non-invertible in the general case, see Chap. 8.

It is also worth to mention the following works related to Vassiliev’s

invariants.

It is known that there are no degree one Vassiliev invariants. For virtual

knots, however, the space of degree one Vassiliev invariants is infinite di-

mensional. In [122] a sequence of degree one Vassiliev invariants of virtual

knots is constructed.

In our book we consider the combinatorial description of Vassiliev’s

invariants. There is a topological description of these invariants. More

precisely, in [312] it is shown that Vassiliev’s invariants of classical knots

can be identified with the Taylor towers of the configuration space of knots

arising from Goodwillie–Weiss calculus.

The main object of the book is a virtual knot. A virtual knot can be

considered as a knot in a thickened surface. Therefore, it would be interest-

ing to define Vassiliev’s invariant via topological point of view. In [91, 116]

finite-type invariants for knots in thickened surface and combinatorial for-

mulae for them are considered.
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There is a connection between Vassiliev’s invariants and Milnor’s invari-

ants. For example, in [117] a formula for computing the Milnor (concor-

dance) invariants from the Kontsevich integral is obtained.

In Chap. 9 we consider free links and parities. Free links are a signifi-

cant simplification of flat links considered in previous chapters. There are

works related to finite-type invariants of flat links (see [136]) and free links

(see [108]). In [60] it is shown that there are finite-type invariants arising

from parity.

As we shall further see, a finite-type invariant gives rise to a functional

on arrow diagrams. In [17, 18, 195] the authors consider Lie algebra weight

systems for arrow diagrams.

The structure of the chapter is the following. First we give a definition of

Vassiliev’s invariants of classical knots and of J-invariants of planar curves,

and also two definitions of the finite-type invariants for virtual knots, the

one after Goussarov, Polyak and Viro, and the one after Kauffman. Af-

ter that we formulate the results of [114] and then we discuss finite-type

invariants after Kauffman.

In Sec. 7.5 we prove that the polynomial Ξ defined in Chap. 4 can

be expanded as a power series, and leads to a triparametric series of the

Vassiliev knot invariants (Theorem 7.5).

After that we discuss the connection between virtual knots, the Jones–

Kauffman polynomial and finite-type invariants of classical knots (it turns

out that the Kauffman bracket for virtual knots leads to a function on

chord diagrams, which, in turn, leads to a series of finite-type invariants of

classical knots).

We conclude the chapter by the description of a relation between finite-

type invariants and framed 4-graphs. First, we give an important result

due to the second-named author about the connection between rotating

circuits and transverse circuits for framed 4-graphs. Rotating circuits play

a central role in various combinatorial problems of knot theory. Using ro-

tating circuits, we prove one of the central results of the chapter due to the

first-named author: the proof of Vassiliev’s conjecture on realizability of

chord diagrams by planar singular knots (Theorem 7.13). This conjecture

was motivated by the problem of existence of combinatorial formulae for

Vassiliev’s knot invariants, solved by Vassiliev in [306]. To prove the Vas-

siliev conjecture we use the combinatorial techniques described in previous

chapters (atoms, d-diagrams, the source–sink structure). After that we in-

vestigate the embedding problem for framed 4-valent graphs in arbitrary

2-surfaces.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 7. Vassiliev’s Invariants and Framed Graphs 285

7.2 The Vassiliev invariants of classical knots and J-

invariants of curves

In this chapter all links are assumed to be oriented, unless otherwise spec-

ified.

Definition 7.1. A singular k-component link of order n is an immersion

of a disjoint collection of k oriented circles in R3, whose singularities are

all simple transverse double points, and there are exactly n such points.

Singular links are considered up to a natural isotopy, i.e. a map from the

ambient space R3 to itself preserving the orientation.

With each singular k-component link we can naturally associate a chord

diagram on k oriented circles. Every circle parametrizes an embedding of

one of the link components. On these circles we connect by chords (or

equivalently, mark by S0 ⊂ S1) those pairs of points having the same

image in R3, see Fig. 7.1.

Fig. 7.1 A singular knot diagram and the corresponding chord diagram.

Every singular point (vertex) of a singular knot can be resolved in one

of two ways: the positive one 7→ and the negative one 7→ .

Thus, with each singular link and a selected double point of it we associate

two singular links of lower genus, herewith these two resolutions are well

defined up to isotopy.

Let f be an invariant of classical links valued in a certain abelian group.

We shall consider the formal linear space of links with coefficients in this

abelian groups, and extend all invariant functions by linearity. We can
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extend the invariant f to singular links by the following formula:

f ′( ) = f( )− f( ). (7.1)

This formula means that we define the derivative f ′ of the invariant f as

a function on singular links of order one, where the value of the derivative

on a singular link is decreed to be equal to the difference between the two

values on two links obtained from the initial one by the positive and the

negative resolutions, respectively. The formula (7.1) is called the Vassiliev

relation.

If we have the derivative f ′ of the function f , we can define the second

derivative f ′′ of f on singular links of the second order. We use the same

formula (7.1) as

f ′′( ) = f ′( )− f ′( ),

assuming that we deal with three singular links which coincide outside

some small neighborhood of a singular crossing of one of these links; inside

this neighborhood the second link is smoothed positively, the third link is

resolved negatively, and outside this small neighborhood all three links have

one more singular points. We can define the third derivative on singular

links of order three, the fourth derivative on singular knots of order four,

etc.

Remark 7.1. It is not difficult to show that the value of the extension,

i.e. the definition of derivatives, is independent of the ordering in which the

singular crossings are resolved.

Definition 7.2. One says that an invariant f is a (Vassiliev) finite-type

invariant of order at most n if its (n+ 1)th derivative f (n+1) is identically

equal to zero on singular links with n+1 singular crossings. Herewith, this

invariant has order exactly n if it is an invariant of order at most n but is

not an invariant of order at most (n− 1).

Denote the linear space of Vassiliev’s invariants of order at most n by

Vn. There is an obvious inclusion, called the Vassiliev filtration, V0 ⊂ V1 ⊂
V2 ⊂ · · · .

Definition 7.3. For a Vassiliev invariant f of order n its nth derivative

f (n) is called the symbol of f .

Since the Vassiliev relation deals with triples with (singular) links having

the same number of components, it makes sense to speak separately about
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the Vassiliev invariants for every fixed number of components. For example,

one may talk about the Vassiliev invariants of knots, about the Vassiliev

invariants of two-component links, etc.

It turns out that the symbol contains an important piece of information

about the invariant itself. Namely, the following theorem is evident.

Theorem 7.1 (Vassiliev). Let v1 and v2 be two Vassiliev invariants of

order n on k-component links having the same symbol. Then the difference

v1 − v2 is a Vassiliev invariant of order at most n− 1.

Remark 7.2. This theorem is also valid for virtual links (for any of the

definitions to be given ahead).

Thus, one can consequently study the structure of the space of the

Vassiliev invariants Vn, knowing Vn−1 and the structure of the space of

symbols.

Let v be a Vassiliev invariant of order n (on links with some fixed number

of components k). Then v(n+1) = 0; the latter means that for every two k-

component link diagrams which differ by one crossing change ←→
and having order n, we have v(n)( ) = v(n)( ).

Thus, the value of the symbol of the invariant v does not depend on the

structure of classical crossings of the corresponding singular link diagram

(of order n). The only thing it depends on is the combinatorial structure

of singular crossings on the link components.

The latter is represented by a chord diagram on k circles as follows (a

chord diagram on one-dimensional manifolds was defined in Definition 4.2).

A chord diagram consists of k free-standing oriented circles, preimages of

the link components, herewith two preimages of the same singular crossing

are connected by a chord.

We shall depict these chord diagrams on the plane, herewith we shall

not point out orientations of circles by considering them to be oriented

counterclockwise manner.

An example of a chord diagram on two circles is shown in Fig. 7.2.

Such a chord diagram is considered up to combinatorial equivalences of

graphs on which there are k oriented cycles.

Thus, the symbol of an nth order Vassiliev invariant on links with k

components is given by its values on chord diagrams on k circles with n

chords or, more precisely, by a linear function on the linear space of these

diagrams.
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Fig. 7.2 A chord diagram on two circles.

It turns out that there are linear functions on this linear space which

are not symbols of Vassiliev invariants.

Namely, each function which can play the role of a symbol has to sat-

isfy the 1T -relation (one-term relation) and the 4T -relation (four-term re-

lation).

The 1T -relation is defined as follows. If we have a chord diagram

C = with any number of chords and a small solitary chord, then each

symbol evaluated at this diagram equals zero. This relation follows directly

from (7.1).

The 4T -relation looks like as follows. For each symbol v(n) of an invari-

ant v of order n the following relation holds:

v(n)( )− v(n)( )− v(n)( ) + v(n)( ) = 0. (7.2)

This relation means that for any four diagrams having n chords, where n−2
chords (not shown in the formula (7.2)) are the same for all diagrams and

the two others look as shown above, the above equality takes place. To see

this relation one should consider one singular point and the two ways in

which one can pass a vertical strand containing a singular point, through

this point, see Fig. 7.3.

Analogously, the 4T -relation is defined for links; in this case we have

four diagrams on several circles, these four diagrams differ by a mutual

position of a pair of chords, the ends of which lie in distinguished three

parts (these parts, generally speaking, can belong to distinct circles).

Theorem 7.2 (Kontsevich–Vassiliev [184]). A linear function f on the

linear space of chord diagrams with n chords on k circles defines a symbol

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 7. Vassiliev’s Invariants and Framed Graphs 289

Fig. 7.3 The 4T -relation.

of a Vassiliev invariant if and only if it satisfies the 1T - and 4T -relations.

This theorem gives a full description of the space Vn/Vn−1. There is

an isomorphism Vn/Vn−1
∼= An, where An is the linear space of chord

diagrams with n chords factored by the 1T - and 4T -relations.

Thus, any linear function on chord diagrams with a fixed number of

circles, which satisfies the 1T - and 4T -relations, defines the symbol of a

Vassiliev invariant.

The consideration of linear functions on chord diagrams which satisfy

the 4T -relation, but they possibly do not satisfy the 1T -relation, is also

important. These functions are called weight systems (see, e.g. [17]).

Sometimes by a weight system one means a function satisfying also the

1T -relation. Any such weight system is the symbol of a Vassiliev invariant.

A weight system (without the 1T -relation) is connected with finite-order

invariants of framed links with even framing.

There is a theory parallel to the theory of Vassiliev invariants of knots,

i.e. a theory of J-invariants of finite order of plane generic immersed curves.

An idea of considering J-invariants belongs to Arnold [10, 11], and for more

details see [190].

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

290 Virtual Knots: The State of the Art

Note that before the paper by Lando [190] there were J-invariants

corresponding to resolutions of direct self-tangency points (so-called J+-

invariants) and J-invariants corresponding to resolutions of inverse self-

tangency points (J−-invariants). Goryunov [112] gave a complete descrip-

tion of J+-invariants of finite order; he noted also that J−-invariants ad-

mitted the similar description.

In the given case curves immersed in the plane without self-tangency

points are an analogue of knots, and sets of curves having a finite number

of self-tangency points are an analogue of singular links. The combinatorial

location of self-tangency points is also given by a chord diagram, see Fig. 7.4.

Fig. 7.4 A diagram with self-tangency points and the framed chord diagram corre-
sponding to it.

Herewith there are essential different types of self-tangency points: di-

rect and inverse, see Fig. 7.5.

Fig. 7.5 Direct and inverse self-tangency points.

Let us set the sign plus to direct self-tangency points, and the sign minus

to inverse self-tangency points. We shall also denote inverse self-tangency
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points by thick chords, and direct self-tangency points by dashed chords.

Therefore, for studying finite-order invariants of plane curves one should

consider framed chord diagrams with two types of chords: chords with

framing 0 (denoted by a thick line) and chords with framing 1 (denoted by

a dashed line) (see Chap. 4).

As well as in the case of Vassiliev invariants, the value of the deriva-

tive of an invariant for a curve with a tangency point is defined by the

difference of the values of the invariant at curves close to the initial one

(see Fig. 7.6). The symbol of an invariant of nth order is analogously de-

fined: It is a value of its nth derivative. This value is a weight function

on framed chord diagrams. Functions on framed chord diagrams originat-

ing from J-invariants of finite order of plane curves have to satisfy some

relations, called generalized 4T -relations, see Fig. 7.7.

=                         -

Fig. 7.6 Solution of a singularity for curves.

- -=

- -=

- += -

Fig. 7.7 Generalized 4T -relation.
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The generalized 4T -relation consists of four framed chord diagrams hav-

ing all chords, except two of them, being situated in the same manner, and

the two chords are situated as it is shown in the 4T -relation. Note that

one of these two chords can be considered to be “immovable”. Its framing

and location are the same at each of the four diagrams taking part in the

relation (this chord is shown in diagrams in Fig. 7.7 by an inclined line).

Herewith there are two essential different cases. In the first of them (the

usual 4T -relation without dashed chords is a particular case) the immovable

chord is thick (with framing 0). In this case the movable chord has the same

type in each of the four chord diagrams (it is either thick or dashed, see

upper and middle parts of Fig. 7.7). In the second case the immovable

chord is dashed. Under passing from the right part to the left part the

movable chord changes its type, and all expressions change the sign, see

the lower picture in Fig. 7.7.

Let us give more accurate definitions. We consider generic immersions of

a circle in the plane up to an isotopy of the plane containing the curve, dif-

feomorphisms of the circle and passages of the curve through triple points.

Invariants of curves under such conditions are called J-invariants.

Under an arbitrary deformation of the curve, besides a permitted defor-

mation which allows the curve to pass triple points, there exists one more

deformation which allows the curve to pass through a tangency point. This

feature is analogous to the situation of passing through a singular crossing.

This is a starting point for defining J-invariants of finite order of plane

curves. Namely, let us consider the set of all plane curves up to isotopies

and passings through triple points. Consider singular curves, i.e. curves

with finite number of tangency points. In this case one can define an

equivalence relation allowing a curve to have tangency points on the set

of singular curves, see Fig. 7.6.

Herewith each J-invariant of plane curves is extended to some function

on curves having tangency points. A J-invariant is called an invariant of

order n if its value on curves with n+ 1 tangency points equals zero.

A location of tangency points on a diagram is described by a framed

chord diagram.

Analogously to the case of Vassiliev’s invariants of knots, a generalized

weight function on framed chord diagrams, i.e. a function satisfying the

generalized 4T -relation, is constructed for J-invariants of order n of plane

curves.

Theorem 7.3 (Lando [190]). Any function on framed chord diagrams of
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order n, obtained from a J-invariant of order not bigger than n, satisfies

the generalized 4T -relation (to all versions).

It is not known yet whether an analogous Kontsevich theorem is true

for J-invariants of curves, i.e. whether it is true that for any generalized

weight function one can restore a J-invariant of finite order. For more

details see [190].

Thus, finding a weight system for chord diagrams or framed chord di-

agrams is an important problem. In the sequel we shall show that some

particular solutions of these problems appear very unexpectedly by study-

ing the Kauffman bracket polynomial of classical and virtual links, as well

as by encoding knots with atoms and d-diagrams.

7.3 The Goussarov–Polyak–Viro approach to a definition of

Vassiliev invariant for virtual knots

First, we shall give the definitions we are going to work with, see also [114].

We introduce the semivirtual crossing. This crossing still has an overpass

and an underpass. In a diagram, a semivirtual crossing is shown as a

classical one but encircled. Semivirtual crossings are related to the crossings

of other types by the following formal relation:

= - .

Let K be a virtual knot diagram with n classical crossings, and

let {v1, v2, . . . , vn} be different classical crossings of it. For an n-tuple

{σ1, . . . , σn} of zeros and ones, let Kσ be the diagram obtained from K

by switching all vi’s with σi = 1 to virtual crossings. Denote by |σ| the
number of ones in σ. The formal alternating sum∑

σ

(−1)|σ|Kσ

is called a diagram with n semivirtual crossings.

Denote by K the set of all virtual knots. Let ν : K → G be an invariant

of virtual knots with values in an abelian group G. Extend this invariant

to Z[K] linearly.
The next definition is due to Goussarov, Polyak and Viro.

Definition 7.4. We say that ν is an invariant of finite type or a finite-type

invariant if for some n ∈ N, it vanishes on any virtual knot with more than
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n semivirtual crossings, see [114]. The minimal such n is called the degree

of the invariant ν.

The formal Vassiliev relation in the form = − together with

the relation defining a virtual crossing implies the relation

= .

Remark 7.3. Note that singular knots are not considered here as indepen-

dent objects having geometrical sense of knots with some singularities, but

just as linear combinations of simpler objects.

It is obvious that for any finite-type invariant ν of the virtual theory in

the sense described above, its restriction for the case of classical knots is a

finite-type invariant in the ordinary sense.

However, not every classical finite-type invariant can be extended to

a finite-type invariant in this virtual sense. For instance, there are no

invariants of order two for (compact) virtual knots, see, for more de-

tails, [114, 259].

Starting from the formal relation defining a virtual crossing and the

Vassiliev relation, Polyak constructed the Polyak algebra [114] that gave

formulae for all finite-type invariants of virtual knots. Besides this, they

give explicit diagrammatic formulae for some of them and also construct

some finite-type invariants for long virtual knots.

Following Goussarov, Polyak and Viro [114], let us describe diagram-

matic formulae for classical long knots. We need some definitions and

constructions.

For a classical (virtual) long knot diagram we can construct the Gauss

diagram, i.e. the line parametrizing the knot together with signed arrows

connecting the preimages of each classical crossing.

Definition 7.5. An arrow diagram (on a circle) is an abstract diagram,

which consists of an oriented circle with pairs of distinct points connected

by dashed arrows. Each arrow is equipped with a sign. The group of arrow

diagrams A is the free abelian group generated by all arrow diagrams.

Denote the set of all Gauss diagrams (non-realizable diagrams are al-

lowed) by D (here all diagrams have thick arrows). Starting from any Gauss

diagram we get an arrow diagram just by making all its arrows dashed. The

extension of this map to Z[D] defines a natural isomorphism i : Z[D]→ A.
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There is another important map I : D → A, assigning to a Gauss di-

agram D the sum of all its subdiagrams and then making each of them

dashed:

I(D) =
∑

D′⊂D

i(D′)

(here D′ is a subdiagram of D if all the arrows of D′ belong to D, and we

write D′ ⊂ D). Extend I to Z[D] by linearity.

The following proposition is left to the reader as an exercise.

Proposition 7.1 ([114]). There exists the inverse map I−1 : A → Z[D]
which is defined on the generators of A by the formula:

I−1(A) =
∑
A′⊂A

(−1)|A−A′|i−1(A′),

where |A − A′| is the number of arrows of A which do not belong to A′.

Therefore, I : Z[D]→ A is an isomorphism.

Since the group A has a distinguished basis, consisting of arrow dia-

grams, there is a natural orthonormal scalar product (·, ·) on A. Namely,

on the generators of A we put (A1, A2) to be 1, if A1 = A2, and 0 other-

wise, and then extend (·, ·) bilinearly. This allows us to define the pairing

⟨·, ·⟩ : A×D → Z by putting

⟨A,D⟩ = (A, I(D))

for any D ∈ D and A ∈ A. Informally speaking, we count subdiagrams of

D with weights, where the weight of a diagram D′ is the coefficient of i(D′)

in A.

Let us consider the case of (classical) long knots. The following theorem

shows that any Vassiliev invariant can be calculated as a function of arrow

polynomials evaluated on the knot diagram.

Theorem 7.4 (Goussarov et al. [114]). Let G be an abelian group, and

let ν be a G-valued invariant of degree n of classical long knots. Then there

exists a function π : A → G such that ν = π ◦ I and π vanishes on any

arrow diagram with more than n arrows.

We immediately get the following corollary.

Corollary 7.1 ([114]). Any integer-valued finite-type invariant of degree

n of classical long knots can be presented as ⟨A, ·⟩, where A is a linear

combination of arrow diagrams on a line with at most n arrows.
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Let us prove Theorem 7.4 by following along the lines of [114, Theo-

rem 3.A]. Consider long virtual singular knot diagrams, i.e. we have three

types of crossings. We equip each double point with a sign as follows. The

branches at a double point are ordered and the sign is the intersection

number of the branches (taken in this order).

On the Gauss diagram of a long singular knot, each double point is

shown by a dashed chord equipped with the above sign.

Definition 7.6. A diagram D′ is called a subdiagram of a diagram D if D′

consists of all the chords and some arrows of D.

Definition 7.7. A diagram of a classical long knot is descending if when

going along the knot in the positive direction we pass first along overcrossing

and then undercrossing. In terms of Gauss diagrams it means that all the

arrows are directed to the right.

Let us now extend this notion to virtual long knots with double points.

We still require that all the arrows are directed to the right. There is also

an additional condition: There is no chord whose left endpoint neighbors

with an endpoint of an arrow from left. In Fig. 7.8 forbidden situations are

shown.

Fig. 7.8 Forbidden situations.

It is not difficult to see that a classical long knot with a Gauss diagram

of this type can be presented by a diagram such that

(1) all the double points are in the left half-plane,

(2) all the crossings are in the right half-plane,

(3) the intersection of the diagram with the left half-plane is an embedded

tree,

(4) the intersection with the right half-plane is an ordered collection of

arcs; each of them is descending and lies below all the previous ones.

An example of such a diagram is given in Fig. 7.9.

It is easy to see that the chord part of the Gauss diagram of a descending

classical long knot diagram with singular crossings determines the isotopy
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+- +- - - +- + -++ -

Fig. 7.9 A descending classical long knot diagram and its Gauss diagram.

class of the classical long knot completely. As a result, we get the following

lemma.

Lemma 7.1 ([114]). Let D1 and D2 be Gauss diagrams of descending clas-

sical long knots (with singular crossings), and let ν be an invariant of long

knots. If the chord parts of D1 and D2 coincide, then ν(D1) = ν(D2).

Remark 7.4. Lemma 7.1 is not true for descending virtual long knots with

singular crossings. Namely, we cannot determine a virtual long knot with

singular crossings by just knowing the chord part of the Gauss diagram

of its descending diagram. Therefore, the proof of the Goussarov theorem

given above cannot be straightforwardly generalized for the virtual case.

The next step of the proof is to show that the Gauss diagram of a classi-

cal long knot with double points can be represented as a linear combination

of descending diagrams. There is an algorithm allowing us to do this. This

algorithm consists of steps of two types. At each step, one inspects the

Gauss diagram from the left to the right looking for the first fragment

where the diagram fails to be descending. Such a fragment may either be

a bad arrow or a bad chord.

Definition 7.8. An arrow is bad if it is directed to the left and a bad chord

is depicted in Fig. 7.8.
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In the case of a bad arrow the step of the algorithm is the replacement

of the diagram with the sum of two diagrams according to the formula

.

In terms of Gauss diagrams this replacement is as follows:

α α α

α

.

In the case of a bad chord the step of the algorithm is the pulling of

the crossing over or under the appropriate branch by isotopy, see Fig. 7.10

(knot diagrams) and Fig. 7.11 (Gauss diagrams).

Fig. 7.10 The case of a bad chord.

Denote by Dn the free abelian group generated by Gauss diagrams of

virtual long singular knots with at most n chords (note that Z[D] = D0 ⊂
Dn). We shall think of a step of the algorithm as an operator acting on

Dn. Denote this operator by P . By the definition of P , for any descending

Gauss diagram D we have P (D) = D.

Lemma 7.2 ([114]). For any diagram D ∈ Dn there exists m such that

Pm(D) is a sum of descending diagrams.

This lemma can be proved by considering the number l(D) of chords

of D which have one of the endpoints to the left of the first bad fragment.

It is not easy to see that this number does not decrease after applying the

operator P , and the number of such chords in a non-descending diagram is

at most n. Recall that we deal with an invariant of degree n, the diagrams

with more than n chords are disregarded. Thus, when one applies a step

of the algorithm to a bad arrow in a diagram with n chords, the summand
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αα α αα α

αα α αα α

αα α αα α

αα α αα α

αα α αα α

αα α αα α

Fig. 7.11 The case of a bad chord in terms of Gauss diagrams.

with n+1 chords disappears. To complete the proof of the lemma one can

show that the diagram cannot change infinitely many times in subsequent

iterations of P without changing l.

Let us extend an invariant ν of degree at most n to all virtual knot

diagrams.

Denote by Dre
n the subgroup of Dn generated by Gauss diagrams of

classical long singular knots. Any finite-type invariant of classical knots of

degree at most n extends to Dre
n by linearity. The next lemma is obvious.

Lemma 7.3 ([114]). The operator P : Dn → Dn preserves Dre
n . The re-

striction of P to Dre
n preserves any invariant of degree at most n.

Let us first consider virtual descending long knot diagrams. By turning

all the virtual crossings of such a diagram D into appropriate classical ones,
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we get a descending long classical knot diagram Dre with the same double

points. Put ν(D) = ν(Dre) (note that this operation is not well defined on

virtual knots, it is defined just on diagrams). By Lemma 7.1, ν(Dre) does

not depend on the choice of Dre for classical knots.

Using Lemma 7.2, for any virtual diagram D we can find a natural

number m such that Pm(D) is a sum of descending diagrams. Put ν(D) =

ν(Pm(D)). Lemma 7.3 implies that for classical diagrams this definition

coincides with the initial one. Since Pm+1(D) = Pm(D) we get

Lemma 7.4 ([114]). The operator P : Dn → Dn preserves ν, i.e. ν◦P = ν.

Let us construct the map π : A → G by defining it as the composition

A I−1

−→ Z[D] ⊂ Dn
ν−→ G.

Then for any diagram D of a classical long knot we have

ν(D) = π(I(D)) =
∑

D′⊂D

π(i(D′)).

In order to prove the Goussarov theorem, we must show that π(A) = 0

for any arrow diagram A with more than n arrows.

Denote by An the free abelian group generated by diagrams on the line

containing signed dashed arrows and at most n dashed chords. The maps

i, I : Z[D] → A defined on Gauss diagrams without dashed chords extend

to isomorphisms i, I : Dn → An (the chord parts of the diagrams remain

untouched under both i and I).

Let us now define an operator Q : An → An, which is an analogue of

the operator P .

Definition 7.9. A diagram A ∈ An is called descending if i−1(A) is de-

scending. A fragment of A is called bad if the corresponding fragment of

i−1(A) is bad.

Put Q(A) = A if A is descending. Otherwise, find the leftmost bad

fragment of A. If it is a bad arrow, we define Q(A) = iP i−1(A). If it is a

bad chord, put Q(A) =
∑
A′ where the sum runs over all the subdiagrams

of iP i−1(A), each of which contains all the arrows not shown in Fig. 7.11,

all the chords and at least one more arrow. In other words, we sum up

all seven subdiagrams of iP i−1(A) which contain all the arrows and chords

also belonging to A plus at least one more arrow. Here we need that the

number of arrows is not decreased by Q, though this map is not invariant.

The next lemma is obvious.
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Lemma 7.5 ([114]). For any diagram A ∈ An, the total number of arrows

and chords in each diagram appearing in Q(A) is at least the total number

of arrows and chords in A.

The following lemma is analogous to Lemma 7.2.

Lemma 7.6 ([114]). For any diagram A ∈ An, there exists m such that

Qm(A) is a sum of descending diagrams.

Lemma 7.7 ([114]). For any non-descending diagram D ∈ Dn, there is a

splitting I(D) = U + V with U, V ∈ An such that

I(P (D)) = Q(U) + V (7.3)

and U = i(D)+U ′, where U ′ is a sum of diagrams each of which has fewer

arrows than D.

Proof. Let U be the sum of all the subdiagrams of i(D) which include

the first bad fragment of i(D). These subdiagrams contain the same bad

fragment as the whole diagram i(D). Here Q(U) is the sum of all subdia-

grams of diagrams in iP (D) which are not subdiagrams of i(D). Then V is

the sum of the subdiagrams of i(D) which do not contain the arrow from

the bad fragment and these subdiagrams of i(D) remain unchanged, when

one applies P to D. Thus I(P (D)) = Q(U) + V . �

Though the operator Q is not invariant under the Reidemeister moves

(sometimes we remove one term from the summation), the following lemma

holds.

Lemma 7.8 ([114]). The operator Q : An → An preserves π, i.e. π ◦Q =

π.

Proof. Let A ∈ An be a diagram and D = i−1(A). Let us prove that

π(Q(A)) = π(A) by induction on the number of arrows in A.

The induction base. If this number equals 0, then A is descending and

Q(A) = A by definition of Q.

The induction step. Suppose inductively that the statement is correct

for any diagram whose number of arrows is less than the number of arrows

in A, and let us prove the statement for A. Apply π to the equality (7.3):

π ◦Q(U) + π(V ) = π ◦ I ◦ P (D) = ν ◦ P (D).

Since the operator P preserves ν, we get

ν ◦ P (D) = ν(D) = π ◦ I(D) = π(U) + π(V ).
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Thus π ◦Q(U) = π(U). By the induction assumption, π ◦Q(U ′) = π(U ′),

where U ′ = U − A, and we obtain the desired equality π(Q(A)) = π(A).

This completes the induction step. �

Lemma 7.9 ([114]). Let A ∈ An be a descending diagram such that the

total number of arrows and chords in A is greater than n. Then π(A) = 0.

Proof. Let D = i−1(A). We have

π(A) = ν ◦R(A) =
∑

D′⊂D

(−1)|D−D′|ν(D′).

Since any subdiagram D′ of D is descending and has the same chord

part, ν(D′) = ν(D) by the construction of ν. Therefore,

π(A) =

( ∑
D′⊂D

(−1)|D−D′|

)
ν(D).

As one can easily check by induction on the number of arrows in A,

the sum in parentheses is equal to 1 if A has no arrows and is 0 otherwise.

Since all the diagrams in An have at most n chords and the total number of

arrows and chords in A is greater than n, it has at least one arrow. Hence

π(A) = 0. �

Lemma 7.10 ([114]). Let A ∈ An be a diagram such that the total number

of arrows and chords in A is greater than n. Then π(A) = 0.

Proof. Let m be the number which exists for A by Lemma 7.6. By

Lemma 7.8, π(A) = π(Qm(A)). By Lemma 7.5, the expansion of Qm(A)

contains only descending diagrams with the total number of chords and

arrows greater than n. Then by Lemma 7.9, π(A) = 0. �

The last lemma completes the proof of the Goussarov theorem.

7.4 Vassiliev invariants of virtual knots (due to Kauffman)

7.4.1 Main definitions

Kauffman starts from the formal definition of a singular virtual knot (link).

Definition 7.10. A singular virtual link diagram is a framed 4-graph in the

plane endowed with orientations of unicursal curves and crossing structure:

each crossing should be either classical, virtual or singular.
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A singular crossing is depicted by a thick point.

Definition 7.11. A singular virtual link (knot) is an equivalence class of

singular virtual link (knot) diagrams by generalized Reidemeister moves

and rigid vertex isotopy, shown in Fig. 7.12.

Remark 7.5. All rigid isotopies except the last one, correspond to moves

of three-dimensional space.

Definition 7.12. A degree of a singular virtual link is the number of its

singular crossings.

Fig. 7.12 Rigid vertex isotopy moves for virtual knots.

Now, the definition of Vassiliev’s knot invariants is literally the same as

in the classical case. For each invariant f of virtual links, one defines its

formal derivatives f ′, f ′′, . . . , by Vassiliev’s rule

f (n)( ) = f (n−1)( )− f (n−1)( )

and says that the invariant f has order less than or equal to n if f (n+1) ≡ 0.

As it was noted in Chap. 1 the space of plane virtual knots is dual to

the space of Vassiliev invariants of order zero.

7.4.2 Invariants generated by the polynomial Ξ

Two main constructions used in the definition (4.3) of the polynomial Ξ

are the Jones–Kauffman polynomial and Vassiliev invariants of order zero.
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Let us show that the invariant Ξ is stronger than the Jones–Kauffman

polynomial and Vassiliev invariants of order zero, considered together.

Let us denote the diagram shown in Fig. 7.13 by K.

Fig. 7.13 The link diagram K.

It is obvious that the link generated by K has the same invariants of

order zero as the trivial link with two components: By replacing types of

classical crossings in two places and applying the move Ω2 twice, we get

the two-component link without classical crossings.

It is easy to check that the Jones–Kauffman polynomial of this link is

the same as for the trivial two-component link. This trivial link is obtained

from the diagram K by applying the virtualization twice and the detour

move.

But the polynomial Ξ allows one to show that the link is not classical.

It is easy to see that all elements from the set S (see Sec. 4.3.2) obtained

from the diagram K lie on the torus T 2. Indeed, the set of curves δ has the

form shown in Fig. 7.14.

Fig. 7.14 The system of curves δ.

Two curves from δ on the torus are parallel.

Herewith for some states s the set p(s) contains non-trivial curves not

being parallel to curves from δ. It is not easy to check that the correspond-
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ing element p ∈ S has a non-zero coefficient in the decomposition (4.3).

From this it follows that Ξ(K) has a non-trivial coefficient at some ele-

ments from S (see Sec. 4.3.2) distinct from p.

Non-triviality of the link was proved by the first-named author in the

year 2003, [217].

7.5 Vassiliev’s invariants coming from the invariant Ξ

In this section we work with Vassiliev invariants due to Kauff-

man [217, 225].

The invariant Ξ (see (4.3)), whose coefficients at elements of S are Lau-

rent polynomials in variable a, can be transformed into formal series after

the variable change a = ex and the Taylor expansion. For the sake of

simplicity, we shall use the same letter Ξ to denote the obtained invariant

where all coefficients are series in x.

LetK be a virtual link diagram. Let Ξm(K) be the coefficient of Ξm(K)

at xm. It is just a linear combination of elements from S with rational

coefficients.

Let us prove the following theorem.

Theorem 7.5. For each m ∈ N+ the invariant Ξm is a Vassiliev invariant

of virtual knots of order less than or equal to m.

This theorem shows that the invariant Ξ is indeed weaker than Vas-

siliev’s knot invariants of virtual links: For each element W ∈ S, the

coefficient of Ξ at W can be represented as a formal series of Vassiliev’s

invariants. On the other hand, the theorem allows one to derive infinitely

many finite-type invariants of higher orders.

Remark 7.6. For the sake of simplicity, we shall denote oriented and non-

oriented diagrams by the same letter. We shall write K instead of |K|.

Let us prove now Theorem 7.5. To do this, let us consider 2n virtual

link diagrams which differ only at n selected crossings. These diagrams

represent all possible combinations of positive and negative classical cross-

ings. Denote these diagrams by Kη, where η ∈ {0, 1}n. Let m(η) be the

number of ones in η (they correspond to negative crossings , whence

zeros correspond to positive crossings ).

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

306 Virtual Knots: The State of the Art

Now, we have to prove that∑
η

(−1)m(η)Ξn−1(Kη) = 0. (7.4)

The first observation is that the manifold M is the same for all Kη by

construction of the invariant Ξ (see Sec. 4.3.2). Moreover, by construction

for each Kη we obtain the same family of elements δ(Kη). Besides, the

set of possible δ′(s) considered under all distinct s (and, respectively, the

set of all p(s)) is the same for all these diagrams, too. The only difference

in the sum (4.3) for determining Ξ(Kη) for different η’s appears because

coefficients at fixed p(s) ∈ S are different.

Now, we are going to prove that the corresponding difference of coeffi-

cients vanish in the formula (7.4). To do this, it is sufficient to prove that

the corresponding coefficients (at a fixed p(s)) in∑
η

(−1)m(η)Ξ(Kη) = 0

are divisible by (a− 1)n (that implies the divisibility by xn).

So, let K+ be the diagram Kη with all n positive crossings. Let us fix

some state s of K+. Consider the element p(s). For each η, there naturally

exists a state s(η) of Kη with the same p(s). Accidentally, there might be

more states s̃ with p(s̃) equivalent to p(s) in S. But we shall work only

with the “natural” ones, i.e. those obtained by “the same” smoothing as s

for K+.

We wish to calculate the coefficient at p(s) (the alternating sum of 2n

coefficients corresponding to the diagrams Kη). Suppose in the state s of

K+ we have m crossings in position A : → . Thus, the other n−m
crossings smoothed by B : → . The other crossings (distinct from

chosen n crossings) have the same state for each diagram. Suppose the sum

of signs at the remaining classical crossings (which is the same for all η) is

equal to w, the number of crossings (distinct from chosen n crossings) in

position A is α and that in position B is β. Denote the number of circles

in the state s of K+ by γ.

Then the desired coefficient is

(−a)−3wa(α−β)(−a2 − a−2)(γ−1)(−a−2 + a2)m(−a−4 + a4)n−m.

The latter expression is divisible by (a − 1)n. All the other coefficients

corresponding to different p(s) are the same. This completes the proof of

Theorem 7.5.
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7.6 Infinity of the number of long virtual knots with a fixed

closure

In this section we shall prove the following theorem by using Vassiliev in-

variants of order zero for virtual knots. The result given here was first

proved by Silver and Williams in [281].

Theorem 7.6. For each isotopic class of a knot K, the set of long virtual

knots L such that Cl(L) = K is countable infinite.

Proof. By having a long virtual knot L we can construct a new long

virtual knot L′ as shown in Fig. 7.15.

L

L

L’=

Fig. 7.15 The operation ′.

It is evident that Cl(L′) = Cl(L).

Let us consider a compact virtual knot K and a long virtual knot L

obtained by breaking the knot K. Thus, we have Cl(L) = K.

Now, let L0 = L, L1 = (L0)
′, L2 = (L1)

′ and so on: for each natural

i set Li = (Li−1)
′. It is obvious that for each natural i we have Cl(Li) =

Cl(L0) = K.

Let us show that among the knots Li there exist infinitely many distinct

knots. For this it is sufficient to note that theirKishino closures are different

(Kishino closure is defined and it is shown in Fig. 7.16).

It is easy to check that the Kishino closing operation is well defined:

For equivalent long virtual knots we get equivalent compact knots under

such closing. The fact that among Kishino closures of knots Li there are

infinite many different knots follows from the fact that these closures can

have an arbitrary large preassigned genus.
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L

L

Fig. 7.16 Kishino closure.

The latter assertion follows from the fact that the corresponding virtual

knots have an arbitrary large preassigned genus in the flat category, i.e. if

we permit to apply the operation of swapping classical crossings besides

the generalized Reidemeister moves (i.e. we shall work with virtual knots

up to Vassiliev invariants of order zero). Namely, by using Li we define the

surface with a system of curves in it and we get the minimal realization

(not having loops and bigons). �

7.7 Graphs, chord diagrams and the Kauffman polynomial

Let a chord diagram D with n chords be given.

Definition 7.13. The intersection graph (see [56]) Γ(D) of D is a simple

graph whose vertices are in one-to-one correspondence with chords of D,

and two vertices are connected by an edge if and only if the corresponding

chords are linked.

The intersection graph of a framed chord diagram D is the intersection

graph of D (considered without framing), and all vertices are endowed with

framing equal to the framing of the corresponding chord.

Definition 7.14. A simple graph Γ is realizable, if there exists a chord

diagram D such that Γ = Γ(D).
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Note that not each graph is realizable. The criterion of realizability of

graphs is given in [39].

Let a chord diagram D be given. Let us construct by using this diagram

(more precisely, the atom with only black cell, for which D is an f -graph)

a virtual link as described in Sec. 4.2.5. In this case, if D is a framed

d-diagram, this construction can be well defined: we get a classical knot.

Otherwise we can obtain an oriented (in the sense of atoms) virtual knot

up to virtualization. In any case we get the object for which the Kauffman

bracket polynomial (and the Khovanov complex due to Sec. 5.7) is well

defined.

In the case, when a framed chord diagram is given, we can also construct

a virtual link up to virtualization, see Fig. 4.2. Therefore, for the virtual

diagram and the framed chord diagram, we can define the Kauffman bracket

polynomial. The Kauffman bracket polynomial is also constructed for a

chord diagram with several circles (by means of an atom), and it is invariant

under virtualizations. Therefore, we have the map f associating with a

chord diagram with one or several circles the polynomial.

It is easy to check the following theorem.

Theorem 7.7. The map f satisfied the 4T -relation, and also the general-

ized 4T -relation.

Thus, the Kauffman bracket polynomial defines infinite three-

parametrical series of link invariants of finite order. The first parameter

of this series is the degree of the monomial appearing in the Kauffman

bracket polynomial. The second parameter is the degree of the chord di-

agram, and the third parameter is the number of components of the link,

this number is equal to the number of circles of the chord diagram.

Note that the first part of this theorem (formulated in other terms not

using virtual knots) was proved by Mellor [245] (and later, in terms given

above, in [221]). Moreover, Mellor pointed out explicitly what Vassiliev in-

variants were obtained from this weight system; these are Vassiliev invari-

ants originating from the Kauffman polynomial (in two variables). Thus,

there is some interesting connection between the Kauffman bracket poly-

nomial for virtual knots and the Kauffman polynomial for classical knots.

Definition 7.15. By a surgery of a framed chord diagram on a one-

dimensional manifold M over a chord c we mean the following transfor-

mation. Let the chord c connect two points A and B. The surgery is the

deletion of two small neighborhoods of A and B (not containing ends of
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other chords) and replace them with two segments. Namely, let us denote

these neighborhoods by (A − ε,A + ε) and (B − ε,B + ε) due to the ori-

entations of the circles containing the points A and B. Then as a result of

the surgery instead of these two neighborhoods two segments (A−ε,B+ε)

and (A + ε,B − ε) appear, if the chord has framing 0, and the segments

(A+ ε,B + ε) and (A− ε,B − ε), if the chord has framing 1. These surg-

eries appear under a passage from one state of the Kauffman bracket to a

neighboring one.

Let us prove Theorem 7.7.

Proof of Theorem 7.7. Consider the following 2T -relations (two-term

relations), see Fig. 7.17, and generalized 2T -relations (generalized two-term

relations), see Fig. 7.18.

f ( ) = f ( )

f ( ) = f ( )

Fig. 7.17 2T -relations.

Each of them means the equality of values of some function on pair of

diagrams differing locally as it is shown in figures.

Note that the (generalized) 2T -relations imply the 4T -relation. The

latter decomposes as the sum of two relations.

Now, let us note that the function ϕ associating with a (framed) chord

diagram the number of circles obtained by the surgery of the initial chord

diagram along the set of all chords satisfies the 2T -relations and generalized

2T -relations. Thus, the function (−a2 − a−2)ϕ−1 also satisfies the 2T -

relations.

Let us consider the function f(D). It represents a linear combination
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f ( ) = f ( )

f ( ) = f ( )

f ( ) = f ( )

f ( ) = f ( )

;

;

Fig. 7.18 Generalized 2T -relations.

of values of the function (−a2 − a−2)ϕ−1 at every possible subdiagrams of

the chord diagram D.

Each (generalized) 4T -relation can be written as A1−B1−A2+B2 = 0,

where A1 − A2 = 0 and B1 − B2 = 0 are the 2T -relations, and the chord

diagram Ai differs from the chord diagram Bi (i = 1, 2) by only mutual

position of two chords which take place in the relation.

Between chords of the diagrams A1, B1, A2, B2 there is a natural one-

to-one correspondence; denote “movable” chords by α (for the diagrams

Ai) and β (for the diagrams Bi).

Decompose f(A1+B1−A2−B2) as the sum over all subdiagrams. If a

subdiagram of the diagram A1 does not contain chords from α and β, then

all four corresponding diagrams coincide identically. In the case, when a

subdiagram contains exactly one chord from α or β, the subdiagram of the

diagram Ai coincides with the corresponding subdiagram of the diagram

Bi.

At last, in the case, when in a subdiagram there are two chords from α

and β, we get four diagrams which can be split into two pairs forming the

2T -relations.

Summing up, we get the proof of the theorem. �

7.8 Euler tours, Gauss circuits and rotating circuits

In this section we consider connected framed 4-graphs, i.e. 4-valent graphs

with an A-structure specified and Euler tours on them. The main result

of this section is an explicit formula connecting the adjacency matrices of

rotating circuits and that of the Gauss circuit.
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Each framed 4-graph G has an Euler tour U , i.e. a path traveling once

along each edge of the graph. At each vertex we have two possibilities of

running edges: we move from a half-edge to the half-edge opposite to it;

we move from a half-edge to a half-edge non-opposite to it. There are two

special types of Euler tours on the framed 4-graph G: In the first case

only the first possibility occurs at each vertex, i.e. we move from a half-

edge to the half-edge opposite to it, and in the second case only the second

possibility of the passage from a half-edge to a half-edge occurs at each

vertex. It is not difficult to see that the number of Euler tours of the first

type on any framed 4-graph is less than or equal to 1. An Euler tour of the

first type, if it exists, is called the Gauss circuit. Euler tours of the second

type (rotating circuits, see [191, 224, 232, 238]) exist on any connected

framed 4-graph and the number of them is more than one. If we consider

a projection of a knot then it has the Gauss circuit, but a projection of a

link with more than one component does not have a Gauss circuit.

In low-dimensional topology both approaches, the Gauss circuit ap-

proach and the rotating circuit approach, are very widely used. The Gauss

circuit approach is applied in knot theory, namely in the construction of

finite-type invariants, Vassiliev invariants [17, 56, 114], and in the pla-

narity problem of immersed curves, see [47, 48, 270] and Secs. 7.9, 7.10

of the present chapter. However, for detecting planarity of a framed

4-graph it is more convenient to use the rotating circuit approach,

see [224, 232, 238, 270] and Secs. 7.9 and 7.10. The criterion of the pla-

narity of an immersed curve, which is a framed 4-graph, is formulated very

easy: An immersed curve is planar if and only if the chord diagram obtained

from a rotating circuit is a framed d-diagram [221, 270]. If we wish to ex-

tend the planarity problem to the problem of finding the minimum genus

of a closed surface which a given curve can be immersed in, the rotating

circuit approach is also more useful. There are criteria giving us the answer

to the question what is the minimum genus for a given curve, see [232, 238]

and Secs. 7.9 and 7.10.

Since there are many rotating circuits corresponding to the same Gauss

circuit, then many properties of the Gauss circuit can be read out of any

of these rotating circuits no matter which one is considered [129, 130].

Consequently, these properties do not depend on the particular choice of

a rotating circuit. For instance, if one of the rotating circuits corresponds

a framed d-diagram then the other ones do the same. Thus, it gives rise

to the problem of obtaining an easy formula allowing us to get the Gauss

circuit from a rotating circuit and vice versa. Of course, we can always
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understand whether a given framed 4-graph has a Gauss circuit or not.

Traveling along our graph according to the definition of a Gauss circuit, at

each vertex we have only one possibility of passing through it. Therefore, if

when we return to the starting point we shall have passed every edge of our

graph exactly once, then the graph has the Gauss circuit. But this method

does not reflect explicit relations between topology and combinatorics of

Euler tours if we have a 4-graph with many vertices.

In this section, we give an explicit formula which is expressed in terms of

the adjacency matrices of Euler tours. Taking any Euler tour and construct-

ing its adjacency matrix we can understand whether the framed 4-graph

has the Gauss circuit and find the adjacency matrix of the Gauss circuit

under the condition that it exists. The adjacency matrix of an Euler tour

is a symmetric matrix, and there are symmetric matrices which are not

adjacency matrices of any Euler tours. It turns out that the formula given

below is also valid for all symmetric matrices. Investigating this formula

we shall get some interesting facts about symmetric matrices.

7.8.1 4-Graphs and Euler tours

Let H be a connected 4-graph on the set of vertices V (H), and let U be

an Euler tour of H, i.e. a path traveling once along each edge of H. Let us

describe a connection between two Euler tours on H.

Let us define a k-transformation on 4-graphs (Kotzig [185]). For every

vertex v ∈ V (H) there are precisely two closed paths Pv and Qv on U

having no common edges, starting and ending at v, and each of the paths

containing at least one edge. There exists precisely one Euler tour distinct

from U also connecting the paths Pv and Qv (if we run along U in some

direction, then in the new Euler tour we run along Pv according to the

orientation of U , and run along Qv according to the reverse orientation of

U). Let us denote by U ∗ v the new Euler tour obtained from U . The

transformation U 7→ U ∗ v has been introduced by Kotzig [185] who called

it a k-transformation, see Fig. 7.23.

Proposition 7.2 ([185]). Any two Euler tours of a 4-graph are related by

a sequence of k-transformations.

Let w = x1x2 . . . xk−1xk be a word, i.e. a sequence of letters from some

finite alphabet X. The mirror image of w is the word w̃ = xkxk−1 . . . x2x1.

We shall consider the class of words: Each word from the class gen-

erated by a word w = x1x2 . . . xk−1xk is either a cyclic permutation
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wi = xixi+1 . . . xkx1 . . . xi−1, 1 6 i 6 k, of x1 . . . xk or the mirror im-

age of a cyclic permutation wi. We denote this class by (x1 . . . xk) and we

call this class a cyclic word.

Definition 7.16. A word is called a double occurrence word if each of its

letters occurs twice.

Example 7.1. The word abccba is a double occurrence word, but not the

word abccb.

It is obvious that the mirror image and a cyclic permutation of a double

occurrence word are double occurrence words. Then the notion of a cyclic

double occurrence word is well defined. It is convenient to represent every

double occurrence word by a “simple” chord diagram.

Let X be a finite set, and let m be a double occurrence cyclic word over

X, i.e. a class of words. Then m has a chord diagram, which is constructed

by placing successively the letters of m around a circle S1, choosing a point

of S1 near each occurrence of a letter and joining by a chord each pair of

points corresponding to the two occurrences of the same letter. It is not

difficult to see that we get the one-to-one correspondence between the set

of double occurrence cyclic words and the set of chord diagrams.

Example 7.2. Consider m = (abacdbcd). The word m has the chord

representation, which is depicted in Fig. 7.19.

a

b

c

d

b

a

c

d

Fig. 7.19 A chord representation of (abacdbcd).

Define the operation ∗ on cyclic double occurrence words which will

correspond to the k-transformation. Let m = (vAvB) where A, B are

subwords of m, and the letters belong to some finite alphabet. Then we

define m ∗ v = (vÃvB), Ã is the mirror image of A. In Fig. 7.20 the
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transformation m 7→ m ∗ v is depicted for chord diagrams (dashed arcs of

chord diagrams contain the ends of all the chords distinct from v). Mostly

for each transformation on a chord diagram we assume that only a fixed

fragment of the chord diagram is being operated on. The pieces of the

chord diagram not containing chords participating in this transformation

are depicted by dashed arcs.

v

v

vv
A A B

A

B

v

v

B

Fig. 7.20 The operation ∗ on chord diagrams.

Let U be an oriented Euler tour of a connected 4-graph H with the set

of vertices V (H) = {v1, . . . , vn}, which is also considered as an alphabet.

When traveling along U we meet each vertex twice. Let us denote by

m(U) the cyclic word over V (H) which equals the sequence of the vertices

that are successively met along U . It is obvious that in the resulting word

each vertex appears precisely twice then Euler tours are encoded by double

occurrence cyclic words. It follows from the definition that m(U ∗ v) =

m(U) ∗ v and if we have a double occurrence cyclic word m or a chord

diagram we can construct the 4-graph having an Euler tour U such that

m(U) = m. We just “contract” every pair of vertices of the chord diagram

labeled by a same letter (a chord) into a single vertex and identify the new

vertex with this letter.

7.8.2 Framed 4-valent graphs and Euler tours

Let H be a framed 4-graph (see Definition 1.2), and let U be an Euler

tour on H. Construct the framed cyclic double occurrence word m(U) (the

framed chord diagram) corresponding to U . At each vertex v of H we have

the following three possibilities of running along U through v.

(1) We pass from a half-edge to the half-edge opposite to it, see Fig. 7.21(a).

In this case, the vertex v is called a Gaussian vertex for U and the chord
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corresponding to this vertex is called a Gaussian chord.

(2) We pass from a half-edge to a half-edge non-opposite to it, and the

orientations of opposite edges are different, see Fig. 7.21(b). In this

case, the vertex v is called a non-Gaussian vertex for U with framing

0 and the chord corresponding to this vertex is called a non-Gaussian

chord with framing 0.

(3) We pass from a half-edge to a half-edge non-opposite to it, and the

opposite edges have the same orientation, see Fig. 7.21(c). In this case,

the vertex v is called a non-Gaussian vertex for U with framing 1 and

the chord corresponding to this vertex is called a non-Gaussian chord

with framing 1.

v v v

(a) (b) (c)

Fig. 7.21 Passing through a vertex.

Definition 7.17. An Euler tour having only Gaussian vertices is called a

Gauss circuit. An Euler tour having only non-Gaussian vertices is called a

rotating circuit (see [129, 130, 224, 232, 238, 270]).

Definition 7.18. Let us call a framed 4-graph having the Gauss circuit a

unicursal graph.

When running along the Euler tour U we meet each vertex of H twice.

Now we are ready to construct the framed cyclic double occurrence word

m(U) corresponding to the Euler tour U . Words will be constructed over

the alphabet X = V (H)∪V (H)−1∪V (H)G, where the set V (H)−1 consists

of elements v−1 for each v ∈ V (H), and V (H)G consists of elements vG for

each v ∈ V (H). To each Gaussian vertex we assign two identical letters

from the set V (H)G in m(U), i.e. we attribute the superscript G to each

appearance of the corresponding vertex. For example, m(U) = (AvGBvG)

if v is a Gaussian vertex. To each non-Gaussian vertex with framing 0 we

assign two identical letters from the set V (H) ∪ V (H)−1 in m(U), i.e. we
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attribute either nothing or the superscript −1 to each appearance of the

corresponding vertex (the superscripts are the same for both appearances).

For example, m(U) = (AvBv) or m(U) = (Av−1Bv−1) if v is a non-

Gaussian vertex with framing 0 (we do not make any difference between

these two words). To each non-Gaussian vertex with framing 1 we assign

two distinct letters from the set V (H)∪V (H)−1 in m(U), i.e. we attribute

different superscripts to two appearances of the corresponding vertex. For

example, m(U) = (AvBv−1) or m(U) = (Av−1Bv) if v is a non-Gaussian

vertex with framing 1 (we do not make any difference between these two

words).

Thus, instead of just framed cyclic words we consider equivalence classes

of framed cyclic words, where the equivalence is generated by automor-

phisms of the alphabet which exchange letters v and v−1 for some letter v.

For the sake of simplicity we call these classes by just framed cyclic words.

Remark 7.7. The constructed framed word can be a non-double occur-

rence word. We can consider the projection π : V (H)∪V (H)−1∪V (H)G →
V (H) ∪ V (H)G sending v±1 7→ v and vG 7→ vG. The image (under this

projection) of the word is already a double occurrence word. We call a

framed word a double occurrence word if the image (under π) of the word

is a double occurrence word (in the standard sense).

Depicting a cyclic double occurrence word by a framed chord diagram

we shall use thick chords for vertices with framing 0, dashed chords for

vertices with framing 1, and chords with the label G for Gaussian vertices.

Example 7.3. Consider the framed cyclic double occurrence word m =

(ab−1acdGe−1dGb−1c−1e). We have: d is a Gaussian letter, a, b are non-

Gaussian letters with framing 0 and c, e are non-Gaussian letters with fram-

ing 1. The corresponding framed chord diagram is depicted in Fig. 7.22.

Let V be a finite set. Having a framed cyclic double occurrence word (a

framed chord diagram) m over V ∪ V −1 ∪ V G we can construct the framed

4-graph having an Euler tour U such that the framed word m(U) coincides

with m. We construct the 4-graph and then define the type of each vertex.

Remark 7.8. When we consider a cyclic double occurrence word, it is

important for us to know only the positions of two letter corresponding to

a single vertex, but not their symbol, see [301].

Let us define the framed star operation on the set of framed cyclic double

occurrence words. We denote this operation by the symbol ∗.
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a

b

c

d

e

a

d

b c

e

G

Fig. 7.22 A framed chord diagram for (ab−1acdGe−1dGb−1c−1e).

Remark 7.9. We used the same notation for “just” double occurrence

cyclic words. Further, we shall consider only framed double occurrence

cyclic words and the same notations will not cause any confusion.

First, we construct the operation w, where w is an arbitrary subword

(not necessarily a double occurrence word) of a framed double occurrence

cyclic word. Let w = xε11 . . . xεkk . Then w = xεkk . . . xε11 , where xεll =

xεll if εl = G, aεll = a−εl
l if εl = ±1. Further, m = (aεm1a

ε′m2) is a

double occurrence cyclic word. We have m ∗ a = (am1am2) if ε = ε′ = G

(Fig. 7.23(a)); m ∗ a = (aGm1a
Gm2) if ε = ε′ ̸= G (Fig. 7.23(a)); m ∗ a =

(am1a
−1m2) if ε = −ε′ (Fig. 7.23(b)). Thus, by applying the framed star

to a letter a we get: If a was a Gaussian letter, then in the new word it

would be transformed to a non-Gaussian letter with framing 0; if a was a

non-Gaussian letter with framing 0 (respectively, 1), then in the new word

it would be transformed to a Gaussian letter (respectively, a non-Gaussian

letter with the same framing 1).

Using Proposition 7.2, we immediately get the following proposition.

Proposition 7.3 ([129, 130, 232, 238]). Any two framed cyclic double

occurrence words obtained from a framed 4-graph are related to each other

by a finite sequence of framed star operations.

Taking an arbitrary Euler tour and applying the framed star operation

we get the following proposition.

Proposition 7.4. Every framed 4-graph has a rotating circuit.
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v

v

v

v

(a)

(b)

Fig. 7.23 The framed star operation.

Remark 7.10. It is not difficult to prove Proposition 7.4 using other meth-

ods, but we want to “get used” to the framed star operation.

It is obvious that there are many rotating circuits and that not every

framed 4-graph has a Gauss circuit (if it has a Gauss circuit then this circuit

is unique). Section 7.8.3 tells us whether or not there exists a Gauss circuit,

and how to get it whenever it exists. The following theorem tells us how

two rotating circuits are related.

Statement 7.1 ([129, 130, 232, 238]). Any two rotating circuits given by

framed cyclic double occurrence words are related by a sequence of the fol-

lowing two operations: The framed star operation applied to a non-Gaussian

letter with framing 1, and (((m ∗ a) ∗ b) ∗ a); here m is a framed double oc-

currence cyclic word, a, b are non-Gaussian letters with framing 0 and they

alternate in m, i.e. m = (. . . a . . . b . . . a . . . b).
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7.8.3 The existence of a Gauss circuit

We need one notion for establishing whether the number of unicursal com-

ponents of a connected framed 4-graph is 1, i.e. whether there exists a

Gauss circuit: the adjacency matrix of a framed cyclic double occurrence

word (a framed chord diagram).

Definition 7.19. The adjacency matrix of a chord diagram D with enu-

merated n chords is the n× n matrix A(D) = (aij) defined by

(1) aii is the framing of the chord with the number i, i.e. either G, or 0, or

1;

(2) aij = 1, i ̸= j, if and only if the chords with the numbers i and j are

linked;

(3) aij = 0, i ̸= j, if and only if the chords with the numbers i and j are

unlinked.

Remark 7.11. Adjacency matrices are considered over Z2 if we have no

G on the diagonal.

Example 7.4. Let D be the framed chord diagram depicted in Fig. 7.22.

Enumerate all the chords of D: the chord aa has the number 1, the chord

bb has the number 2 etc. Then

A(D) =


0 1 0 0 0

1 0 1 0 1

0 1 1 0 1

0 0 0 G 1

0 1 1 1 1

 .

Assume we are given a chord diagram D with all the chords having

framing 0 or 1 (with no Gaussian chords). Let us apply the surgery along

a set of all chords of D as shown in Fig. 7.24 (see also Definition 7.15). By

a small perturbation, the picture in R2 is transformed into a 1-manifold in

R3. This manifold M(D) is the result of surgery, see Fig. 7.25.

Fig. 7.24 A surgery along chords.
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Fig. 7.25 The manifold M(D).

Surprisingly, the number of connected components of M(D) can be

determined from the adjacency matrix A(D) of D.

Theorem 7.8 ([21, 62, 251, 282, 289]). Let D be a framed chord dia-

gram not containing Gaussian chords. Then the number of connected com-

ponents of M(D) equals corankZ2A(D) + 1, where A(D) is the adjacency

matrix of D over Z2, and corank equals the difference between the size of

the matrix and its rank and is calculated over Z2.

Using Theorem 7.8, we can formulate whether the number of unicursal

components is 1.

Let D be a framed chord diagram with the adjacency matrix A(D).

Construct the matrix Â(D) by deleting the rows and columns of A(D)

corresponding to Gaussian chords.

Theorem 7.9 ([129, 130]). Let H be a framed 4-graph, and let U be

an Euler tour on H. Then H has a Gauss circuit if and only if

corankZ2(Â(D)+E) = 0, where D is the framed chord diagram constructed

from U and E is the identity matrix.

Proof. The proof is illustrated in Fig. 7.26. In order for the Gauss circuit,

i.e. a tour while traveling along it we pass from the half-edge e3 to the half-

edge e1, to exist we have to delete all Gaussian chords and replace all the

chords having the framing 0 with intersecting chords and all the chords

having the framing 1 with parallel chords. �

7.8.4 The Gauss circuit

Let H be a framed 4-graph having the Gauss circuit, and let U be an Euler

tour on H. Using Proposition 7.4, we can assume that m(U) (respectively,
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(a) (b) (c)

Fig. 7.26 The structure of a framed chord diagram.

the corresponding chord diagram D) has no Gaussian vertices (respectively,

no Gaussian chords), i.e. U is a rotating circuit.

Definition 7.20. We say that two matrices A = (aij) and B = (bkl)

coincide (or equal to each other) up to diagonal elements if aij = bij , i ̸= j.

The main result of this section is the following theorem.

Theorem 7.10. The adjacency matrix of the Gauss circuit is equal to

(A(D) + E)−1 (over Z2) up to diagonal elements.

Proof. Let V (H) = {v1, . . . , vn}. It is obvious that the following two

operations applied to D decrease the number of non-Gaussian chords:

(1) the framed star operation applied to a non-Gaussian chord having the

framing 0;

(2) m 7→ (((m ∗ a) ∗ b) ∗ a), where m is a framed cyclic double occurrence

word, a, b are non-Gaussian letters having the framing 1 and they al-

ternate in m, i.e. the corresponding chords are linked.

We call these operations decreasing operations. The decreasing operations

change an Euler tour U on the 4-graph, and the new Euler tour has the

number of non-Gaussian vertices smaller than U has, see Figs. 7.23(a), 7.27.

LetD be a framed chord diagram, and let A(D) be its adjacency matrix.

Let us apply decreasing operations. Without loss of generality we may

assume that the decreasing operations are applied to the chords having the
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vv
1 2

v
1

v
2

Fig. 7.27 The decreasing operations.

smallest numbers in our numeration. Then the first decreasing operation

applied to the first element is

A(D) =

 0 0⊤ 1⊤

0 A0 A1

1 A⊤
1 A2

 A(D′) =

G 0⊤ 1⊤

0 A0 A1

1 A⊤
1 A2 + (1)

 ,

and the second one applied to the first two elements is

A(D) =



1 1 0⊤ 1⊤ 0⊤ 1⊤

1 1 0⊤ 0⊤ 1⊤ 1⊤

0 0 A0 A1 A2 A3

1 0 A⊤
1 A4 A5 A6

0 1 A⊤
2 A⊤

5 A7 A8

1 1 A⊤
3 A⊤

6 A⊤
8 A9



 A(D′) =



G 1 0⊤ 0⊤ 1⊤ 1⊤

1 G 0⊤ 1⊤ 0⊤ 1⊤

0 0 A0 A1 A2 A3

0 1 A⊤
1 A4 A5 + (1) A6 + (1)

1 0 A⊤
2 A⊤

5 + (1) A7 A8 + (1)

1 1 A⊤
3 A⊤

6 + (1) A⊤
8 + (1) A9


,
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where bold characters 0 and 1 indicate column vectors with all entries the

same 0 and 1, respectively; (1) is a matrix consisting of ones, and Ai are

matrices.

We shall successively apply these operations toD. Let us show that after

applying these two decreasing operations to the framed chord diagram D

having no Gaussian vertices we shall get the framed chord diagram with

the adjacency matrix (A(D) + E)−1 up to diagonal elements.

To get the matrix (A(D) + E)−1 we shall perform elementary manip-

ulations with rows of B(D) = A(D) + E with det(A(D) + E) = 1. Let

us construct the matrix (A(D) + E|E) with the size n × 2n. We denote

by M̂ij...k the matrix obtained from M by deleting i, j, . . . , kth rows and

i, j, . . . , kth columns.

As detB(D) = 1, then either there is a diagonal element equal to 1

or there are two diagonal elements with the numbers i and j such that

bii = bjj = 0, bij = bji = 1.

In the first case, without loss of generality we assume that b11 = 1.

Then after performing elementary manipulations on B(D) by the first row,

we get

B(D) = A(D) + E =

 1 0⊤ 1⊤

0 A0 + E A1

1 A⊤
1 A2 + E


 B′(D) =

 1 0⊤ 1⊤

0 A0 + E A1

0 A⊤
1 A2 + E + (1)


and

(B(D)|E)  (B′(D)|E′) =

 1 0⊤ 1⊤

0 A0 + E A1

0 A⊤
1 A2 + E + (1)

∣∣∣∣∣∣
1 0⊤ 0⊤

0 E 0

1 0 E

 .

After performing the first decreasing operation to D the chord correspond-

ing to v1 becomes a Gaussian chord and the adjacencies of non-Gaussian

chords are defined by the matrix B̂′(D)1 and the other adjacencies are

defined by the first column of E′ (up to diagonal elements).

In the second case, we may assume without loss of generality b11 =

b22 = 0, b12 = b21 = 1. Then after performing elementary manipulations
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applied to the first two rows of B(D), we get

B(D) = A(D) + E =



0 1 0⊤ 1⊤ 0⊤ 1⊤

1 0 0⊤ 0⊤ 1⊤ 1⊤

0 0 A0 + E A1 A2 A3

1 0 A⊤
1 A4 + E A5 A6

0 1 A⊤
2 A⊤

5 A7 + E A8

1 1 A⊤
3 A⊤

6 A⊤
8 A9 + E



 B′(D) =



1 0 0⊤ 0⊤ 1⊤ 1⊤

0 1 0⊤ 1⊤ 0⊤ 1⊤

0 0 A0 + E A1 A2 A3

0 0 A⊤
1 A4 + E A5 + (1) A6 + (1)

0 0 A⊤
2 A⊤

5 + (1) A7 + E A8 + (1)

0 0 A⊤
3 A⊤

6 + (1) A⊤
8 + (1) A9 + E


and

(B(D)|E) (B′(D)|E′)

=



1 0 0⊤ 0⊤ 1⊤ 1⊤

0 1 0⊤ 1⊤ 0⊤ 1⊤

0 0 A0 + E A1 A2 A3

0 0 A⊤
1 A4 + E A5 + (1) A6 + (1)

0 0 A⊤
2 A⊤

5 + (1) A7 + E A8 + (1)

0 0 A⊤
3 A⊤

6 + (1) A⊤
8 + (1) A9 + E

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0⊤ 0⊤ 0⊤ 0⊤

1 0 0⊤ 0⊤ 0⊤ 0⊤

0 0 E 0 0 0

0 1 0 E 0 0

1 0 0 0 E 0

1 1 0 0 0 E


.

After performing the second decreasing operation to D the chords corre-

sponding to v1 and v2 become Gaussian chords and the adjacencies of the

non-Gaussian chords are defined by the matrix B̂′(D)12 and the other ad-

jacencies are defined by the first two columns of E′.

Let us suppose that we have performed k decreasing operations. After

these operations the matrix (B(D)|E) is transformed into a matrix

(B′(D)|E′) =

(
E C

0 R

∣∣∣∣ F 0

S E

)
and F is an l × l matrix, R is a symmetric matrix. Then the new framed

chord diagram contains l Gaussian chords, and the adjacencies of non-

Gaussian chords are defined by R and the other adjacencies are defined by

the first l columns of E′. As detB′(D) = 1, then detR = 1, and in the

matrix R there is either a diagonal element equal to 1 or there are numbers

p and q such that rpp = rqq = 0, rpq = rqp = 1.
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Let us consider the first case. Without loss of generality we may assume

that r11 = 1. In this case we apply the first decreasing operation. We shall

get

(B′(D)|E′) =


E C1 C2 C3

0 1 0⊤ 1⊤

0 0 R1 R2

0 1 R⊤
2 R3

∣∣∣∣∣∣∣∣
F 0 0 0

S1 1 0⊤ 0⊤

S2 0 E 0

S3 0 0 E



 


E 0 C ′

2 C ′
3

0 1 0⊤ 1⊤

0 0 R1 R2

0 0 R⊤
2 R3 + (1)

∣∣∣∣∣∣∣∣
F ′
1 F

′
2 0 0

S1 1 0⊤ 0⊤

S2 0 E 0

S′
3 1 0 E


=

(
E C ′

0 R′

∣∣∣∣ F ′ 0

S′ E

)
= (B′′(D)|E′′),

where F ′ is a (l+1)×(l+1) matrix, R′ is a symmetric matrix. The number

of Gaussian vertices is l + 1, and the adjacencies of non-Gaussian vertices

are defined by R′ and the other adjacencies are defined by the first l + 1

columns of E′′. The second case is considered analogously to the first one.

We end up with the matrix(
E
∣∣ (A(D) + E)−1

)
and the framed chord diagram having only Gaussian vertices. The adja-

cency matrix of this chord diagram is (A(D)+E)−1 up to diagonal elements.

We have proved the theorem for non-diagonal elements. But we know

that all the diagonal elements are G. �

Remark 7.12. Let H be an arbitrary (connected and containing at least

one vertex) oriented 4-graph, and at each vertex exactly two half-edges are

incoming to it and two other edges are emanating from it (orientations of

half-edges corresponding to one edge coincide). It is easy to see that there

is an oriented Euler tour U on the graph H. Define a framing on H in such

a way that U is a rotating circuit on the new framed 4-graph H, and at

each vertex every pair of opposite edges consists of one incoming and one

emanating edge. If there exists an oriented Gauss circuit on the framed

oriented 4-graph H, then Theorem 7.10 gives the formula for the adjacency

matrix of the Gauss circuit. Thus, the last claim about the existence of

a Gauss circuit is Theorem 3.4 from [143], and, therefore, Theorem 3.4

from [143] is a particular case of Theorem 7.10.
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From the last theorem we immediately get the following corollary.

Corollary 7.2. Let U1 and U2 be two rotating circuits, and let D1 and D2

be their framed chord diagrams such that det(A(Di) + E) = 1. Then the

matrices (A(D1)+E)−1 and (A(D2)+E)−1 equal up to diagonal elements.

Example 7.5. Consider the framed 4-graph having 4 vertices vi, Fig. 7.28.

Let U1 and U2 be two rotating circuits given by the framed double

occurrence cyclic words m(U1) = (v1v4v2v
−1
1 v2v3v4v3) and m(U2) =

(v1v4v3v4v2v3v1v
−1
2 ), respectively. Then

A(m(U1)) =


1 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

 , A(m(U2)) =


0 1 0 0

1 1 1 0

0 1 0 1

0 0 1 0

 .

We get

(A(m(U1)) + E)−1 =


0 0 1 1

0 1 1 1

1 1 0 1

1 1 1 1

 , (A(m(U2)) + E)−1 =


1 0 1 1

0 0 1 1

1 1 1 1

1 1 1 0


and

A =


G 0 1 1

0 G 1 1

1 1 G 1

1 1 1 G


is the adjacency matrix of the Gauss circuit given by (v1v4v3v1v2v4v3v2).

v
1

2

3
4 v

v

v

Fig. 7.28 A framed 4-graph.
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The next corollary immediately follows from the criterion of the pla-

narity of an immersed curve, see Lemma 7.18, and from atom theory, see

Chap. 4.

Corollary 7.3. Let D be a framed chord diagram, all the chords of D are

non-Gaussian chords with framing 0 and det(A + E) = 1. If there are

numbers λ1, . . . , λn ∈ Z2 such that

det
(
(A(D) + E)−1 + diag(λ1, . . . , λn)

)
= 1,

then the matrix
(
(A(D) +E)−1 + diag(λ1, . . . , λn)

)−1
has all diagonal ele-

ments equal to 1. Moreover, if D is a framed d-diagram (with all framings

0), then the matrix
(
(A(D) + E)−1 + diag(λ1, . . . , λn)

)−1
is the adjacency

matrix of a framed d-diagram. Here diag(λ1, . . . , λn) is the diagonal matrix

with λ1, . . . , λn on its diagonal.

From a geometric point of view the first part of Corollary 7.3 means

the following. Having a framed 4-graph H and a rotating circuit U on it,

we can define an orientation on the graph H. We orient a rotating circuit

U in an arbitrary way and define the orientation of H by means of it. It

turns out that if any rotating circuit provides the source–sink condition (see

Definition 5.7) on a framed 4-graph, then any other rotating circuit also

gives the source–sink condition, since the corresponding atom is orientable.

The second part of the corollary is treated with the planarity question. If

we have a planar framed 4-graph, i.e. a graph embedded into the plane

with the structure of opposite edges preserved, then all rotating circuits

are represented by d-diagrams (with all framings 0).

7.8.5 Adjacency matrices

In Chap. 9 we shall “generalize” the notion of a virtual link and construct

a new theory, the theory of graph-links: We consider not only intersection

graphs of chord diagrams and moves on them but all simple graphs and

moves on them, which are induced by moves on intersection graphs. Graph-

links can be constructed in different ways. We shall construct two theories

of graph-links: in the first one we use Gauss circuits and in the second one

we use rotating circuits. The results of this section will be needed to prove

the equivalence of these two approaches, see Chap. 9.

It is well known that there are symmetric matrices over Z2 which cannot

be realized by chord diagrams [39] (here a symmetric matrix is the adja-

cency matrix of the corresponding graph), and symmetric matrices which
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can be realized by different chord diagrams. In the proof of Theorem 7.10,

we have just used elementary manipulations and adjacency matrices. It

turns out that Theorem 7.10 and Corollary 7.3 can be reformulated for

arbitrary symmetric matrices, see also Sec. 9.2.

In this section, all the matrices are over Z2 with diagonal elements equal

to either 0 or 1. Consider the following operation over the set of symmetric

matrices.

Definition 7.21. Let A = (aij) be a symmetric n × n matrix. Let us fix

an arbitrary element akk = 1 and construct the matrix Loc(A, k) = (ãij),

where ãpq = apq + 1, p, q ̸= k, if both apk = 1 and akq = 1, and ãpq = apq
otherwise. We call the transformation A 7→ Loc(A, k) the local complemen-

tation of the matrix A at the element akk (this operation is analogous to

the framed star operation).

It is not difficult to show that, if aij = 1, then the matrices

Loc(Loc(Loc(A, i), j), i) and Loc(Loc(Loc(A, j), i), j) coincide up to the di-

agonal elements with the numbers i, j.

Definition 7.22. Let A be a symmetric matrix with aii = ajj = 0, aij =

aji = 1 for some pair i, j. A pivot operation is the transformation A 7→ Ã,

where the diagonal elements of Ã coincide with the diagonal elements of A

and the other elements of Ã coincide with the corresponding elements of

Loc(Loc(Loc(A, i), j), i).

Let Sym(n,Z2) be the set of all symmetric n × n matrices over Z2.

Consider two equivalence relations on Sym(n,Z2). The first relation is the

coincidence of two matrices up to diagonal elements, denote this equivalence

relation by ∼D. The second equivalence is defined as follows: Two matrices

A and B are said to be obtained from each other by changing a circuit,

denote the second relation by A ∼C B, if A and B are related by a finite

sequence of local complementations and pivot operations.

Remark 7.13. In the realizable case the second equivalence relation cor-

responds to the “real” change of a rotating circuit on a framed 4-graph.

The proof of the main result of this subsection is based on the following

five lemmas. These lemmas are very technical, but they have geometric

interpretations in the case where the matrices are realizable. These inter-

pretations are given in the remarks which follow each of the lemmas. The

proofs of these lemmas can be skipped on a first reading.
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Lemma 7.11 ([129, 130]). If det(A+E) = 1 and B ∼C A, then det(B+

E) = 1, where E is the identity matrix.

Remark 7.14. If two symmetric matrices A and B are realizable by chord

diagrams, then Lemma 7.11 means that after applying appropriate framed

star operations to a rotating circuit on a virtual knot diagram we get a new

rotating circuit on a virtual knot diagram (not on a link diagram).

Let Sym+(n,Z2) ⊂ Sym(n,Z2) be the subset of the set of symmetric

matrices consisting of matrices A with det(A+ E) = 1.

Lemma 7.12. The relation ∼C is an equivalence relation on Sym+(n,Z2).

Consider two sets

L(n) = Sym(n,Z2)/ ∼D and G(n) = Sym+(n,Z2)/ ∼C .

Lemma 7.13. Every element of L(n) has a representative with the deter-

minant equal to 1.

Proof. Let us prove this lemma by induction on the size of a matrix.

The induction base. For n = 1 the claim of the lemma is evident.

The induction step. Assume the claim of the lemma holds for n−1, and

let A be an (n × n)-matrix. By the induction hypothesis, we can assume

that detA11 = 1, where Aij is the cofactor of aij . Then either

detA = a11A
11 +

n∑
j=2

a1jA
1j = a11 +

n∑
j=2

a1jA
1j = 1

or

det Ã = (a11 + 1)A11 +
n∑

j=2

a1jA
1j = a11 + 1 +

n∑
j=2

a1jA
1j = 1,

where the matrix Ã differs from A only by the element ã11. �

Lemma 7.14. Let B and B̃ be two symmetric matrices over Z2 with

detB = det B̃ = 1, and let B and B̃ coincide up to one element on the

diagonal. Then the matrices B−1 + E and B̃−1 + E are related by a local

complementation at an element being equal to 1.

Proof. Without loss of generality we may assume that B = (bij), B̃ =

(̃bij) are (n× n)-matrices and b̃nn = bnn + 1 = 0, b̃ij = bij , i ̸= n or j ̸= n.

We shall perform elementary manipulations with rows of B and B̃ to get
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two identity matrices. Then we shall apply these elementary manipulations

to two identity matrix to get the inverse matrices.

Using the equality detB = det B̃ = 1, we have

1 = det B̃ = detB + det B̂n
n = 1 + det B̂n

n , det B̂n
n = 0,

rankB = n, rankB̂n
n = n− 2;

here B̂n
n is the matrix obtained from B by deleting the nth row and nth

column. Since B̂n
n is a symmetric matrix, without loss of generality we may

assume that detC = 1, where C is the matrix obtained from B̂n
n by deleting

the (n− 1)th row and (n− 1)th column.

Performing elementary manipulations with rows of B and B̃ (the first

(n− 1) rows of B̃ are the same as the ones of B), we get

B  

 E u v

0⊤ 0 1

0⊤ 1 1

∣∣∣∣∣∣
F 0 0

a⊤ 1 0

b⊤ 0 1

 , B̃  

 E u v

0⊤ 0 1

0⊤ 1 0

∣∣∣∣∣∣
F 0 0

a⊤ 1 0

b⊤ 0 1

 ;

here F is an ((n−2)×(n−2))-matrix, a, b, u, v are (n−2)-column vectors.

Further, performing elementary manipulations with rows of B̃ and B, we

have

B̃  

 E u v

0⊤ 0 1

0⊤ 1 0

∣∣∣∣∣∣
F 0 0

a⊤ 1 0

b⊤ 0 1

 
 E u v

0⊤ 1 0

0⊤ 0 1

∣∣∣∣∣∣
F 0 0

b⊤ 0 1

a⊤ 1 0


 

 E u 0

0⊤ 1 0

0⊤ 0 1

∣∣∣∣∣∣
F1 b 0

b⊤ 0 1

a⊤ 1 0

 
 E 0 0

0⊤ 1 0

0⊤ 0 1

∣∣∣∣∣∣
F2 b a

b⊤ 0 1

a⊤ 1 0

 ,

i.e. u = a, v = b (the inverse matrix to a symmetric matrix is symmetric),

B  

 E u v

0⊤ 0 1

0⊤ 1 1

∣∣∣∣∣∣
F 0 0

a⊤ 1 0

b⊤ 0 1

 
 E a b

0⊤ 1 0

0⊤ 0 1

∣∣∣∣∣∣
F 0 0

a⊤ + b⊤ 1 1

a⊤ 1 0


 

 E a 0

0⊤ 1 0

0⊤ 0 1

∣∣∣∣∣∣
F1 b 0

a⊤ + b⊤ 1 1

a⊤ 1 0

 
 E 0 0

0⊤ 1 0

0⊤ 0 1

∣∣∣∣∣∣
F3 a+ b a

a⊤ + b⊤ 1 1

a⊤ 1 0

 .

It is not difficult to see that F3 is obtained from F2 by adding a⊤ to the

rows of F2 corresponding to the rows of B−1 having the last element equal

to 1. Therefore, the matrix B−1+E is obtained from B̃−1+E by the local

complementation at the element corresponding to b̃nn. �
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Lemma 7.15. Let B and B̃ be two symmetric matrices over Z2 with

detB = det B̃ = 1, and let B and B̃ coincide up to two elements on the

diagonal with numbers i and j. Suppose that det B̂i
i = det B̂j

j = 1, where

B̂k
k is the matrix obtained from B by deleting the kth row and kth column.

Then the matrices B−1 +E and B̃−1 +E are related by a pivot operation.

Proof. Without loss of generality, we may assume that B = (bij), B̃ =

(̃bij) are two (n×n)-matrices and b̃(n−1)(n−1) = b(n−1)(n−1)+1, b̃nn = bnn+

1, b̃ij = bij for (i, j) ̸= (n − 1, n − 1), (n, n). We shall perform elementary

manipulations with rows of B and B̃ to get two identity matrices. Then we

shall apply these manipulations to two identity matrices to get their inverse

matrices.

Using the equality detB = det B̃ = 1, we have

1 = det B̃ = detB + det B̂n−1
n−1 + det B̂n

n + det B̂
(n−1)n
(n−1)n = 1 + det B̂

(n−1)n
(n−1)n ,

det B̂
(n−1)n
(n−1)n = 0, rankB̂n−1

n−1 = rankB̂n
n = n− 1, rankB̂

(n−1)n
(n−1)n = n− 3;

here B̂
(n−1)n
(n−1)n is the matrix obtained from B̂n

n by deleting the (n− 1)th row

and (n−1)th column. Since B̂
(n−1)n
(n−1)n is a symmetric matrix, without loss of

generality we may assume that detC = 1, where C is the matrix obtained

from B̂
(n−1)n
(n−1)n by deleting the (n− 2)th row and (n− 2)th column. It is not

difficult to show that the two matrices obtained from B̃ by deleting the nth

row, nth column and the (n− 1)th row, (n− 1)th column, respectively, are

both non-degenerate.

Performing elementary manipulations with rows of B and B̃ (the first

(n− 2) rows of B̃ are the same as the ones of B), we get

B  


E u v w

0⊤ 0 1 1

0⊤ 1 1 l

0⊤ 1 l 0

∣∣∣∣∣∣∣∣
F 0 0 0

a⊤ 1 0 0

b⊤ 0 1 0

c⊤ 0 0 1

 , B̃  


E u v w

0⊤ 0 1 1

0⊤ 1 0 l

0⊤ 1 l 1

∣∣∣∣∣∣∣∣
F 0 0 0

a⊤ 1 0 0

b⊤ 0 1 0

c⊤ 0 0 1

 ;

here F is a ((n− 3)× (n− 3))-matrix, a, b, c, u, v, w are (n− 3)-column

vectors, and l ∈ {0, 1}. Further, performing elementary manipulations with
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rows, we have

B  


E u v w

0⊤ 0 1 1

0⊤ 1 1 l

0⊤ 1 l 0

∣∣∣∣∣∣∣∣
F 0 0 0

a⊤ 1 0 0

b⊤ 0 1 0

c⊤ 0 0 1



 


E u v w

0⊤ 1 0 0

0⊤ 0 1 0

0⊤ 0 0 1

∣∣∣∣∣∣∣∣
F 0 0 0

la⊤ + lb⊤ + (1 + l)c⊤ l l 1 + l

la⊤ + b⊤ + c⊤ l 1 1

(1 + l)a⊤ + b⊤ + c⊤ 1 + l 1 1

 (E |B−1 );

here

B−1 =

 F1 l(a+ b+ c) + c la+ b+ c (1 + l)a+ b+ c

la⊤ + lb⊤ + (1 + l)c⊤ l l 1 + l

la⊤ + b⊤ + c⊤ l 1 1

(1 + l)a⊤ + b⊤ + c⊤ 1 + l 1 1


and

B̃  


E u v w

0⊤ 0 1 1

0⊤ 1 0 l

0⊤ 1 l 1

∣∣∣∣∣∣∣∣
F 0 0 0

a⊤ 1 0 0

b⊤ 0 1 0

c⊤ 0 0 1



 


E u v w

0⊤ 1 0 0

0⊤ 0 1 0

0⊤ 0 0 1

∣∣∣∣∣∣∣∣
F 0 0 0

l(a⊤ + b⊤ + c⊤) + b⊤ l 1 + l l

(1 + l)a⊤ + b⊤ + c⊤ 1 + l 1 1

la⊤ + b⊤ + c⊤ l 1 1

 (E | B̃−1 ),

B̃−1 =

 F2 l(a+ b+ c) + b (1 + l)a+ b+ c la+ b+ c

l(a⊤ + b⊤ + c⊤) + b⊤ l 1 + l l

(1 + l)a⊤ + b⊤ + c⊤ 1 + l 1 1

la⊤ + b⊤ + c⊤ l 1 1

 .

Let us investigate the matrices F1 and F2 more carefully. We have four

cases depending on the last two elements of the rows.

(1) If a row of the matrix B−1 has the last two elements equal to 0, then

the corresponding row of B̃−1 also has the last two elements equal

to 0. We have the following two cases: The rows of the matrices F1

and F2 are either obtained from F by adding the sum of the two rows

la⊤ +b⊤ + c⊤ and (1+ l)a⊤ +b⊤ + c⊤ to the corresponding row of F

or are equal to the corresponding row of F . In both cases, we have the

equality of rows of B−1 and B̃−1 having the last two elements equal to

0.
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(2) If a row of the matrix B−1 has the last two elements equal to 1, then the

corresponding row of B̃−1 also has the last two elements equal to 1. We

have the following two cases: The rows of the matrices F1 and F2 are

obtained from F either by adding la⊤ + b⊤ + c⊤ to the corresponding

row of F or by adding (1+ l)a⊤+b⊤+ c⊤ to the corresponding row of

F . In both cases, we have the equality of rows of B−1 and B̃−1 having

the last two elements equal to 1.

(3) If a row of the matrix B−1 has the penultimate element equal to 0 and

the last one equal to 1, then the corresponding row of B̃−1 has the

penultimate element equal to 1 and the last one equal to 0. We have

the following two cases: The rows of F1 and F2 are obtained from F

either by adding the sum of two rows

la⊤ + lb⊤ + (1 + l)c⊤, l(la⊤ + b⊤ + c⊤)

for F1 and the sum of two rows

l(a⊤ + b⊤ + c⊤) + b⊤, l((1 + l)a⊤ + b⊤ + c⊤)

for F2, or by adding the sum of the three rows

la⊤+lb⊤+(1+l)c⊤, (1+l)(la⊤+b⊤+c⊤), (1+l)a⊤+b⊤+c⊤

for F1 and the sum of the three rows

l(a⊤+b⊤+c⊤)+b⊤, (1+l)((1+l)a⊤+b⊤+c⊤), la⊤+b⊤+c⊤

for F2 to the corresponding row of F . In both cases, the sum of the

corresponding rows of B−1 and B̃−1 is la⊤ + b⊤ + c⊤.

(4) If a row of the matrix B−1 has the penultimate element equal to 1 and

the last one equal to 0, then the corresponding row of B̃−1 has the

penultimate element equal to 0 and the last one equal to 1. We have

the following two cases: The rows of F1 and F2 are obtained from F

either by adding the sum of the rows

la⊤ + lb⊤ + (1 + l)c⊤, (1 + l)(la⊤ + b⊤ + c⊤)

for F1 and the sum of the rows

l(a⊤ + b⊤ + c⊤) + b⊤, (1 + l)((1 + l)a⊤ + b⊤ + c⊤)

for F2, or by adding the sum of the three rows

la⊤ + lb⊤ + (1 + l)c⊤, l(la⊤ + b⊤ + c⊤), (1 + l)a⊤ + b⊤ + c⊤

for F1 and the sum of rows

l(a⊤ +b⊤ + c⊤) +b⊤, l((1 + l)a⊤ +b⊤ + c⊤), la⊤ +b⊤ + c⊤

for F2 to the corresponding row of F . In both cases, the sum of the

corresponding rows of B−1 and B̃−1 is (1 + l)a⊤ + b⊤ + c⊤.
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Therefore, the matrices B−1 + E and B̃−1 + E are related by a pivot

operation. �

Remark 7.15. If a symmetric matrix B is realizable by a chord diagram,

then the matrix B̃ being equal to B up to diagonal elements is also realizable

by a chord diagram. In this case Lemmas 7.14 and 7.15 mean that rotating

circuits, obtained from the Gauss circuit by different ways, are connected

with each other by the transformations mentioned in Statement 7.1.

Theorem 7.11 ([127]). (1) The map υ : G(n) → L(n) given by the for-

mula:

υ[A]C = [(A+ E)−1]D,

is well defined.

(2) There exists the inverse map υ−1 : L(n)→ G(n).

Proof. Let Eij , i ̸= j, be the matrix with ones along the diagonal, and

the element in the intersection of the ith row and jth column is 1, the

others are 0.

(1) Let A ∼C Ã.

If A and Ã are related by the pivot operation for the first two elements,

then

B = A+ E =



1 1 0⊤ 1⊤ 0⊤ 1⊤

1 1 0⊤ 0⊤ 1⊤ 1⊤

0 0 A0 + E A1 A2 A3

1 0 A⊤
1 A4 + E A5 A6

0 1 A⊤
2 A⊤

5 A7 + E A8

1 1 A⊤
3 A⊤

6 A⊤
8 A9 + E


,

B̃ = Ã+ E =



1 1 0⊤ 0⊤ 1⊤ 1⊤

1 1 0⊤ 1⊤ 0⊤ 1⊤

0 0 A0 + E A1 A2 A3

0 1 A⊤
1 A4 + E A5 + (1) A6 + (1)

1 0 A⊤
2 A⊤

5 + (1) A7 + E A8 + (1)

1 1 A⊤
3 A⊤

6 + (1) A⊤
8 + (1) A9 + E


= BE1k1 . . . E1kpE2(kp+1) . . . E2kqE1(kq+1) . . . E1n

· E2(kq+1) . . . E2nE12E21E12 = BM ;

here k1 > 2, . . . , kp are the numbers of those columns which have 1 in

the first row and 0 in the second row, kp + 1, . . . , kq are the numbers of
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those columns which have 0 in the first row and 1 in the second row, and

kq + 1, . . . , n are the numbers of those columns which have 1 in the first

two rows.

We get B̃−1 = M−1B−1. The last matrix is obtained from B−1 by

adding some rows to the first and second rows of it. Since the matrices

B̃−1 and B−1 are symmetric, then B̃−1 might differ from B−1 only by the

four elements located in the first two rows and columns. So we have to

prove the equality b12 = b̃12, B−1 = (bij), B̃−1 = (̃bij). We have

b12 = det


1 0⊤ 0⊤ 1⊤ 1⊤

0 A0 + E A1 A2 A3

1 A⊤
1 A4 + E A5 A6

0 A⊤
2 A⊤

5 A7 + E A8

1 A⊤
3 A⊤

6 A⊤
8 A9 + E



= det


1 0⊤ 0⊤ 1⊤ 1⊤

0 A0 + E A1 A2 A3

0 A⊤
1 A4 + E A5 + (1) A6 + (1)

0 A⊤
2 A⊤

5 A7 + E A8

0 A⊤
3 A⊤

6 A⊤
8 + (1) A9 + E + (1)



= det


A0 + E A1 A2 A3

A⊤
1 A4 + E A5 + (1) A6 + (1)

A⊤
2 A⊤

5 A7 + E A8

A⊤
3 A⊤

6 A⊤
8 + (1) A9 + E + (1)

 ,

b̃12 = det


1 0⊤ 1⊤ 0⊤ 1⊤

0 A0 + E A1 A2 A3

0 A⊤
1 A4 + E A5 + (1) A6 + (1)

1 A⊤
2 A⊤

5 + (1) A7 + E A8 + (1)

1 A⊤
3 A⊤

6 + (1) A⊤
8 + (1) A9 + E



= det


1 0⊤ 1⊤ 0⊤ 1⊤

0 A0 + E A1 A2 A3

0 A⊤
1 A4 + E A5 + (1) A6 + (1)

0 A⊤
2 A⊤

5 A7 + E A8

0 A⊤
3 A⊤

6 A⊤
8 + (1) A9 + E + (1)



= det


A0 + E A1 A2 A3

A⊤
1 A4 + E A5 + (1) A6 + (1)

A⊤
2 A⊤

5 A7 + E A8

A⊤
3 A⊤

6 A⊤
8 + (1) A9 + E + (1)

 = b12.

We have proved that B−1 ∼D B̃−1.
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If A and Ã are related by the local complementation at the first element,

then

B = A+ E =

 0 0⊤ 1⊤

0 A0 + E A1

1 A⊤
1 A2 + E


and

B̃ =

 0 0⊤ 1⊤

0 A0 + E A1

1 A⊤
1 A2 + (1) + E

 = (A(G1) + E)E1mE1(m+1) . . . E1n;

here the numbers m,m + 1, . . . , n correspond to the numbers of columns

containing 1 in the first row.

We get B̃−1 = E1n . . . E1mB
−1. The matrix B̃−1 is obtained from B−1

by sum of the rows with numbers from m to n to the first row of it. Since

the matrices B̃−1 and B−1 are both symmetric, then B̃−1 might differ from

B−1 only by the first diagonal element. So we have proved B−1 ∼D B̃−1.

If A and Ã are related by pivot operations and local complementations,

then, by applying two preceding cases consequently, we get (A+E)−1 ∼D

(Ã+ E)−1.

(2) If B ∼D B̃ and detB = det B̃ = 1, then, by using Lemmas 7.14

and 7.15, we get B−1 + E ∼C B̃−1 + E. Using Lemma 7.13, we see that

there exists some B with detB = 1 in each class [C]D. So we can define

the inverse map υ−1 : L(n)→ G(n) by υ−1([C]D) = [B−1 + E]C . �

Remark 7.16. The map υ gives rise to an equivalence between the set of

homotopy classes of looped graphs, see [293], and the set of graph-knots,

see [129, 130]. We shall address this question in Chap. 9.

If we consider symmetric matrices realizable by chord diagrams, then

the corresponding elements from G(n) and L(n) are just framed 4-graphs

up to mutation, see [58, 106]. Our isomorphism υ gives us a correspondence

between different ways to define framed 4-graphs.

7.9 A proof of Vassiliev’s conjecture

Each Vassiliev invariant of order n of classical knots is a Vassiliev invariant

of order one for singular knots with (n− 1) intersection points (the inverse

statement, generally speaking, is not true). As it turned out [306], the

investigation of Vassiliev invariants of order one of (n − 1)-singular knots
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gives an important information about combinatorial formulae for invariants

of finite type of classical knots.

The famous Goussarov theorem [114] asserts that combinatorial for-

mulae exist for all invariants of finite order of classical knots; herewith

combinatorial formulae can have fractional coefficients; for more details

see [114, 306].

For defining the structure of the cohomology of the space of singular

knots and solving the problem of whether there exists Polyak–Viro com-

binatorial formulae with integer coefficients for a given Vassiliev invariant,

Vassiliev [306] formulated the following conjecture, which is formulated here

as a theorem.

Theorem 7.12. A framed 4-graph is not embedded in the plane with pre-

serving the A-structure if and only if it contains two cycles without common

edges and with precisely one crossing point.

Remark 7.17. Here by a cycle we mean a sequence of pairwise distinct

edges e0, e1, . . . , en = e0 such that edges ei−1, ei have a common vertex vi
and the vertices vi, vi+1 (which may coincide) are connected by the edge

ei, i.e. we do not require for a cycle to be an Euler tour.

In other words, the theorem asserts that for a given A-structure a B-

structure giving a flat atom exists if and only if the Vassiliev obstruction

(two cycles with exactly one crossing point) is absent.

We shall write down cycles by a set of sequence of edges.

Definition 7.23. By a crossing point of two cycles e0, e1, . . . , en = e0 and

e′0, e
′
1, . . . , e

′
m = e′0 without common edges we mean a common vertex vi =

v′j for some i, j such that the edges ei−1, ei are opposite (it follows that

the edges e′j−1, e
′
j are also opposite).

A self-crossing point of a cycle e0, e1, . . . , en = e0 of length n is a vertex

vi = vj (i ̸= j (mod n)) of this cycle such that the edges ei−1, ei are

opposite. Later on the subscripts of edges and vertices of a cycle of length

n are taken modulo n.

The goal of the present section is a proof of Theorem 7.12, see also [224].

Note that the methods applied here are closely connected with those meth-

ods which we use under the construction of the Khovanov complex for vir-

tual knots. Namely, we use graphs with the A-structure and B-structure

(atoms), their orientability (the source–sink structure), and d-diagrams.
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In what follows, all framed 4-graphs are assumed to be connected. The

case of disconnected graphs can obviously be reduced to this.

We note that one half of the conjecture is obvious: If a graph is em-

bedded in the plane (with preserving the A-structure), then it cannot have

two cycles with only one crossing. This follows from the fact that the

intersection number of two smooth generic curves in the plane is even.

Furthermore, if there are cycles U1 and U2 with precisely one crossing

point, then there are simple cycles U ′
1 and U

′
2 with the same unique crossing

point. These can be obtained from U1 and U2 as follows. Suppose, for

example, that U1 is non-simple. Consider a self-crossing point v of U1. It

is easy to see that U1 is divided by the vertex v into two cycles U ′
1 and U ′′

1

such that one of them (say, U ′
1) has precisely one crossing point with U2

(the same one as U1). A simplifying transformation replaces U1 by U ′
1 (see

Fig. 7.29). We can go on simplifying until both U1 and U2 become simple.

U

U

’’

’U

U

U

1

2 2

1

1
v

Fig. 7.29 Simplifying the cycle U1.

We shall prove the non-obvious half of the conjecture without assuming

that the graphs are simple. Namely, we shall prove the following theorem.

Theorem 7.13. Let H be a framed 4-graph not embedded in the plane with

preserving the A-structure. Then H contains two cycles U1, U2 without

common edges such that the number of crossing points of U1 and U2 is

equal to unity.

In what follows, it will be important for us whether a framed 4-graph has

the source–sink structure. We shall define orientations of edges of the graph

and investigate whether this orientation gives the source–sink structure at

each vertex.

An important property of d-diagrams is the possibility for embedding

them in the plane (as graphs).
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Lemma 7.16. Suppose that a framed 4-graph H does not satisfy the source–

sink condition. Then H contains two cycles U1 and U2 without common

edges and with precisely one crossing.

Proof. Consider a rotating circuit U of H and orient an edge ei of U

from the vertex vi to the vertex vi+1, i = 1, 2, . . . . We suppose that the

graph H does not satisfy the source–sink condition. The circuit U defines

an orientation of every edge of H. By hypothesis, there is a vertex where

the source–sink condition does not hold for this orientation. Let vj = vk
be this vertex. We consider two cycles U1 = ej , ej+1, . . . , ek−1 and U2 =

ek, ek+1 . . . , ej−1 obtained by splitting U at the point vj = vk. Both cycles

are rotating at any other vertex (since they coincide locally with U). Thus

the number of crossing points between these two cycles does not exceed 1.

The only point where a crossing may occur is vj = vk. We claim that it is a

crossing point. To prove this, we must check that the cycle U1 passes from

an edge to the opposite edge at the point vj = vk. At this point the cycle U1

passes from the half-edge ek−1 to the half-edge ej . At this point four half-

edges ej−1, ej , ek−1, ek meet. The edge ek is not opposite to the edge ek−1

by the construction of the circuit U . Furthermore, the edge ej−1 cannot be

opposite to the edge ek−1 since otherwise the source–sink condition holds

at vj = vk: we would have two opposite incoming edges ek−1 and ej−1 and

two emanating edges ek and ej . This contradicts our assumption. Thus,

the point vj = vk is the unique crossing point of the cycles U1 and U2. �

The following lemma is central.

Lemma 7.17. Suppose that H is a framed 4-graph and, for any two cycles

U1 and U2 without common edges, the number of transversal crossing points

(in the sense of the A-structure) is not equal to 1. Then for any rotating

circuit U of the graph H the chord diagram corresponding to this circuit is

a framed d-diagram.

Remark 7.18. The claim of Lemma 7.17 means the absence of the ob-

struction formulated in the Vassiliev conjecture.

Proof of Lemma 7.17. We start with the following fact [203]. A chord

diagram is a d-diagram if and only if it has no subdiagram ∆2n+1 of “(2n+

1)-gon type”, i.e. a chord diagram with 2n+1 chords (n > 0) such that the

chord j is linked only with chords j + 1 and j − 1 (the enumeration being

taken modulo 2n + 1), see Fig. 7.30. We note that for every n there is a

unique chord diagram with these properties.
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1

2

1

11

1

2

2

2

2

Fig. 7.30 The chord diagram ∆2n+1 and its cycles 1 and 2.

Suppose that the hypotheses of the lemma hold. By Lemma 7.16, the

framed 4-graph H satisfies the source–sink condition.

Thus it suffices to prove that if H satisfies the source–sink condition

and has a (2n + 1)-gon as a subdiagram, then it has two cycles without

common edges and with precisely one crossing point.

Arcs of the chord diagram correspond to edges of the graph (see Def-

inition 4.4), and chords correspond to vertices. If the graph satisfies the

source–sink condition, then, for each chord with endpoints X, Y , the arc

entering X is opposite to the arc entering Y . In what follows we say that

an arc of the chord diagram belongs to a cycle if the corresponding edge of

the framed 4-graph belongs to the cycle.

The further proof of Lemma 7.17 is the following. For every n we

explicitly construct two cycles U1, U2 consisting of arcs of the chord diagram

∆2n+1. If the chord diagram D contains ∆2n+1 as a subdiagram, then every

arc of ∆2n+1 is divided into arcs of D by endpoints of chords. In this case,

our cycles are also subdivided. The edges corresponding to arcs of ∆2n+1

are divided into edges corresponding to arcs of D. This splitting gives rise

to new vertices corresponding to endpoints of chords belonging to D but

not to ∆2n+1. However, these vertices do not affect the number of crossing

points of the cycles in question because the cycles do not pass from an edge

to the opposite edge at these vertices (by construction). Thus, even if such

a vertex occurs in both cycles, it cannot be a crossing point.

An example of two such cycles for a (2n+ 1)-gon is shown in Fig. 7.30.
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The arcs corresponding to the first cycle are marked by 1, and those cor-

responding to the second one by 2. The chord corresponding to the only

intersection point of these cycles is shown by a dotted line. �

The following lemma is proved in the paper [158] but in another formu-

lation.

Lemma 7.18. Let a framed 4-graph H satisfy the source–sink condition.

Suppose that the chord diagram D corresponding to some circuit of H is

a d-diagram. Then the graph H admits an embedding in the plane which

preserves the A-structure.

The proof is illustrated in Fig. 7.31. In the middle part of the figure, it

is shown how to recover the neighborhood of a vertex of the framed 4-graph

from a chord. In the lower part we show that, in the case of a d-diagram,

the corresponding framed 4-graph is embeddable in the plane together with

the A-structure.

Let us prove Lemma 7.18.

Proof of Lemma 7.18. We consider a d-diagram D and embed it in the

plane as follows. Split the set of chords of D into two subsets F1, F2 in

such a way that no two chords of the same subset are linked. (We choose

an arbitrary splitting with this property.) Then we consider the standard

embedding of the circle in the plane and distribute the endpoints of the

chords in such a way that no two of them form the endpoints of a diam-

eter. We locate the chords of the first (respectively, second) subset inside

(respectively, outside) the circle. This can be done without intersections if

we map the chords of the first subset to intervals and those of the second

to the images of such intervals under inversion in the circle.

We orient the circle in counterclockwise manner. Every chord c connects

two points X and Y of the circle. We consider the following points of the

circle: X1 = X − ε, X2 = X + ε, Y1 = Y − ε, Y2 = Y + ε. Here ε is a small

number (angle) and the operations + and − mean rotations through ±ε.
We now delete the chord c and the arcs [X1, X2] and [Y1, Y2]. We replace

these arcs by two (curvilinear) intervals [X1, Y1] and [X2, Y2] in such a way

that they intersect transversely at exactly one point Z (say, at the midpoint

of the deleted chord). Having done for all the chords of D, we get a 4-valent

graph G.

By construction, the graph G is isomorphic to the graph H. It remains

to show that they are isomorphic as framed 4-graphs.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 7. Vassiliev’s Invariants and Framed Graphs 343

...

... ...

...

a

b c

d

X

ab

c d

ab

c d

X

Recovering the graph from its chord 

diagram, the structure of opposite

edges is preserved 

In the case of d-diagrams we get an embedding of the graph 

in the plane with preserving the structure of opposite edges

The graph and

its circuit

The chord diagram 

corresponding to the graph,

the remaining chords are arbitrary

Fig. 7.31 Recovering the graph from a d-diagram.

Since H satisfies the source–sink condition, we see that the resulting

embedding is a realization, that is, the edge corresponding to [X1, Z] is

opposite to the edge corresponding to [Z, Y1] in the framed 4-graph H.

Indeed, since H satisfies the source–sink condition, every circuit of H can

be oriented with respect to this structure: Every edge entering a vertex is

followed by the (non-opposite) edge emanating from it.

It remains to mention that, for any rotating circuit of G, the edge [Z,X2]

follows directly after [X1, Z] if and only if [Z, Y2] follows [Y1, Z]. This follows

from the fact that every rotating circuit of a 4-valent graph is approximated

by an embedding of the circle. �

By combining Proposition 7.4 and Lemmas 7.16–7.18, we obtain a proof
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of the Vassiliev conjecture.

Lemma 7.17 shows that if there are no obstructions (pairs of cycles

with only one crossing point), then the chord diagram corresponding to

any circuit is a d-diagram. On the other hand, Lemma 7.18 requires only

the source–sink condition and the existence of a d-diagram corresponding to

some circuit. We actually have the following assertion for framed 4-graphs

satisfying the source–sink condition (see also Corollary 7.3).

Statement 7.2. If the chord diagram corresponding to some rotating cir-

cuit of a framed 4-graph is a d-diagram, then the same holds for chord

diagrams corresponding to all rotating circuits.

As an example, let us consider the framed 4-graph shown in the upper-

left corner of Fig. 7.32. This graph is not embedded in the plane with

preserving the A-structure. The rotating circuit e1, e2, e3, e4 of its edges

(shown in the upper-right corner of the same figure) generates a chord

diagram with two linked chords. This is a d-diagram (but not a framed

d-diagram!). It follows that the embedded graph (the lower-left corner of

Fig. 7.32) is isomorphic to the original framed 4-graph. However, the circuit

e1, e2, e3, e4 does not satisfy the source–sink condition at the vertex v1 since

the edges e1 and e4 are opposite: e1 goes into v1 and e4 goes out. Therefore,

the graph in the lower-left corner has another framing at v1: the edges e1
and e3 are opposite (in contrast to the original graph, where e1 and e4 are

opposite).

Note that the criterion given above provides a fast (quadratic) algorithm

to determine whether a framed 4-graph is embeddable in the plane with

preserving the A-structure. If this is not the case, then the algorithm gives

two cycles with precisely one crossing point. Here we mean complexity with

respect to the number of vertices. Here are the main steps of the algorithm.

Enumerate the edges and vertices of the graph arbitrarily. For each

vertex, write down all edges incident to it and indicate which edges are

opposite.

The edge enumeration has linear complexity, and so does the enumera-

tion of the vertices and memorizing the information about the edges incident

to each vertex.

Then we construct a rotating circuit of the graph. This operation is

also linear.

Having a rotating circuit, we can check whether it satisfies the source–

sink condition at every vertex. If this is not the case, then we get two cycles

with a unique crossing point by Lemma 7.16. This operation is linear.
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Fig. 7.32 Non-existence of a source–sink structure yields non-embedding with the A-

structure.

Suppose that the rotating circuit defines a source–sink structure. We

construct the corresponding diagram. The operation of constructing the

chord diagram is linear. The operation of determining which pairs of chords

are linked has quadratic complexity (one must consider all pairs of chords).

Thus we obtain the adjacency matrix of the chord diagram or, equivalently,

the intersection graph of the chord diagram. Having done all this, we can

restate the original question (whether the original diagram is a d-diagram)

as follows: Is the intersection graph bipartite?

This question can be answered in quadratic time. Moreover, if the

graph is not bipartite, then quadratic time is sufficient to find a cycle of

odd length, that is, in terms of chord diagrams, a (2n + 1)-gon. Having

done this, we can construct a pair of cycles with a unique crossing point

according to Lemma 7.17. This operation has linear complexity. There

are other criteria of embeddability of a framed 4-graph in the plane with

preserving the A-structure, see, e.g. [47, 48].

7.10 Embeddings of framed 4-graphs into 2-surfaces

In this section we consider framed 4-graphs and investigate the question

about an estimate of the genus of 2-surfaces (by the genus of a non-

orientable closed surface we mean (2 − χ)/2, where χ is the Euler char-
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acteristic), which framed 4-graphs can be embedded in. By an embedding

we mean an embedding such that the formal structure of opposite edges

coincides with the structure of opposite edges induced by the embedding.

We restrict the case when the complement to the graph in the surface rep-

resents a disjoint union of 2-cells. Later on, all graphs are assumed to be

connected.

Among all embeddings the class of Z2-homology trivial embeddings is

natural, this class is characterized in the following way: If a framed 4-graph

H is Z2-homology trivial embedded in the surface S, then cells from S \ Γ
admit a checkerboard coloring. Any embedding of a framed 4-graph can be

reduced to a checkerboard colorable embedding by means of an embedding

of the corresponding covering.

Determining the minimal genus of a surface which the framed 4-graph

is embedded in (by checkerboard manner) can be decided by considering

all possible gluings of black and white cells (it is done at 2n times, where n

is the number of vertices). In [92] an algorithm is given, which defines the

genus of an embedding for an arbitrary graph in a polynomial time over

the number of edges. This algorithm can be easily adopted for embeddings

of framed 4-graphs, however, constants are very large and, therefore, the

algorithm is ineffective in this case.

In the section we both reformulate an embeddability criterion into the

language of matrices for three cases: R2, RP 2, K2 and also consider gen-

erating functions describing all embeddings of a given framed 4-graph. It

turns out that this has an interesting connection to knot theory.

Let H be a connected framed 4-graph, and U be a rotating circuit

of H. Denote by A(DU ) the adjacency matrix of the chord diagram DU

corresponding to U .

The main result is the following theorem.

Theorem 7.14 ([232, 238]). A framed 4-graph H with n vertices admits

a checkerboard colorable embedding in a minimal (with respect to genus)

surface with genus g if and only if for a rotating circuit U of H the set

of indices of the matrix A(DU ) can be split, {1, . . . , n} = I ⊔ J, such

that the sum of ranks of the square block matrices is equal to 2g, i.e.

rankZ2A(DU )I +rankZ2A(DU )J = 2g (a block matrix is defined by choosing

rows and columns corresponding to the chosen set of indices). Moreover, all

surfaces, which the graph H can be embedded in with checkerboard coloring,

are orientable if all diagonal elements of the matrix A(DU ) are zero, and

non-orientable if there exists an element on the diagonal equal to one.
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Proof. Using the language of atoms, the main problem is reformulated in

the following manner. Let a framed 4-graph H be given. We should choose

at each vertex a rule of pasting black and white cells such that the genus

of the obtained surface is minimal. For a framed 4-graph with n vertices

there exist 2n atoms.

Consider the set A of all atoms corresponding to H, and denote by f(H)

the generating function: ∑
At∈A

tg(At),

where g(At) is the genus of an atom At.

Theorem 7.14 follows from the following more general theorem.

Theorem 7.15. For any rotating circuit U of H the equality f(H) =

F (DU ) holds, where F is the function on chord diagrams (not depending

on a circuit) defined by the adjacency matrix of the chord diagram D as

follows:

F (D) =
∑

I⊔J={0,...,n}

t(rankA(D)I+rankA(D)J )/2.

It turns out that the function F defined on framed chord diagrams is

connected with Vassiliev invariants of knots [304]. Namely, the restric-

tion of F on chord diagrams with framing 0 satisfies the 4T -relation (see,

e.g. [17]). This claim follows from straightforward checking.

Theorem 7.15 follows from the following arguments. Assume that there

exists a checkerboard colorable embedding of H in a surface S. Fix a rotat-

ing circuit U of H. It defines the map u : S1 → S which is approximated by

the embedding (one should correct it in neighborhoods of ends of chords).

This embedding is obviously splitting : White cells lie on one side with re-

spect to the circle image, and black cells lie on the other side. Thereby

chords of DU are partitioned into two sets: chords lying in the “black side”

and chords lying in the “white side”. Thus, we get two chord diagrams Db

and Dw having the same circle as the chord diagram DU , herewith black

chords are related to Db, and white chords are related to Dw. To determine

the genus of the surface S we have to sum two genera of the surfaces with

boundary which are obtained from S by dividing it with the circle U . It

is clear that these surfaces are defined by the framed chord diagrams Db

and Dw. Therefore, the genus of the surface is defined as the sum of val-

ues of some functions on chord diagrams, and the generating function for
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determining all the genera of all the surfaces is obtained by summing over

all partitioning of chords into two sets.

To obtain the “half” Db (or Dw) of the desired surface we have to attach

chords to a disc, paste boundary components of the obtained manifold by

discs and delete discs. Actually, boundary components correspond to black

and white cells of the atom which we are constructing.

After that the claim of Theorem 7.14 immediately follows from the ar-

gument given above: We determine the Euler characteristic of the atom by

means of Theorem 7.8 by remembering that the surgery is performed along

two sets of chords corresponding to the partition of the chord diagram. �

From the theorem one can easily get fast (polynomial) criteria of

checkerboard colorable embeddability of a graph in the sphere S2, the pro-

jective plane RP 2 and the Klein bottle K2. Another approach (connected

with solving equations) for solving the same problems was suggested in [197]

(see also [47, 48, 64, 198, 224, 270]).

Let us describe how one can detect whether a given graph is embedded

in the Klein bottle or projective plain. Without loss of generality we shall

consider connected chord diagrams, i.e. those with connected intersection

graphs. It is obvious that the genus of a surface is additive with respect

to the connected sum of chord diagrams, and the corresponding generating

function is multiplicative.

In the case of projective plane we have to find a chord with framing 1.

Further, all chords with framing 1 have to be linked with it in order that the

rank of the corresponding submatrix is not bigger than one. After that two

sets of chords have to be constructed as follows. Chords from the first set

contain all chords with framing 1 linked with each other, and also chords

with framing 0 not linked with each other and with chords having framing

1. The second set contains the remaining chords with framing 0 which are

not linked pairwise. Further algorithm repeats verbatim the algorithm for

recognizing d-diagrams. In the case of recognizing embeddability in the

Klein bottle we shall need the following obvious lemma.

Lemma 7.19. Let a framed 4-graph H be checkerboard colorable and em-

bedded in the Klein bottle, and let U be a rotating circuit of H. Then either

the circuit U partitions the Klein bottle into Möbius bands, or there exists a

chord with framing 1 such that the circuit U ′ obtained from U by changing

it at the vertex corresponding to the chord partitions the Klein bottle into

Möbius bands.
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After that it is necessary to construct a partition of the adjacency matrix

for one of the chord diagrams DU and DU ′ into two sets, each of them has

rank one. The algorithm of the partition and verification repeats verbatim

the algorithm of recognizing d-diagrams, only in the case of two chords

with framing 1 it is necessary to replace the word “intersection” with the

word “non-intersection” and vice versa. One has to change the adjacency

of the intersection graph for vertices with framing 1. The case when the

intersection graph is disconnected is easily reduced to the checking of each

of its components.

Remark 7.19. Note that so far no good algorithm has been found for

determining embeddability of a graph in the torus.
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Chapter 8

Parity in Knot Theory: Free-Knots:
Cobordisms

8.1 Introduction

It has been known from Gauss’ time that a knot can be encoded by a chord

diagram with some additional information, the Gauss diagram. Let a knot

and its Gauss diagram be given. We call a chord of the Gauss diagram

even if the number of chords linked with it, is even, and odd otherwise

(we consider a chord as unlinked with itself). In this case, we say that we

have the Gaussian parity (see the general definition of a parity below). For

chords a, b we write ⟨a, b⟩ = 0 ∈ Z2 if a, b are unlinked, and ⟨a, b⟩ = 1 ∈ Z2

if they are linked.

As was mentioned by Gauss, the Gauss diagram of a classical knot

diagram has only even chords [47, 48, 270].

The Reidemeister moves for classical diagrams are naturally rewritten

in the language of Gauss diagrams. Besides, there are Gauss diagrams not

realizing classical knots. In particular, Gauss diagrams having odd chords

do not realize classical knots.

A virtual knot [158] appears as a natural generalization of a classical

knot. This is an equivalence class of Gauss diagrams modulo formal Rei-

demeister moves. It turns out that the existence of odd chords for virtual

knots allows one to prove important structural theorem.

Odd crossings (odd chords) were first used for constructing invariants

of virtual knots by Kauffman [161]: In Chap. 1 odd self-linking index was

constructed for virtual knots; this index was equal to 0 for classical knots.

The set of classical knots is a proper subset of the set of virtual

knots [114]. It turns out that there exists thorough simplification of virtual

knots, free knots (see Definition 8.2) which are obtained by forgetting the

information about directions and signs of chords on Gauss diagrams of vir-

351
VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

352 Virtual Knots: The State of the Art

tual diagrams. Free knots are the main object of this chapter for studying;

they are closely connected with graph-links studied in [129, 130, 132, 293].

Chapter 9 is devoted to graph-links.

Note that free knots and links are also called homotopy classes of Gauss

words and phrases [107, 301, 302]. This is due to the fact that Gauss

diagrams can be encoded by words. But if we consider a link with many

components, then the Gauss diagram on many circles is associated with it

where the number of the circles of the diagram is equal to the number of

the components of the link. Gauss diagrams on many circles are in turn

encoded by Gauss phrases. Thus, any statement about Gauss diagrams can

be rewritten in the language of words and phrases.

Let a framed 4-graph K be introduced by its Gauss diagram DG(K).

Having a Gauss diagram we can construct the abstract framed 4-graph,

where edges of the graph are associated with arcs of the chord diagram,

and vertices are associated with chords of the chord diagram. Each vertex

is incident to four half-edges corresponding to arcs attaching to two ends

of a chord. Arcs incident to the same chord end will correspond to the

(formally) opposite half-edges. We say that a Gauss diagram is odd, if all

its chords are odd. We say that a Gauss diagram is irreducible if for any

two distinct chords a, b there exists a chord c such that ⟨a, c⟩ ̸= ⟨b, c⟩. The
same terminology (odd, irreducible) will be applied to the framed 4-graph

corresponding to a Gauss diagram.

One can easily check that we cannot apply Reidemeister moves to an odd

irreducible diagram such that these moves decrease the number of crossings

(the first and the second ones), and the third Reidemeister move, i.e. we

can only complicate this diagram for “one step”.

It turns out that the following theorem is true.

Theorem 8.1. An odd irreducible Gauss diagram D is minimal, i.e. any

Gauss diagram D′ representing the free knot generated by D has more cross-

ings than D does.

This theorem disproves Turaev’s conjecture [302] stating that all free

knots are trivial. The first proof of Theorem 8.1 and the development of par-

ity theory appeared in the series of preprints [233–235] (see also [133, 134]).

Examples of non-trivial free knots were independently (a little later)

obtained by Gibson in [107].

Moreover, due to Theorem 8.1 one can construct an infinite number

of odd irreducible Gauss diagrams such that free knot minimal diagrams

corresponding to these Gauss diagrams differ from each other. Therefore,
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one can prove that the number of equivalence classes of free knots is infinite.

Later we shall prove a stronger statement.

The parity is also used for studying cobordisms of free links, see [239].

The parity arguments allowed us to prove the existence of free knots which

are non-cobordant to the trivial free knot from combinatorially point of

view [131] and from topologically point of view [236]. In [236] the first-

named author extended the notion of parity from vertices of framed 4-

graphs to double lines of 2-surfaces. A survey of parity can be found in [240]

(see also [147, 148] for other applications of parity). It is worth mentioning

that for classical knots there exists only the trivial parity.

This chapter is organized as follows. In the next section, we shall define

free knots and describe a natural set of properties of odd and even crossings

and their behavior under the Reidemeister moves. This set of properties

can be reformulated as axiomatics of parity, i.e. the set of requirements

which are satisfied by any abstract parity in knot theory; also, the defi-

nition of parity can be reformulated in terms of homology (we shall need

this construction in the following section). We shall give other examples

of parities satisfying those axioms (different from the parity obtained by

counting linking number of chords of Gauss diagrams). Then we shall show

that in the case of free knots there exists a unique non-trivial parity, the

Gaussian parity.

In Sec. 8.3 we construct a functorial map f : For each knot theory

having some parity we shall construct a well-defined map on the set of

equivalence classes of knots by “forgetting” odd crossings. By means of

f we construct a projecting map setting all virtual knots to virtual knots

with orientable atoms and setting a virtual knot with an orientable atom

to itself. Some invariants of virtual knots are directly defined for virtual

knots with orientable atoms but it is hard to define them for all virtual

knots. Examples of such invariants are Khovanov homology, the signature

of a virtual knot defined by using the Göritz matrix. Due to the projecting

map, we can lift invariants from virtual knots with orientable atoms to all

virtual knots.

In Sec. 8.4 we shall construct the invariants [·] and {·} which allow one,

in particular, to prove a refined version of Theorem 8.1. This allows one to

prove non-invertibility of free knots.

Section 8.5 is devoted to Goldman’s bracket [110] and Turaev’s co-

bracket [296], that first appeared in the study of homotopy classes of curves

on surfaces, and these brackets are, in a natural way, generalized to a simpli-

fication of homotopy classes of curves, free knots and links (see also [295]).
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Using the results from Secs. 8.4.3 and 8.5 about non-invertibility of free

links and Turaev’s cobracket, in Sec. 8.6 we prove non-invertibility of free

knots. In this section, we also construct different analogues of Goldman’s

bracket and Turaev’s cobracket.

In Sec. 8.7 we use parity and free knots for refining the Kauffman bracket

polynomial.

The aim of Sec. 8.8 is to prove that the minimal number of virtual cross-

ings for some families of virtual knots grows quadratically with respect to

the minimal number of classical crossings. All previously known estimates

for the virtual crossing number [1, 23, 77, 274] were principally no more

than linear in the number of classical crossings (or, what is the same, in

the number of edges of a virtual knot diagram), and no virtual knot was

found with the virtual crossing number greater than the classical crossing

number.

Section 8.9 is devoted to cobordisms of free knots. We shall construct

a simple invariant which provides a sliceness obstruction for free knots.

This obstruction provides a new point of view to the problem of studying

cobordisms of curves immersed in 2-surfaces, a problem previously studied

by Carter, Turaev, Orr, and others.

8.2 Free knots and parity axioms

Throughout this chapter by a 4-graph we mean the following generalization

of a 4-valent graph: a 1-cell complex, whose each connected component

is homeomorphic either a circle, or a 4-valent graph; by vertices we mean

only vertices of those components which are homeomorphic to a 4-valent

graph, and by edges we mean both edges of the 4-valent graph and circle-

components (the latter we call cyclic edges).

Let us consider a (non-oriented) chord diagram D. Then the corre-

sponding 4-graph G(D) with a unique unicursal component is constructed

as follows (see Definition 1.5, we consider the Gauss circuit approach). If

the set of chords of D is empty, then the corresponding graph will be G0.

Otherwise, the edges of the graph are in one-to-one correspondence with

arcs of the chord diagram, and vertices are in one-to-one correspondence

with chords of the chord diagram. The arcs incident to the same chord

end, correspond to the half-edges which are formally opposite at the vertex

corresponding to the chord.

The inverse procedure (the construction of a chord diagram from a
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framed 4-graph with one unicursal component) is obvious. In this case

each framed 4-graph with one unicursal component can be represented by

a quotient set obtained from a circle by identifying some pairs of points.

Connecting points which are identified by a chord we get the chord diagram.

Further, for a framed 4-graph G with a unique unicursal component we

define a pairing of vertices v1, v2 (over Z2): ⟨v1, v2⟩ = ⟨a(v1), a(v2)⟩, where
a(vi) are the chords corresponding to vertices vi.

8.2.1 Free links

A framed 4-graph is a serious simplification of the notion of a knot (link) di-

agram: At each classical crossing we do not indicate the over/undercrossing

structure, moreover, we do not take into consideration the sign of a cross-

ing (or equivalently we forget about the over/undercrossing structure and

the cyclic order of half-edges, and remember only the structure of opposite

edges).

Our first aim is to study equivalence classes of framed 4-graphs modulo

some moves corresponding to Reidemeister moves for knots.

Each of these moves is a transformation of one fragment of a framed

4-graph.

Definition 8.1. The first Reidemeister move is an addition/removal of a

loop, see Fig. 8.1.

The second Reidemeister move is an addition/removal of a bigon formed

by a pair of edges which are adjacent (not opposite) at each of the two

vertices, see Fig. 8.2.

The third Reidemeister move is shown in Fig. 8.3.

Definition 8.2. A free link is an equivalence class of framed 4-graphs mod-

ulo the Reidemeister moves.

It is evident that the number of components of a framed 4-graph does

not change after applying a Reidemeister move, so, it makes sense to talk

about the number of components of a free link.

By a free knot we mean a free link with one unicursal component.

The free unknot or free trivial knot (respectively, the free n-component

trivial link) is the free knot (respectively, link) represented by G0 (respec-

tively, by n disjoint copies of G0).

Remark 8.1. Free knots can be treated as equivalence classes of Gauss

diagrams by moves corresponding to the Reidemeister moves.
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Fig. 8.1 The first Reidemeister move for knots and chord diagrams.

Fig. 8.2 The second Reidemeister move for knots and chord diagrams.

Analogously, one defines long free knots; here one should break the only

unicursal component and pull its ends to “infinity”. For free links (and

graphs representing them) moves are considered only in finite domains.

More formally, we may consider a framed 4-graph with one unicursal com-

ponent with a marked edge (say this edge is marked by a vertex situated

in the middle of the edge). Defining an equivalence relation we allow only

those moves which are performed away from the marked point. If we con-

sider chord diagrams, then the marked point is situated on an arc, and we
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Fig. 8.3 The third Reidemeister move for knots and chord diagrams.

forbid moves on chord diagrams under which ends of chords go through the

marked vertex.

A natural question is: What are free knots? Note that there is a clas-

sification of flat knots but there is not that of free knots. If we consider a

planar framed 4-graph (which originates from a classical knot), then this

planar graph can be easily reduced to the graph G0. It can be easily shown

that a one-component framed 4-graph embeddable in the torus (in a way

that the original framing coincides with the framing induced from the torus)

is also reducible to the graph G0 (without vertices).

Free knots are closely connected to flat virtual knots, i.e. equivalence

classes of virtual knots modulo the transformation swapping overcrossing

and undercrossing mutually. The latter are equivalence classes of immersed

curves in orientable 2-surfaces modulo homotopy and stabilization.

Nevertheless, the equivalence of free knots is even stronger than the

equivalence of flat virtual knots: Our free knots do not require any surface.

Every time one applies a Reidemeister move to a regular 4-graph, one em-

beds this graph into a 2-surface arbitrarily (with framing preserved), apply

this Reidemeister move inside the surface and then forget the surface again.

Example 8.1. Consider the flat virtual Kishino knot, see Fig. 8.4.

It is known that this knot is not trivial as a flat virtual knot. Never-

theless, the corresponding framed 4-graph considered by itself has a bigon
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formed by two edges which are adjacent in two vertices. Thus, the free knot

represented by the flat Kishino knot is trivial.

Fig. 8.4 The flat Kishino knot.

The exact statement connecting virtual knots and free knots sounds as

follows.

Lemma 8.1. A free knot is an equivalence class of virtual knots modulo

two transformations: crossing switches and virtualizations.

One may think of a virtualization as a way of changing the immersion

of a framed 4-graph in the plane such that the cyclic order of half-edges

changes but the structure of opposite half-edges does not.

In contrast to free knots, virtual knots have a cyclic order of half-edges

at a vertex: We can say not only which half-edges are locally opposite but

in which order they appear when we go around a vertex in counterclock-

wise manner. Moreover, virtual knots have a natural over/undercrossing

structure at vertices.

A natural map of “forgetting” the crossing structure takes the set of

virtual knots (links) to the set of free knots (links). Therefore, all invariants

of free knots give some invariants of virtual knots.

Note that in the case of free links it is much easier to find a non-trivial

example, i.e. a link which cannot be transformed to the framed 4-graph

without vertices.

Indeed, consider the framed 4-graph with one vertex v and two edges

a, b, each connecting v to v in such a way that the edge a is opposite to

a, and the edge b is opposite to b. This free link is not equivalent to the

trivial one because of the following simple invariant of two-component free

links.
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It is easy to see that the parity of the number of crossings formed by

the two components is invariant under the Reidemeister moves. Since the

number of such vertices is odd for our framed 4-graph, then the free link is

not equivalent to the free trivial link.

8.2.2 The parity axiomatics

Let K be a knot. We use the notion of knot (in a broad sense) for an equiv-

alence class of diagrams where the equivalence relation is given by moves,

i.e. local transformations from some list. In each case, we indicate which

list of transformations is under consideration. As a rule, such transforma-

tions will correspond to isotopies of knots in a three-dimensional manifold

or homotopies of curves on a 2-surface.

Each of the diagrams represents some class of graphs (maybe with an

additional structure at vertices), and some 4-valent vertices have a framing.

An equivalence relation is given by the Reidemeister moves described above

with respect to framed 4-valent vertices. In some cases (for example, in clas-

sical knot theory) we impose some restrictions on the moves (for example,

we consider moves having a definite over/undercrossing structure).

Examples of such theories are the theory of classical and virtual knots,

the theory of flat knots and the theory of braids and tangles (classical or

virtual).

Recall that in the case of virtual knots we use the notion of “crossing”

only for classical crossings unless otherwise indicated. We ignore the detour

move since this move does not change a mutual position of crossings.

Let us define the category K of diagrams of the knot K. The objects

of K are diagrams of K and morphisms of the category K are (formal)

compositions of elementary morphisms. By an elementary morphism we

mean the following:

• an isotopy;

• a Reidemeister move.

Since the number of vertices of a diagram may change under Reide-

meister moves (under the first (respectively, second) Reidemeister move

the number of vertices is changed by one (respectively, two)), therefore,

there is no bijection between the sets of vertices of two diagrams connected

by a sequence of the Reidemeister moves. But we want to have any “corre-

spondence” between the vertices after applying moves. We have the natural

bijection only for the vertices of diagrams connected by the third Reide-
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meister move. To construct any connection between two sets of vertices for

all cases of the moves we shall introduce the notion of a partial bijection

which means just a bijection between the subsets of vertices, corresponding

to each other in the two diagrams.

Definition 8.3. A partial bijection of sets X and Y is a triple (X̃, Ỹ , ϕ),

where X̃ ⊂ X, Ỹ ⊂ Y and ϕ : X̃ → Ỹ is a bijection.

Let us denote by V the vertex functor on K, i.e. a functor from K to

the category, objects of which are finite sets and morphisms are partial

bijections. For each diagram K we define V(K) to be the set of classical

crossings of K, i.e. the vertices of the underlying framed 4-graph. Any

elementary morphism f : K → K ′ naturally induces a partial bijection

f∗ : V(K)→ V(K ′).

Now we shall define a parity with coefficients in an arbitrary abelian

group. In [233, 234, 237, 240] the parity with coefficients in Z2 was de-

fined. We extend that notion to the case with an abelian group. Note that

one can define a parity valued in a non-abelian group.

Let A be an abelian group.

Definition 8.4. A parity p on diagrams of a knot K with coefficients in A

is a family of maps pK : V(K)→ A, K ∈ ob(K) is an object of the category,

such that for any elementary morphism f : K → K ′ the following holds:

(1) pK′(f∗(v)) = pK(v) provided that v ∈ V(K) and there exists f∗(v) ∈
V(K ′);

(2) pK(v1)+pK(v2) = 0 if f is a decreasing second Reidemeister move and

v1, v2 are the disappearing crossings;

(3) pK(v1) + pK(v2) + pK(v3) = 0 if f is a third Reidemeister move and

v1, v2, v3 are the crossings participating in this move.

Remark 8.2. The first condition in Definition 8.4 means that a parity re-

spects the partial bijection, i.e. the corresponding crossings of two diagrams

are of the same parity.

Of course, a parity has to be the same for isomorphic graphs. For ex-

ample, if a framed 4-graph has a symmetry (i.e. an isomorphism preserving

framing), then crossings obtained from each other under this symmetry

should have the same parity.

Note that each knot can have its own group A. So, one can speak of a

parity for a given knot.
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The initial definition of parity, see [233, 234, 237, 240], imposed some

restrictions on the first Reidemeister move. It turns out that this restriction

follows from the second and third conditions of Definition 8.4. Namely, we

have the following lemma.

Lemma 8.2. Let p be any parity and K be a diagram. Then pK(v) =

0 if f is a decreasing first Reidemeister move applied to K and v is the

disappearing crossing of K.

Proof. Let us apply the second Reidemeister move g to the diagram K

as shown in Fig. 8.5. We have

pK′(v1) + pK′(v2) = 0, pK′(g∗(v)) + pK′(v1) + pK′(v2) = pK(v) = 0.

�

v

v

v

1

2

v

g

g
*
( )

K K ’

Fig. 8.5 Reduction of the first Reidemeister move to the second and third Reidemeister
moves.

Definition 8.5. A weakened parity p on diagrams of a knot K is a family

of maps pK : V(K)→ Z2, K ∈ ob(K) is an object of the category, such that

for any elementary morphism f : K → K ′ the following holds:

(1) pK′(f∗(v)) = pK(v) provided that v ∈ V(K) and there exists f∗(v) ∈
V(K ′);

(2) pK(v1) + pK(v2) = 0 (mod 2) if f is a decreasing second Reidemeister

move and v1, v2 are the disappearing crossings;

(3) the number of vertices vi with pK(vi) = 1 is not equal to one if f is a

third Reidemeister move and v1, v2, v3 are the crossings participating

in this move.
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Definition 8.6. Let p be a parity with coefficients with Z2 or a weakened

parity on diagrams of a knot K, and let K be any diagram of K. We call a

vertex v of K even for p if pK(v) = 0, and odd otherwise.

Remark 8.3. The weakened parity was also introduced by Gibson in his

Ph.D. thesis which is not published. Gibson told us that he had some ideas

with respect to the map f , “killing odd crossings” (the definition of f see

later).

Let us consider some examples of parities for some knot theories.

8.2.3 Gaussian parity for free, flat and virtual knots

Let A = Z2 and K be a virtual (flat) knot diagram (respectively, a framed

4-graph with one unicursal component).

To the diagram K we assign the Gauss diagram DG(K). Recall that a

crossing is even (respectively, odd) if the corresponding chord is linked with

even (respectively, odd) number of chords.

Define the map gpK : V(K)→ Z2 by putting gpK(v) = 0 if v is an even

crossing, and gpK(v) = 1 otherwise (an odd crossing).

Lemma 8.3 ([233]). The map gp is a parity for free, flat and virtual knots.

Definition 8.7. The parity gp is called the Gaussian parity.

Another way to define the Gaussian parity is the following. Let us

consider a virtual (flat) diagram (respectively, a framed 4-graph with one

unicursal component) K and its (classical) crossing v. Let us orient K.

We can smooth the diagram K at the crossing v (without loss of generality

we assume that v is ) in two different ways: the way → which

respects the orientation of K and the way → which does not respect

the orientation of K. It is easy to see (Fig. 8.6) that the first way of

smoothing gives a link with two components, and the second one gives a

knot.

In Fig. 8.6 the part of the knot diagram lying outside a neighborhood

of the crossing is depicted by a dashed line.

Note that the number of components obtained after a smoothing of the

diagram K at the crossing v in a different way does not depend on the

orientation of K.

Let us consider a diagram obtained from K by the smoothing with
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Fig. 8.6 Two smoothings of a crossing.

respect to the orientation (i.e. we get a two-component link). Let us denote

the obtained link by K1 ∪K2. Let us consider those classical crossings of

the diagram K at which the component K1 intersects the component K2.

If the number of such crossings is even, then we call the crossing v even;

otherwise we call the crossing v odd.

It is evident that the definition of parity in such a manner coincides

with the initial definition of the Gaussian parity.

Indeed, the smoothing of the crossing v with respect to the orientation

can be treated as a surgery of the Gauss diagram along the chord. After

that all crossings formed by two components K1 and K2 of the link K1∪K2

correspond to chords on the smoothed Gauss diagram on two circles, which

connect two circles. Chords of the initial chord diagram corresponding to

chords connecting two circles are just chords linked with the chord corre-

sponding to v.

Remark 8.4. If we apply the rule described above to classical knots, then

we shall get that each crossing of a knot is even. This does not give us any

new information necessary for constructing further invariants and invariant

mappings.

Note that chord diagrams having all even chords correspond to virtual

knots with orientable atoms, see Theorem 8.6.

In particular, as we shall see later, the property of an atom to be oriented

does not depend on the over/undercrossing structure at classical crossings

of a virtual diagram, but does depend on the frame, 4-graph, of an atom.
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8.2.4 Two-component classical and virtual links

Here we call the theory of two-component virtual links just knot theory.

The parity is defined as follows. Let A = Z2 and K = K1 ∪ K2 be

a virtual link diagram with two components. For K we call a classical

crossing formed by a single component (K1 or K2) even, and a classical

crossing formed by two components K1 and K2 odd.

Define the map pK : V(K) → Z2 by putting pK(v) = 0 if v is an even

crossing, and pK(v) = 1 otherwise (an odd crossing).

It is not difficult to show the following lemma.

Lemma 8.4. The map p is a parity for two-component links.

8.2.5 Knots in the solid torus, curves on 2-surfaces

Let us consider a knot K in the solid torus B represented as the thickened

annulus S1×I1×I1. Knots are represented by their projections on S1×I1
which are obtained by “forgetting” the last factor I1. We restrict ourselves

to the consideration of those knots whose homology class in H1(S
1 × I1 ×

I1,Z2) = Z2 is equal to zero.

For the knot K (all classical knots lying inside some ball D3 ⊂ B are

also attributed to this class), we define a parity in the following manner.

Let A = Z2, and let K be a diagram, v be its crossing. Let us smooth

the diagram K at the crossing v with respect to the orientation (see above).

We obtain the link L. The following equality of homology classes inH1(S
1×

I1 × I1,Z2) = Z2: [K] = [L] = [K1 ∪K2] = [K1 + K2] is evident. Thus,

taking into consideration the equality [K] = 0, we get [K1] = [K2] ∈ Z2.

If [K1] = [K2] = 1 ∈ Z2, then we call the crossing v odd, otherwise we

call the crossing even.

Define the map pK : V(K) → Z2 by putting pK(v) = 0 if v is an even

crossing, and pK(v) = 1 otherwise (an odd crossing).

From a straightforward check we get the following lemma.

Lemma 8.5. The map p is a parity for knots in the solid torus.

Remark 8.5. As a particular case of the parity described above we may

consider the parity for the theory of closed braids consisting of even number

of strands up to an isotopy of braids and a conjugation.

Each braid can be represented in a natural way by a tangle, i.e. a dia-

gram inside I1 × I1, and a closed braid can be represented as a diagram in

S1 × I1.
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A method using Z2-homology can be used in a more general setup.

It is known that virtual knots represent knots in thickened surfaces

Sg × I considered up to isotopy and stabilization.

Let us forget about stabilization and consider two classes of objects:

curves in Sg up to homotopy and knots in Sg × I up to isotopy.

In both cases objects can be encoded by diagrams in general position

which represent framed 4-graphs on Sg (in the case of knots, of course, the

structure of over/undercrossing and a cyclic order specified at each cross-

ing). The equivalence relation is defined with the help of the Reidemeister

moves.

Let us fix a homology class α from H1(Sg,Z2) = H1(Sg × I,Z2). We

shall consider only knots (curves) γ such that α(γ) = 0.

Then for such a knot (a curve)K and for its diagrams on Sg we can define

the parity of a crossing by smoothing it with respect to the orientation and

taking the class α of one of the “halves” K1 or K2 obtained after this

smoothing.

It is easy to check that we get a parity.

8.2.6 Parity and homology

In this section, we consider parity valued in Z2 for free links and homology

of framed 4-graphs. We show how one can define a parity from homology

and vice versa, cf. [240]. This reformulation will be useful later for under-

standing the way in a two-dimensional context: We shall define a parity for

double lines of 2-manifolds, see Sec. 8.9.5.

Consider a framed 4-graph K with one unicursal component. The ho-

mology groupH1(K,Z2) is generated by “halves” corresponding to vertices.

For every vertex v we have two halves of the graph, Kv,1 and Kv,2, obtained

from K by smoothing at this vertex, see Fig. 8.7. If the equivalence class of

K (possibly, with some further decorations at vertices) is endowed with a

parity p with coefficients from Z2, we may assume that we are given the fol-

lowing cohomology class h (over Z2): For each of the two halves Kv,1, Kv,2

we set h(Kv,1) = h(Kv,2) = p(v), where p(v) is the parity of the vertex v.

Taking into account that for every vertex, the sum of the two correspond-

ing halves is the cycle generated by the whole graph, we have defined a

“characteristic” cohomology class h from H1(K,Z2) equal to zero on the

cycle represented by K.

Note the following. We can assign to each cycle c ∈ H1(K,Z2) consid-

ered as a subgraph of K, the set of vertices of K which share exactly two
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non-opposite edges with c. Denote the set of the vertices by d(c).

Let us show by induction on the number of vertices in d(c) that c equals∑
iKvi,1 up to an addition of the whole K, where vi form the whole set

d(c). If d(c) consists of one vertex, then the statement is evident: One

of the two halves coincides with c. Let us suppose that the statement is

true for all cycles c′ for which the sets d(c′) contain the number of vertices

less than n. Let c be an arbitrary cycle and the cardinality of d(c) equals

n. Let us choose an arbitrary vertex v ∈ d(c) and consider the cycle c′

obtained from c by changing the circuit at v (we move transversally at v,

i.e. we move from a half-edge to the half-edge opposite to it). Then the

cardinality of d(c′) is equal to n− 1, and c is obtained from c′ by adding a

half corresponding to the vertex v. We get the validity of the statement.

K

v

vv,1 ,2
K K

Fig. 8.7 The graphs Kv,1 and Kv,2.

Collecting the properties of this cohomology class h and recalling the

parity axiomatics we see that:

(1) For every framed 4-graph K we have h(K) = 0.

(2) If a framed 4-graph K ′ is obtained from K by a first Reidemeister move

adding a loop, then for every basis {αi} of H1(K,Z2) there exist a basis

of the group H1(K,Z2) consisting of one element β corresponding to

the loop and a set of elements α′
i naturally corresponding to αi. Then

we have h(β) = 0 and h(αi) = h(α′
i) for all i.

(3) Let K ′ be obtained from K by a second increasing Reidemeister

move. Then for every basis {αi} of H1(K,Z2) there exists a basis

in H1(K
′,Z2) consisting of one “bigon” K, the elements α′

i naturally

corresponding to αi and one additional element δ (see Fig. 8.8, left).

The bigon equals the sum of two halves having the same parity in

H1(K,Z2). Then the following holds: h(αi) = h(α′
i), h(K) = 0.

(4) Let a framed 4-graph K ′ be obtained from a framed 4-graph K by

a third Reidemeister move. Then there exists a graph K ′′ with one
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vertex of degree 6 and other vertices of degree 4. K ′′ is obtained

from either of K or K ′ by contracting the “small” triangle to the

point. This generates the mappings i : H1(K,Z2) → H1(K
′′,Z2) and

i′ : H1(K
′,Z2) → H1(K

′′,Z2) (see Fig. 8.8, right). Then the follow-

ing holds: The cocycle h is equal to zero for small triangles, and

if for a ∈ H1(K,Z2), a
′ ∈ H1(K

′,Z2) we have i(a) = i′(a′), then

h(a) = h(a′). Naturally, the equality of cocycle on small triangles to

zero follows from the fact that each small triangle represents an element

equal to (up to the graph K) the sum of the three halves in H1(K,Z2)

from which the number of odd halves is equal to zero or two.

γδ

’ ’’

’

αi

αi

K

K

K

Fig. 8.8 The cohomology condition for Reidemeister moves.

Thus, every parity for free knots generates some “characteristic” Z2-

cohomology class for all framed 4-graphs with one unicursal component,

and this class behaves nicely under Reidemeister moves.

The converse is true as well.

Theorem 8.2. Assume that we are given a certain “universal” Z2-

cohomology class for all framed 4-graphs satisfying the conditions (1)–(4)

described above. Then it originates from some parity.

Indeed, it is sufficient to define the map p as follows. Let K be a

framed 4-graph, and v be its vertex. We set pK(v) to equal the “universal”

cohomology class of the corresponding half. The choice of a particular half
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does not matter, since the value of the cohomology class on the whole graph

is zero. One can easily check that our map is a parity.

This point of view allows one to find parities for those knots lying in

Z2-homologically non-trivial manifolds. For more details, see [188].

8.2.7 The universal parity : The classification of parities

for free knots

In the present section, we shall classify parities for free knots. To do this, we

shall introduce the notion of the universal parity for knots, i.e. any concrete

parity on a given knot factors through the universal one. The main theorem

of the present subsection is the theorem describing the universal parity for

free knots.

Definition 8.8. A parity pu with coefficients in Au is called universal if

for any parity p with coefficients in A there exists a unique homomorphism

of groups ρ : Au → A such that pK = ρ ◦ (pu)K for any diagram K.

Let us describe a construction of the universal parity in the general case.

Let K be a knot diagram, and let v be its vertex. Denote by 1K,v the

generator of the direct summand in the group
⊕

K

⊕
v∈V(K) Z correspond-

ing to the vertex v of K.

Let Au be the group

Au =

⊕
K

⊕
v∈V(K)

Z

 /R,

where R is the set of relations of four types:

(1) 1K′,f∗(v) = 1K,v if v ∈ V(K) and there exists f∗(v) ∈ V(K ′);

(2) 1K,v1 + 1K,v2 = 0 if f is a decreasing second Reidemeister move and

v1, v2 are the disappearing crossings;

(3) 1K,v1+1K,v2+1K,v3 = 0 if f is a third Reidemeister move and v1, v2, v3
are the crossings participating in this move.

The map (pu)K for each diagramK is defined by the formula (pu)K(v) =

1K,v, v ∈ V(K).

If p is a parity with coefficients in a group A, one defines the map

ρ : Au → A in the following way:

ρ

 ∑
K, v∈V(K)

λK,v1K,v

 =
∑

K, v∈V(K)

λK,vpK(v), λK,v ∈ Z.
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The main theorem of the present section is the following.

Theorem 8.3. Let K be a free knot. Then the Gaussian parity (with coef-

ficients in Z2) on diagrams of K is the universal parity.

Remark 8.6. Theorem 8.3 means that for each free knot and for each

parity on it either all vertices are even or they have the Gaussian parity.

This theorem will follow from Lemmas 8.6–8.8.

We encode free knots by Gauss diagrams with an ordered collection of

distinct chords {a1, . . . , an}. Let us choose a point distinct from ends of

chords on the core circle of a chord diagram. When going around the circle

from the chosen point in counterclockwise, we shall meet each chord end.

Denoting each end of a chord by the same letter as the chord, we shall get

a word where each letter corresponds to a chord and occurs precisely twice.

Definition 8.9. Let D be a chord diagram. We shall say that an ordered

collection of chords with numbers i1, . . . , ik of D forms a polygon (or k-gon)

if a word corresponding to D, contains the following sequences of distinct

letters b2p−1b2p, where b2p−1, b2p ∈ {aiσ(p)
, aiσ(p−1)

}, p = 1, . . . , k, for some

permutation σ ∈ Sk.

The pairs (b2p−1, b2p) of letters b2p−1, b2p from the definition of a poly-

gon are said to be sides of polygon.

Example 8.2. Consider the chord diagrams depicted in Fig. 8.9. The

chords denoted by a2, a4, a5, a6, a8 form a convex pentagon (left) and a

non-convex pentagon (right).

In Fig. 8.10 we depict a hexagon for a knot diagram. The knot diagram

does not intersect the interior of the hexagon.

Lemma 8.6. For every parity and any Gauss diagram, the sum of the

parities of chords forming a polygon is equal to 0.

Remark 8.7. The claim of Lemma 8.6 can be taken as a definition of a

parity.

Proof of Lemma 8.6. Let p be an arbitrary parity on diagrams of the

free knot K, and let D be a Gauss diagram representing K. Let us prove

the claim of the lemma by induction on the number of sides of a polygon.

The induction base. The validity of the claim for a loop, bigon, triangle

follows from Lemma 8.2 and Definition 8.4, respectively.
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Fig. 8.9 Pentagons.

Fig. 8.10 A hexagon.

The induction step. Assume that the claim is true for (k− 1)-gons. Let

us consider an arbitrary k-gon ai1ai2 . . . aik .

Let us apply the second Reidemeister move to the Gauss diagram D by

adding two chords b and c, see Fig. 8.11 (in Fig. 8.11 we have depicted the

three possibilities of applying the second Reidemeister move depending on

the ends of chords ai1 , ai2 , ai3 , aik).

As a result, we shall obtain the new chord diagram D′ and the (k− 1)-

gon c ai3ai4 . . . aik and the triangle b ai1ai2 . By the induction hypothesis,

we have

pD′(c) +
k∑

j=3

pD′(aij ) = 0, pD′(b) + pD′(ai1) + pD′(ai2) = 0,

pD′(b) + pD′(c) = 0.
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Fig. 8.11 The second Reidemeister move.

Therefore,

k∑
j=1

pD′(aij ) =

k∑
j=1

pD(aij ) = 0.

�

Remark 8.8. If we work with knot diagrams, then the corresponding pic-

ture for Lemma 8.6 is shown in Fig. 8.12.
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Fig. 8.12 The second Reidemeister move.

Lemma 8.7. For a free knot with a diagram K and an arbitrary parity p

we have pK(a) = 0 if gpK(a) = 0.

Proof. Let p be a parity, and let a be a chord of a chord diagram D with

gpD(a) = 0. Let us consider the two halves of the core circle of D, which

are obtained by removing the chord a from D. Since gpD(a) = 0, each

half-circle corresponding to a contains an even number of ends of chords.

Let us apply the induction on the number of ends of chords.

The induction base: If the number of ends on any half-circle is equal to

0, then pD(a) = 0 because of the property of the first Reidemeister move.

The induction step: Assume that for any chord d of D with gpD(d) = 0

such that a half-circle contains less than n = 2k ends of chords, we have

pD(d) = 0. Let us consider a chord a such that one of its half-circles, Da,1,

contains exactly n ends of chords and the other one, Da,2, contains more

than or equal to n chord ends.

Let us orient D in counterclockwise manner and consider the following

two cases.

(1) The first two ends in Da,1 belong to two distinct chords a1, a2, see

Fig. 8.13. Apply the second increasing Reidemeister move by adding a pair

of chords b, b′ in such a way that the half-circle corresponding to b′ contains

the set of ends lying in Da,1 minus the first ends of a1, a2 (see Fig. 8.14,

the upper part). Let us show that pD′(a) + pD′(b) = 0 in the new chord

diagram D′. Let us add the pair of chords c, c′ to form the triangle a1a2c,

see Fig. 8.14 (the lower part). Then pD′′(a1) + pD′′(a2) + pD′′(c) = 0 in

D′′. Moreover, we have the pentagon aa1ca2b and, therefore, the following

equality holds (Lemma 8.6)

pD′′(a) + pD′′(a1) + pD′′(c) + pD′′(a2) + pD′′(b) = 0.

We get pD′′(a) + pD′′(b) = 0 and pD′(a) + pD′(b) = 0. In the half-circle

corresponding to b′, the number of ends is less than the number of ends
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in the half-circle corresponding to a. By the induction hypothesis, we get

pD′(b) = pD′(b
′) = 0 and pD(a) = 0.

1

21 2

D D

a a
a a

a

a

Fig. 8.13 The Gaussian parity zero.
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b
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Fig. 8.14 The Gaussian parity zero.

(2) If the first two ends belong to the same chord c, then pD(c) = 0 (the

first Reidemeister move) and c forms the triangle in D′ with the chords a

and b. Therefore, pD′(a)+pD′(b)+pD′(c) = 0. By the induction hypothesis,

we get pD′(b) = pD′(b
′) = 0 and pD(a) = pD′(b) = 0. �
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Lemma 8.8. Let p be an arbitrary parity (with coefficients from a group

A) on diagrams of the free knot represented by a Gauss diagram D. Then

for any two chords a, b such that gpD(a) = gpD(b) = 1 we have pD(a) =

pD(b) = x ∈ A and 2x = 0.

Proof. Let c1, . . . , ck be ends of chords lying between the nearest ends of

a and b.

Apply k times the second Reidemeister moves as it is shown in Fig. 8.15

(the center part). Let us show that pD′(dl) = (−1)lx, where x = pD′(a).

Apply the second Reidemeister move by adding two chords f, f ′ to form

the triangle ad1f . We have

gpD′′(a) = gpD′′(d1) = 1 =⇒ gpD′′(f) = 0 =⇒ pD′′(f) = 0

=⇒ pD′(d1) = pD′′(d1) = −x.

By the induction, we can prove that pD′(dl) = (−1)lx and pD(b) =

(−1)k+1x.

Let us apply the third Reidemeister move to the triangle ad1f . The

parity p and the Gaussian parity of the chord a do not change but the

parity of the number of ends of chords between a and b changes. Applying

the previous trick, we get pD(b) = (−1)kx, i.e. 2x = 0. �

D ’’D

a
b

. . .

’D

a
b

. . .c1
kc kc

c1
d1 dk

a
b

. .
kc

c1
dk

d1

f f ’

.

Fig. 8.15 The Gaussian parity one.

Using Lemmas 8.7 and 8.8 for any parity p (with coefficients from a

group A) on diagrams of the free knot having a diagramK, we can construct

the homomorphism ρ : A → Z2 by taking ρ(x) = 1, where pK(a) = x and

gpK(a) = 1. This concludes the proof of Theorem 8.3.

Remark 8.9. Let p be a parity for a free knot K. It is not possible that

there exist two diagrams K1 and K2 of K, both having chords being odd
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in the Gaussian parity such that the parity p is trivial on all crossings of

K1, and p is the Gaussian parity for K2. It follows from the fact that there

is a sequence of Reidemeister moves transforming K1 to K2 such that any

diagram in this sequence has chords being odd in the Gaussian parity.

In other words, we have an alternative: The parity for this knot is either

Gaussian for all diagrams, or it is trivial for all diagrams.

Applying the previous arguments, let us prove the following.

Theorem 8.4. For classical knots (a priori we do not suppose that this

parity lifts to virtual knots), there exists a unique parity, the trivial parity.

Before proving this theorem, we prove the following lemma.

Lemma 8.9. Let p be a parity on diagrams of a knot K. Then for any

diagram K and any crossing v we have 2pK(v) = 0.

Proof. By applying the second and third Reidemeister moves, we get dia-

grams K1 and K2 (see Fig. 8.16). We have the equality pK1(v)+pK1(v1) =

0. Then pK2(v)+pK2(v1) = 0. We also have pK2(v)+pK2(v2)+pK2(v3) = 0

and pK2(v1) + pK2(v2) + pK2(v3) = 0. Hence, pK2(v) = pK2(v1) and

2pK2(v) = 0. Then 2pK1(v) = 0 and 2pK(v) = 0. �

K K K
1 2

v v
v1

2

3

v

1v

v

v

Fig. 8.16 The second and third Reidemeister moves.

Proof of Theorem 8.4. It suffices to show that the sum of parities of

crossings forming a bigon or a triangle in any parity is equal to 0.

Let K be a classical diagram, and let us consider only triangles. Assume

vertices v1, v2, v3 form a triangle. If one can apply the third Reidemeister

move to the triangle, then the identity pK(v1) + pK(v2) + pK(v3) = 0

follows from the definition of parity. Otherwise the vertices constitute an

alternating triangle. By applying three second and one third Reidemeister
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moves, we get the diagram K ′ (see Fig. 8.17), where the following equalities

hold:

pK′(v2) + pK′(v3) + pK′(v4) = 0,

pK′(v5) + pK′(v6) + pK′(v7) = 0,

pK′(v1) + pK′(v6) + pK′(v7) = 0,

pK′(v5) + pK′(v4) = 0.

K K ’

v

v

v1

2

3

45
6

v1 v3

v2
vvv

v
7

Fig. 8.17 An alternating triangle.

Then, we have pK′(v1) = pK′(v5) = pK′(v4) = pK′(v2) + pK′(v3) (we

do not need signs because of Lemma 8.9). Therefore, pK′(v1) + pK′(v2) +

pK′(v3) = 0. �

Now, let us pass to flat knot theory and virtual knot theory. Let K be

a (flat) virtual diagram. We have shown that a parity for K can be defined

from the homology of the underlying framed 4-graph corresponding to K.

Now we consider the homology of the underlying surface corresponding to

K. Since bigons and triangles participating in the Reidemeister moves can

be spanned by discs, we get the following corollary.

Corollary 8.1. For every parity p and any (flat) virtual knot diagram, the

sum of the parities pK(vi) of the crossings vi forming a polygon which is

spanned by a disc in the underlying surface is equal to 0.

Using virtualization moves, we can transform any polygon to a polygon

which is spanned by a disc in the underlying surface. As a result we get

the following corollary.

Corollary 8.2. For every parity p and any pseudo-knot diagram K, we

have:
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(1) the sum of the parities pK(vi) of the crossings vi forming a polygon, is

equal to 0, i.e. the writhe number has no influence on this property ;

(2) pK(v) = 0 if gpK(v) = 0.

Taking into account Corollary 8.1, we get the following corollary.

Corollary 8.3. Any parity for flat and virtual knots arises from the ho-

mology of the underlying surface. Thus, any parity on virtual knots gives

the trivial parity on classical knots.

8.3 A functorial mapping f

The mapping f given in the present section was first suggested by Turaev

for the parity from Sec. 8.2.3. We construct this mapping for an arbitrary

weakened parity.

8.3.1 Construction

Consider some knot theory represented by (flat or Gauss) diagrams and

moves on them. Let K be a diagram from this theory.

Definition 8.10. A subdiagram of K is a diagram (possibly, with some

further decorations) which is obtained from K by deleting several chords

in the case of Gauss diagrams or replacing several classical crossings with

virtual crossings in the case of flat diagrams.

Let us define the closure of knot theory to be the knot theory obtained

from the initial knot theory as follows. Diagrams of the new theory are dia-

grams of the initial theory and their subdiagrams. Moves in the new theory

are defined in the same manner as in the initial theory, i.e. if we have two

equivalent diagramsK1 andK2 in the initial knot theory, then subdiagrams

obtained from K1 and K2 by deleting the same chords (replacing the same

crossings with virtual ones) not participating in the moves are equivalent

in the new theory.

A knot theory is called closed if it coincides with its closure.

Theorem 8.5. Given some knot theory and a weakened parity on diagrams

of each knot. Let us construct the mapping f from the theory to its closure,

which sets a diagram K to the diagram obtained from K as follows.

Any even classical crossing of the diagram K remains classical, and any

odd classical crossing is replaced with a virtual one (i.e. when drawing a
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picture we substitute a virtual crossing for an odd classical crossing).

Then the mapping f is well defined on equivalence classes of knots, i.e.

this mapping takes equivalent diagrams to the equivalent diagrams.

Remark 8.10. In the case of free knots, i.e. when framed 4-graphs are

considered as diagrams, the mapping f is the operation which deletes all

odd crossings and joins two opposite half-edges to form one edge. When

knot diagrams are depicted on the plane or a surface, deleted crossings are

marked by a circle and considered as virtual crossings.

Proof of Theorem 8.5. We need to check that if diagrams K1 and K2

are obtained from each other by applying a Reidemeister move, then the

diagrams f(K1) and f(K2) either coincide (under drawing them on the

plane they differ with a detour move), or differ by a Reidemeister move.

Indeed, in the case of the first Reidemeister move, after applying the

mapping f , we get either a loop (if the crossing is even) or a virtual loop

(if the crossing is odd). In the first case, two diagrams are connected

by a detour move, and in the second case, they are related by the first

Reidemeister move.

In the case of the second Reidemeister move, if the two crossings partic-

ipating in the move are odd, then the two diagrams f(K1) and f(K2) differ

by a detour move, and if the two crossings are even, then the two diagrams

f(K1) and f(K2) differ by the second Reidemeister move.

Finally, in the case of the third Reidemeister move we can obtain either

the third Reidemeister move for f(K1) and f(K2) if all the three crossings

are even, or a detour move if the number of even crossings is one or zero.

Note that according to the first condition of Definition 8.4 all crossings

not participating in Reidemeister moves remain fixed. The latter guarantees

us that the diagram f(K1) does not change outside the neighborhoods of

those crossings which take part in Reidemeister moves while we pass from

f(K1) to the diagram f(K2). �

Let us describe the mapping f in concrete cases of knot theories.

8.3.2 The mapping f in the case of the parity from

Sec. 8.2.3

Let K be a virtual diagram representing a free knot, DG(K) be the corre-

sponding Gauss diagram, and let At(K) be the atom corresponding to the

diagram K. Then the following theorem holds.
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Theorem 8.6. The atom At(K) is orientable if and only if all chords of

the diagram DG(K) are even.

In particular, the property of an atom to be orientable only de-

pends on the free knot corresponding to K, and does not depend on

over/undercrossing information at classical crossings of K.

Proof. It is known that an atom is orientable if and only if the frame

of the atom admits a source–sink structure (see Sec. 7.10 and [232, 238]),

i.e. we can orient all edges of its frame in such a way that at each vertex

two opposite edges are emanating, and the other two opposite edges are

incoming, see Fig. 8.18 in the center.

Recall that edges of the graph, the frame of an atom, correspond to arcs

of the Gauss diagram. Besides, adjacent arcs of the Gauss diagram corre-

spond to opposite half-edges. Therefore, a source–sink structure defines an

orientation of the Gauss diagram, satisfying the following properties:

• arcs of the Gauss diagram alternate, i.e. each arc oriented in clockwise

manner is followed by the arc oriented in counterclockwise manner;

• each chord has two emanating arcs in one of its ends, and two coming

arcs in the other end.

From these conditions it easily follows that for each chord a half-circle

of the core circle of the Gauss diagram contains an even number of chords’

ends. Therefore, the chord is even. �

Example 8.3. Let us consider the Gauss diagram depicted in Fig. 8.18

(the left part). An orientation of arcs is given in it, this orientation gives

rise to the source–sink structure (see Definition 5.7) for the frame of the

corresponding atom. It is not difficult to check that one of the atoms

corresponding to this diagram is spherical (i.e. the surface of the atom is

the sphere), therefore, it is orientable, i.e. all atoms with the same frame

are orientable.

We cannot define a source–sink structure for the chord diagram as de-

picted in Fig. 8.18 (the right part) since the chord a is odd (it is linked with

one chord). Therefore, an alternating orientation of arrows along the core

circle of the chord diagram leads to four incoming edges for the chord a.

Thus, the mapping f preserves those diagrams having orientable atoms

(recall that we consider only diagrams of virtual knots, not links). If the

atom At(K) corresponding to a diagram K is not orientable, then the

diagram f(K) has fewer classical crossings than the diagram K does.
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a

Fig. 8.18 Gauss diagrams and the source–sink structures.

In general, for some K we have f2(K) ̸= f(K) since after the removal

of odd chords of the chord diagram the formerly even chords may become

odd. Thus, for instance, for the chord diagram with four chords a, b, c, d

such that the linked pairs are (a, b), (a, c), (b, d), the removal of the odd

chords c, d yields the diagram with the chords a, b being odd.

It is easy to see that for every diagram K of a virtual knot with n clas-

sical crossings there exists a number m < n such that fm(K) = fm+1(K),

i.e. the atom corresponding to the diagram fm(K) is orientable

It is evident that the map killing odd crossings is a well-defined map

on the set of atoms: It suffices to remove all vertices of the atom corre-

sponding to odd crossings and to preserve the white–black structure in the

neighborhoods of the remaining crossings.

This leads us to the following filtration on the set of atoms and virtual

knots. Let At be an atom whose frame has one unicursal component. Then

either At is orientable (in this case we say that At has grading zero), or the

atom At is not orientable. In the second case there exists a unique natural

number n > 0 such that fn(At) is an orientable atom, and fn−1(At) is not.

In this case we say that the atom At is of grading n.

Analogously, one defines the grading on the set of virtual knots: We say

that a virtual knot has grading 0 if it possesses a diagram with orientable

atom; a knot K has grading n > 0 if the knot fn(K) has a diagram with

orientable atom, whence the knot fn−1(K) has no such diagrams.

Thus we get a natural splitting of the set of virtual knots into subsets:

K0 ⊕K1 ⊕K2 ⊕ · · · ⊕ Kn ⊕ · · · .
It is easy to construct examples showing that each of these sets Kn is

non-empty. We construct these examples by induction on n. Let us fix a
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positive integer k and consider an irreducibly odd diagram on k chords. In

the first step we add k pairwise unlinked chords, each linked precisely one

chord of the initial diagram. In the lth step we add k pairwise unlinked

chords, each of which is linked with exactly one chord added in the previous

step. After performing the n− 1 steps, we obtain a diagram of grading n.

Definition 8.11. We call a map which sets all virtual knots to knots with

orientable atoms and takes all virtual knots with orientable atoms to them-

selves, a projection.

The approach above allows one to get a simple proof of the following

theorem by Manturov–Viro (first proved in spring 2005 independently by

V.O. Manturov and O.Ya. Viro and first published in [129]).

Theorem 8.7. Let K, K ′ be two equivalent diagrams of virtual knots hav-

ing orientable atoms. Then there exists a chain of Reidemeister moves

K = K0 → K1 → · · · → Kn = K ′

such that all atoms corresponding to diagrams Ki are orientable.

Proof. Let us consider a chain of diagrams K = K0 → K1 → · · · → Kn =

K ′ such that the diagrams Ki and Ki+1 are obtained from each other by a

classical Reidemeister move (plus, possibly, a detour move).

Denote the maximal number of odd crossings over all diagrams Ki by l.

Let us apply the map f to the chain of Kj ’s. We obtain a chain of

diagrams

K = K0 = K ′
0 → K ′

1 → · · · → K ′
n = Kn = K ′,

where every two adjacent diagrams are obtained from each other by a clas-

sical Reidemeister move or coincide (i.e. they are obtained from each other

by a detour move).

Let us apply the map f again (in total, we shall apply this map l times

starting with the initial chain). Reiterating the process, we get a chain of

diagrams

f l(K) = K = K0 → f l(K1)→ · · · → f l(Kn) = Kn = K ′,

where all atoms corresponding to all diagrams, are orientable, and every

two adjacent diagrams either coincide (connected by a detour move) or

differ by a Reidemeister move. �

Remark 8.11. The initial proof of the Manturov–Viro theorem in the

general case of multicomponent links relies on the geometry of virtual knots

and the Kuperberg theorem. Presently, the authors know the proof of this

theorem in the general case, relying on the notion of relative parity [188].
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8.3.3 The parity hierarchy on virtual knots

It follows from the Manturov–Viro theorem that virtual knots with ori-

entable atoms form a natural subclass of all virtual knots with the equiva-

lence being defined only by using those Reidemeister moves which preserve

the knot diagram within this subclass.

In particular, this class (let us denote it by V1) includes all classical

knots. We shall show that there exists a natural filtration on the set of

virtual knots (unrelated to the grading n given above):

V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vn ⊃ · · · ,
which starts with the set V0 of all virtual knots and has as its limit “index

zero knots” V∞, the set of knots containing all classical knots.

Thus, let K be a virtual diagram, and let DG(K) be the corresponding

Gauss diagram. We endow the diagram DG(K) with signs and arrows in

the usual way. The plus sign corresponds to a crossing , and the minus

sign corresponds to a crossing . The arrow is pointing from the preimage

of the overcrossing arc to the preimage of the undercrossing arc.

With each classical crossing we associate its index, which will be either

a natural number or zero. Let v be a classical crossing of the diagram K,

and let c(v) be the corresponding (oriented) chord of the diagram DG(K).

Consider all chords of DG(K) linked with c(v). Let us count for them the

sum of signs of those chords intersecting c(v) from the left to the right and

subtract the sum of signs of those chords intersecting the chords c(v) from

the right to the left. The absolute value of the obtained number will be

called the index of the chord c(v) (or the crossing v), and will be denoted

by ind(v) ≡ ind(c(v)).

It is clear that if the atom corresponding to K is orientable, then the

indices of the chords of DG(K) are all even.

Consequently, V1 consists of those knots having all indices of all chords

even.

Let us collect some facts whose proof follows from a simple check.

Statement 8.1. (1) If a crossing takes place in the first Reidemeister

move, then it has index zero.

(2) In the second Reidemeister move, the indices of the two crossings are

equal.

(3) The index of a crossing does not change when the crossing is operated

on by the third Reidemeister move

ind(v1) = ind(v′1), ind(v2) = ind(v′2), ind(v3) = ind(v′3),
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besides, if three crossings v1, v2, v3 participate in a third Reidemeister

move, then ind(v1)± ind(v2)± ind(v3) = 0, see Fig. 8.19.

(4) The index of a crossing taking part in a certain Reidemeister move,

does not change after this crossing undergoes the Reidemeister move.

(5) All crossings of a classical diagram have index zero.

v
v ’1

23

1

2 3

v

v

v ’v ’

Fig. 8.19 The third Reidemeister move and corresponding crossings.

First, note that the property of the index to be equal to zero is a weak-

ened parity. The same is true about the congruence to zero modulo some

integer number. Thus, the map which eliminates all chords of non-zero

indices is a well-defined map in a knot theory with an index.

Besides, the properties of the index described above show that the index

can be used in order to define a parity (with coefficients from Z2).

Indeed, it follows from Statement 8.1 that one can introduce on diagrams

of V1 the following parity: Let K be a knot diagram from V1; we decree

those crossings of K having index divisible by four, to be even, and we

decree the remaining ones to be odd.

From Statement 8.1 it follows that the parity defined in this way satisfies

all parity axioms.

Let us apply to knots from V1 the map which kills crossings of index

not divisible by four. This operation may take us away from the class V1.

Nevertheless, if two diagrams K1, K2 from V1 are equivalent, then so are

f(K1) and f(K2) (even if they do not belong to V1).

Arguing as above, we can define the sets Vk of diagrams with all cross-

ings having indices divisible by 2k, and also the set V∞ as the set of dia-

grams with all crossings having index 0.

There is a set of maps fk : V
k → V0; each map fk eliminates all chords

of index congruent to 2k modulo 2k+1. All these maps take equivalent

diagrams to equivalent ones.

Then the following theorem holds.
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Theorem 8.8. Let K, K ′ be two diagrams of virtual knots from Vk (where

k is either a natural number or the symbol ∞) corresponding to equivalent

virtual knots. Then there exists a chain

K = K0 → K1 → · · · → Kn = K ′

of diagrams from Vk, where every two adjacent diagrams are obtained from

each other by a Reidemeister move or a detour move.

This theorem is proved in the same way as Theorem 8.7 by means of the

functorial mapping eliminating all chords whose indices are not divisible by

2k (in the case of finite k) or eliminating all chords of non-zero index (in

the case k =∞).

Note that the class V∞ is quite interesting: It is an “approximation” of

classical knots by virtual knots, and all invariants defined on V∞, can be

taken to virtual knots by means of the map f .

An example of a non-classical diagram from V∞ is shown in Fig. 8.20.

-

-

++

1

2 3
4 1

2

34

Fig. 8.20 A non-classical diagram from V∞.

In Fig. 8.20 we depict the Gauss diagram with arrows and signs. It

is easy to see that in the Gauss diagram the signs corresponding to the

crossings 1 and 2 have opposite directions, that guarantees that the indices

of the chords 3 and 4 are both zeros. Analogously, the arrows, corresponding

to crossings 3 and 4 are opposite.

The reader can easily check that the parity hierarchy gives rise to the

flat hierarchy in the sense of Sec. 3.5.1: odd crossings will have label 0,

those even crossings which become odd after one application of the map f ,

get label 1, and so on.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 8. Parity in Knot Theory: Free-Knots: Cobordisms 385

8.3.4 The map f in the case of the parity from Sec. 8.2.4

Let K be a diagram of a classical or virtual two-component link. Then the

map f replaces all crossings formed by both components of the diagram K,

with virtual ones. The geometric sense of the operation f is the following:

With a link K1 ∪K1 it associates the split link formed by two components

K1 and K2.

8.3.5 The map f in the case of the parity from Sec. 8.2.5

This map associates with knots in the thickened torus so-called virtual

knots in thickened torus, i.e. equivalence classes of diagrams in S1 × I1

with classical and virtual crossings modulo the Reidemeister moves.

The knots obtained in different ways as images of the map f can be

further investigated by using different methods, e.g. either by considering

them as usual virtual knots (by using the inclusion S1 × I1 → R2) or by

investigating additional parities.

Analogously, one can consider the parity f for knots in a thickened

surface which leads to the theory of “virtual knots in this thickened surface”.

8.4 Invariants

It turns out that if some knot theory possesses a parity, then it allows one to

construct invariants of knots from this theory valued in linear combinations

of graphs. Such linear combinations arise from diagrams of the initial knot

by means of smoothing and, therefore, they have many information about

the knot in the large: about the number of crossings of its possible diagrams

and their position with respect to each other.

In particular, for some knot theory with a parity, it is easy to prove

theorems about minimal diagrams with respect to the number of crossings.

8.4.1 Preliminaries: smoothings and linear spaces

Let K be a diagram in some knot theory. Our main example will be the

theory of free knots in which by a diagram we mean a framed 4-graph,

therefore, we shall use two terms: a “diagram” and a “graph”.

Let us define smoothing operations on diagrams (graphs). Later on,

by a “smoothing” we shall call both a smoothing operation and the dia-

gram obtained by applying a smoothing operation. Note that the idea of
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a “smoothing” of a 4-graph were studied by Bouchet, Nash-Williams and

others, who called it a detachment, see, e.g. [40, 254].

Definition 8.12. Let v be a vertex (crossing) of the diagram K with four

incident half-edges a, b, c, d, such that a is opposite to c and b is opposite

to d at v. By a smoothing of K at v we mean any of the two framed 4-

graphs obtained by removing v and repasting the edges as a − b, c − d or

as a− d, b− c, see Fig. 8.21.

a

b

cd

a

a

b

b

c

c

d

d

Fig. 8.21 Two smoothings of a vertex for a framed graph.

Herewith, the rest of the graph (together with all framings at vertices

except v) remains unchanged.

We may then consider further smoothings of the diagram (graph) K

at several vertices. Every smoothing is a result of consecutive smoothings

at these vertices. In the case when a diagram in the knot theory contains

an additional information at crossings (besides just framing), it is assumed

that this information (for the corresponding crossings) is forgotten under

a smoothing. For example, in the case of a virtual diagram the result of

a smoothing is a framed 4-graph. We denote a result of a smoothing of a

diagram K by Ks, where s is a smoothing (or a state) of K.

Let K be a diagram, and let v1, . . . , vn be all even crossings of K. We

call a smoothing at all even crossings v1, . . . , vn an even smoothing of K.

Thus, there are 2n even smoothings for the diagram K.

We call an even smoothing of a framed 4-graph K (with respect to any

parity) a 1-even smoothing if after the smoothing the resulting framed 4-

graph has one unicursal component.

In the case of braids and tangles for initial objects we take graphs with

vertices of degree one (called terminal) and degree four (each of which is

framed), and in the case of tangles we also admit free components, i.e.

separate circles. In this case, smoothings represent graphs with vertices
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of degrees 1 and 4 and free loops, and the set of vertices of degree 1 in

every smoothing coincides with the set of vertices of degree 1 of the initial

diagram.

For every framed 4-graph all of its smoothings are framed 4-graphs.

For a virtual diagram K smoothings are virtual diagrams corresponding

to smoothings of the corresponding framed 4-graph, obtained from K by

forgetting extra information at crossings.

Later on, we shall be interested in the following sets of smoothings of

a free graph (virtual diagram): the set S of all smoothings, the set Seven

of all even smoothings, the set S1 of all smoothings having one unicursal

component and the set Seven,1 of all even smoothings with one unicursal

component. We shall denote elements of the corresponding sets (smooth-

ings) by s, seven, s1, seven,1, respectively. To simplify the notation under

taking the sum, we shall usually omit the set of smoothings over which

the sum is taken; this set will be read from the variable indicating to it:

s, seven, s1 or seven,1.

Framed 4-graphs running through the set of such smoothings will be

later used for the construction of invariants of framed links and for some

other theories with parities.

The theory of free knots (not links) is described by Gauss diagrams

and the Reidemeister moves on them (for links one should construct Gauss

diagrams on several circles). When passing from knots to free knots one

should pass from Gauss diagrams with labeled edges and oriented edges to

Gauss diagrams without labels and orientations.

Consider framed 4-graphs with one unicursal component modulo the

equivalence relation generated by the second Reidemeister move. Let us

define the linear space G as the set of Z2-linear combinations of such equiv-

alence classes.

Definition 8.13. The linear space G̃ is the set of Z2-linear combinations

of the following objects. One considers all framed 4-graphs modulo the

following equivalence relations:

(1) the second Reidemeister move;

(2) K ⊔ ⃝ = 0, i.e. a framed 4-graph having more than one component,

and at least one trivial component, is assumed to be zero.

There is a natural map g : G̃ → G which takes to zero all equivalence

classes of framed graphs having more than one unicursal component. Ob-

viously, the map g is an epimorphism of groups.
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8.4.2 The invariants [ · ], { · }

The invariants given below will be explicitly defined for the case of free

knots and links with respect to any parity with coefficients from Z2.

The definitions below can be directly extended to free tangles; these

objects are encoded by graphs which, besides vertices of degree 4 (with the

usual framing), have free ends of degree 1 (in particular, one can extend

the definitions to free braids). We shall not give explicit definitions for the

case of free tangles, leaving them for the reader as an exercise.

Since every virtual link generates the free link by “forgetting” the struc-

ture at classical crossings (the over/undercrossing structure and the local

writhe number), but we remember the structure of opposite edges, then

these invariants can be lifted to invariants of virtual knots and links for

every parity with coefficients from Z2, which is well defined in the corre-

sponding case.

Now we pass to the construction of the invariants [·] and {·} of free

knots to be valued in G and G̃, respectively.

Let K be a framed 4-graph. Then the invariant {·} is given by the

formula

{K} =
∑
seven

Kseven ∈ G̃,

where it follows from the notation that the sum is taken over all even

smoothings seven of the framed 4-graphK, which are considered as elements

from G̃.

Theorem 8.9. The bracket {·} is an invariant of free links.

Proof. Let us check the invariance of the bracket {·} with respect to the

Reidemeister moves. Here we shall use those properties of the parity, which

are satisfied by those crossings of the diagram undergoing the Reidemeister

moves.

Let diagrams K and K ′ differ from each other by a first Reidemeister

Ω1, such that the diagram K ′ contains one more vertex than the diagram

K, and this vertex is denoted by v.

Note that the vertex v is even according to Lemma 8.2. One of the

smoothings of the diagram K ′ at v leads us to a split component in such a

way that every even state of the diagram K ′ where the vertex v is smoothed

in the “wrong” way, will lead to a split trivial component. This will yield

a trivial element from G̃.
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The smoothing ofK ′ at v performed in the “right” way will lead us to the

diagram K, which yields a one-to-one correspondence for even smoothings

for K and K ′ with no split circles.

Thus we have proved the invariance of the bracket {·} under the first

Reidemeister move.

For the second and third Reidemeister moves Ω2 and Ω3 we shall show

that {K} + {K ′} ≡ 0 (mod Z2) by means of partitioning of all diagrams

from {K} + {K ′} representing non-trivial elements from G̃. Since G̃ is a

linear space over Z2, this will mean that {K} = {K ′}.
Let K ′ be obtained from K by a second Reidemeister move adding two

crossings v1 and v2. If both crossings are odd, then there is an obvious one-

to-one correspondence between the set of even smoothings of the diagram

K and the set of even smoothings of the diagram K ′. The corresponding

smoothings are obtained from each other by applying “the same” Reide-

meister move to vertices v1 and v2. If both v1 and v2 are even, then there

exist four smoothings of K ′ at these vertices: → , → , → ,

→ .

Note that the smoothing has a split circle which will remain split

for all subsequent smoothings at even crossings. Thus, such summands will

have no impact in {K ′}.
Furthermore, the smoothings and are in fact the same framed

4-graph (provided that the smoothings at the remaining vertices agree).

Thus, these smoothings cancel in {K ′}.
Even smoothings of type of the diagram K ′ are naturally in one-to-

one correspondence with even smoothings of the diagram K and give rise

to framed 4-graphs.

Now assume that the diagram K is taken to a diagram K ′ by a third

Reidemeister move Ω3. Among the three crossings of K taking part in the

Reidemeister move, either all three ones are even, or one crossing is even,

and the other two ones are odd.

If the three crossings of K taking part in the Reidemeister move are

even, then we have seven types of summands in the expansion of {K} (and
seven types for {K ′}): At each of the three vertices we have two possible

smoothings, here one of the eight possibilities leads to a split trivial circle

for K and one of the eight possibilities for K ′ leads to a trivial circle (these

two types of smoothings contribute to neither {K} nor {K ′}). Considering
K (in Fig. 8.22 the summands corresponding to K are in the left-hand side

and the summands corresponding to K ′ are in the right-hand side) we see
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that three of these seven types lead to coinciding sets of diagrams (these

types are denoted by 1), thus in G̃, the two sets are canceled with each

other, so, only one set is left. Analogously, for the case of K ′ we have three

“similar” types of smoothings (they are denoted by 2 in Fig. 8.22). Thus,

in both {K} and {K ′}, five types of summands are left: 1, 2, 3, 4, 5.

In these five cases there is a one-to-one correspondence (see Fig. 8.22),

which leads us to the equality {K} = {K ′}.

=

=

=

=

=

1

1

1

1

2 2

2

2

3 3

4

4

5

5

Fig. 8.22 The correspondence between smoothings for Ω3 with three even vertices.

If among the vertices taking part in Ω3 there is exactly one even vertex

on the right-hand side and exactly one even vertex on the left-hand side

(say, v → v′), then we are in the situation shown in Fig. 8.23.

From the above figure we see that those smoothings where the vertex v

(respectively, v′) is smoothed vertically, give rise to coinciding summands

for {K} and {K ′}, and those smoothings where v and v′ are smoothed hori-

zontally are in one-to-one correspondence for diagramsK andK ′, moreover,

the corresponding graphs differ from each other by an application of two
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v

v ’

Fig. 8.23 The correspondence between smoothings for Ω3 with one even vertex.

second Reidemeister moves. This proves that {G} = {G′} in G̃. �

The invariant [·] is given by the formula

[K] =
∑

s1,even

Ks1,even ∈ G, (8.1)

where the sum is taken over all even smoothings of the diagram K, which

yield one unicursal component.

Obviously, [K] = g({K}), which leads to the following theorem.

Theorem 8.10. The bracket [·] is an invariant of free knots.

Sometimes it will be convenient for us to use the bracket [·] just as

defined by formula (8.1).

Remark 8.12. Note that the invariants defined above can be constructed

for any parity with coefficients from Z2.

The invariants {·} and [·] take a certain equivalence class (of diagrams

modulo the Reidemeister moves) to some linear combination of equivalence

classes (of diagrams modulo the second Reidemeister move and some simple

factorization of some class of diagrams). It turns out that the sets G and G̃

can be easily described algorithmically: Every element of each of these sets
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has a minimal representative which can be found by means of subsequent

simplifications. By a simplification we mean the second Reidemeister move

which decreases the number of crossings by two, and also (in case of ele-

ments from G̃) the transformation which takes to zero any diagram with

more than one unicursal component having one split trivial component.

More precisely, the above statement can be formulated as a lemma,

which we shall formulate after some definition.

Definition 8.14. We say that a framed 4-graph is simplifiable, if it either

contains a component without vertices or contains two vertices v1 and v2
connected by a couple of edges e1, e2 such that e1, e2 are adjacent in both

v1 and v2.

The second case is just the situation when one can apply a second

decreasing Reidemeister move to the graph.

Definition 8.15. Framed 4-graphs not admitting any simplifications will

be called minimal. We say that a framed 4-graph K̃ is obtained from a

framed 4-graph K by a subsequent simplification, if there exists a chain of

framed 4-graphs

K = Kn → · · · → K1 → K̃,

where every subsequent graph is obtained from the previous one by an

application of a second simplifying Reidemeister move.

A minimal representative of a graph K is a minimal graph which can

be obtained from K by a subsequent simplification.

In the case of G the notions of minimal and non-simplifiable graphs

coincide.

Lemma 8.10. If two framed 4-graphs K0 and K ′
0 have one unicursal com-

ponent and are obtained from some framed 4-graph K by a subsequent sim-

plification, then K0 is isomorphic to K ′
0.

The lemma states that every framed 4-graph with one unicursal com-

ponent has a unique minimal representative.

From this lemma one gets the following lemma.

Lemma 8.11. Framed 4-graphs K and K ′ with one unicursal component

each are equivalent in G if and only if their minimal representatives coin-

cide.
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Proof. Let us deduce Lemma 8.11 from Lemma 8.10. The claim (⇐=) is

evident. Assume that K = K ′ is in G, and here minimal representatives

of graphs K and K ′ are different. Let H and H ′ be two framed 4-graphs

obtained from each other by a second Reidemeister move, in such a way

that the graph H ′ has two crossings more than the graph H. Then by

definition of the minimal representative and by Lemma 8.10 we conclude

that the minimal representatives for H and H ′ coincide. Considering the

chain K = K1 → · · · → Kk = K ′ of second Reidemeister moves connecting

K to K ′, we see that the minimal representatives of any two adjacent

graphs in this chain coincide. Thus the minimal representatives of K and

K ′ coincide as well, which yields the equivalence of these graphs in G. �

We preface Lemma 8.10 with two simple statements.

Statement 8.2. Assume that a framed 4-graph K with one unicursal com-

ponent has two non-isomorphic minimal representatives. Then there exists

such a simplification K̃ of the graph K (K̃ can coincide with K) for which

the following holds.

Among minimal representatives of the graph K̃ there exist non-

isomorphic framed 4-graphs K0 and K ′
0, and among elementary simplifi-

cations of the framed 4-graph K̃ there exist framed 4-graphs K1 and K ′
1

such that K0 is one of minimal representatives for K1, but not for K
′
1.

Proof. We choose two non-isomorphic minimal representatives K0 and

K ′
0 of the graph K and consider the chain of elementary transformations

fromK toK0. In the initial moment the graphK hasK ′
0 among its minimal

representatives, and at the end of the chain, among minimal representatives

of K0 there is no graph K ′
0 (since the graph K0 cannot be decreased).

Consider the chain from K to K0. Take the last graph of the chain having

K0 as a minimal representative and denote this graph by K̃, we get the

required statement. �

Statement 8.3. If framed 4-graphs K1 and K ′
1 are each obtained from

a framed 4-graph K by one elementary simplification, then either K1 is

isomorphic to K ′
1 or there exists a framed 4-graph K ′

2 which can be obtained

by one elementary simplification from each of K1, K
′
1.

Proof. It suffices to consider the vertices {v1, v2} of the graphK where the

simplification K → K1 takes place, and the vertices {v′1, v′2} corresponding
to the simplification K → K ′

1. If the set {v1, v2} ∪ {v′1, v′2} consists of

two or three elements, then it is evident that the graphs K1 and K ′
1 are
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isomorphic. If this set consists of four elements, then it is easy to see that

one can apply an elementary simplification to the graph K1 at {v′1, v′2} so
that the resulting graph is isomorphic to the graph obtained from K ′

1 by

an elementary simplification at vertices {v1, v2}. �

Now we prove Lemma 8.10.

Proof of Lemma 8.10. Consider the framed 4-graph K with one uni-

cursal component and assume it has more than one minimal representative.

By virtue of Statement 8.2, there is a simplification K̃ of K such that

among graphs obtained from K̃ by one elementary simplification, one can

choose such a pair K1 and K ′
1 for which one of the graphs K0 or K ′

0 is a

minimal representative for K1 but not for K ′
1. Without loss of generality

we shall assume that this graph is K0. According to Statement 8.3, there

exists a graph K ′
2 which can be obtained by an elementary simplification

from each of K1 and K ′
1.

Since by assumption K ′
1 does not have K0 among minimal representa-

tives, the graph K ′
2 does not have K0 among minimal representatives. On

the other hand, since K0 is a minimal representative for K1, then K1 has

at least two minimal representatives.

Changing the notation fromK1 toK and repeating the above argument,

we see that one of the graphs (denote it by K2) obtained by elementary

transformation from K1 has at least two non-isomorphic minimal represen-

tatives as well. Arguing as above, we shall get a chainK → K1 → K2 → · · ·
of graphs, each of which is obtained from the previous one by an elementary

simplification, and each Ki has at least two minimal representative.

This leads us to a contradiction for that graph Ki which is not simpli-

fiable. �

Thus, we have completely described how to recognize the equivalence

of framed 4-graphs as elements of G: One should take their minimal rep-

resentatives and compare them. In the case of G, minimal representatives

cannot be simplifiable because they (by definition of minimality) contain

no bigons to be canceled by a second Reidemeister move, and the number

of unicursal components is equal to one.

In the case of graphs from G̃, a minimal representative can be simplifi-

able in the case it has a split component. In this case the graph is equivalent

to zero in G̃.

Analogously to Lemma 8.11 for G̃, one proves the following lemma.
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Lemma 8.12. Framed 4-graphs K and K ′ from G̃ are equivalent if their

minimal representatives K̃ and K̃ ′ either both contain split trivial compo-

nents, or do not contain split trivial components and are isomorphic.

Using the parity constructed in Sec. 8.2.5 and the invariant [·] defined
for this parity, one can prove the following theorem.

Theorem 8.11. Let K be a framed 4-graph, whose Gauss diagram is ir-

reducibly odd. Then for every framed 4-graph K ′ representing the same

free knot as K there exists a smoothing which is isomorphic to the framed

4-graph K (as a framed 4-graph).

Evidently, this theorem yields Theorem 8.1.

Example 8.4. A framed 4-graph, given by a chord diagram shown in

Fig. 8.24, is irreducibly odd.

Fig. 8.24 Irreducibly odd chord diagram and its intersection graph.

It is easy to see that the set of irreducibly odd Gauss diagrams is infinite

(see also [37]), thus, the set of different minimal framed 4-graphs is infinite

as well.

Theorem 8.11 is a corollary from the following fundamental statement

which is easy to prove.

Statement 8.4. For an irreducibly odd framed 4-graph K with one uni-

cursal component, the following equality takes place:

[K] = K. (8.2)

On the left-hand side of (8.2), the graph K is considered as a repre-

sentative of a free knot, and on the right-hand side it is considered as an

element from G.

The proof of Statement 8.4 is obvious: Since all crossings of the framed

4-graph K are odd, then in the formula for [K] one has to smooth only
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the empty set of crossings. Thus, we get the only summand which is the

4-graph K itself.

Let us prove Theorem 8.11.

Proof of Theorem 8.11. Let us deduce Theorem 8.11 from State-

ment 8.4. Let a framed 4-graph K ′ be equivalent to a framed 4-graph

K as a free knot. Then [K ′] = [K] = K. Consequently, the graph K ′

has at least one smoothing K̃, which is equivalent to the graph K as an

element from G. Thus K is a minimal representative for K̃. Furthermore,

note that if a framed 4-graph H ′ is obtained from a framed 4-graph H by

one elementary simplification, then H ′ is obtained from H by a smoothing

in two vertices (just those vertices where the elementary simplification was

performed). Consequently, the graph K̃ is obtained by smoothings of some

vertices of the graph K ′, and the graph K is obtained by smoothing of K̃.

Thus, K is obtained by smoothing from K̃. �

Analogous results about minimality can be obtained for links with ar-

bitrarily many components. To that end, instead of the bracket [·] and the

parity from Sec. 8.2.3 one can use, for example, the bracket {·} and the

parity from Sec. 8.2.4. Namely, analogously to Theorem 8.11 one can prove

the following theorem.

Theorem 8.12. Let K be a diagram of a free two-component link with

all crossings belonging to both components, such that no second decreas-

ing Reidemeister move is applicable to it. Then for every framed 4-graph

K ′ generating the same free link as K, there exists a smoothing which is

isomorphic to K as a framed 4-graph.

Proof. By definition of the invariant {·} for the parity from Sec. 8.2.4, we

have {K} = K (note that the invariant [·] for the parity from Sec. 8.2.3 does

not work, since after smoothing the empty set of crossings of the diagram K

having more than one unicursal component, we get K itself, consequently,

[K] = 0).

Since the graph K cannot be decreased by a second Reidemeister move,

we see in G̃ that K ̸= 0. In addition, for every diagram K ′ which gives the

same link as K one has {K ′} = K. Thus, at least one of the smoothings of

K ′ represents an element equivalent to K in G̃, which, in turn, yields that

the framed 4-graph K is a smoothing of K ′. �

As an example we give the following statement.
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Statement 8.5. A free link diagram given in Fig. 8.25 is minimal (with re-

spect to the number of crossings), and the corresponding atom is orientable.

Fig. 8.25 A minimal representative of a two-component link.

Proof. The orientability of the corresponding atom follows from a

straightforward check of the source–sink condition. The minimality follows

from Theorem 8.12. �

Note that examples of minimal diagrams of framed links in the case of

non-orientable atom can be obtained in a much easier way. One may take

the simplest two-component framed link with one vertex belonging to both

components.

However, the atoms corresponding to this free link as a frame are non-

orientable since the frame has no source–sink orientation.

It turns out that the methods given above allow one to prove the min-

imality for diagrams of free knots with orientable atoms as well, i.e. such

knot diagrams given by framed 4-graphs having all vertices being even.

8.4.3 Non-invertibility of free links

There is a natural operation of orientation reversal on the set of free knots.

Let us introduce the notation: For an oriented free knotK (framed 4-graph)

by K we shall denote the oriented free knot (framed 4-graph) obtained from

K by inverting the orientation. Analogously, for an oriented free link L by L
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we shall denote the oriented free link obtained by inverting the orientation

of all components of L.

In this section we shall show the existence of non-invertible free links:

L ̸= L. To this end, we shall modify the bracket {·} in a way such that

those graphs which appear as summands of it, carry the information about

the orientation of the initial link. By |K|, |L| we shall denote the unoriented
knots and links obtained from K and L by forgetting the orientation.

We shall prove the following theorem.

Theorem 8.13. Let L = K1 ∪ K2 be a framed 4-graph representing a

diagram of an oriented free two-component link with components K1, K2,

and assume the following conditions hold.

(1) All crossings of L are formed by both components K1 and K2.

(2) There is no room to apply any second decreasing Reidemeister move to

L.

(3) The total number of crossings of L is odd.

(4) The framed oriented 4-graph L is not isomorphic to any of the graphs

K1 ∪ K2, K1 ∪ K2 with respect to the orientation. In other words,

the orientation change of the component K1 does change the 4-graph

regardless of the orientation of the component K2.

(5) There is no isomorphism of the framed 4-graph |L| onto itself taking

|K1| to |K2| and taking |K2| to |K1|.

Then the diagram L is not equivalent to L.

The first two conditions of the theorem guarantee the minimality of the

diagram L according to Theorem 8.12.

It is clear that the diagram L is also minimal by the same theorem.

Nevertheless, the bracket {·} does not allow to distinguish between L and

L because all summands in the bracket are equivalence classes of unoriented

framed 4-graphs.

Let us now modify the bracket {·}. Note that for two-component links

the oddness of the number of crossings formed by both components is an

invariant property.

Let H be the set of equivalence classes of Z2-linear combinations of

framed 4-graphs with two unicursal components, where one of which is

oriented, by the following two equivalence relations:

(1) the second Reidemeister move (taking into account the orientation of

the oriented component);
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(2) the relationK⊔⃝ = 0, where diagrams having a split trivial component

are equated to zero.

For the set of two-component free links with oddly many crossings be-

tween components and with one oriented component, we shall construct an

invariant L 7→ {L}2 ∈ H.

If both components of the link L are oriented and the number of cross-

ings between the components is odd, then there will be two invariants

{L}2,K1 , {L}2,K2 corresponding to L and depending on the choice of an

oriented component.

Now, let us construct the invariant {·}2.
For the two-component link diagram L, an odd crossing is the crossing

formed by both components. Let us consider even smoothings of the dia-

gram L. Each of them will be a framed 4-graph representing a link of at

least two components: Since we smooth even crossings only, we shall get

some set of components originating from K1 and some set of components

originating from K2.

We shall select only those summands where the number of components

is equal to two; besides, we shall endow the component coming from K1

with an orientation.

The orientation is chosen according to the following rule. For each

diagram Ls = (Ks)1 ∪ (Ks)2 obtained from L by a smoothing of all even

crossings, at each odd crossing we have the orientation of the component

(Ks)1, corresponding to the orientation of the component K1 at the same

crossing.

The number of such crossings is odd, and in each of them, K1 generates

one of the two orientations of the component (Ks)1. For the orientation of

(Ks)1, we choose that one orientation (of two) which occurs oddly many

times.

More precisely, we have

{L}2 =
∑

seven, 2 comp

((Ks)1,odd or., (Ks)2) ∈ H.

Then the following theorem holds.

Theorem 8.14. The bracket {L}2 is an invariant of two-component free

links with one fixed components and the odd number of mixed crossings

between the two components.

Proof. Let us repeat the proof of Theorem 8.9 paying more attention to

the orientation and parity arguments.
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First, note that the “non-orientable” version {L}2 of the invariant {L}2
is obtained by a natural projection of the invariant {L} to the linear space

of framed 4-valent graphs generating two-component links.

Thus, it suffices for us to take care of the behavior of orientations of

components under the Reidemeister moves for those links which appear in

{L}.
Under the first Reidemeister move, the check is evident: The crossing

participating in the move is smoothed in a way compatible with the orien-

tation and it does not affect the resulting orientation of the summand in

the bracket.

The same happens in the case of the second Reidemeister move with two

even crossings and in the case of the third Reidemeister move with three

even crossings: The corresponding diagrams before and after the Reide-

meister move have the same set of odd crossings with the same orientation

of the component K1 in each of them.

In the case of the second increasing Reidemeister move L 7→ L′, applied

to two odd crossings, the summands in {L}2 and in {L′}2 are in one-to-

one correspondence with each other and are obtained from each other by

a second Reidemeister move. It remains to show that in every summands

of {L′}2 both new crossings generate the same orientation of the oriented

component. Thus, the existence of these two crossings does not affect the

rule for defining the orientation of the oriented component.

Now, let us consider the case of the third Reidemeister move where both

components take place. If two of the three branches belong to the non-

oriented component K2 and one branch belongs to the oriented component

K1, then both in the diagram L before applying the Reidemeister move and

in the diagram L′ after the Reidemeister move, we have two consecutive

crossings of the same orientation. Consequently, the orientations of the

corresponding summands in {L}2 in H coincide.

We are left with the most difficult case, when the oriented component

forms two branches, and the non-oriented component forms one branch,

moreover, the only even crossing taking part in the third Reidemeister

move lies on the self-intersection of the oriented component.

The two versions of this move are shown in Fig. 8.26.

In the upper part of Fig. 8.26 we see that the summands from the

first pair on the right and the summands on the left have two crossings

each, moreover, the orientations of the component K1 in these crossings

are opposite in both cases, consequently, the resulting orientation for the
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Fig. 8.26 The behavior of orientations under the third Reidemeister move.

summand as an element of H is the same (up to second Reidemeister moves).

As for the second summand in the upper part of Fig. 8.26, the two

intersection points (left and right) of the componentK1 with the component

K2 generate the same orientations as the two intersection points in the right

part, thus, in this case the rule for orienting the component for {L}2 in the

right part is the same as the rule for the left part.

In the lower picture, the first summand in the left part has two crossings

with similar orientation, thus, their common contribution to the definition

of orientation of K1 cancels. The same happens in the first summand in

the right part.

In the lower picture, the second summand in the left part has two cross-

ings v2, v2 between the components K1, K2, and the second summand in

the right part has two crossings v′1, v
′
2 between the corresponding compo-
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nents. Note that the orientation of the component K1 at v1 is opposite to

the orientation at v′1, and the orientation at v2 is opposite to the orientation

at v′2. If the orientations of the component K1 at v1 and v2 agree in the

left-hand side, then the corresponding orientations agree in the right-hand

side. If the orientations in v1 and v2 in the left-hand side are different,

then in both the right-hand side and the left-hand side we have a couple

of crossings which give both possible orientations for the components K1.

Summarizing the above statements, we conclude that in all these cases the

orientation of the corresponding summand in {L}2 will be the same.

Thus we have proved that the bracket {L}2 is invariant under Reide-

meister moves as an element of H. �

From the definition one easily gets the following statement.

Statement 8.6. If for a link L = K1 ∪ |K2| all crossings belong to both

components, and the number of components is odd, then {K1 ∪ |K2|}2 =

K1 ∪ |K2| in H.

Let us prove Theorem 8.13.

Proof of Theorem 8.13. Assume that the link L satisfies the conditions

of the theorem. Also assume that the link L is equivalent to the link

K1 ∪ K2. Applying the bracket {·} to |L|, we see that the Reidemeister

moves cannot take the link |L| to itself and switch the components K1 and

K2 (the fifth condition of our theorem).

Furthermore,K1∪|K2| is not equivalent toK1∪|K2| as a two-component

free link with a selected oriented component. Passing to {·}2, we see that

K1 ∪ |K2| ̸= K1 ∪ |K2| in H.

Thus the links L and L are not equivalent. For the coordinated enumer-

ation of components, this non-equivalence follows from the properties of the

new invariant {·}2, and for the uncoordinated orientation the equivalence

is forbidden by the hypothesis of the theorem. �

As an example for Theorem 8.13 we take the free link shown in Fig. 8.27.

All conditions of Theorem 8.13 follow from a straightforward check.

8.5 Goldman’s bracket and Turaev’s cobracket

It turns out that on the set of pairs (a closed oriented 2-surface, a curve on

this surface) there are interesting operations which are invariant under the
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K1

2K

Fig. 8.27 A non-invertible free link.

Reidemeister moves. Namely, let S be a fixed 2-surface (we assume this

surface to be oriented; otherwise all arguments below work for the case of

coefficients from Z2).

We think of all curves to be generically immersed. Such a curve repre-

sents an embedding of a framed 4-graph. Two immersed curves in general

position are homotopic if and only if one of them is obtained from the

other by a composition of the Reidemeister moves (certainly, in the case

when graphs are embedded in a surface, the Reidemeister moves respect the

structure of this surface, unlike the Reidemeister moves for free graphs).

Let ΓS be a set of all linear combinations of homotopy classes (note

that homotopy may violate the smoothness condition whenever a first Rei-

demeister move is applied) of curves on S with coefficients from a ground

field F (the field can be arbitrary in the case of orientable surfaces; in the

non-orientable case it should be the field of characteristic 2). All curves are

assumed to be oriented.

Furthermore, let Γ2
S be the set of F -linear combinations of homotopy

classes for ordered pairs of oriented curves on S, and let Γ2
S,0 be the quotient

space of the space Γ2
S modulo the following relation: K ⊔ ⃝ = 0, i.e. we

take to zero all those links having a diagram on S, with two connected

components, one of which is homotopy trivial.
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Now let us pass to the construction of invariant maps.

8.5.1 The map m : Γ2
S → ΓS

Let γ1, γ2 be a pair of oriented curves generically immersed in S, and

let v1, . . . , vn be crossings from γ1 ∩ γ2 (since the curves are in general

position, they are transverse, and there are finitely many of crossings). Let

m(γ1, γ2)k be the oriented curve obtained by smoothing γ1∪γ2 at vk in the

way compatible with the orientation. We set

m(γ1, γ2) =
n∑

k=1

signk(1, 2)m(γ1, γ2)k ∈ ΓS , (8.3)

where the sum is taken over all numbers of crossings k = 1, . . . , n, and

signk(1, 2) at a crossing vk denotes the sign of the crossing vk, i.e. it is

equal to 1 if the basis formed by tangent vectors (γ̇1, γ̇2) is positive, and

−1, otherwise.
This sum is considered as an element from ΓS . A direct check shows

that the following theorem holds.

Theorem 8.15 (Goldman [110]). The map m : Γ2
S → ΓS is well defined,

i.e. if the pair (γ1, γ2) is equivalent to a pair (γ′1, γ
′
2), then m(γ1, γ2) =

m(γ′1, γ
′
2).

Remark 8.13. In the case of framed links, the operation (8.3) is defined

only over the field of characteristic 2, because we can define the sign,

signk(1, 2), only when the curves locally lie on an oriented surface; this

is the case, say, for flat virtual knots but not for free knots. Moreover,

without such a surface, we are unable to define the map m for any pair of

curves; it is possible to do that only for a two-component free link (without

any surface we do not have any intersection points for two curves defined

abstractly).

8.5.2 Goldman’s Lie algebra

The map m can be treated in another way. Having a pair of curves γ1, γ2
(in fact, we were talking about a pair of homotopy classes of curves on S),

we may think that there is a well-defined map

[·, ·] : γ1, γ2 7→ [γ1, γ2] =
∑
k

signk(1, 2)m(γ1, γ2)k,
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here the permutation of γ1 and γ2 leads to the sign change: [γ1, γ2] =

−[γ2, γ1].
It can also be easily checked that the operation [·, ·] satisfies the Jacobi

identity:

[[γ1, γ2], γ3] + [[γ2, γ3], γ1] + [[γ3, γ1], γ2] = 0

for any triple of curves γ1, γ2, γ3.

Thus, the set ΓS possesses the structure of a Lie algebra.

8.5.3 The maps ΓS → Γ2
S,0 and ΓS → ΓS ⊗ ΓS/⟨triv.⟩:

Turaev’s cobracket

Let γ be an oriented curve in general position on an oriented surface S,

and let v1, . . . , vn be the intersection points of the curve in S. Then, as a

result of smoothing γ at vi in a way compatible with the orientation, we

get two curves, one of which, γi,L, can be naturally called the left one, and

the other one (γi,R) is called the right one. Thus, we can define a map

γ 7→
n∑

i=1

(γi,L ⊗ γi,R − γi,R ⊗ γi,L). (8.4)

This map is skew-symmetrical, however, it is not quite well defined. If

we apply the first increasing Reidemeister move to the curve γ, then in the

right part of the equality (8.4) we shall have additional summands of the

form γ0 ⊗ γ′ − γ′ ⊗ γ0, where γ0 is a contractible curve, and γ′ is a curve

homotopic to γ.

Thus, in order to have a well-defined cobracket, we have to take the

quotient of the set of curves by the relation taking contractible curves to

zero (in the tensor product, we set 0⊗a = a⊗0 = 0). The same arguments

allow one to construct an invariant map

(a curve→ a linear combination of pairs of curves),

which does not lead to a coalgebra structure, but it suffices to consider a

map given by the formula

∆: γ →
n∑

i=1

γvi ∈ Γ2
S,0,

where the sum is taken over Z2, and γvi means a pair of curves on the surface

S obtained by smoothing the curve γ at the crossing vi coordinated with

the orientation, and the result of the map ∆ is considered as an element

from Γ2
S,0.
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Thus we get a map ∆: ΓS → Γ2
S,0, to be called Turaev’s delta in the

sequel.

Let ΓFr be the set of all linear combinations of all free knots with co-

efficients from Z2, and let Γ2
Fr,0 be the set of Z2-linear combinations of

two-component free links modulo the following relation: K ⊔ ⃝ = 0, i.e.

we take to zero all those free links having a diagram with two components

one of which is a split unknot.

Analogously, let us define Turaev’s delta from ΓFr to Γ2
Fr,0: With each

framed 4-graph K with one unicursal component we associate a linear com-

bination
∑

iKi (over Z2) of framed 4-graphs with two unicursal components

each, obtained by smoothing at corresponding vertices, and the resulting

sum will be considered as an element from Γ2
Fr,0.

8.6 Applications of Turaev’s Delta

In Sec. 8.4.2 we have shown that the parity (in the sense of Sec. 8.2.3

or in the sense of Sec. 8.2.4) can be used for proving minimality of free

knot diagrams. However, the very first example (the non-triviality of an

irreducibly odd knot) deals only with free knots whose Gauss diagrams have

all odd chords. We have used the invariant [·] for proving its minimality.

Then we considered an example of a two-component free link whose

atom is orientable. By means of the invariant {·}, applied for the parity

from Sec. 8.2.4, we proved minimality of this diagram L in the strong sense:

We proved that every framed 4-graph L′ realizing the same link as L ad-

mitted a smoothing which represented a graph isomorphic to L as a framed

4-graph.

Now, we are going to give an example of a free knot with orientable

atoms for which one can prove minimality of one of its diagrams by using

the above methods.

Statement 8.7. The diagram K1 of a free knot, shown in Fig. 8.28, is

minimal.

Proof. The orientability of atoms corresponding to the diagram K1 can

be easily checked by a straightforward construction of a source–sink orien-

tation.

Let us consider ∆(K1) ∈ Γ2
Fr,0.

By construction, ∆(K1) consists of nine summands (since K1 has nine
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Fig. 8.28 A minimal Gauss diagram.

vertices), and every summand is a two-component link. These summands

are obtained as smoothings of K1 at crossings. One of these summands

(obtained by smoothing along the chord x) is the two-component link L,

shown in Fig. 8.25. Denote the remaining summands by Li, i = 1, . . . , 8.

Thus,

∆(K1) = L+
∑
i

Li = L

(in the last equality we used the central symmetry of the chord diagram;

for example, the summand L1 coincides with L3, etc.).

Considering {∆(K1)} and taking into account the invariance of the map

{·}, we see that every diagram of the free knot has at least one smoothing

representing L as a framed 4-graph, i.e. every diagram contains at least

nine crossings. �

8.6.1 Non-invertibility of free knots

Using non-triviality of free links, one can prove non-triviality of free knots.

Analogously, non-invertibility of free links yields non-invertibility of free

knots. To this end, it suffices to note that Turaev’s ∆ is orientation sensi-

tive. Moreover, the following theorem holds.

Theorem 8.16. The free knot K2 shown in Fig. 8.29 is not invertible.

Proof. One can easily see that ∆(K2) = L +
∑

i Li, where L is the free

link shown in Fig. 8.27, and Li are two-component free links, each of which

has at least one crossing formed by two branches of the same component.

Indeed, for the chord diagram shown in Fig. 8.29, there is exactly one chord

x which is linked with all the other chords.

From this we easily see that {∆(K2)}2 ̸= {∆(K2)}2. �
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x

Fig. 8.29 An example of a non-invertible free knot.

8.6.2 Even and odd analogues of Goldman’s bracket and

Turaev’s cobracket

Assume some knot theory having a parity with coefficients from Z2 is given

(usually we shall deal with free knots and the parity from Sec. 8.2.3).

Consider the sets ΓFr and Γ2
Fr,0. For them, let us define the maps ∆even

and ∆odd : ΓFr → Γ2
Fr,0.

Let K be a framed 4-graph with a unique unicursal component. We set

∆even(K) =
∑
Seven

Ks, ∆odd(K) =
∑
Sodd

Ks.

Here in the first case we take the sum of all framed 4-graphs obtained by a

smoothing of one even vertex of K (the sum is taken over all even vertices)

in a way compatible with the orientation. In the second case the sum is

taken over all odd vertices, and again we take those smoothings of one

vertex of the graph K compatible with the orientation.

When applying any of the maps ∆even and ∆odd to a concrete framed

4-graph K we obtain a sum which can be considered as an element from

Γ2
Fr,0.

Note that the term “the way compatible with the orientation” makes

sense for unoriented framed 4-graphs as well: Among the two smoothings

at the vertex one has to choose the one which leads to a two-component

link.

Then the following theorem holds.

Theorem 8.17. The maps ∆even and ∆odd are well defined as maps from

ΓFr to Γ2
Fr,0.

Proof. To prove the claim, note the following. If two framed 4-graphs

K and K ′ differ from each other by a first Reidemeister move, then the

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 8. Parity in Knot Theory: Free-Knots: Cobordisms 409

following equality ∆odd(K) = ∆odd(K
′) holds termwise: the number of

odd crossings of K coincides with the number of odd crossings of K ′, con-

sequently, there is a one-to-one correspondence between the summands in

the expansions for ∆odd(K
′) and for ∆odd(K). The corresponding sum-

mands are obtained from each other by an application of one first Reide-

meister move. In the case of ∆even, in the expansion for K ′, the number of

summands is one more than the number of summands in the expansion for

K. This “additional” summand in K ′ is a two-component link with a split

trivial component. Thus, this summand is trivial in Γ2
Fr,0. The remaining

summands in ∆even(K
′) are in one-to-one correspondence with summands

from ∆even(K), moreover, these corresponding summands are isomorphic

as framed 4-graphs.

Now, let K ′ be obtained from K by a second Reidemeister move in such

a way that the number of crossings of K ′ is two more than the number

of crossings of K. These two “extra” crossings have the same parity. If

both crossings are odd, then in the expansions of ∆even(K) and ∆even(K
′)

the number of summands is the same, and all the corresponding summands

are obtained from each other by means of a second Reidemeister move. If

both crossings are even, then in ∆even(K
′) we have three extra summands in

comparison with ∆even(K), but two of these three summands coincide iden-

tically, and one summand has a split trivial circle. Thus, all new summands

contribute zero. All the remaining terms in ∆even(K) are in one-to-one cor-

respondence with the terms from ∆even(K
′), and all corresponding terms

are isomorphic as framed 4-graphs.

Analogously, if we consider the case ∆odd, then in the case of two odd

crossings we get two “extra” summands in ∆odd(K
′) in comparison with

those in ∆odd(K); these two new summands will cancel; in the case of two

even crossings we get a one-to-one correspondence between the terms in the

expansion. Thus, ∆odd(K) = ∆odd(K
′).

If K ′ is obtained from K by a third Reidemeister move, then there is a

one-to-one correspondence between crossings of the framed 4-graph K and

crossings of the framed 4-graph K ′. Moreover, even crossings correspond

to even crossings, and odd crossings correspond to odd crossings.

If we smooth the diagrams K and K ′ at v (and the corresponding cross-

ing, to be denoted by the same letter v), and the crossing v does not take

part in the third Reidemeister move, then it is evident that the correspond-

ing framed two-component free links will coincide, since the representing

graphs are obtained from each other by “the same” third Reidemeister

move, which transforms K into K ′.
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If this crossing v is one of the three crossings taking part in the third

Reidemeister move, then it is easy to see that the smoothing of the diagram

K at the crossing v either coincides with the smoothing of the diagram K ′

at the crossing v′ (corresponding to the crossing v) or differs from it by an

application of two second Reidemeister move, one of which decreases the

number of crossings by two, and the other one increases the number by

two. �

Analogously to the “comultiplying maps” ∆even, ∆odd one can construct

the “multiplying maps” meven, modd, herewith for the target space we can

take a larger space than Γ2
Fr,0: it is not necessary to equate to zero those

diagrams having a split trivial component in the case of “multiplication”

maps.

Remark 8.14. It would be interesting to consider the compositions of

maps ∆, ∆even and ∆odd (and their reasonable modifications) taken in dif-

ferent orders and analyze which links (free links) can be obtained from some

concrete knot at concrete steps for given parities.

Remark 8.15. In order to define the map ∆ we do not need the

over/undercrossing structure.

8.7 An analogue of the Kauffman bracket

In this section, we are going to construct a refinement of the Kauffman

bracket ⟨·⟩ for knot theories with a parity, this refinement generalizes the

usual Kauffman bracket in the case of classical knots. There are many

refinements of the Kauffman bracket for the case of virtual knots, see,

e.g. [42, 77, 79, 163–165, 233, 247] and references therein.

We shall explicitly write down the formulae in the case of virtual knots.

The generalization of the Kauffman bracket given below works in other

cases as well, namely, it works in the cases when there is a natural rule to

decree one way of smoothing to be A, and the other rule of smoothing to

be B, herewith the Reidemeister moves are “in a natural way compatible

with these rules”. Note that these generalizations work, for example, for

the theory of graph-links, see, e.g. Chap. 9 and [129, 130].

Consider the free module F over the ring Z[a, a−1] generated by all

framed 4-graphs.
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Let F̃ be the module obtained by factoring the module F by the fol-

lowing two relations:

(1) the second Reidemeister move,

(2) the relation K ⊔⃝ = (−a2 − a−2)K, where K denotes any arbitrary

framed 4-graph, and K ⊔⃝ is the disjoint sum of K with a split circle.

The algorithmic recognizability of elements from F̃ (the existence of a

unique minimal representative) is proved analogously to the case of G̃.

Virtual knot theory possesses the Gaussian parity (in the sense of

Sec. 8.2.3); for every knot diagram at every classical crossing we shall use

the fact that there are smoothings of types A and B (but we are not go-

ing to dwell on the axioms, these crossings, participating in Reidemeister

moves, of types A and B have to satisfy).

Now, let us construct the even Kauffman bracket valued in the module

F̃ , in the following way:

⟨K⟩even =
∑
seven

aα(s)−β(s)Ks,

where α(s) (respectively, β(s)) is the number of positive → (respec-

tively, negative → ) smoothings in the state s, and Ks is the free

link diagram obtained by smoothing the diagram K according to the state

s, considered as an element from F̃ .

Remark 8.16. There is a natural map F̃ → G̃, obtained by factoring the

quotient field: Z[a, a−1]→ Z2, where a 7→ 1, 2 7→ 0.

Thus, the invariant {·} represents a simplification of the invariant ⟨·⟩even.

Theorem 8.18. The bracket ⟨·⟩even is an invariant of knots with respect

to the Reidemeister moves Ω2, Ω3. When applying the move Ω1, the value

⟨·⟩even gets multiplied by (−a)±3, and the following normalization for ⟨·⟩even
is invariant under all Reidemeister moves:

Xeven(K) = (−a)−3w(K)⟨K⟩even,

where w(K) stays for the writhe number of the oriented diagram K.

Definition 8.16. We shall call Xeven(K) the even Jones polynomial

(cf. [141]) for the knot generated by K.

Remark 8.17. The even Jones polynomial is a generalization of the in-

variant {·} for every knot theory with a parity and the rules A and B for
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smoothings. To get the bracket from the Jones polynomial one takes the

map Z[a, a−1]→ Z2 : a 7→ 1, 2 7→ 0.

Besides, for the parity in the sense of Sec. 8.2.3 the polynomialXeven(K)

is a generalization of the usual Jones polynomial for the case of classical

knots and for those knots with corresponding orientable atoms. In this case,

in the definition of the bracket ⟨·⟩even, all elementsKs are trivial links which

in the module F̃ are equal to the multiples of the unknot with coefficients

equal to some powers of the polynomial (−a2−a−2). Taking the generator

of the module F , generated by the unknot, to be 1, we get the standard

Jones polynomial.

Proof of Theorem 8.18. This proof is completely analogous to the in-

variance proof for the bracket {·}. Let K ′ be obtained from K by one

Reidemeister move.

In the case of Ω1 we have (in F̃):

⟨ ⟩even = a⟨ ⟩even + a−1⟨ ⟩even
= (a+ a−1(−a2 − a−2))⟨ ⟩even = (−a−3)⟨ ⟩even.

Analogously, for the other case of the first Reidemeister move we have

⟨ ⟩even = (−a3)⟨ ⟩even.

When applying a second Reidemeister move we have to distinguish be-

tween the following two cases. If both crossings taking part in the sec-

ond Reidemeister move are odd, then there is a one-to-one correspondence

between crossings of the diagrams K and K ′, which yields a one-to-one

correspondence between summands of ⟨K⟩even and ⟨K ′⟩even. Herewith the

corresponding summands are obtained from each other by applying a sec-

ond Reidemeister move, thus they represent equal elements from F̃ .
In the case of two even crossings taking part in the second Reidemeister

move, the standard way of proving the invariance for the usual Kauffman

bracket under the second Reidemeister move works. As in the standard

Kauffman bracket, the three summands in F̃ are canceled because of the

coefficients a2, a−2 and (−a2 − a−2).

In the case of the third Reidemeister move, one has to distinguish be-

tween the cases when the number of even crossings taking part in this move,

is equal to one or is equal to three.

If the number of even crossings of K (or K ′) taking part in the third

Reidemeister move is equal to one, then after smoothing the diagrams K
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and K ′ at the corresponding crossings v and v′ we get the following sums

⟨K⟩even = a⟨K⟩even,+ + a−1⟨K⟩even,−,
⟨K ′⟩even = a⟨K ′⟩even,+ + a−1⟨K ′⟩even,−,

where the indices plus and minus are responsible for positive (negative)

smoothings at the crossings v and v′. It is easy to see that the corresponding

summands for K and K ′ in one of the two smoothings (+ or −) coincide,
and in the other smoothing they differ by an application of the second

Reidemeister move to the corresponding graphs, i.e. they are equal in F̃ .
In the case when all three crossings of the diagram K taking part in

the third Reidemeister move K → K ′ are even, the proof repeats verbatim

the invariance proof for the Kauffman bracket under the third Reidemeister

move in the case of classical and virtual knots. �

8.8 Virtual crossing numbers for virtual knots

The main result of this section is Theorem 8.19 showing that the mini-

mal number of virtual crossings for some families of virtual knots grows

quadratically with respect to the minimal number of classical crossings.

The main idea of the section is to use the parity arguments, which allow

one to reduce some problems about virtual knots to analogous problems

about their diagrams (representatives).

Thus, we have to find a certain family of 4-graphs for which the cross-

ing number (minimal number of additional crossings (prototypes of virtual

crossings) for an immersion in R2) is quadratic with respect to the number

of vertices (prototypes of classical crossings).

In the case of graphs, such families having quadratic growth for the

number of additional crossings with respect to the number of the cross-

ings themselves are quite well known to graph theorists: Even for trivalent

graphs the generic crossing number grows quadratically with respect to the

number of vertices, see, e.g. [264].

Notational remark. For a graph Γ, we shall use the standard termi-

nology: the number of vertices, v(Γ), and the crossing number, cr(Γ), the

latter referring to the minimal number of additional crossings for a generic

immersion, see ahead. For virtual knots, we shall use the notations: vi

and cl for minimal virtual crossing number and minimal classical crossing

number over all diagrams of a given knot.

Definition 8.17. The classical (respectively, virtual) crossing number
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cl(K) (respectively, vi(K)) of a virtual knot K is the minimum of the num-

bers of classical (respectively, virtual) crossings over all diagrams of K.

For estimates of virtual crossing numbers for virtual knots

see, [1, 3, 4, 23, 77, 274].

In the last years, some attempts to compare the classical and virtual

crossing numbers were undertaken, e.g. Satoh and Tomiyama [274] proved

that for any two positive numbers m < n there was a virtual knot K with

minimal virtual crossing number vi(K) = m and minimal classical crossing

number cl(K) = n.

However, no results were found in the opposite direction: For all known

virtual knots the number of classical crossings was greater than or equal to

the number of virtual crossings (see tables due to Green [115]).

In this section, we prove that the minimal number of virtual crossings

grows quadratically with respect to the minimal number of classical cross-

ings by reducing the problem from knots to graphs: We take some family of

graphs for which cr grows quadratically with respect to the number of ver-

tices, transform them into 4-graphs (which can correspond to diagrams of

virtual knots with vertices corresponding to classical crossings), turn these

graphs into a good shape (irreducibly odd) by some minor transformations

which increase the complexity a little, and then use the fact that for ir-

reducibly odd graphs the crossing number is equal to the virtual crossing

number of the underlying knots.

Given a graph Γ; analogously to the case of 4-graphs, by a generic

immersion of Γ in R2 we mean an immersion Γ→ R2 such that

(1) the number of points with more than one preimage is finite;

(2) each such point has exactly two preimages;

(3) these two preimages are interior points of edges of the graph, and the

intersection of the images of edges at such a point is transverse.

Definition 8.18. By the crossing number cr(Γ) of a graph Γ we mean the

minimal number of crossing points over all generic immersions Γ→ R2.

When we deal with framed 4-graphs, we restrict ourselves for such im-

mersions for which at the image of every vertex the images of any two

formally opposite edges turn out to be opposite on the plane (in other

words, the opposite edge structure is preserved).

Example 8.5. Consider the 4-graph with one vertex v and two edges e1, e2
connecting v to v. There are two possible framings for this graph; one of

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 8. Parity in Knot Theory: Free-Knots: Cobordisms 415

these framings (where one half-edge of e1 is formally opposite to the other

half-edge of e2) leads to a framed 4-graph with two unicursal components.

Such a graph is certainly non-planar, and its crossing number is equal to

one. The other framing (where a half-edge of the edge e1 is opposite to a

half-edge of the edge e2) is planar, so, for that framing the crossing number

is zero.

Now, let us present some examples of families of graphs where the cross-

ing number grows quadratically. Let p > 2 be a prime number. Consider

the chord diagram with (p− 3)/2 chords obtained as follows. We take the

standard circle x2 + y2 = 1 on the plane, take all residue classes modulo p

except 0, p − 1, 1, and put the residue class on the standard (core) circle

in the following way. The vertex corresponding to the residue class r will

be located at
(
cos 2πr

p , sin 2πr
p

)
. Now, every vertex r is coupled with the

vertex s where rs ≡ 1 (mod p).

It is known that for such chord diagrams the crossing number grows

quadratically in p as p→∞.

Other examples of families of trivalent graphs with quadratic growth can

be constructed by using an expander family ; for more about expanders, see,

e.g. [103, 264]. The idea is as follows. For a graph Γ and a set V = V (Γ)

of vertices of it, we define the neighborhood N(V ) to be the set of vertices

of Γ not from V which are connected to at least one vertex from V by an

edge. It is natural to study the ratio |N(V )|
|V | . A family Fn of graphs is called

an ε-expander family for some positive constant ε if this ratio exceeds ε for

all graphs Fn with sufficiently large n and for all sets Vn of vertices smaller

than the half of all vertices of Fn.

We are now ready to state and to prove our main result.

Theorem 8.19. For some infinite set of positive integers i, there is a fam-

ily Ki of virtual knots such that the virtual crossing number of Ki grows

quadratically with respect to the classical crossing number of Ki as i tends

to the infinity.

The proof of this theorem relies upon the following two lemmas.

Lemma 8.13. Let K be a framed 4-graph. Let K ′ be a graph obtained from

K by smoothings at some vertices. Then cr(K ′) 6 cr(K).

Proof. Indeed, consider an immersion of K in R2 preserving the framing

and realizing the crossing number cr(K). Now, take those vertices of K
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where the smoothing K → K ′ takes place and perform this smoothing just

on the plane. The further proof is obvious. �

Lemma 8.14. Let Hn be a family of trivalent graphs such that the crossing

number cr(Hn) grows quadratically with respect to the number of vertices

v(Hn) as n tends to the infinity. Then there are two families of framed

4-graphs Kn and K ′
n such that

(1) the graphs Kn are all irreducibly odd ;

(2) the number of vertices of Kn does not exceed three times the number of

vertices of Hn;

(3) K ′
n is obtained from Kn by smoothing of some vertices; both Kn and

K ′
n are graphs with one unicursal component ;

(4) Hn is a subgraph of K ′
n obtained by removing some edges.

Proof. Let Hn be a connected trivalent graph. Obviously, the number of

vertices of Hn is even. Let us arbitrarily partition all the vertices of Hn into

n/2 disjoint sets consisting of two vertices each. Connect vertices from one

set by an edge. We get a 4-graph. We shall denote it by K ′
n; to complete

the construction of K ′
n, we have to find a framing for it in order to get a

diagram of a free knot (with one unicursal component).

To do this, we shall use Euler’s theorem asserting that for every con-

nected graph with all vertices of even degree there exists a circuit which

passes once through every edge. Let us choose an Euler circuit. Define the

framing for K ′
n in such a way that the Euler circuit is the unicursal circuit

for K ′
n (two consecutive edges at every vertex are decreed to be formally

opposite).

Consider the chord diagram corresponding to K ′
n. This diagram might

have even and odd chords. Our goal is to construct the chord diagram of

Kn by adding some chords to K ′
n. Namely, for every chord l of Kn we

shall either add one small chord at one end of l (linked only with l) or add

two small chords at both ends of l. Our goal is to show that we obtain an

irreducibly odd chord diagram such that the framed 4-graph K ′
n is obtained

from the framed 4-graph of Kn by smoothing at some vertices.

Note that whenever a chord diagram D is obtained from a chord dia-

gram D′ by adding one chord linked precisely with one chord of D′, then

the corresponding 4-graph can be obtained from the framed 4-graph corre-

sponding to D′ by smoothing the vertex corresponding to the added chord.

Indeed, view Fig. 8.30.
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Fig. 8.30 Addition of a chord and the inverse operation.

We shall consider only graphs K ′
n such that their chord diagrams have

no solitary chords (chords not linked with any other chord).

Now, to every even chord of K ′
n we add one small chord on one end

of it. To every odd chord of K ′
n we add two chords on both flanks. This

will guarantee that the resulting chord diagram is odd (all “small” chords

are odd since each of them is linked with exactly one chord). Besides,

this guarantees that the resulting chord diagram (or framed 4-graph) is

irreducible.

We shall distinguish between former chords (belonging to K ′
n) and new

chords (“small” added chords).

Now, no two former chords (for K ′
n) can be operated on by the second

decreasing Reidemeister move: for each two chords a, b of such sort there is

at least one chord c distinct from a, b which is linked with a and not with

b (it suffices to take some “small” chord linked with a).

A former chord cannot participate in the second decreasing Reidemeister

move together with a new chord because every former chord is linked with

at least one former chord and with at least one new chord, and every new

chord is linked with exactly one chord.

If two new chords a and b are linked with different former chords, they

cannot participate in the second decreasing Reidemeister move. Neither
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can they even if they are linked with the same former chord: In this case,

since the former chord is not solitary, there is at least one former chord c

lying “between” a and b, so, the endpoints of a and b cannot be neighboring.

Now, an obvious estimate shows that the number of chords of Kn does

not exceed 3n. �

Let us prove Theorem 8.19.

Proof of Theorem 8.19. Let us take a family of trivalent graphs Hn

with quadratical growths of the crossing number. Denote their numbers of

vertices by vn and denote their crossing numbers by crn.

Apply Lemma 8.14. Consider the families of framed 4-graphs Kn and

K ′
n. Consider an arbitrary immersion of Kn in R2. Endow all vertices of

this immersion with any classical crossing structure; denote the obtained

virtual diagram by Ln.

We claim that the classical crossing number cl(Kn) of the knot Kn given

by Ln grows linearly with respect to vn, whence the virtual crossing number

vi(Kn) grows quadratically with respect to vn.

The first claim follows from the construction: the number of classical

crossings of Ln does not exceed three times the number of vertices of Hn,

so, the minimal classical crossing number over all diagrams representing

the knot Kn can only be smaller.

Now, consider vi(Kn). Let L̃n be a diagram of the knot Kn. So, if we

consider the framed 4-graphs corresponding to diagrams Ln and L̃n, they

will represent the same free knot. By definition, the framed 4-graph Kn

corresponds to Ln. Denote the framed 4-graph corresponding to L̃n by K̃n.

We see that K̃n represent the same free knot as Kn.

Now, apply Theorem 8.11 to the free knot generated by Kn. By con-

struction,Kn is irreducibly odd. Thus, we see thatKn can be obtained from

K̃n by means of a smoothing at some vertices. So, by Lemma 8.13, we have

cr(Kn) 6 cr(K̃n). Therefore, by construction, we get vi(Kn) > cr(Kn).

By Lemma 8.13, we have cr(Kn) > cr(K ′
n). The following inequality

cr(K ′
n) > cr(Hn) = crn holds because Hn is a subgraph of K ′

n. As a

result, we get vi(Kn) > crn and crn grows quadratically with respect to vn.

This completes the proof of the theorem. �

Remark 8.18. In this direction, one can prove slightly more than stated

in Theorem 8.19: The number of virtual crossings grows quadratically with

respect to the number of classical crossings not only for virtual knots, but

also for virtual knots considered modulo virtualization.
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8.9 Cobordisms of free knots

8.9.1 Introduction

A curve immersed in a surface admits a natural notion of null-cobordance

or sliceness.

Definition 8.19. One says that an immersed curve γ ⊂ Sg in an oriented

closed 2-surface Sg of genus g is null-cobordant or slice if there exists an

oriented 3-manifold M, ∂M = Sg, and a smooth map f : D →M of a disc

D such that f(∂D) = f(D) ∩ ∂M = γ.

Definition 8.20. Analogously, one says that the slice genus of γ ⊂ Sg does

not exceed h if in Definition 8.19 one uses a surface Dh of genus h with one

boundary component instead of the disc D.

The first obstructions for curves to be null-cobordant were found by

Carter [49]; after that, the theory was also studied by Turaev [301], Orr,

and others.

Remark 8.19. In the sequel, we deal only with generic immersions of

curves in 2-surfaces, unless otherwise specified. By a generic immersion for

a curve we mean an immersion such that all whose singularities consist of

a finite number of self-intersection points and each self-intersection point is

a transverse double point.

It can be easily proved that if two curves are homotopic and one of

them is null-cobordant, then the other one is also null-cobordant. Thus

one can talk about null-cobordant classes of homotopy classes of curves.

Moreover, if a curve γ in a surface Sg+1 does not share a point with a

meridian of a handle of the surface, then one can consider the curve γ to

lie in the surface Sg obtained from Sg+1 by cutting Sg+1 along the curve

(meridian) and pasting resulting components of the boundary with discs.

It is evident that the pairs (Sg, γ) and (Sg+1, γ) are simultaneously either

null-cobordant or not.

Therefore, one can talk about null-cobordant classes of flat virtual

knots [298], which represent equivalence classes of pairs (a circle immersed

in an oriented 2-surface, and the surface itself) up to isotopy of curves on

our surface and stabilization/destabilization.

The paper [233] (full version is published in [237]) pioneered the overall

study of free knots. One can naturally define a notion of null-cobordant (or
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slice) for free knots (see below) in such a way that, if a flat knot is null-

cobordant, then the free knot corresponding to it is also null-cobordant.

In this section, we extend the notion of parity from one-dimensional

objects (curves with self-intersections) to two-dimensional ones (discs with

self-intersections), it allows us to construct invariants of sliceness for free

knots. This question (about existence of non-sliced free knots) became ac-

tual after the first examples of non-trivial free knots appeared, see accurate

definitions of null-cobordant free knots and slice genus for free knots below,

Definition 8.27.

The obstructions for curves to be null-cobordant (and the corresponding

construction of cobordism invariants) suggested by Carter, Orr, Turaev

cannot be straightforwardly defined for the case of free knots, since they

use some homological data of the surface, which free knots do not possess.

In some sense, parity can replace homological/homotopy information, when

no “genuine” homology is present, see Sec. 8.2.6.

The concept of parity has some other applications in the cobordism

theory for free knots and immersed curves. In particular, if a free knot

represented by a framed 4-graph Γ is slice, then so is the free knot repre-

sented by a framed 4-graph obtained from Γ by “killing odd crossings”, see

Theorem 8.16.

The aim of this section is to construct one simple (in fact, integer-

valued) invariant of free knots which gives an obstruction for a free knot to

be slice (null-cobordant).

In [131] we introduced an equivalence relation related to the notion of

cobordisms which we called combinatorial cobordism: Instead of a topolog-

ical definition using the notion of a spanning disc we dealt with a formal

combinatorial definition following Turaev’s paper [301]. According to this

definition two free knots are (combinatorially) cobordant if one of them can

be transformed to the other one by a finite sequence of moves from a given

list. These moves include all the Reidemeister moves, and each of them

corresponds to a “real” (topological) cobordism.

The section is organized as follows. First we consider a notion of com-

binatorially cobordant free knots. We construct an invariant and example

showing that free knots are non-trivial in the wide sense.

Further, we construct an invariant for topologically cobordant free

knots. We prove its invariance under the Reidemeister moves. Then, to

show that the invariant is well behaved under cobordisms, we have to ex-

tend the notion of parity from one free knot to the spanning disc of the

cobordism. This is done by marking double lines of the spanning disc as
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“even” and “odd”. We use homological approach to the definition of parity

of a double line which agrees with the homological definition of parity of

crossings of a free knot.

After that we give basic definitions of Morse theory for cobordisms of

immersed curves, and outline the proof of the main theorem. Taking a

Morse function on a spanning disc and having the homological definition

of parity for double lines, one extends the invariant to all level lines of this

function. Non-triviality of the initial invariant coupled with simple Morse

theoretic arguments and the “additivity property” of the invariant leads to

a contradiction. The key point in the proof is the way to extend the notion

of parity from self-intersection points of a curve to double lines of surfaces.

Note that a free knot combinatorially null-cobordant is topologically

null-cobordant. But the validity of the inverse statement is still an open

problem.

8.9.2 Combinatorial cobordism of free knots

Let D be a chord diagram.

Definition 8.21. By an even symmetric configuration C on a chord dia-

gram D we mean a set of pairwise disjoint arcs Ci on the core cycle of the

chord diagram which possesses the following properties:

(1) The ends of the arcs do not coincide with chord ends, and the number

of endpoints of chords inside any arc is even.

(2) Every chord having one endpoint in C has the other endpoint in C.

(3) Consider the involution i of the core cycle which fixes all points outside

the arcs Ci and reflects all arcs along the radii connecting the center of

the core circle with the middle of the arc. Connecting by a chord the

images of two points which formed a chord in the initial chord diagram

we get the chord diagram i(D). We require that the configuration C

be symmetric, i.e. the chord diagrams D and i(D) are equal.

Definition 8.22. Elementary cobordism means a transformation of a chord

diagram deleting all chords belonging to an even symmetric configuration,

as well as the inverse transformation.

We say that two Gauss diagrams are cobordant if one can be obtained

from the other by a sequence of elementary cobordisms and third Reide-

meister moves.
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Remark 8.20. The parity of chords does not change under elementary

cobordisms.

The definition of cobordisms given above agrees with the definition of

word cobordism (nanoword cobordism) [301], since there is a natural map

from the cobordism classes of (nano)word to the cobordism classes of free

knots.

Note that the first two Reidemeister moves are particular cases of el-

ementary cobordisms, unlike the third Reidemeister move. Therefore, it

makes sense to talk about cobordism classes of free knots.

The main result of this subsection is a proof of existence of free knots

being not combinatorially cobordant to the trivial free knot. To solve this

problem we shall construct a combinatorial cobordism invariant of free

knots.

Let K be a framed 4-graph. Each unicursal component Ki of K can

be treated as a framed 4-graph with the Gauss diagram Di. Thus, some

vertices of the graph K can be represented by chords of one of Di’s (namely,

those vertices lying on one unicursal component). Among these, let us

choose even vertices (in the sense of the Gauss diagram Di), and at each

even vertex v of K, we consider the smoothing Kv (one of the two possible)

for which the number of unicursal components is greater than that of K by

1.

Now let R be the set of Z2-linear combinations of equivalence classes of

framed 4-graphs modulo the second and third Reidemeister moves. Set

∆(K) =
∑
v

Kv ∈ R,

where the sum is taken over all even crossings v.

Remark 8.21. In this subsection, we use the same notation ∆ as well as

for Turaev’s delta, since these two operations, in some sense, are similar. In

Turaev’s delta a linear combination of ordered pairs of curves is assigned to

each curve, and, here, we assign a linear combination of equivalence classes

of framed 4-graphs with k+1 unicursal components to each framed 4-graph

with k unicursal components.

Statement 8.8. The map ∆ is a well-defined map from R to R.

Proof. Indeed, assume that K is obtained from K ′ by a third Reide-

meister move. Consider the three crossings v1, v2, v3 of K involved in this

move, and the corresponding crossings v′1, v
′
2, v

′
3 of K ′. By construction,
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the vertex vi lies in one unicursal component of K if and only if the vertex

v′i lies in one unicursal component of K ′. Moreover, vi is even if and only

if v′i is even. It is now easy to see that whenever vi is even, the smoothing

Kvi gives the same impact to R as that of K ′
v′i

(the corresponding framed

4-graphs are either isomorphic or differ by a second Reidemeister move).

Now, letK andK ′ differ by a second Reidemeister move, and letK ′ have

two more crossings v1, v2 in comparison with K. If both vertices v1, v2 are

odd, then the summands in ∆(K) are in one-to-one correspondence with

those in ∆(K ′) and the corresponding diagrams in each pair differ by a

second Reidemeister move. If both v1 and v2 are even, then it is obvious

that the smoothings at these crossings give equal impact to K ′, and since

we are working over Z2, they cancel each other. �

Therefore, for any l ∈ N the map ∆l, the iteration of l times of the map

∆, is a well-defined map. So, if K and K ′ are two framed 4-graphs which

are obtained from each other by a third Reidemeister move, then for every

positive integer l we have ∆l(K ′) = ∆l(K).

Let K be a framed 4-graph with l unicursal components. With K we

associate a graph Γ(K) (not necessarily 4-valent, but without loops and

multiple edges) and a number j(K) according to the following rule. The

graph Γ(K) will have l vertices which are in one-to-one correspondence with

unicursal components of K. Two vertices are connected by an edge if and

only if the corresponding components share an odd number of points. The

following statement is evident.

Statement 8.9. If two framed 4-graphs K and K ′ are equivalent, then

Γ(K) and Γ(K ′) are isomorphic.

Define the number j(K) from the graph Γ(K) in the following way. If

Γ(K) is disconnected we set j(K) = 0, otherwise j(K) is set to be the

number of edges of Γ(K).

Fix a natural number n. Let N be a linear space generated over Z2 by

formal vectors {ai, i ∈ N}. For a framed 4-graph K, we set J (K) = aj(K)

if j(K) > 0 and J (K) = 0 otherwise. We extend this map to Z2-linear

combinations of framed 4-graphs by linearity.

Now, set I(n)(K) = J (∆n(K)).

Theorem 8.20. If K and K ′ are combinatorially cobordant, then

I(n)(K) = I(n)(K ′).
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The proof of this theorem follows from two statements, first of them,

Statement 8.9, is evident, and the second one, Statement 8.10, is a central.

By virtue of Statement 8.9, the mapping I(n)(·) is invariant with respect

to the third Reidemeister move (since so is ∆n). Moreover, the following

holds.

Statement 8.10. If K2 is obtained from K1 by elementary cobordisms,

then I(n)(K1) = I(n)(K2).

Having proved Statement 8.10, we shall get Theorem 8.20.

We give a sketch of the proof of Statement 8.10.

Proof of Statement 8.10. Instead of framed 4-graphs we shall consider

Gauss diagrams.

Let D2 be the Gauss diagram obtained from a Gauss diagram D1 by

deleting an even symmetric configuration C.

The chords of D1 belong to three sets:

(1) The set of those chords corresponding to chords of D2; we denote them

for both D1 and D2 by γj ’s.

(2) The set of those chords βj which are fixed under the involution i on C.

(3) The set of pairs of chords αk and ᾱk = i(αk) which are obtained from

each other by the involution i (here ¯̄αk = αk).

Recall that for every chord diagram D, ∆n(D) is a sum of some con-

secutive smoothings ∆(p1...pk)(D) along chords p1, . . . , pk, where all pi’s are

chords of D and pi occurs to be even after smoothing all p1, . . . , pi−1.

∆n(D1) naturally splits into three types of summands:

(1) Those summands where all chords pi are some γj . These smoothings

are in one-to-one correspondence with smoothings ofD2. We claim that

the corresponding elements I(∆(p1...pk)(D1)) and I(∆
(p1...pk)(D2)) are

equal.

(2) Those summands where at least one of pi is βj , and neither α’s

nor ᾱ’s occur among pi. We claim that each of these summands

I(∆(p1...pk)(D1)) is zero.

(3) Those summands where at least one of pi’s is αj or ᾱj . These

summands are naturally paired: the elements I(∆(p1...pk)(D1)) and

I(∆(p̄1...p̄k)(D1)) are equal.

Let us consider the first case. Since arcs of our even symmetric configu-

rations have no common points with chords γj , we see that after smoothing
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along any of γ’s, every arc will completely belong to one circle. This means

that the corresponding graphs Γ(∆(p1...pk)(D1)) and Γ(∆(p1...pk)(D2)) are

isomorphic.

Indeed, chords βj do not change the graph Γ(∆(p1...pk)(D1)) at all, since

they always lie on one unicursal component. Chords αi and ᾱi belong to

either one unicursal component or the same pair of unicursal components.

Therefore, they either do not take part or their impacts to the construction

of the graph Γ(∆(p1...pk)(D1)) cancels.

Let us prove the second case. Let us take one chord pj = βk, and

consider the arc Ci of D1 where βk lies. Without loss of generality, we may

assume that βk is the innermost chord in Ci among those chords βl we use

for smoothings.

Now, our summand looks like ∆...βk.... Smoothing the corresponding

diagram (obtained as a result of smoothings along the chords being before

the chord βk) along βk cuts the free knot (the unicursal component) which

contains the arc Ci. It is obvious that this unicursal component will be split

in the sense of the graph Γ. It will give a new vertex corresponding to the

unicursal component which shares chords of only types α and ᾱ with other

unicursal components. Since we do not smooth those chords, this unicursal

component will always share an even number of chords with each unicursal

component, i.e. the graph is not connected.

The third case is proved with the help of Theorem 7.8. Namely, using

Theorem 7.8 we can always realize whether two ends of a chord belong

to either two different circles or the same circle, and whether two chords

ends of which lie on distinct circles connect either two distinct circles or

the same. �

Example 8.6. Consider the free knot K represented by the Gauss diagram

shown in Fig. 8.31. We have

∆

( )
= + + ,

∆2

( )
= ∆

( )
+∆

( )
+∆

( )

= + +

+ + + ,
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∆3

( )
= ∆

 +∆

 +∆

 
+∆

 +∆

 +∆

 
= + + +

+ + = + .

Thus I(3)(K) = a4.

Thus, by Theorem 8.20, the cobordism class of K is non-trivial.

Fig. 8.31 A Gauss diagram of the free knot not cobordant to the unknot.

8.9.3 An invariant of free knots

In this subsection, we shall construct an invariant of free knots constructed

from the parity and justified parity, and prove its invariance. We shall

later prove that this invariant delivers a sliceness obstruction for a free

knot. Within the present subsection, by parity and justified parity we mean

the Gaussian parity and the Gaussian justified parity.
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An extension of the invariant to be presented below is constructed

in [202]; for our purposes (sliceness obstruction) the version given here will

suffice. Nevertheless, it is important to investigate the invariant from [202]

(in [202] its invariance under the Reidemeister moves for free knots was

proved) from the point of view of sliceness.

To construct the invariant we need to introduce the notion of justified

parity which is analogous to a parity.

Definition 8.23. By a justified parity of crossings we mean a parity with

coefficients from Z2 where each odd crossing is marked by a letter b or b′

(in these cases we call a crossing an odd crossing of the first type or an odd

crossing of the second type, respectively), so that the following propositions

hold:

(1) If a second Reidemeister move is applied to two odd crossings, then

they are of the same type (either both are b or both are b′).

(2) If in a third Reidemeister move we have two odd crossings, then each

of them changes its type after the Reidemeister move is applied (the

crossing marked by b before the Reidemeister move is applied, should

correspond to the crossing marked by b′ after the Reidemeister move is

applied).

(3) Moreover, odd crossings not taking part in the Reidemeister move do

not change their types.

We define the Gaussian justified parity on framed 4-graphs with one

unicursal component, as follows.

Definition 8.24. Let D be a chord diagram with the Gaussian parity, i.e.

a chord of D is even if and only if the number of chords linked with it, is

even, and odd, otherwise. Furthermore, an odd chord is of the first type

(after Gauss) if it is linked with an even number of even chords; otherwise

an odd chord is said to be of the second type (after Gauss).

For the framed 4-graph corresponding to a chord diagram D the Gaus-

sian parity and justified parity are defined as those of the corresponding

chord diagram.

It can be checked easily that the Gaussian parity and the Gaussian

justified parity satisfy the axioms of parity and justified parity.

Definition 8.25. A section of a cobordism, i.e. a section (level line) of

the spanning disc, is called singular if it contains a critical point, which

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

428 Virtual Knots: The State of the Art

is neither Morse critical point nor Reidemeister singularity. Otherwise, a

section is called regular.

Later in this section, for cobordism purposes we shall then extend the

notion of the Gaussian parity and justified Gaussian parity for another sit-

uation. First, we shall define the Gaussian parity and justified Gaussian

parity for double lines of a 2-disc with generic intersections, and then for

every regular section of this disc (which will be a framed 4-graph represent-

ing a free link) we shall define the parity and justified parity for crossings

to be the parity and justified parity of double lines it comes from.

However, for the first goal (the construction of an invariant of free knots)

it would be sufficient for us to have a well-defined parity for just framed

4-graphs with one unicursal component.

Let us consider the group

G = ⟨a, b, b′ | a2 = b2 = b′2 = e, ab = b′a⟩

with the unit e. Note that G is isomorphic to the infinite dihedral group.

For a word γ in the alphabet consisting of a, b, b′ we shall denote by [γ]

the element of G corresponding to γ.

Our first goal is to construct an invariant of free long knots (respectively,

of compact free knots) valued in G (in the set of conjugacy classes of the

group G).

Let D be an oriented chord diagram, with a marked point X on the

core circle C distinct from any chord end. Later, we shall see how one can

get rid of the orientation of D.

We distinguish between even and odd chords of D; moreover, we distin-

guish between two types of odd chords of D.

With a marked oriented chord diagram (D,X) we associate a word in

the alphabet {a, b, b′} as follows. Let us walk along the core circle C starting

from X. Every time we meet a chord end, we write down a letter a, b or b′

depending on whether the chord whose endpoint we met, is even, first type

odd, or second type odd. Having returned to the point X, we obtain a word

γ(D,X); this word determines an element of G; by abuse of notation we

shall denote this element just by γ(D,X). Moreover, sometimes we shall

omit X from the notation when it is clear from the context which initial

point we have chosen.

Theorem 8.21. If two marked chord diagrams (D,X) and (D′, X ′) gen-

erate equivalent free knots, then [γ(D,X)] = [γ(D′, X ′)] in G.
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Proof. Indeed, ifD andD′ differ by a first Reidemeister move (say, D′ has

one extra chord with respect to D), then the word γ(D′) is obtained from

γ(D) by an addition of two consecutive letters a ·a; thus, the corresponding
elements from G coincide.

Analogously, if D′ obtained from D by an increasing second Reidemeis-

ter move, then the two new chords of D′ are of the same parity (and, if

they are odd, of the same type); denote the letter corresponding to each of

these two chords (a, b or b′), by u. Thus, the word γ(D′, X ′) is obtained

from γ(D,X) by addition of u ·u in two places. As in the first case, it does

not change the corresponding element of G.

The third Reidemeister move D → D′ may be of one of the two types.

In the first case, all three chords participating in the third Reidemeister

move, are even.

In this case the words γ(D) and γ(D′) coincide identically.

In the second case, two of the three chords taking part in the Reide-

meister move are odd, and one chord is even. Recall that under the third

Reidemeister move each of odd chords participating in the move changes

its type.

Consider those three segments of the words γ(D) and γ(D′) where the

ends of the three moving chords are located. For those segments containing

an end of the odd chord, we get one of the two substitutions ab←→ b′a or

ba←→ ab′. Both changes correspond to some relations in G.

Now consider the segment of the diagram containing the two ends of

the odd chords. If these two odd chords are of the same type in D, then

on D′ they are of the same type as well. Consequently, when passing from

γ(D) to γ(D′) we replace b · b by b′ · b′ or vice versa. Since both subwords

correspond to the trivial element of G, we have γ(D) = γ(D′) in G.

Finally, if the two chords participating in the third Reidemeister move

are of different types on the diagram D, then when passing from γ(D) to

γ(D′) the fragment of the corresponding word stays the same. Indeed, the

adjacent letters b and b′ change their position twice because the chords

change their type and chords’ ends change their positions.

Thus, no Reidemeister move changes the element of G corresponding to

the oriented chord diagram with a marked point. �

This theorem immediately yields the following corollary.

Corollary 8.4. The conjugacy class of the element [γ(D,X)] in G is an

invariant of free knots given by the diagram D, i.e. it does not depend on
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the marked point X.

Indeed, moving the marked point through a chord end corresponds to

a cyclic permutation of the letters, which, in turn, generates a conjugation

in G.

8.9.3.1 The Cayley graph of G

Its Cayley graph looks like a vertical strip on a squared paper between

x = 0 and x = 1: We choose the point (0, 0) to be the unit in the group;

the multiplication by a on the right is chosen to one step in a horizontal

direction (to the right if the first coordinate of the point is equal to zero, and

to the left if this first coordinate is equal to one), the multiplication by b is

one step upwards if the sum of coordinates is even and one step downwards

if this sum is odd, and the multiplication by b′ is one step downwards if the

sum of coordinates is even and one step upwards if the sum of coordinates

is odd, see Fig. 8.32.

a

a

a

a

a

b

b

b

b

b'

b'

b'

(0,0)

b'

Fig. 8.32 The Cayley graph of the group G.

With each pointed chord diagram (D,X) one associates an element from

G. Let us show that each element has coordinates (0, 4m).

Consider a chord of type b′. Since by definition there are odd number

of ends of even chords and even number of ends of odd chords between the

ends of the chord, then before meeting the first end of the chord we have the

coordinate (k, l) and before meeting the second end of the chord we have

the coordinate (p, q), where k and p are of different parities, and l and q
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are of the same parity. Hence, when we pass through the ends of the chord,

the total coordinate shift we have is (0, 2) (if l and q are odd) or (0,−2)
(if l and q are even). Analogously, we can show that total coordinate shift

at the ends of a chord of type b is (0,±2). Since the number of chords of

type b and b′ is even, the word in G corresponding to a chord diagram has

coordinates (0, 4m).

Moreover, the conjugacy class of the element (0, 4m) for m ̸= 0 consists

of the two elements: (0, 4m) and (0,−4m). Thus, for each long free knot

one gets an integer-valued invariant, equal to l = 4m; we shall denote this

invariant for a knot K by l(K); each compact free knot has, in turn, the

invariant equal to the absolute value |l|; we shall denote the latter by L(K).

It is obvious that if we invert the orientation of the chord diagram, we

shall reverse the order of letters in the word γ; this leads to the switch

(0, 4m)→ (0,−4m). So, the invariant L(K) can be defined for unoriented

free knots. The last fact immediately yields the following two corollaries.

Corollary 8.5. If for an oriented free knot K we have l(K) ̸= 0, then K

is non-invertible.

Corollary 8.6. L(K) is an invariant of unoriented free knots.

Fig. 8.33 A non-slice free knot.

In Fig. 8.33 we have a free knot K1 for which L(K1) = 16.

We use bold lines for describing even chords. The corresponding

word in G (with an appropriate choice of the marked point) looks like

(b′a)7b′b(ab)7 = (b′b)16.
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8.9.3.2 Remarks on the definition of the invariant L for links

Note that Theorem 8.21 works for any parity, not only for the Gaussian

one, and the proof in the case of any parity follows line-by-line the proof of

Theorem 8.21.

For cobordism purposes, we shall be able to understand the behavior

of the invariant L not only under the Reidemeister moves, but also under

Morse bifurcations. Here we shall only use the Gaussian justified parity.

Moreover, first we have to define this invariant for links with many

components, since after a Morse bifurcation we can obtain a link from a

knot.

Our further strategy is as follows. Assuming we have a cobordism (see

Definitions 8.26 and 8.27) D → D spanning a framed 4-graph K, we shall

define the parity and justified parity for this cobordism, i.e. we say which of

double lines (i.e. those lines on D having preimages consisting of two con-

nected components D) are even, and which ones are odd, and, furthermore,

each odd double line will be divided into segments: odd of the first type and

odd of the second type. This parity will be defined in such a way that the

parity (the justified parity) for a double point on K will coincide with the

parity (justified parity) for the double line this point belongs to. Besides,

this approach will allow us to define the parity and the justified parity for

any generic section of a cobordism; such a section is a framed 4-graph rep-

resenting a multicomponent link. With these parity and justified parity,

we shall be able to extend our invariant L to sections of L with respect to

a Morse function on D and then understand the behavior of this invariant

under Morse bifurcations. We shall see that the values of this invariant

(sets of numbers) will behave nicely under Morse bifurcations, and as a

result, we get their invariance.

For a single component free link (i.e. a free knot), the value of the in-

variant γ can be expressed by one non-negative integer L. For a cobordism,

every section is a multicomponent free link, so, we have to define the invari-

ant γ on any component to be a collection of conjugacy classes of elements

of G (one for each component), and we may require that these elements

of G (or the corresponding conjugacy classes) are expressed by one integer

(respectively, non-negative integer) each. In this case we shall be able to as-

sociate an integer (respectively, non-negative integer) with each component

of a link appearing in a section of our cobordism.

To this end, we shall need that:

(1) The parity and justified parity are well defined for sections and well
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behaved under Morse bifurcations.

(2) The number of intersection points of each unicursal component of a

section with each double line is even; moreover, the number of intersec-

tion points of this unicursal component of the section with odd double

lines is even; this condition is necessary in order that the element of G,

corresponding to this unicursal component, has in its representation an

even number of the letter a and can be described by one coordinate on

the Cayley graph.

(3) The value of the first coordinate of the element of G (which is the same

as L) behaves well with respect to Morse bifurcations (we shall describe

the exact meaning of this below).

In particular, every component of a non-singular level link has an even

number of intersection points with double lines: it is necessary for the

parity to be well defined. Indeed, in order to define the Gaussian parity

of some crossing, one has to take some “half” of the circle corresponding

to this crossing and count the number of intersection points belonging

to this half. In the case of a free knot the parity of this number of

points does not depend on the “half” one chooses because it equals the

parity of the number of chords linked with the chord in question.

When we have a two-component link, and we take a crossing formed by

a single component, the two parities corresponding to the two halves will

be different if the total number of crossings between components is odd.

So, for those two-component links having an odd number of intersec-

tion points between components, there is no immediate way to extend the

Gaussian parity.

As we shall see further, all these conditions necessary for naturally ex-

tending the Gaussian parity will be automatically satisfied for those multi-

component link which are sections of a disc cobordism.

In order to do this we need to give a more topological definition of the

Gaussian parity.

8.9.4 Slice genus and cobordisms of free knots

Now we are ready to give the topological definition of cobordism.

Definition 8.26. Let K be a framed 4-graph with one unicursal compo-

nent. We say that K has slice genus at most g if there exist a surface Dg

of genus g with one boundary component (circle) S, a 2-complex Dg ⊃ K

containing K as a subcomplex, and a continuous map ν : Dg → Dg such
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that:

(1) ν(∂Dg) = K ⊂ Dg; for every vertex v of K we have ν−1(v) = {v1, v2},
and a small neighborhood U(vi) ⊂ S is mapped to a pair of opposite

edges of K at v;

(2) the map ν is one-to-one everywhere except a union of intervals: Σ =

{x ∈ Dg | card(ν−1(x)) > 1};
(3) the set Σ3 = {x ∈ Dg | card(ν−1(x)) > 2} ⊂ Σ is a finite subset of the

zero-dimensional skeleton of the complex Dg and consists only of those

points having exactly three preimages; moreover, Σ3 ∩ ∂Dg = ∅;
(4) “local three-dimensionality”: in the complex Dg neighborhoods of dou-

ble points, triple points and cusps have the following structure:

(a) a neighborhood of a cusp (points in which a map is not immersion)

is homeomorphic to the Whitney umbrella;

(b) a neighborhood of a double point from Σ \ Σ3 being not cusp is

homeomorphic to a neighborhood of the point (0, 0, 0) in the set

{(x, y, z) |xy = 0} ⊂ R3;

(c) a neighborhood of a triple point is homeomorphic to a neighborhood

of the point (0, 0, 0) in the set {(x, y, z) |xyz = 0} ⊂ R3;

(d) a neighborhood of a vertex of K in Dg is homeomorphic to a neigh-

borhood of the point (0, 0, 0) in the set {(x, y, z) |xy = 0, z > 0} ⊂
R3.

The surface Dg will be called the spanning surface of genus g or the

cobordism of genus g for K.

In other words, in the definition we require that a free knot (a framed 4-

graph K represented by an image of a circle S) is spanned by the 2-complex

Dg: an image of the 2-surface Dg, the boundary of which is the circle S,

and the singularities of the map ν : Dg → Dg are generic singularities (i.e.

a neighborhood of each singularity is embedded in R3).

Analogously, one defines the slice genus for framed 4-graphs with many

unicursal components, the cobordism of genus g for free knots (in this case

a spanning surface has several boundary components), and the equivalence

relation ∼ for free knots to be cobordant. Two free knots K1 and K2 are

cobordant if the free link K1 ⊔K2 is cobordant to the trivial link (with a

cobordism of genus 0).

Remark 8.22. Further, saying a word “cobordism” we always mean a

cobordism of genus 0 unless otherwise stated.
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The closure Σ except for points from Σ, also contains cusps, i.e. such

points x ∈ Dg for which card(ν−1(x)) = 1, and, moreover, for any small

neighborhood U(x) of x the intersection U(x) ∩ Σ represents a punctured

interval. Denote by Σ2 the complement Σ \ Σ3.

The intersection ν(S) ∩ Dg is a framed 4-graph in Dg. This graph is

obtained from S = ∂Dg by pasting double points in S. The framing (the

structure of opposite edges) for this graph is obtained from S. Namely,

for a point x in ν(S) ∩ Σ the preimage ν−1(U(x) ∩ ν(S)) consists of two

branches of S. The images of these two branches under ν will generate two

pairs of opposite edges.

Definition 8.27. A free knot is called null-cobordant or slice if it has slice

genus zero.

If a free knot K admits any cobordism of genus g and does not admit

a cobordism of genus g − 1, we say that K has slice genus g. Notation:

sg(K) = g.

The following lemma follows from the definition of a free knot.

Lemma 8.15. If framed 4-graphs K, K ′ represent the same free knot, then

K and K ′ are cobordant and, therefore, sg(K) = sg(K ′).

Indeed, in Fig. 8.34 we demonstrate that an equivalence under each

Reidemeister move leads to them to be cobordant; since to be cobordant is

an equivalence relation, we get the necessary. The first Reidemeister move

corresponds to a cusp point, the second Reidemeister move corresponds

to a passage through a tangency point, and the third Reidemeister move

corresponds to a triple point.

Thus, it makes sense to speak about the slice genus of free knots, but

not only for framed 4-graphs.

Remark 8.23. Let K be a flat knot and |K| be the underlying free knot.

Then it follows from the definition that the slice genus of K is greater than

or equal to the slice genus of |K|. In particular, if K is slice, then so is |K|.

Example 8.7. The first example of a non-slice flat virtual knot was con-

structed by Carter [49], it is shown in Fig. 8.35.

This knot is embedded in an oriented surface of genus 2. Let us orient

this surface. In Fig. 8.35, the arrows indicate the clockwise direction of

branches. Namely, orient the core circle of the chord diagram counterclock-

wise and orient the immersed curve accordingly. If two oriented branches
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Fig. 8.34 Cobordisms corresponding Reidemeister moves.

Fig. 8.35 Carter’s non-slice flat virtual knot.

(a, b) of the curve have an intersection at a double point v and the tangent

vectors τv,a, τv,b form a positively oriented basis, then the arrow is directed

from a to b.

In this notation, for flat virtual knots, two chords participating in a

second Reidemeister move should have opposite orientations. The flat knot

K in Fig. 8.35 is non-trivial as a flat virtual knot, and, moreover, it is non-

slice. Nevertheless, when we forget about the arrows, we can first cancel the

two vertical arrows (by the second Reidemeister move) and then cancel the
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horizontal arrow (by the first Reidemeister move). So, the corresponding

free knot |K| is trivial, and hence slice.

So, if a free knot is non-slice, then so is every underlying virtual knot.

The problem of finding non-slice free knots is rather complicated.

In Sec. 8.9.2 we introduced the notion of combinatorial cobordism. Our

combinatorial transformations consist of the third Reidemeister move and

addition/removal of an “even symmetric configuration”. The latter trans-

formations include the first and second Reidemeister moves as particular

cases, and each of them represents a (topological) cobordism of genus zero.

Thus, if two knots are combinatorially cobordant, then they are also topo-

logically cobordant. Interconnection between topological and combinatorial

cobordant relations will be considered in another paper.

In the work by Carter [49] and Turaev [301], topological sliceness ob-

structions for immersed curves (which come from flat knots) were studied.

For each double point v of an immersed curve Γ, one considers the homology

class of the halves Γv,1, and takes the homological pairing of these halves

in the surface. These pairings form an integer matrix, an obstruction for

a cobordism is formulated in terms of properties of the obtained matrix.

This approach cannot be applied to free knots because a framed 4-graph is

not assumed to be embedded in any 2-surface. Moreover, embeddings into

different 2-surfaces may crucially change the intersection form for “halves”

even with Z2-coefficients.

8.9.5 Parity of curves in 2-surfaces

Let us now pay more attention to the structure of cobordisms of free knots.

Assume there is a cobordism ν : D → D (of genus zero) spanning the free

knot (framed 4-graph) K = ν(∂D).
Set Ψ = ν−1(Σ). Then Ψ has a natural stratification containing strata of

dimensions zero and one. The strata of dimension zero are double points on

the boundary, cusps, and triple points; all other points form strata of dimen-

sion one. By a double line we mean a minimal (with respect to inclusion)

collection of one-dimensional strata possessing the following properties:

(1) Two 1-strata attaching the same cusp from opposite sides belong to the

same double.

(2) Two 1-strata attaching the same triple point from opposite sides belong

to the same double line, see Fig. 8.36.
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Fig. 8.36 Double lines a, x, y, z, cusps and triple points.

Let v ∈ K ∩ Σ be a double point on the boundary of ∂D. Assume

ν−1(x) = {x1, x2}.
Recall the definition of the Gaussian parity for framed 4-graphs. Let

us consider a double point x. We take an arc (a half of the core circle)

ι of K connecting x to x, being the image of an arc ι̃ on S, and count

the parity of the double point number on ι. Note that here we take a half

of the core circle, but not just a curve on K connecting the point x to

itself. The fact of the matter is that if we take a curve on the circle ∂D
connecting two preimages x1 and x2 of x, but locally (in neighborhoods of

these preimages) pointed towards different “halves”, then the number of

double points on such curve is greater (or smaller) by one, since one of the

preimages of x is added.

Now, let us consider the preimage ι̃ ⊂ S connecting x1 to x2. Then the

definition of parity p(x) can be reformulated as the parity of card(ι̃ ∩ Σ).

Note that this line ι̃ belongs to the disc D.
If we want to generalize the notion of parity on double lines and make

it more topological, then instead of ι̃ ⊂ ∂D we may take an arbitrary path
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η̃ ⊂ D in generic position connecting x1 to x2 (see Fig. 8.37). Generic

position means that the path intersects Σ only in Σ2, and all intersections

are transverse. Moreover, we have to reformulate the condition of right-

orientation of the path in neighborhoods of the starting point and ending

point (see below). Having done this, we immediately obtain a well-defined

definition of parity, since such two paths are homotopic with respect to the

boundary, and the parity of the number of intersection points with the set

Σ will not change.

We impose the following condition concerning the behavior of the curve

in neighborhoods of x1 and x2. When we take η̃ ⊂ D, neighborhoods

η̃ ∩ U(x1) and η̃ ∩ U(x2) of x1 and x2 belong to the same half of the circle

S. In terms of D and D, this can be reformulated as follows.

Let ζ ⊂ D be the 1-stratum in D attaching the point x. Orient ζ arbi-

trarily, and orient the two preimages ζ1∩U(x1) and ζ2∩U(x2) accordingly.

Consider two vectors v1 and v2 tangent to η̃ at x1 and x2, respectively

(see Fig. 8.37). We require that the bases (ζ̇1, v1) and (ζ̇2, v2) generate two

different orientations of D. If we change the direction of both x1 and x2 it

will not change the parity of η̃ ∩ Σ2.

x
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x

x

v1x
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.

.

Fig. 8.37 The geometric way for defining parity.

So, this gives another way to define a parity for x. Consider it as the

definition of parity for any double point from Σ2.
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Actually, let x be a point on a double line from Σ2. Having counted the

number of intersection points of a curve connecting x1 to x2 by the way

mentioned above, we get the number p(x). We call it the Gaussian parity

of the point x.

The following statement easily follows from the definition.

Statement 8.11. The Gaussian parity is constant along double lines.

Proof. This is evident for two points belonging to the same 1-stratum

and for points on two 1-strata attaching the same cusp. When passing

through a triple point, the parity does not change, see Fig. 8.38. We see

that the curve connecting the two preimages of A is “parallel” to the curve

connecting the two preimages of B everywhere except for the two small

domains; inside these two domains, we have two intersections with double

lines p and q which cancel each other. Thus, the parity of points A and B

coincides. �

γ
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1
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Fig. 8.38 The behavior of parity and justified parity when passing through a triple
point.

This leads to the definition of parity for a double line.
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Definition 8.28. Let γ be a double line on a cobordism. Take an arbitrary

x on γ ∩Σ2, and consider the two preimages x1 and x2 of it on D. Connect
x1 to x2 by a generic path η̃, such that its behavior in neighborhoods U(x1)

and U(x2) is coordinated (as in the definition of the Gaussian parity). Now,

the Gaussian parity of the double line containing x is the parity of the

number of intersection points between η̃ and Ψ.

This allows us to define the set Ψeven (respectively, Ψodd) to consist of

the closure of all those points of Ψ belonging to even (respectively, odd)

double lines.

From the definition of the Gaussian parity for double lines it is easy to

get the following statement.

Statement 8.12. Amongst three double lines intersecting at the same point

the number of odd lines is even (equals zero or two).

Now, to define the justified Gaussian parity, we should take an odd

double line γ, an arbitrary generic point x on it, and consider the two

preimages x1 and x2 of x. Then we connect x1 to x2 by a generic path δ ∈ D
(of course, its behavior in neighborhoods U(x1) and U(x2) is coordinated)

and count the number of intersections between δ and Ψeven. If this number

is even, we say that the 1-stratum containing x is of the first type; otherwise

we say that this 1-stratum is of the second type.

Note that here we do not require any coordination (coorientation) of

the first and last segments of the path: under small perturbation of the

path in a neighborhood of its start (end) the number of intersection points

only with odd double line can change, but we are interested in intersections

with even double lines.

From the definition we have the following statement.

Statement 8.13. The Gaussian justified parity is constant on 1-strata be-

longing to Ψ. It does not change when passing through a cusp point (from

one stratum to another stratum of the same double line), and it changes

from b to b′ or from b′ to b when passing through a triple point formed by

two odd double lines and one even double line.

Proof. The statement that the type does not change along 1-strata is

evident. Consider now Fig. 8.38. Assume the double lines γ and δ are odd

and the double line ϵ is even. Then the two lines connecting the preimages

of A and the preimages of B are “parallel” except for two domains where

one of them passes through a double line at p, and the other one passes
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through a double line at q. Since we disregard intersection with odd double

lines, we see that q counts and p does not. Therefore, we have proved that

the type changes by one when we pass through a triple point. �

Having defined the Gaussian parity for double lines and the Gaussian

justified parity for strata, we will be able to construct the invariant L for

any section of a cobordism D. The parity properties proved above for the

parity of double lines and the justified parity of strata guarantee that this

invariant is well defined and behaves nice under the Reidemeister moves.

8.9.6 Sliceness of free knots

It turns out that the invariant L of free knots is an obstruction to sliceness.

Before proving the main theorem, we shall make several observations

concerning sliceness. From Lemma 8.15, it follows that the slice genus is

well defined on the set of free knots.

The following statement is trivial (see Fig. 8.34).

Statement 8.14. If a framed 4-graph K ′ is equivalent to a framed 4-graph

K (by Reidemeister moves), then the slice genus of K ′ is equal to that of

K. In particular, if K is slice then so is K ′.

Thus, it makes sense to speak about cobordisms of free knots, but not

only for framed 4-graphs.

As a corollary, we get the following statement.

Statement 8.15. If a framed 4-graph K is embeddable in S2 or T 2, then

K is slice.

Indeed, every framed 4-graph on S2 is equivalent (even as a flat virtual

knot) to the (free) unknot; every framed 4-graph on the torus T 2 is homo-

topic either to the trivial loop on the torus (with no crossings) or to a knot

lying in a cylinder (a complement to a simple non-contractible curve in the

torus). In the latter case this free knot is equivalent to a knot lying in a

sphere (as cylinder is a submanifold of a sphere) and, therefore, it is trivial.

Statement 8.16. Let K be a free knot, and let f(K) be a free knot obtained

from K by deleting odd crossings. If K is slice, then so is f(K).

Proof. Indeed, any cobordism (of genus zero) forK generates a cobordism

of genus zero for f(K) obtained by separating all odd double lines: Two

points from Σ2 will be pasted together in the new cobordism if and only if
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they lie on an even double line in the first cobordism. Note that the rule of

pasting is agreed with triple points, since if we have two even double lines

in a triple point, then the third double line is also even. �

Denote the obtained cobordism for f(K) by f(D) where D is the cobor-

dism for K.

The main result of this section is the following theorem.

Theorem 8.22. If a free knot K has L(K) ̸= 0, then K is not slice.

In particular, this yields the following corollary.

Corollary 8.7. Let γ be a curve immersed in an oriented closed 2-surface

Sg. Then if for a free knot K corresponding to γ one has L(K) ̸= 0, then

the flat virtual knot corresponding to γ is not slice.

Indeed, a disc immersed in a 3-manifold is a spanning disc. The converse

statement is generally not true.

The problem of finding obstructions for a surface Sg with a curve γ to

span a disc immersed in a 3-manifold M with boundary Sg was studied

by Carter [49], Turaev [301] etc. Some topological obstructions based on

homology of Sg were constructed.

In this section, we consider a more complicated problem: Instead of

curves in 2-surfaces we consider framed 4-graphs, and instead of spanning

2-discs in 3-manifolds we consider “abstract” spanning 2-discs. In this

case we cannot define a “homology group”, since a framed 4-graph can be

embedded in different surfaces, which have different homology groups.

From this point of view the notion of parity plays in some sense the role

of a “substitute for homology of Sg”.

8.9.6.1 Constructing the Morse function and the Reeb graph

The proof of the main theorem will consist of several steps.

First, let us adopt the following notation: by ν we shall denote a map

D → D corresponding to the cobordism, and by µ we shall denote as

a Morse function µ : D → R on the disc with self-intersections (see the

definition below) as the composition µ ◦ ν : D → R representing a Morse

function on the disc D.
Assume a free knotK (represented by a framed 4-graph) admits a cobor-

dism ν : D → D (of genus zero).
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Definition 8.29. By a Morse function on D we mean a Morse function

µ : D → [0,∞) such that if ν(x) = ν(y), then µ(x) = µ(y), all triple

points and cusp points on D lie on non-critical levels of µ, and µ−1(0) =

K, µ−1(1) = ∅. By abuse of notation we shall denote the function on D
and the function on D by the same letter f .

By a non-singular value of the function µ we mean a non-critical value

c of the function µ such that µ−1(c) ⊂ D contains no cusps and no triple

points; a singular (respectively, non-singular) level is the preimage of a

singular (respectively, non-singular) value. A Morse function on D will be

called simple if every singular level contains either exactly one critical point,

or exactly one triple point, or exactly one cusp point.

From now on, we require that the Morse function on D is simple and

the level 0 is non-singular. It is clear that such Morse functions are every-

where dense in the class of all functions. Every Morse function has singu-

lar levels of two types: those corresponding to Morse bifurcations (saddles,

minima, and maxima) and those corresponding to Reidemeister moves. De-

note singular levels of the Morse function µ by c1 < · · · < ck and choose

non-singular levels ai: 0 = a0 < c1 < a1 < c2 < · · · < ak < ck < ak+1 = 1.

Let us construct the Reeb graph Γµ (molecule) of the Morse function µ

as follows. All vertices of this graph have degree either 1 or 3. The uni-

valent vertices of the Reeb graph (except one) will correspond to minima

and maxima of the function µ; the vertices of degree three will correspond

to saddle points (note that each saddle consists of a transformation of one

circle to two circles or two circles to one, since the surface-disc is oriented);

edges will connect critical points; every edge will correspond to a cylin-

der S1 × I ⊂ D which is continuously mapped by µ to a closed interval

(this edge) between some two critical points (vertices); this cylinder has no

critical Morse points inside (but may contain inside critical points corre-

sponding to Reidemeister moves). One edge will emanate from the point 0

(a non-critical point) corresponding to the circle S = ∂D, see Fig. 8.39.

Since this graph is the Reeb graph of a Morse function on the disc D,
the graph Γµ is a tree.

Our next goal is to endow each edge of the Reeb graph with a non-

negative integer label. The label of the edge emanating from 0 will coincide

with L(K).

For every non-singular level c of µ the preimage Kc = µ−1(c) ⊂ D is

a framed 4-graph representing a free link; when passing through a Reide-

meister singular point, it is operated on by the corresponding Reidemeister
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Fig. 8.39 The Reeb graph and circle bifurcations.

move; when passing through a Morse critical point it gets operated on by a

Morse-type bifurcation. Every crossing of Kc belongs to some double line.

Define the parity of a crossing to be the Gaussian parity of the double line,

it belongs to. Analogously, define the justified parity of a crossing to be

that of the 1-stratum, it belongs to.

One can easily see that if a section of the Morse function is a free

knot (a framed 4-graph with one unicursal component), then the parity

and justified parity coincide with the Gaussian parity and justified parity

defined directly via Gauss diagrams.

Choose a non-singular level c, and consider the free link Kc and orient

its component arbitrarily (as we shall see further, the orientation will be

immaterial); for every unicursal component Kc,j of the free link Kc we may

define the conjugacy class δ(Kc,j) of γ(Kc,j) in G just as it is done for

free knots with the Gaussian parity and justified parity. Let δ(Kc) be the

unordered collection of all δ(Kc,j) for all j (with repetitions).

From Statements 8.11 and 8.13 we get the following lemma.

Lemma 8.16. The parity and justified parity defined on the set of all non-

singular levels Kc satisfy the parity and justified parity axioms under those

Reidemeister moves which happen under passing from one non-singular

level to another one within the cobordism D.

Thus, we get the following lemma.
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Lemma 8.17. When changing a parameter c along an interval [a, b] ⊂ [0, 1]

on which the level Kc is operated on by Reidemeister moves but not Morse

bifurcations, and the levels corresponding to a and b contain no Reidemeis-

ter move, we have δ(Ka) = δ(Kb) if the orientations of components of the

links Ka and Kb are agreed with each other : these sets represent conjugacy

classes of elements from G.

Moreover, δ(K0) is the conjugacy class of γ(K).

The proof literally repeats the proof of Theorem 8.21.

Now, we would like to treat δ as a collection of non-negative integers

with multiplicities and to forget about orientations of components of Kc.

To this end, we prove the following lemma.

Lemma 8.18. Let c be a non-singular level of µ, and let Kc,1, . . . ,Kc,n be

unicursal components of the free link Kc = µ−1(c) ⊂ D. Then for every

i = 1, . . . , n the following properties hold :

(1) The total number of intersection points between Kc,i and Kc,j , j ̸= i, is

even.

(2) The number of odd intersection points between Kc,i and Kc,j , j ̸= i

(i.e. intersection points lying on odd double lines), is even.

Proof. The proof follows from the fact that the preimage of the framed

4-graph Kc,i in D is a circle, and the intersection of a closed curve with the

set Ψ (or Ψeven) in D consists of an even number of points. �

Lemma 8.18 immediately means that every γ(Kc,i) for a non-singular

value c is represented by an element (0, 2k) on the Cayley graph of G (for

some integer k).

Let Lc = {lc,1, . . . , lc,m} be the unordered collection of integers (with

repetitions) obtained from δ(K, c) by replacing conjugacy classes of ele-

ments from G with absolute values of their second coordinates. Since

the reversing of the orientation changes the coordinate of an element of

the group G from (0, 2k) to (0,−2k), then under reversing the orientation

the unordered collection of modules of numbers (which is talked about in

Lemma 8.18) corresponding to components of links does not change.

Each lc,i ∈ N ∪ {0} corresponds to a component of the free link Kc

and does not change under Reidemeister moves when changing c without

passing through Morse critical points. Associate it with the corresponding

edge of the graph Γµ.
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Now, let us analyze the behavior of these labels lc,i at vertices of the

graph Γµ.

Lemma 8.19. Assume Kc−ε and Kc+ε differ by one Morse bifurcation at

the level c. Then:

(1) If this bifurcation corresponds to a birth of a circle, then Lc+ε is ob-

tained from Lc−ε by an addition of 0.

(2) If it corresponds to a removal of a circle, then Lc+ε is obtained from

Lc−ε by a removal of 0.

(3) In the case of fusion of two circles into one the set Lc+ε is obtained

from Lc−ε by applying the following operation: All elements except two

(being equal to m and n) remain the same, and the elements m and n

turn into some k = ±n± n to form an element.

(4) The fission operation is the inverse to the fusion: Instead of one ele-

ment k one gets a pair of elements m,n such that ±m± n = k.

Proof. The first two assertions are obvious: The trivial circle has no

double points, thus the corresponding element of G is the unit of G, its

coordinate is (0, 0) and the corresponding label is equal to 0.

The last two assertions follow from the following observation. If a circle

with a marked point X splits into two circles by a Morse bifurcation con-

necting X to some point Y , then the corresponding word w ∈ G splits into

the product w = wXY wY X .

The rest of the proof follows from the multiplication rule in G: For

elements u, v ∈ G having coordinates (u1, u2) and (v1, v2), respectively,

the product u · v has coordinates (±u1 ± v1,±u2 ± v2). �

The proved lemma leads to the following way of proving Theorem 8.22.

The graph Γµ has all vertices of degree one except possibly one (corre-

sponding to the initial knot K), having label 0. At each vertex of degree

3 the three labels with signs ± sum up to give zero. Thus, taking into

account that the Reeb graph is a tree, we get L(K) = 0. The contradiction

completes the proof of Theorem 8.22.

Example 8.8. Consider the free knot K1 shown in Fig. 8.33. By Theo-

rem 8.22, it is not-slice. Thus, all flat virtual knots with the underlying

free knot K1, are not slice, either.
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8.9.7 Cobordisms of higher genus

The methods used for proving the fact that the invariant L gives an ob-

struction to the sliceness are not immediately generalized for obtaining

lower estimates on the slice genus of free knots. Two reasons are as follows.

First, when we define a parity and justified parity for double lines on D, we
chose an arbitrary curve connecting the two preimages of a point on the

double curve. We assert that any two curves connecting these two preim-

ages (and behaving correctly in neighborhoods of the ends) are homotopic.

It is true in the case of cobordism of genus zero, but in the case of a surface

of an arbitrary genus h it is, indeed, not true.

Thus, in order to define a parity for double lines we have to impose

some restrictions on the spanning surface. We have to require that the

cohomology class dual to the graph Ψ was Z2-homologically trivial. The

significance of the property for even-valent graphs to be Z2-homologically

trivial is closely connected with atoms (for details see [234]).

Another problem is that the Reeb graph of an arbitrary Morse function

(not necessarily corresponding to the disc) is not necessarily a disc, see

Fig. 8.40.

0

4 4

8

Fig. 8.40 The Reeb graph corresponding a cobordism of genus one.

Thus, starting from a free knot K for which, we say, L(K) = 8, we (in

principle) can turn it by a Morse bifurcation into free two-component link

consisting of two free knots K1 and K2, for which L(Ki) = 4, and then

by another Morse bifurcation we can reconstruct this trivial link into the

unknot. The invariant L is not an obstruction to this, since the sum of 4
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and −4 is zero.

In some cases, we can overcome these two difficulties for cobordisms (of

arbitrary genus).

Let Dg be a surface with boundary S1. Obviously, the collection of

double lines of Dg defines a relative Z2-homology class κ ∈ H1(Dg, S
1;Z2).

This homology class is an obstruction for the surface to be checkerboard-

colorable; also, this is an obstruction for well-definedness of even/odd dou-

ble lines.

Namely, if we look at the definition of an even/odd double line: We see

that there is an ambiguity in the choice of path connecting two preimages

of a generic point on the double line. For the case of a disc cobordism, the

parity of double lines is well defined, because all such curves are homotopic.

For Dg the unique obstruction to this well-definedness is the class κ.

We call a cobordism of genus g checkerboard (or atomic) if the corre-

sponding class κ vanishes.

The next task (after detecting which 1-stratum is even and which one is

odd) is to distinguish between b and b′. To this end, one should do the same

for preimages of points lying on odd 1-strata, connect them by a generic

curve, and count the intersection with even double lines. So, we see that

the only obstruction is the relative Z2-homology class κ′ ∈ H1(Dg, S
1;Z2)

generated by even double lines.

We say that a checkerboard cobordism is two-atomic if κ′ vanishes.

It turns our that Theorem 8.22 is true for 2-atomic cobordisms. Namely,

the following theorem holds.

Theorem 8.23. Assume for a one-component framed 4-graph K we have

L(K) ̸= 0. Then there is no two-atomic cobordism spanning the knot K of

any genus.

Proof. Let us revisit the proof of Theorem 8.22. Assume there is a two-

atomic cobordism Dg → Dg of some genus g spanning the knot K. Fix a

generic Morse function f on Dg (the corresponding Morse function on Dg

will be denoted by the same letter f).

Following the lines of the proof of Theorem 8.22, we see that:

(1) at each non-critical level c of f we have a free linkKc of some number of

components, and with each component we associate a natural number

coming from a conjugacy class in G;

(2) these numbers behave nicely under Morse bifurcations, i.e. a

birth/death of a circle corresponds to an addition/removal of an oc-
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currence of 0;

(3) for a saddle point the three numbers k, l,m corresponding to the adja-

cent edges satisfy ±k ± l ±m = 0.

Note that every saddle point merges two circles into one or splits one

circle into two circles (the Möbius bifurcation is impossible because Dg is

orientable).

Recall that each of these numbers k, l, m at this point was defined only

up to sign (equivalently, we had an absolute value of these three numbers),

and this is not sufficient to prove the theorem in the case of cobordism of

arbitrary genus.

Now, let us be more specific and study these numbers on edges in more

detail. Let t be a non-critical level of f , and let K1, . . . ,Kn be the free

knots composing the corresponding free link Kt. For each of these knots

Kj , we have defined the integer by taking an initial point of Kj . This

number 2l comes from an element of G of the form x = (bb′)l, and we

see that a conjugation of x by any of a, b, b′ takes x to (b′b)l = x−1. So,

a conjugation by a word of even length does not change the number 2l,

whence the conjugation by a word of an odd length takes it to −2l.
Let us take a checkerboard coloring of Dg with respect to the cell de-

composition generated by double lines.

Whenever we take an initial point of any section, this initial point does

not belong to any double line, so, it has some color, black or white. We see

that a conjugation by a word of even length does not change the color of

the initial point.

This means that the numbers lb(Kj) and lw(Kj) are well defined and

lb(Kj) = −lw(Kj), where subscripts b and w correspond to the color choice

of the initial point on the circle, for every component Kj .

Fix the color black once and forever. Then every edge of the Reeb graph

acquires an integer number lb, and for every level when we merge/split

circles, the sum of these lb’s does not change.

So, the sum lb remains invariant for every non-critical level of the Morse

function. Since it is non-zero at t = 0, it will remain non-zero for every t.

This completes the proof of the theorem. �
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Chapter 9

Theory of Graph-Links

9.1 Introduction

It is well known that classical and virtual knots [158] can be represented

by Gauss diagrams, and the whole information about the knot and its

invariants can be read out of any Gauss diagram encoding it, see Fig. 9.1.

If a chord diagram is not a classical knot Gauss diagram, i.e. the Gauss

code is not planar, see Fig. 9.2, then we obtain a virtual knot.

1

2

3

+

3

3

2

2

1

1+

+

Fig. 9.1 The right trefoil and its Gauss diagram.

1

2

+

+

2

2 1
1

Fig. 9.2 The virtual trefoil and its Gauss diagram.
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It turns out that some information about the knot can be obtained from

a more combinatorial data: the intersection graph of a Gauss diagram, see

Definition 7.13 and Fig. 9.3. Vertices of the intersection graph are endowed

with the local writhe number of the crossing. However, sometimes a Gauss

diagram can be obtained from the intersection graph in a non-unique way,

see Fig. 9.4, and some graphs (shown in Fig. 9.5) cannot be represented

by chord diagrams at all [39] (we call these graphs non-realizable). Other

questions related to non-realizable graphs were considered, e.g. in [38, 41].

+

-

+

+

+

+

+

++

+

+

-

Fig. 9.3 A Gauss diagram and its labeled intersection graph.

Fig. 9.4 A graph not uniquely represented by chord diagrams.

Fig. 9.5 Non-realizable Bouchet graphs.

When passing to the intersection graph, we remember the writhe num-

ber information, but forget the information about the cyclic order of half-

edges at each vertex encoded by the arrows. In principle, it is possible to
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describe analogous objects when all information is saved in the intersection

graph; however, already the writhe number information is sufficient to re-

cover a lot of data, as we shall see. Even more, if we forget about the writhe

number information and only have the structure of opposite edges we shall

get non-trivial objects (modulo the Reidemeister moves), see Chap. 8.

1 3

Fig. 9.6 Resmoothing along two chords yields one or three circles.

Probably, the simplest evidence that one can get some information out

of the intersection graph is Theorem 7.8 allowing one to count the number

of circles in Kauffman’s states out of the intersection graph, see Fig. 9.6

(intersection graphs and chord diagrams are depicted in the figure). In

particular, this means that graphs not necessarily corresponding to knots

admit a way of generalizing the Kauffman bracket polynomial, which co-

incides with the usual Kauffman bracket when the graph is realizable by

a chord diagram. This was the initial point of investigation for Traldi and

Zulli [293] (looped interlacement graphs): They constructed a self-contained

theory of “non-realizable graphs” possessing lots of interesting knot theo-

retic properties. These objects are equivalence classes of (decorated) graphs

modulo “Reidemeister moves” (translated into the language of intersection

graphs). A significant disadvantage of this approach was that it had ap-

plications only to knots, not links: In order to encode a link, one has to

use a more complicated object rather than just a Gauss diagram, a Gauss

diagram on many circles. This approach was further developed in Traldi’s

works [290–292], and it allowed to encode not only knots but also links

with any number of components by decorated graphs. The first question

arises here: Whether or not every simple graph is Reidemeister equivalent

to the looped interlacement graph of a virtual knot diagram? The negative

answer to this question was obtained in [233], i.e. not every simple graph

is equivalent to a graph realizable by a chord diagram.

We suggested another way of looking at knots and links and generalizing

them: Whence a Gauss diagram corresponds to a transverse passage along a

knot, one may consider a rotating circuit. Moreover, one can also encode the
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type of smoothing (Kauffman’s A-smoothing or Kauffman’s B-smoothing)

corresponding to the crossing where the circuit turns right or left and never

goes straight, see Fig. 9.7. We note that each vertex has a label depending

on the orientation of opposite edges (framing 0 or framing 1).
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11-13
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Fig. 9.7 Rotating circuit shown by a thick line; chord diagram.

The second important question which arises here is whether there is

an equivalence between the set of homotopy classes of looped interlacement

graphs introduced by Traldi and Zulli [293] and the set of graph-knots con-

structed in [129, 130]. According to Sec. 7.8.4 for virtual knots there is

an explicit formula connecting the adjacency matrices of the intersection

graphs of the Gauss diagram and a chord diagram constructed by using

a rotating circuit, and vice versa. This formula allows one to prove the

equivalence between two theories [127, 128], and, moreover, the homotopy

class of looped interlacement graphs and the graph-knot both constructed

from a given virtual knot diagram are related by this equivalence. This

construction will be described in detail in Sec. 9.2. In general, one can con-

sider an arbitrary Euler tour on links and construct the chord diagram, and

then the intersection graph [291]. In this book we consider only rotating

circuits and Gauss circuits.

It is obvious that whenever an intersection graph is realizable in the

sense of Gauss diagrams, then the corresponding “rotating” intersection

graph is realizable in the sense of rotating diagrams and vice versa: Just

because if one of these two graphs is realizable, the corresponding framed

4-graph can be just drawn on the plane (with virtual crossings) and the

algorithm becomes a “real redrawing algorithm”, or we can just apply the
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constructed equivalence between the set of homotopy classes and the set of

graph-knots, see further. The redrawing algorithm shows that the state-

ment is true in the realizable case. In the general case, the statement follows

immediately from the theorems in [127, 128]. These theorems allow us to

switch from Gauss diagrams to rotating diagrams and vice versa, whenever

we are proving some non-realizability theorems. We shall show that there

are graphs which are not equivalent to looped interlacement graphs by Rei-

demeister moves and it follows from the equivalence that the situation is

the same for graph-links. The examples of “non-realizable” looped inter-

lacement graphs first appeared in [233, 234]. So, the theory of graph-links

is interesting for various reasons:

(1) In some cases, it exhibits purely combinatorial ways of extracting in-

variants for knots.

(2) In some cases, it produces heuristic approaches to new “knot theories”.

(3) It highlights some “graphical” effects which are hardly visible in usual

or virtual knot theory.

Note that the theory of Khovanov homology is constructed for

graph-knots and, therefore, for homotopy classes of looped interlacement

graphs [36, 256, 257].

We call a graph-link (respectively, a homotopy class of looped inter-

lacement graphs) non-realizable if it has no realizable representative. We

conclude the introduction part by a couple of examples of non-realizable

free graph-links and free homotopy classes of looped graphs. Here we do not

indicate any crossing decoration (but, of course, the structure of opposite

edges) because any graph-link (any homotopy class of looped graphs) with

this underlying graph is non-realizable. The homotopy class generated by

the graph depicted in Fig. 9.5 (left) gives us a non-realizable free homo-

topy class of looped graphs. Having a virtual link, we may forget about

over/under information and cyclic order of half-edges at each vertex, and

take care only about the underlying framed 4-graph with the structure of

opposite edges. This leads us to the notion of a free knot and free link,

see Chap. 8. It turns out that some information about virtual knots can

be caught just from the underlying framed 4-graph. This information is

enough to prove the non-triviality of many free knots and free links. The

same trick works for graph-links and homotopy classes of looped graphs:

However, here instead of the underlying framed 4-graph we consider an

abstract graph which plays the role of the intersection graph of the non-

existing chord diagram.
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The graph shown in Fig. 9.8 (left) is itself non-realizable (in the sense of

looped interlacement graphs and Gauss diagrams), but what if we decorate

its crossings in some way and then try to apply Reidemeister moves hoping

to make it realizable. For some graph-links it is possible, see, e.g. Fig. 9.8.

The homotopy class generated by the looped graph shown in Fig. 9.8 (left)

is realizable. Indeed, the second Reidemeister move translated into the

language of Gauss diagrams is an addition/removal of two “parallel” chords.

In the language of intersection graphs, chords correspond to vertices, and

“parallel” chords correspond to vertices having the same set of adjacent

vertices. So, the vertices A and A′ in Fig. 9.8 are adjacent, and the removal

of these two vertices makes our graph realizable.

A A’

Fig. 9.8 A non-realizable graph representing a trivial graph-link.

The problem of finding free graph-links and free homotopy classes of

looped graphs having no representative realizable by a chord diagram is a

problem similar to the problem of constructing virtual knots not equivalent

to classical knots. Surprisingly, the solution in the case of free links can

be achieved by using parity considerations (Theorem 9.9): All the vertices

shown in Fig. 9.5 (left) are odd (each of them is adjacent to an odd number

of other vertices) and there is no immediate way to contract any two of

them by using a second Reidemeister moves. This is indeed sufficient for

a homotopy class to be non-realizable in a very strong sense: Any repre-

sentative of this class has a subgraph isomorphic to the initial graph (we

disregard the writhe number information), which is non-realizable, and, the

homotopy class is, in turn, itself non-realizable. Also we have an example

of non-realizable graph with all vertices being even, see Fig. 9.9.

This chapter is organized as follows. We first give definitions of graph-

links and homotopy classes of looped graphs. Further, we introduce parity

and prove non-triviality results. In particular, the parity arguments allow

one to construct graph-valued invariants of graph-links.
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x

Fig. 9.9 An even non-realizable graph representing a non-realizable homotopy class.

In Sec. 9.4, we briefly describe the way of extending the Kauffman

bracket and some other invariants. We also formulate some minimality

results for graph-links.

9.2 Graph-links and looped graphs

9.2.1 Chord diagrams

Since any two equivalent (in the class of all virtual diagrams) connected (see

Definition 4.13) virtual diagrams are equivalent in the class of connected

virtual diagrams [129], without loss of generality, all virtual diagrams are as-

sumed to be connected and contain at least one classical crossing [129, 130].

Definition 9.1. A chord diagram is labeled if every chord is endowed with

a label (a, α), where a ∈ {0, 1} is the framing of the chord, and α ∈ {±}
is the sign of the chord. If no labels are indicated, we assume the chord

diagram has all chords with label (0,+).

Remark 9.1. Thus, we have two types of chord diagrams: framed (see

Definition 4.3) and labeled.

Let D be a labeled chord diagram. One can construct a virtual link

diagram K(D) (up to virtualization) in such a way that the chord diagram

D coincides with the chord diagram of a rotating circuit on K(D). Let

us immerse this diagram D in R2 by taking an embedding of the core

circle and placing some chords inside the circle and the others outside the

circle. After that we remove neighborhoods of each of the chord ends and

replace them by a pair of lines connecting four points on the circle which

are obtained after removing neighborhoods. The new chords form only a

classical crossing (with each other) if the chord is framed by 0, and form

classical and virtual crossings if the chord is framed by 1, see Fig. 9.10
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(intersections of chords from different pair form virtual crossings). We also

require that the initial piece of the circle corresponds to the A-smoothing

if the chord is positive and to the B-smoothing if it is negative.

(0,+) (0,-)

(1,+) (1,-)

Fig. 9.10 Replacing a chord with a pair of lines.

Conversely, having a connected virtual diagramK, one can get a labeled

chord diagram DC(K). Indeed, one takes a rotating circuit C of K (we

pass transversally at each virtual crossing) and construct the labeled chord

diagram as in Sec. 7.8.2. The sign of the chord is + (respectively, −) if the
circuit locally agrees with the A-smoothing (respectively, the B-smoothing),

and the framing of a chord is 0 (respectively, 1) if two opposite half-edges

have the opposite (respectively, the same) orientation, see Fig. 9.11. It can

be easily checked that this operation is indeed inverse to the operation of

constructing a virtual link diagram out of a chord diagram: If we take a

chord diagram D, and construct a virtual diagram K(D) out of it, then for

some circuit C the chord diagram DC(K(D)) will coincide with D. This

proves the following.

Theorem 9.1 ([221]). For any connected virtual diagram K ′ there is a

certain labeled chord diagram D such that K ′ = K(D).

9.2.2 Reidemeister moves for looped interlacement graphs

and graph-links

Now we are describing moves on graphs obtained from the Reidemeister

moves on virtual diagrams by using a rotating circuit [129, 130] and the

Gauss circuit [293]. These moves in both cases will correspond to “real”

Reidemeister moves when applied to realizable diagrams. Then we shall
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(0,+) (1,+)

(0,-) (1,-)

Fig. 9.11 Replacing a classical crossing with the labeled chord.

extend these moves to all graphs (not only to realizable ones). As a result,

we get two new objects: a graph-link and a homotopy class of looped inter-

lacement graphs. Thus, virtual diagrams are represented (with loss of some

information) by graphs. We get two new objects in a way similar to the

generalization of classical knots to virtual knots. The passage from realiz-

able Gauss diagrams (classical knots) to arbitrary chord diagrams leads to

the concept of a virtual knot, and the passage from realizable (by means of

chord diagrams) graphs to arbitrary graphs leads to the concept of two new

objects, a graph-link and a homotopy class of looped interlacement graphs

(here “looped” corresponds to the writhe number, if the writhe number

is −1, then the corresponding vertex has a loop). To construct the first

object we shall use simple labeled graphs, and for the second one we shall

use (unlabeled) graphs without multiple edges, but loops are allowed.

Definition 9.2. A graph is labeled if every vertex v of it is endowed with

a pair (a, α), where a ∈ {0, 1} is the framing of v, and α ∈ {±} is the sign

of v.

Let D be a labeled chord diagram. The labeled intersection graph

(cf. [56, 270]) G(D) of D is the intersection graph whose vertices are en-

dowed with the corresponding labels. A simple graph H is called realizable

if there is a chord diagram D such that H = G(D). Otherwise, a graph is

called non-realizable.

Remark 9.2. We shall also consider simple graphs whose vertices have

only one label, 0 or 1. We call these graphs framed. Thus we have two

types of framed graphs: 4-graphs and simple graphs. From the context it

will always be clear what framed graph is under consideration.

In the realizable case, framed graphs are intersection graphs of framed

chord diagrams.
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The following lemma is evident.

Lemma 9.1. A simple graph is realizable if and only if each of its connected

components is realizable.

Definition 9.3. Let G be a graph and let v ∈ V (G). The set of all vertices

adjacent to v is called the neighborhood of v and denoted by N(v) or NG(v).

Let us define two operations on simple unlabeled graphs whose defini-

tions in the matrix language coincide with Definitions 7.21 and 7.22 up to

labels.

Definition 9.4 (Local Complementation). Let G be a graph. The lo-

cal complementation of G at v ∈ V (G) is the operation which toggles ad-

jacencies between a, b ∈ N(v), a ̸= b, and does not change the rest of

G. Denote the graph obtained from G by the local complementation at a

vertex v by LC(G; v).

Definition 9.5 (Pivot). Let G be a graph with distinct vertices u and v.

The pivoting operation of a graphG at u and v is the operation which toggles

adjacencies between x, y such that x, y /∈ {u, v}, x ∈ N(u), y ∈ N(v) and

either x /∈ N(v) or y /∈ N(u), and does not change the rest of G. Denote

the graph obtained from G by the pivoting operation at vertices u and v

by piv(G;u, v).

Example 9.1. In Fig. 9.12 the graphs G, LC(G;u) and piv(G;u, v) are

depicted.

u v

LC(G;u)
G

P(G;u,v)

u v u v

Fig. 9.12 Local complementation and pivot.

From Definition 7.22, we have the following lemma.

Lemma 9.2. If u and v are adjacent, then there is an isomorphism

piv(G;u, v) ∼= LC(LC(LC(G;u); v);u).
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Let us define graph-moves, i.e. moves on labeled graphs. We consider

labeled chord diagrams constructed by using rotating circuits and moves on

them which originate from “real” Reidemeister moves on virtual diagrams.

Then we extend these moves to arbitrary labeled graphs by using intersec-

tion graphs of chord diagrams. As a result, we obtain a new object: an

equivalence class of labeled graphs under formal moves. These moves were

defined in [129, 130].

Definition 9.6. Ωg1. The first Reidemeister graph-move is an addi-

tion/removal of an isolated vertex labeled (0, α), α ∈ {±}.
Ωg2. The second Reidemeister graph-move is an addition/removal of two

non-adjacent (respectively, adjacent) vertices labeled (0,±α) (respectively,
(1,±α)) and the same adjacencies with other vertices.

Ωg3. The third Reidemeister graph-move is defined as follows. Let

u, v, w be three vertices of G all having label (0,−) so that u is adjacent

only to v and w in G, and v and w are not adjacent to each other. Then

we only change the adjacency of u with the vertices v, w and t ∈
(
N(v) \

N(w)
)
∪
(
N(w) \N(v)

)
(for other pairs of vertices we do not change their

adjacency). In addition, we switch the signs of v and w to +. The inverse

operation is also called the third Reidemeister graph-move.

Ωg4. The fourth graph-move for G is defined as follows. We take two

adjacent vertices u and v labeled (0, α) and (0, β), respectively. Replace

G with piv(G;u, v) and change the signs of u and v so that the sign of u

becomes −β and the sign of v becomes −α.
Ωg4

′. In this fourth graph-move we take a vertex v with the label (1, α).

Replace G with LC(G; v) and change the sign of v and the framing for each

u ∈ N(v).

Remark 9.3. The third Reidemeister graph-move does not exhaust all

the possibilities for representing the third Reidemeister move on chord di-

agrams constructed by rotating circuits. The other versions of the third

Reidemeister move are combinations of the second, third and fourth Rei-

demeister graph-moves.

Remark 9.4. The fourth graph-moves Ωg4 and Ωg4
′ in the realizable case

correspond to a rotating circuit change on a virtual diagram. Sometimes,

applying these graph-moves we shall just say that we change the circuit.

Remark 9.5. We have defined the graph-moves for labeled graphs. If we

consider framed graphs, then graph-moves for them are obtained from the
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graph-moves Ωg1− Ωg4
′ by forgetting the sign, i.e. the second component

of the label. In this case we use the same notation.

The comparison of the graph-moves with the Reidemeister moves yields

the following theorem.

Theorem 9.2. Let G1 and G2 be two labeled intersection graphs corre-

sponding to virtual diagrams K1 and K2, respectively. If K1 and K2 are

equivalent in the class of connected diagrams, then G1 and G2 are obtained

from one another by a sequence of Ωg1− Ωg4
′.

Definition 9.7. A graph-link is an equivalence class of simple labeled

graphs modulo Ωg1− Ωg4
′ graph-moves.

Remark 9.6. Having a chord diagram, we can construct an atom (see

Chap. 4) corresponding to the chord diagram. In fact, chord diagrams in

the sense of rotating circuits with all chords having framing 0 encode all

orientable atoms. Chord diagrams with all positive chords encode all atoms

with one white cell: This white cell corresponds to the A-state of the virtual

diagram.

For graph-links having representatives with orientable atoms, there are

two formally different equivalence relations. The first relation is described

in [129] (which includes only diagrams with orientable atoms) and the last

one defines graph-links. We know that these equivalence relations coin-

cide [129], therefore, we use the same term “graph-link” for the object

introduced here.

The next definition is similar to the definition of free knots. We consider

only one label-framing on a graph, which in the realizable case is responsible

for the structure of opposite edges.

Definition 9.8. A free framed graph is an equivalence classes of simple

labeled graphs with labels having only framings, modulo Ωg4 and Ωg4
′

graph-moves up to signs of labels (we disregard the sign of each vertex). A

free graph-link is an equivalence class of free framed graphs modulo Ωg1−
Ωg3 considered up to signs of labels.

Definition 9.9. We call a free framed graph realizable if each representative

of it is realized by a chord diagram.

Remark 9.7. It is not difficult to show that a free framed graph is real-

izable if and only if it has a realizable representative (we just redraw the

picture).
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Let us consider another approach based on Gauss circuits. Let DG(K)

be the Gauss diagram of a virtual diagram K. Let us construct the graph

obtained from the intersection graph of DG(K) by adding loops to vertices

corresponding to chords with the negative writhe number, i.e. crossings

with negative writhe number [293]. We refer to this graph as a looped

interlacement graph or looped graph. Let us describe the set of moves on

looped graphs. These moves are similar to the moves for graph-links and

also correspond to “real” Reidemeister moves on virtual diagrams.

Definition 9.10. Ω1. The first Reidemeister move for looped interlace-

ment graphs is an addition/removal of an isolated looped or unlooped ver-

tex.

Ω2. The second Reidemeister move for looped interlacement graphs

is an addition/removal of two vertices having the same adjacencies with

other vertices and, moreover, one of which is looped and the other one is

unlooped.

Ω3. The third Reidemeister move for looped interlacement graphs is

defined as follows. Let u, v, w be three vertices such that v is looped, w

is unlooped, v and w are adjacent, u is adjacent to neither v nor w, and

every vertex x /∈ {u, v, w} is adjacent to either 0 or precisely two of u, v, w.

Then we only remove all three edges uv, uw and vw, see Fig. 9.13. The

inverse operation is also called the third Reidemeister move.

v

w

u

v

w

u

Fig. 9.13 The third Reidemeister move.

Remark 9.8. The two third Reidemeister moves (the first one is the move

with the third vertex being looped, and the second one is the move with

the third vertex being unlooped) do not exhaust all the possibilities for

representing the third Reidemeister move on Gauss diagrams [293]. It can

be shown that all the other versions of the third Reidemeister move, de-
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picted in Fig. 9.14 (we toggle adjacencies between only the three vertices),

are combinations of the second and third Reidemeister moves described in

Definition 9.10, see [260] for details.

u
u

u u

w

w

w

w

v

v

v

Fig. 9.14 The possible configurations of the third Reidemeister move.

Definition 9.11. We call an equivalence class of graphs (without multi-

ple edges, but loops are allowed) modulo the three moves listed in Defini-

tion 9.10 a homotopy class of looped interlacement graphs. A free homo-

topy class is an equivalence class of simple graphs modulo the Reidemeister

moves for looped interlacement graphs up to loops, i.e. we forget about

loops.

Remark 9.9. The equivalence relation from Definition 9.11 is called the

Reidemeister equivalence in [293], and it differs from the classical homotopy

of links.

Looped interlacement graphs encode only knot diagrams but graph-

links can encode virtual diagrams with any number of components. The

approach using a rotating circuit has an advantage in this sense. One may

generalize these two approaches and consider any Euler tour of a virtual

diagram. This was initiated by Traldi [291], where he introduced the notion

of a marked graph.
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Definition 9.12. We call a (free) graph-link (respectively, (free) homotopy

class of looped graphs) realizable if there exists its representative which can

be realized by a chord diagram.

9.2.3 Looped graphs and graph-links

Let G be a labeled graph on V (G) = {v1, . . . , vn}.

Definition 9.13. The adjacency matrix A(G) of a labeled graph G is the

matrix over Z2 defined as follows: aii is equal to the framing of vi, aij = 1,

i ̸= j, if and only if vi is adjacent to vj and aij = 0 otherwise.

Statement 9.1 ([129, 130]). If G and G′ represent the same graph-link,

then corankZ2(A(G) + E) = corankZ2(A(G
′) + E), where E is the identity

matrix. Thus, the number corankZ2(A(G)+E), where G is a representative

of a graph-link F, is an invariant of the graph-link F.

Definition 9.14. The number of components in a graph-link F is

corankZ2(A(G) + E) + 1, where G is a representative of F. A graph-link

F with corankZ2
(A(G) + E) = 0 for any representative G of F is called a

graph-knot.

Assume corankZ2(A(G) + E) = 0, and set Bi(G) = A(G) + E + Eii for

each vertex vi ∈ V (G); here Eii is the matrix with the only one non-zero

element equal to 1 in the ith column and ith row. The writhe number wi

of G (with corankZ2(A(G) +E) = 0) at vi is wi = (−1)corankZ2Bi(G)sign vi,

and the writhe number of G is

w(G) =
n∑

i=1

wi.

Remark 9.10. If G is a realizable graph by a chord diagram and, therefore,

by a virtual diagram, then we can find the number of components of the

link by using the formula from Theorem 7.8. The obtained formula may

be used for the definition of the number of components of a non-realizable

graph. As a result, we get Definition 9.14.

Note if G is a realizable graph, then wi is the “real” writhe number of

the crossing corresponding to vi.

Note that in this section we use the following main principle. Assume

there is an equality concerning numbers of circles in some states of chord

diagrams, which can be formulated in terms of the intersection graph. Then

the corresponding equality usually holds even for non-realizable graphs.
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The reason for this principle to hold is the following. Every time we

have a picture where some two numbers of circles are equal to each other

(or differ by a constant), this can be expressed in terms of the correspond-

ing adjacency matrices, and the proof does not generally depend on the

behavior of the matrix outside of the crossings in question. This means

that the equality holds true for generic matrices, thus, it works for gen-

eral intersection graphs. This principle has lots of consequences. We shall

demonstrate it for two examples.

The first example comes from Definition 9.14. It shows that the number

of components defined for non-realizable graphs by the same formula as

for realizable ones does not change under the Reidemeister moves and the

writhe number of a graph does not change under the second and third

Reidemeister graph-moves and changes by ±1 under the first Reidemeister

graph-move.

The second example is as follows. Assume we have a framed 4-graph K

with a vertex v and we would like to know whether this vertex belongs to

one component (in the sense of links) or it belongs to different components

of the corresponding graph-link. Then we may take the two smoothings

Ka, Kb of K at v and see how many components we get. If v belongs to

two branches of the same component of K, then the number of components

of one of Ka, Kb is equal to that of K, and the number of components

of the other one is equal to that of K + 1. If v belongs to two different

components of K, then the number of components of each of Ka, Kb is

that of K − 1. Now, turning to graph-links, by taking appropriate matrix

ranks, we may see whether each vertex belongs to one component or to two

different components of the graph-link. This method is used for proving the

invariance of the Kauffman bracket polynomial for graph-links, see further.

Let us show that there is an equivalence between the set of homotopy

classes of looped graphs and the set of graph-links, i.e. we prove the follow-

ing theorem.

Theorem 9.3. There is a one-to-one correspondence between the set of all

looped graphs and the set of all equivalence classes of labeled graphs G with

corankZ2(A(G) + E) = 0 under two fourth graph-moves. This correspon-

dence generates an equivalence between the set of all homotopy classes of

looped graphs and the set of all graph-knots. Moreover, if K is a virtual

knot diagram, and F is the graph-knot constructed from K and L is the ho-

motopy class of looped graphs constructed from K, then F and L are related

by this equivalence.
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First, we shall prove some lemmas and give necessary definitions.

Remark 9.11. Indeed, we have constructed this map, see Theorem 7.11.

We just have to show that this map is well defined for graph-links and

homotopy classes.

By Ĉi,j,...,k denote the matrix obtained from a matrix C by deleting

the i, j, . . . , kth rows and i, j, . . . , kth columns. We shall write B̂i,j,...,k(G)

instead of B̂(G)i,j,...,k.

Lemma 9.3. The following holds:

wi(G) = (−1)corankZ2 B̂i(G)+1sign vi.

Proof. Without loss of generality we prove the claim of the lemma for

w1. Let

A(G) + E =

(
a b⊤

b C

)
and

corankZ2
(A(G) + E) = 0⇐⇒ det(A(G) + E) = 1,

where bold characters indicate column vectors. We have

detB1(G) = det

(
a+ 1 b⊤

b C

)
= det

(
a b⊤

b C

)
+ det

(
1 0⊤

b C

)
and

B̂1(G) = C, det(B1(G)) = det(A(G) + E) + detC = 1 + det B̂1(G).

The last equality gives us the claim of the lemma. �

Lemma 9.4. Let G be a labeled graph with detB(G) = 1 and B(G)−1 =

(bij). Then

bii =
1− wi(G) sign vi

2
.

Proof. We have

wi(G) = (−1)corankZ2 B̂i(G)+1 sign vi

⇐⇒ wi(G) sign vi = (−1)corankZ2 B̂i(G)+1

⇐⇒ corankZ2 B̂i(G) =
wi(G) sign vi + 1

2

⇐⇒ bii = det B̂i(G) = 1− corankZ2 B̂i(G) =
1− wi(G) sign vi

2
.

�
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Definition 9.15. Define the adjacency matrix A(L) = (aij) over Z2 for a

looped graph L with enumerated set of vertices as: aii = 1 if and only if

the vertex numbered i is looped, and aii = 0 otherwise; aij = 1, i ̸= j, if

and only if the vertex with the number i is adjacent to the vertex with the

number j, and aij = 0 otherwise.

Let us construct a map χ from the set of all graph-knots to the set of

all homotopy classes of looped graphs. We shall show that this map has an

inverse map.

Let G be a representative of a graph-knot F. Let us consider the simple

graph H having the adjacency matrix coinciding with (A(G) +E)−1 up to

diagonal elements, see Definition 7.20. Let us construct the graph L(G)

from H by just adding loops to any vertex of H corresponding to a vertex

of G with the negative writhe number (see Definition 9.14). By definition,

put χ(F) = L, where L is the homotopy class of L(G).

Theorem 9.4. The map χ is well defined.

Proof. Let G1, G2 be two representatives of F, and let B(Gi) = A(Gi) +

E, B(Gi)
−1 = (bkli ). We have to show that the homotopy classes of L(G1)

and L(G2) are the same, i.e. L1 = L(G1) and L2 = L(G2) are related to

each other by the Reidemeister moves on looped graphs.

Let us consider four cases.

(1) We know that if G1 and G2 are obtained from each other by Ωg4

and/or Ωg4
′ (these moves correspond to changing of a rotating circuit in

the case of realizable graphs), then the writhe numbers of corresponding

vertices of G1 and G2 are the same (see [129, 130]), and the graphs L1

and L2 are isomorphic up to loops, i.e. their adjacency matrices coincide

with each other up to diagonal elements, see Theorem 7.11. From these

two statements we get that L1 and L2 are isomorphic.

(2) Let G1 and G2 be obtained from each other by Ωg1 (we remove the

vertex with the number 1). We have

B(G1) =

(
1 0⊤

0 A(G2) + E

)
, B(G2) = A(G2) + E,

B(G1)
−1 =

(
1 0⊤

0 (A(G2) + E)−1

)
, B(G2)

−1 = (A(G2) + E)−1,

where 0 indicates the column vector with all entries 0. Therefore, L2 is

obtained from L1 by Ω1.

(3) Let G1 and G2 be obtained from each other by Ωg2 (we remove the

vertices with the numbers 1 and 2). We have two cases.
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The first case

B(G1) =

 1 0 a⊤

0 1 a⊤

a a A(G2) + E

 , B(G2) = A(G2) + E,

and the second case

B(G1) =

 0 1 a⊤

1 0 a⊤

a a A(G2) + E

 , B(G2) = A(G2) + E.

Let us consider only the first case. We know that w1(G1) = −w2(G1) in

G1 [129, 130]. Moreover,

det

 1 0 ã⊤

0 1 ã⊤

ã ã C

 = det

 1 0 ã⊤

1 1 0⊤

ã ã C

 = det

 1 0 ã⊤

1 1 0⊤

0 0 C

 = detC,

so

B(G1)
−1 =

 b c d⊤

c b d⊤

d d (A(G2) + E)−1

 , B(G2)
−1 = (A(G2) + E)−1.

This means that L1 and L2 are obtained from each other by Ω2.

(4) Now assume that G1 and G2 are obtained from each other by Ωg3.

The corresponding vertices of G1 and G2 under Ωg3 have the same numbers

(in [129] we have another enumeration). We shall prove that L1 and L2 are

obtained from each other by a sequence of Ω2, Ω3 moves.

We have

B(G1) =


1 1 1 0⊤

1 1 0 a⊤

1 0 1 b⊤

0 a b C

 ,

1 = detB(G1) = det


1 1 1 0⊤

1 1 0 a⊤

1 0 1 b⊤

0 a b C

 = det

 0 1 a⊤

1 0 b⊤

a b C

 ,

B(G2) =


1 0 0 (a+ b)⊤

0 1 0 b⊤

0 0 1 a⊤

a+ b b a C

 , detB(G2) = 1.
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Let us show that we have a structure either for v1, v2, v3 ∈ V (L1) or

ṽ1, ṽ2, ṽ3 ∈ V (L2) as in Fig. 9.14.

We have ([129])

wi(G1) = wi(G2), i = 1, 2, 3,

det B̂1(G1) = det

 1 0 a⊤

0 1 b⊤

a b C

 = det

 1 0 a⊤

1 1 b⊤

0 b C

+ det

 0 0 a⊤

1 1 b⊤

a b C


= det

 1 0 a⊤

1 1 b⊤

0 b C

+ det

 0 1 a⊤

1 1 b⊤

a 0 C

+ det

 0 1 a⊤

1 0 b⊤

a b C

 ,

det B̂2(G1) = det

 1 1 0⊤

1 1 b⊤

0 b C

 = det

(
0 b⊤

b C

)
,

det B̂3(G1) = det

 1 1 0⊤

1 1 a⊤

0 a C

 = det

(
0 a⊤

a C

)
,

b121 = det

 1 0 a⊤

1 1 b⊤

0 b C

 = det

(
1 a⊤ + b⊤

b C

)

= det

(
1 a⊤

b C

)
+ det

(
0 b⊤

b C

)
,

b131 = det

 1 1 a⊤

1 0 b⊤

0 a C

 = det

(
1 a⊤ + b⊤

a C

)

= det

(
1 b⊤

a C

)
+ det

(
0 a⊤

a C

)
,

b231 = det

 1 1 0⊤

1 0 b⊤

0 a C

 = det

(
1 b⊤

a C

)
,

b122 = det

 0 0 b⊤

0 1 a⊤

a+ b a C

 = det

 0 0 b⊤

1 1 a⊤

b a C


= det

 0 1 b⊤

1 0 a⊤

b a C

+ det

 0 1 b⊤

1 1 a⊤

b 0 C

 = 1 + b121 ,
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b132 = det

 0 1 b⊤

0 0 a⊤

a+ b b C

 = det

 1 1 b⊤

0 0 a⊤

a b C


= det

 1 0 b⊤

0 1 a⊤

a b C

+ det

 1 1 b⊤

0 1 a⊤

a 0 C

 = 1 + b131 ,

b232 = det

 1 0 (a+ b)⊤

0 0 a⊤

a+ b b C

 = det

 1 0 b⊤

0 0 a⊤

a b C


= det

 1 0 b⊤

0 1 a⊤

a b C

+ det

 1 0 b⊤

0 1 a⊤

a 0 C

 = 1 + b231 ,

b121 = b231 + det B̂2(G1), b131 = b231 + det B̂3(G1),

b121 + b131 = det B̂1(G1) + 1,

b122 = b121 + 1, b132 = b131 + 1, b232 = b231 + 1.

It is not difficult to show that the last equalities guarantee us that either

v1, v2, v3 ∈ V (L1) or ṽ1, ṽ2, ṽ3 ∈ V (L2) have a structure as in Fig. 9.14.

The structure of the other triple is obtained from the first triple by toggling

the non-loop edges.

Denote by f
i
the column vector obtained from f by deleting the ith

element and denote by Cj (respectively, C
i

j) the matrix obtained from C

by deleting the jth column (respectively, the ith row and the jth column).

Let us show that two vertices in L1 which are different from v1, v2, v3 ∈
V (L1) are adjacent to each other if and only if the corresponding vertices

in L2 are adjacent, i.e. the corresponding elements of the matrices B(G1)
−1

and B(G2)
−1 coincide. For i, j > 3 we have

bij1 = det


1 1 1 0⊤

1 1 0 (aj−3)⊤

1 0 1 (b
j−3

)⊤

0 ai−3 b
i−3

C
i−3

j−3



= det


1 0 0

(
(a+ b)

j−3)⊤
0 1 0 (b

j−3
)⊤

0 0 1 (aj−3)⊤

(a+ b)
i−3

b
i−3

ai−3 C
i−3

j−3

 = bij2 ,
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b1j2 = det

 0 1 0 (b
j−3

)⊤

0 0 1 (aj−3)⊤

(a+ b) b a Cj−3

 = det

 1 1 0 (b
j−3

)⊤

1 0 1 (aj−3)⊤

0 b a Cj−3

 = b1j1 ,

b2j2 = det

 1 0 0
(
(a+ b)

j−3)⊤
0 0 1 (aj−3)⊤

a+ b b a Cj−3

 = det

 1 0 0
(
(a+ b)

j−3)⊤
1 0 1 (aj−3)⊤

0 b a Cj−3


= det

 1 0 0 (b
j−3

)⊤

1 0 1 0⊤

0 b a Cj−3

 = det

 1 1 0 (b
j−3

)⊤

1 1 1 0⊤

0 b a Cj−3

 = b2j1 ,

analogously b3j1 = b3j2 .

We have to verify that every vertex x /∈ {v1, v2, v3} is adjacent to either

none of v1, v2, v3 or precisely two of them in L1 and analogously for L2.

This statement is equivalent to both equalities

b1j1 + b2j1 + b3j1 = 0, b1j2 + b2j2 + b3j2 = 0.

Using the above equalities, it is enough to verify only the first equality.

We have

b2j1 = det

 1 1 1 0⊤

1 0 1 (b
j−3

)⊤

0 a b Cj−3

 = det

(
1 0 (b

j−3
)⊤

a b Cj−3

)
,

b3j1 = det

 1 1 1 0⊤

1 1 0 (aj−3)⊤

0 a b Cj−3

 = det

(
0 1 (aj−3)⊤

a b Cj−3

)
,

b1j1 = det

 1 1 0 (aj−3)⊤

1 0 1 (b
j−3

)⊤

0 a b Cj−3

 = det

(
1 1

(
(a+ b)

j−3)⊤
a b Cj−3

)
= b2j1 + b3j1 .

We have proven that our triples of vertices are related to each other

as in Remark 9.8, therefore, L1 and L2 are obtained from each other by a

sequence of Ω2 and Ω3 moves. �

Let us define the map ψ from the set of all homotopy classes of looped

graphs to the set of all graph-knots. Let L be the homotopy class of L.

Using Lemma 7.13, we can construct a symmetric matrix A = (aij) over

Z2 coinciding with the adjacency matrix of L up to diagonal elements and

having detA = 1. Let G(L) be the labeled simple graph having the matrix

(A−1 + E) as its adjacency matrix. Therefore, the first component of the
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label of a vertex is equal to the corresponding diagonal element of (A−1 +

E), the second component of the label of the vertex with the number i

is wi(1 − 2aii), where wi = 1 if the vertex of L with the number i does

not have a loop, and wi = −1 otherwise. Set ψ(L) = F, where G(L) is a

representative of F.

Lemma 9.5. The graph-knot F does not depend on the choice of diagonal

elements under the construction of A.

Proof. The independence of F (up to the sign, i.e. the second component

of the label of a vertex) on the choice of diagonal elements follows from

Theorem 7.11.

Namely, let A1 and A2 be two symmetric matrices over Z2 coinciding

with the adjacency matrix of L up to diagonal elements and having detA1 =

detA2 = 1. Then the matrices (A−1
1 +E) and (A−1

2 +E) are obtained from

each other by Ωg4 and/or Ωg4
′ graph-moves (up to the sign of a vertex). It

remains to note that we have defined the sign of a vertex in such a way that

looped vertices correspond to vertices with the negative writhe number and

unlooped vertices correspond to vertices with the positive writhe number

(Lemma 9.4). Moreover, the writhe number does not change under Ωg4,

Ωg4
′ graph-moves, and both the writhe number and the framing allow one

to determine the sign of a vertex. �

Theorem 9.5. The map ψ is well defined.

Proof. Let L1, L2 be two representatives of L. We have to show that the

graph-knots having representatives G1 = G(L1) and G2 = G(L2), respec-

tively, are the same. Using Lemma 9.5 it suffices to show that G1 and G2

are related to each other by a sequence of Reidemeister graph-moves.

Let us consider three cases.

(1) Let L1 and L2 be obtained from each other by Ω1 (we remove the

vertex with the number 1). We have

A(L1) =

(
a 0⊤

0 A(L2)

)
, a ∈ {0, 1}.

Assume det Ã(L2) = 1, where Ã(L2) coincides with A(L2) up to diagonal

elements, and

Ã(L1) =

(
1 0⊤

0 Ã(L2)

)
.
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Then

Ã(L1)
−1 =

(
1 0⊤

0 Ã(L2)
−1

)
.

Therefore, G1 and G2 are related by a sequence of Ωg1, Ωg4, Ωg4
′ graph-

moves.

(2) Let L1 and L2 be obtained from each other by Ω2 (we remove the

vertices with the numbers 1 and 2). We have

A(L1) =

 0 b a⊤

b 1 a⊤

a a A(L2)

 , b ∈ {0, 1}.

Assume det Ã(L2) = 1, where Ã(L2) coincides with A(L2) up to diagonal

elements, and

Ã(L1) =

1 + b b a⊤

b 1 + b a⊤

a a Ã(L2)

 , det Ã(L1) = 1.

As

det

1 + b b ã⊤

b 1 + b ã⊤

ã ã C

 = det

1 + b b ã⊤

1 1 0⊤

ã ã C


= det

1 + b b ã⊤

1 1 0⊤

0 0 C

 = detC,

det

(
1 + b a⊤

a Ã(L2)

)
= det

(
b a⊤

a Ã(L2)

)
+ det Ã(L2),

then

Ã(L1)
−1 =

 f f + 1 d⊤

f + 1 f d⊤

d d Ã(L2)
−1

 .

From the structure of the matrix Ã(L1)
−1 it follows that the two vertices

(which do not belong to G2) have the same framing and the necessary

adjacencies, and from the structure of the matrix A(L1) and the coincidence

of the vertices’ framings it follows that the two vertices have different signs.

This means that G1 and G2 are obtained from each other by a sequence of

Ωg2, Ωg4, Ωg4
′ graph-moves.
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(3) Now assume that L1 and L2 are obtained from each other by Ω3.

Let us enumerate all the vertices of V (Li) = {vi1, . . . , vin} in such a way that

corresponding vertices of L1 and L2 under Ω3 move have the same number,

and without loss of generality we assume that v11 and v13 are looped, v12 is

unlooped, and v11 is adjacent to v12 ; v
1
3 is adjacent to neither v11 nor v12 in L1.

The case when v13 is unlooped is obtained from the first case by applying

second and third Reidemeister moves.

We have

A(L1) =


1 1 0 a⊤

1 0 0 b⊤

0 0 1 c⊤

a b c D

 , A(L2) =


1 0 1 a⊤

0 0 1 b⊤

1 1 1 c⊤

a b c D

 ,

a+ b+ c = 0.

Without loss of generality (if necessary we apply second Reidemeister

moves), we may assume that c ̸= 0. Using the proof of Lemma 7.13, we

construct the matrix

Ã(L1) =


0 1 0 a⊤

1 1 0 b⊤

0 0 0 c⊤

a b c D̃


with det Ã(L1) = 1.

As

det


0 0 1 a⊤

0 0 1 b⊤

1 1 1 c⊤

a b c D̃

 = det


0 0 1 a⊤

0 0 0 c⊤

1 0 1 c⊤

a c c D̃



= det


0 0 1 a⊤

0 0 0 c⊤

1 0 1 b⊤

a c b D̃

 = det Ã(L1) = 1, (9.1)

we have

Ã(L2) =


0 0 1 a⊤

0 0 1 b⊤

1 1 1 c⊤

a b c D̃

 .
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Let Ã(L1)
−1 = (ãij1 ), Ã(L2)

−1 = (ãij2 ), and let Gi = G(Li), i = 1, 2, be

the two labeled graphs having the adjacency matrices Ã(Li)
−1 +E. Let us

show that G1 and G2 are obtained from each other by a sequence of Ωg2,

Ωg3, Ωg4, Ωg4
′ graph-moves.

Performing the same elementary manipulations as in (9.1), we have

ãij1 = ãij2 for i, j > 3. Further, we get

1 = det Ã(L1) = det


0 1 0 a⊤

1 1 0 b⊤

0 0 0 c⊤

a b c D̃

 = det


0 1 0 a⊤

1 1 0 b⊤

1 0 0 0⊤

a b c D̃


= det

 1 0 a⊤

1 0 b⊤

b c D̃

 = det

 1 0 b⊤

0 0 c⊤

b c D̃

 = ã111 ,

ã121 = det

 1 0 b⊤

0 0 c⊤

a c D̃

 = det

 1 0 b⊤

0 0 c⊤

b c D̃

 = 1,

ã131 = det

 1 1 b⊤

0 0 c⊤

a b D̃

 = det

 0 1 b⊤

0 0 c⊤

c b D̃

 = 1,

ã1j1 = det

 1 1 0 (b
j−3

)⊤

0 0 0 (cj−3)⊤

a b c D̃j−3

 = 0, j > 3 (a+ b+ c = 0),

ã2j1 = det

 0 1 0 (aj−3)⊤

0 0 0 (cj−3)⊤

a b c D̃j−3

 = det

 0 1 0 (aj−3)⊤

0 0 0 (cj−3)⊤

a 0 c D̃j−3

 ,

ã3j1 = det

 0 1 0 (aj−3)⊤

1 1 0 (b
j−3

)⊤

a b c D̃j−3

 = det

 0 1 0 (aj−3)⊤

1 0 0 (b
j−3

)⊤

a 0 c D̃j−3

 .

If either ã221 = 0 or ã331 = 0, we can apply the same second Reidemeister

graph-moves to G1 and G2, and then after applying the Ω′
g4 graph-move,

we get that the corresponding vertices have framing 0. Analogously, if

ã321 = 1, we can apply the same second Reidemeister graph-moves to G1

and G2, and then after applying the Ωg4 graph-move, we get that v12 and

v13 are not adjacent to each other. Therefore, without loss of generality, we
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may assume that ã221 = ã331 = 1, ã321 = 0. Using the last equalities, we get

ã221 = det

 0 0 a⊤

0 0 c⊤

a c D̃

 = det

 0 0 b⊤

0 0 c⊤

b c D̃


= det

 1 0 b⊤

0 0 c⊤

b c D̃

+ det

 1 0 0⊤

0 0 c⊤

b c D̃

 = 1 + det

(
0 c⊤

c D̃

)
= 1,

ã331 = det

 0 1 a⊤

1 1 b⊤

a b D̃

 = det

 1 0 c⊤

0 1 b⊤

c b D̃

 = 1 + det

(
1 b⊤

b D̃

)
= 1,

ã231 = det

 0 1 a⊤

0 0 c⊤

a b D̃

 = det

 1 1 b⊤

0 0 c⊤

c b D̃

 = 1 + det

(
0 c⊤

b D̃

)
= 0.

Let us find the remaining elements of Ã(L2)
−1. We have

ã112 = det

 0 1 b⊤

1 1 c⊤

b c D̃

 = det

 0 1 b⊤

1 0 a⊤

b c D̃

 = det

 1 1 b⊤

1 0 a⊤

b c D̃

+ det

(
0 a⊤

c D̃

)

= det

 1 1 b⊤

0 1 c⊤

b c D̃

+ det

(
0 b⊤

c D̃

)
+ det

(
0 c⊤

c D̃

)

= det

 1 1 b⊤

0 0 c⊤

b c D̃

+ det

(
1 b⊤

b D̃

)
+ 1 = 1,

ã222 = det

 0 1 a⊤

1 1 c⊤

a c D̃

 = det

 1 1 b⊤

1 1 c⊤

b c D̃

 = 1,

ã332 = det

 0 0 a⊤

0 0 b⊤

a b D̃

 = det

 0 0 b⊤

0 0 c⊤

b c D̃

 = 1,

ã122 = det

 0 1 b⊤

1 1 c⊤

a c D̃

 = det

 1 1 b⊤

0 1 c⊤

b c D̃


= det

 1 1 b⊤

0 0 c⊤

b c D̃

+ det

(
1 b⊤

b D̃

)
= 0,

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

478 Virtual Knots: The State of the Art

ã132 = det

 0 0 b⊤

1 1 c⊤

a b D̃

 = det

 0 0 b⊤

0 1 c⊤

c b D̃


= det

 0 0 b⊤

0 0 c⊤

c b D̃

+ det

(
0 b⊤

c D̃

)
= 0,

ã232 = det

 0 0 a⊤

1 1 c⊤

a b D̃

 = det

 0 1 b⊤

0 1 c⊤

c b D̃

 = 0,

ã1j2 = det

 0 0 1 (b
j−3

)⊤

1 1 1 (cj−3)⊤

a b c D̃j−3

 = det

 0 0 1 (b
j−3

)⊤

1 1 0 (aj−3)⊤

a b c D̃j−3



= det

 1 0 1 (b
j−3

)⊤

0 1 0 (aj−3)⊤

0 b c D̃j−3

 = det

(
1 0 (aj−3)⊤

b c D̃j−3

)
= ã2j1 + ã3j1 ,

ã2j2 = det

 0 0 1 (aj−3)⊤

1 1 1 (cj−3)⊤

a b c D̃j−3

 = det

 0 1 1 (aj−3)⊤

1 0 0 (b
j−3

)⊤

a 0 c D̃j−3

 = ã3j1 ,

ã3j2 = det

 0 0 1 (aj−3)⊤

0 0 1 (b
j−3

)⊤

a b c D̃j−3

 = det

 0 0 1 (aj−3)⊤

0 0 0 (cj−3)⊤

a b 0 D̃j−3

 = ã2j1 .

We see that

Ã(L1)
−1 + E =


0 1 1 0⊤

1 0 0 f⊤

1 0 0 g⊤

0 f g H

 ,

Ã(L2)
−1 + E =


0 0 0 f⊤ + g⊤

0 0 0 g⊤

0 0 0 f⊤

f + g g f H

 .

It is easy to see that the corresponding vertices have the structure as in

Definition 9.6. Therefore, G2 is obtained from G1 by a sequence of Ωg2,

Ωg3, Ωg4, Ωg4
′ graph-moves. �

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 9. Theory of Graph-Links 479

From Theorems 9.4, 9.5 and from the definitions of the maps χ and ψ it

follows that these maps are inverse. Therefore, we have proved Theorem 9.3.

We conclude this section with an example of a non-realizable graph-

knot.

Definition 9.16. A graph-link (a homotopy class of looped graphs) is

called non-realizable if it has no realizable representative.

Corollary 9.1. A graph-link F is non-realizable if and only if χ(F) is non-

realizable.

Let G be the labeled graph depicted in Fig. 9.15, whose vertices have

framing 1 and arbitrary signs.

Fig. 9.15 The first Bouchet graph gives a non-realizable graph-knot.

Corollary 9.2. The graph-knot F generated by G is non-realizable.

Proof. Let L = χ(F). It is not difficult to see that the looped graph

isomorphic to G (loops are available) is a representative of L. Therefore,

the looped graph L (see Theorem 9.9 and Corollary 9.4) is non-realizable,

and, in turn, F is a non-realizable graph-knot. �

9.2.4 Smoothing operations and Turaev’s ∆

Let us define a smoothing operation for free graph-links. As usual we first

mimic the definition of a smoothing for framed 4-graphs for the case of

realizable free graph-links, see Sec. 8.4.1, and then use the same definition

for all graphs.
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Let G be a free framed (simple) graph, i.e. an equivalence class of labeled

simple graphs under the fourth graph-moves. All representatives of a free

framed graph have the same number of vertices. Therefore, the notion of a

vertex for a free framed graph is well defined.

Let v be a vertex of G. Let us consider two cases. In the first case,

there exists a representative H of G for which v has either framing 1 or

the degree greater than 0. It is not difficult to see that v has the same

property for each representative of G, and there are two representatives

H1 and H2 of G which differ from each other by Ωg4 or Ωg4
′ at v. By a

smoothing of the free framed graph G at the vertex v we mean any of the

two free framed graphs having the representatives H1 \ {v} and H2 \ {v},
respectively. In the realizable case this means that the framed 4-graph has

a rotating circuit having any of the two possible connection types at the

vertex. Then the smoothing at the vertex corresponds to the removal of the

chord of the framed chord diagram (the vertex of the intersection graph)

corresponding to the vertex. If a smoothing of a framed 4-graph leads to a

disconnected graph, this may be repaired by taking another representative

of the same graph-link. We get the second case: the vertex v has framing 0

and is isolated for a representative, and, therefore, for any representative,

of G. Let H be a representative of G. Let us construct the new graph H ′

obtained from H by adding a new vertex u with framing 0 to H which

is adjacent only to v, see Fig. 9.16 for the case of realizable graphs (the

dashed line is a rotating circuit). By a smoothing of the free framed graph

G at the vertex v we mean any of the two free framed graphs having the

representatives H \ {v} and H ′, respectively.

Generally, a smoothing of a free framed graph in a collection of vertices

is a free framed graph obtained by a sequence of smoothings.

Remark 9.12. Sometimes after applying a smoothing, additional vertices

can appear, which were absent in the original graph. We do not apply any

smoothing to these new vertices.

Fig. 9.16 One of the two smoothings at an isolated vertex.
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Proposition 9.1. Assume G, G′ are free framed graphs, and G can be ob-

tained from G′ as a result of smoothings at some vertices. If G′ is realizable
by a chord diagram, then so is G.

Proof. If G′ is realizable and G is obtained from G′ by applying a fourth

graph-move and/or deleting a vertex, then one can draw the corresponding

framed 4-graph, and take the corresponding resmoothing which will lead

us to the chord diagram for G. In the other case, if G′ is realizable, then

the realizability of G follows from Lemma 9.1. �

Let us construct the operation ∆. Let i > 1 be a natural number.

Define the set Z2Gi to be the Z2-linear space generated by the set Gi of free
framed graphs having i components modulo the following relations:

(1) the second Reidemeister graph-move;

(2) G = 0, if G has two vertices with framing 0 which are adjacent only to

each other.

The meaning of (2) is that a free framed graph equals zero if it has

a “component not linked with others” (see Definition 9.14). To have two

vertices with framing 0 and being adjacent only to each other means the

corresponding free framed graph has a unicursal component not linked with

others.

For i = 1, we define Z2G1 analogously with respect to equivalence (1)

and not (2).

Let us define the map ∆: Z2G1 → Z2G2. We take a free framed graph

G with corankZ2(A(G) +E) = 0 and construct an element ∆(G) from Z2G2
as follows. For each vertex v of G, there are two ways of smoothing it. One

way gives us a graph from Z2G1, and the other smoothing gives us a free

framed graph Gv from Z2G2. We take Gv and set

∆(G) =
∑
v

Gv ∈ Z2G2.

Theorem 9.6. ∆ is a well-defined mapping from Z2G1 to Z2G2.

Using the main principle from Sec. 9.2.3, we can define whether a vertex

belongs to “one component” or “different components” of a free framed

graph.

Definition 9.17. We call a vertex vi of a free framed graph G oriented if

corankZ2(A(G) + E) 6 corankZ2(Bi(G)).
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It is not difficult to show that

corankZ2Bi(G) ̸= corankZ2B(G \ {vi})

if and only if vi is oriented.

Using the notion of an oriented vertex we can define the map ∆i (it-

eration of the map ∆) by considering smoothings at oriented vertices and

taking that smoothing which has more components than other in each step.

Corollary 9.3. ∆i is a well-defined mapping from Z2G1 to Z2Gi+1.

9.3 Parity, minimality and non-trivial examples

In this section we consider the parity for free graph-knots and free graph-

links in the spirit of Chap. 8. Since we have constructed the equivalence

between the set of graph-knots and the set of homotopy classes of looped

interlacement graphs, it is sufficient to construct a parity for free homotopy

classes of looped interlacement graphs and for graph-links with more than

one component.

9.3.1 Definition of parity

Definition 8.4 can be straightforwardly generalized for the case of looped

graphs and for the case of graph-links.

Let L (respectively, F) be a free homotopy class of graphs or homo-

topy class of looped interlacement graphs (respectively, a free graph-link of

graph-link).

Let us define the category C(L) (respectively, C(F)) of graphs of the

(free) homotopy class L (respectively, the (free) graph-link F). The objects

of C(L) (respectively, C(F)) are graphs of L (respectively, labeled graphs of

F) and morphisms of the category are (formal) compositions of elementary

morphisms. By an elementary morphism we mean

• an isomorphism of graphs;

• a Reidemeister move.

Let us denote by V the vertex functor on C(L) (respectively, C(F)), i.e.

the functor from C(L) (respectively, C(F)) to the category; objects of which

are finite sets and morphisms are partial bijections. For each graph G we

define V(G) to be the set of the vertices of G. Any elementary morphism

f : G→ G′ naturally induces a partial bijection f∗ : V(G)→ V(G′).
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Let A be an abelian group.

Definition 9.18. A parity p on graphs of a (free) homotopy class L (re-

spectively, a (free) graph-link F) with coefficients in A is a family of maps

pG : V(G) → A, where G ∈ ob(C(L)) (respectively, G ∈ ob(C(F))) is an

object of the category, such that for any elementary morphism f : G→ G′

the following conditions hold:

(1) pG′(f∗(v)) = pG(v) provided that v ∈ V(G) and there exists f∗(v) ∈
V(G′), i.e. the parity of the corresponding vertices is the same;

(2) pG(v1)+ pG(v2) = 0 if f is a decreasing second Reidemeister move and

v1, v2 are the disappearing vertices;

(3) pG(v1) + pG(v2) + pG(v3) = 0 if f is a third Reidemeister move and

v1, v2, v3 are the vertices participating in this move.

Analogously to Lemma 8.2, one can prove the following lemma.

Lemma 9.6. Let p be any parity and G be a (labeled) graph. Then pG(v) =

0 if f is the decreasing first Reidemeister move applied to G and v is the

disappearing vertex of G.

Let us consider two examples of parity with coefficients from Z2.

Example 9.2. Let L be a (free) homotopy class of looped graphs, and L

be its representative.

Definition 9.19. Define the map gpL : V(L)→ Z2 by putting gpL(v) = 0

if the degree of v is even (an even vertex ), and gpG(v) = 1 otherwise (an

odd vertex ).

Lemma 9.7 ([132]). The map gp is a parity for L. This parity is called

the Gaussian parity.

Example 9.3. Let F be a (free) two-component graph-link, and G be its

representative. Using Definition 9.17, we can define the notion of oriented

vertex for G.

Definition 9.20. Define the map pG : V(G)→ Z2 by putting pG(v) = 0 if

v is an oriented vertex (an even vertex ), and pG(v) = 1 otherwise (an odd

vertex ).

Lemma 9.8 ([132]). The map p is a parity for F.
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9.3.2 The universal parity

In this subsection we want to classify parity for free homotopy classes of

looped graphs, i.e. we want to prove a theorem analogous to Theorem 8.3.

Using Definition 8.8, we can define the universal parity for homotopy classes

of looped graphs and graph-links.

Theorem 9.7. Let a free homotopy class be given. Then the Gaussian

parity on its graphs is the universal parity.

This theorem will follow from Lemmas 9.9–9.11 which are analogous to

Lemmas 8.6–8.8.

Definition 9.21. Let G be a (simple) graph with the set of vertices V (G)

and the set of edges E(G), and let H ⊆ G be an induced subgraph of the

graph G, where V (H) is the set of vertices of H and E(H) is the set of

edges of H, and “induced” means that {u, v} ∈ E(H), where u, v ∈ V (H),

if and only if {u, v} ∈ E(G). We shall say that H is even with respect to

H if each vertex from V (G) \ V (H) is adjacent to even number of vertices

from V (H).

Lemma 9.9. Let H be an even subgraph with respect to a graph G. Then

for any parity on graphs of the free homotopy class generated by G the sum

of the parities of all vertices from V (H) is equal to 0.

Proof. Let p be an arbitrary parity on graphs of the free homotopy class

L generated by G. We proceed by induction on the number of vertices of

H. For any finite set M we denote by #M the number of elements of M .

The induction base. The claim holds for V (H) with #V (H) = 1, 2 or

3 according to Lemma 9.6 and Definition 9.18, respectively.

The induction step. Assume that the claim is true for any subgraph H

such that H is even with respect to G and #V (H) = k − 1.

Let us consider any subgraph H being even with respect to G and

#V (H) = k.

Let V (G) = {v1, . . . , vn}, and let v1 and v2 be two vertices of H. We

have NG(vi) = NH(vi) ⊔ Ai, i = 1, 2, where Ai is the set of vertices from

V (G) \ V (H) adjacent to vi. Denote by B = NG(v1) ∩NG(v2).

Let us apply the second Reidemeister move f : G→ G′ to G by adding

two vertices u1 and u2 as follows. The vertices u1 and u2 are adjacent to

NG(vi) \ B, i = 1, 2, the vertices u1 and u2 are not adjacent to a vertex

vi if #NH(vi) ≡ 0 (mod 2) and adjacent otherwise, and u1 and u2 are not

adjacent if #
(
(NH(v1)∪NH(v2))\B

)
≡ 0 (mod 2) and adjacent otherwise.
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Let H ′ = H \ {v1, v2} ∪ {u1} be an induced subgraph of G′. We claim

that H ′ is even with respect to G′. Let us consider three cases.

(1) Let vs ∈ V (G)\V (H). If NG(vs)∩{v1, v2} = ∅, then NG′(vs)∩V (H ′) =

NG(vs) ∩ V (H). If NG(vs) ∩ {v1, v2} = {vi} for some i = 1, 2, then

NG′(vs) ∩ V (H ′) =
(
NG(vs) ∩ V (H) ∪ {u1}

)
\ {vi}

and

#
(
NG′(vs) ∩ V (H ′)

)
= #

(
NG(vs) ∩ V (H)

)
.

If NG(vs) ∩ {v1, v2} = {v1, v2}, then

NG′(vs) ∩ V (H ′) =
(
NG(vs) ∩ V (H)

)
\ {v1, v2}

and

#
(
NG′(vs) ∩ V (H ′)

)
= #

(
NG(vs) ∩ V (H)

)
− 2.

(2) Consider the vertex vi. We have NG′(vi) ∩ V (H ′) = NH(vi) if

#NH(vi) ≡ 0 (mod 2), or NG′(vi) ∩ V (H ′) = NH(vi) ∪ {u1} other-

wise. As a result, we get #
(
NG′(vi) ∩ V (H ′)

)
≡ 0 (mod 2).

(3) Consider the vertex u2. We have NG′(u2) ∩ V (H ′) = (NH(v1) ∪
NH(v2)) \ B if #

(
(NH(v1) ∪ NH(v2)) \ B

)
≡ 0 (mod 2) or NG′(u2) ∩

V (H ′) = (NH(v1) ∪NH(v2) ∪ {u1}) \ B otherwise. As a result we get

#
(
NG′(u2) ∩ V (H ′)

)
≡ 0 (mod 2).

By the induction hypothesis, we have

pG′(u1) +
∑

vij
∈V (H)\{v1,v2}

pG′(f∗(vij )) = 0.

Since the three equalities #NH(v1) ≡ 1 (mod 2), #NH(v2) ≡ 1 (mod 2)

and #
(
(NH(v1) ∪ NH(v2)) \ B

)
≡ 1 (mod 2) cannot hold simultaneously,

we get that the three vertices u2, v1, v2 form the third Reidemeister move.

We have

pG′(u2) + pG′(f∗(v1)) + p(f∗(v2)) = 0

and

pG′(u1) + pG′(u2) = 0.

Therefore, ∑
vij

∈V (H)

pG′(f∗(vij )) =
∑

vij∈V (H)

pG(vij ) = 0.

�
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Lemma 9.10. Let G be a graph. For any parity p on graphs of the free

homotopy class generated by G and any vertex v ∈ V (G) we have pG(v) = 0

if gpG(v) = 0.

Proof. We prove the lemma by induction on the degree of the vertex v.

The induction base: If deg(v) = 0, then v forms the first Reidemeister

move and pG(v) = 0 in accordance with Lemma 9.6.

The induction step: Assume that for any vertex u ∈ V (G) of G with

deg(u) < 2k and gpG(u) = 0, we have pG(u) = 0. Let v be a vertex of

degree 2k and NG(v) = {v1, . . . , v2k}. Apply two consecutive decreasing

second Reidemeister moves f : G → G1 and g : G1 → G2. We add two

vertices u1 and u2 which are not adjacent and adjacent only to vertices

v3, . . . , v2k, and we add two vertices w1 and w2 which are not adjacent and

adjacent only to vertices from
(
NG1(v1)∪NG1(v2)

)
\
(
NG1(v1)∩NG1(v2)

)
.

We have

pG1(u1) + pG1(u2) = 0⇐⇒ pG2(g∗(u1)) + pG2(g∗(u2)) = 0

and

pG2
(w1) + pG2

(w2) = 0.

By construction, the three vertices w1, v1, v2 form the third Reidemeis-

ter move, therefore,

pG2(w1) + pG2((gf)∗(v1)) + pG2((gf)∗(v2)) = 0.

Since any vertex distinct from v1 and v2 are adjacent either to both

vertices v and u1 or none of v, u1, the induced subgraph H ⊆ G2 with

V (H) = {v, u1, w1, v1, v2} is even with respect to G. Therefore, by

Lemma 9.9,

pG2((gf)∗(v))+pG2(g∗(u1))+pG2(w1)+pG2((gf)∗(v1))+pG2((gf)∗(v2)) = 0.

By the induction hypothesis, we get

pG(v) = pG2((gf)∗(v)) = pG2(g∗(u2)) = 0.

�

Lemma 9.11. Let p be an arbitrary parity (with coefficients from a group

A) on graphs of the free homotopy class represented by a graph G. Then for

any two vertices v1, v2 such that gpG(v1) = gpG(v2) = 1 we have pG(v1) =

pG(v2) = x ∈ A and 2x = 0.
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Proof. Let us show that pG(v1) = −pG(v2).
Let us apply the second Reidemeister move f : G → G′ by adding two

vertices u1, u2 such that they are not adjacent and adjacent only to vertices

from
(
NG(v1) ∪NG(v2)

)
\
(
NG(v1) ∩NG(v2)

)
.

Since the vertices gpG(v1) = gpG(v2) = 1, we have, Lemma 9.10,

gpG′(u1) = gpG′(u2) = 0 and the vertices u1, v1, v2 form the third Rei-

demeister move. Therefore,

pG′(u1) + pG′(f∗(v1)) + pG′(f∗(v2)) = 0.

Finally, we get

pG(v1) = pG′(f∗(v1)) = −pG′(f∗(v2)) = −pG(v2).

Applying second Reidemeister moves, we can assume that there are

more than two odd vertices. Considering three odd vertices v1, v2, v3, we

get pG(v1) = pG(v2) = pG(v3). This completes the proof. �

Using Lemmas 9.10 and 9.11 for any parity p (with coefficients from

a group A) on graphs of the free homotopy class having a graph G, we

can construct the homomorphism ρ : A → Z2 by taking ρ(x) = 1, where

pG(v) = x and gpG(v) = 1. This concludes the proof of Theorem 9.7.

Remark 9.13. Let p be a parity on a free homotopy class L. It is not

possible that there exist two graphs G1 and G2 of L, both having vertices

being odd in the Gaussian parity such that p is trivial on G1, and p is the

Gaussian parity on G2. It follows from the fact that there is a sequence

of Reidemeister moves transforming G1 to G2 such that any graph in this

sequence has vertices being odd in the Gaussian parity.

9.3.3 Minimality

Using the Gaussian parity, we can define the map ∆i
odd, where the sum is

taken over all odd oriented vertices, or ∆i
even, where the sum is taken over

all even oriented vertices. We have to define the notion of even and odd

vertex for free framed graphs with many components.

Definition 9.22. We call a vertex v of a free framed graph G with one

component even (respectively, odd) if the vertex corresponding to v of the

looped interlacement graph χ(G) is even (respectively, odd).

Let us consider the free framed graph Gv1,...,vk−1
with k components

which is obtained from G by smoothing G consequently at v1, . . . , vk−1,
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where v1 is oriented in G and vi, i = 2, . . . , k − 1, is an oriented vertex in

Gv1,...,vi−1 . An oriented vertex u of Gv1,...,vk−1
is even with respect to the

smoothing at v1, . . . , vk−1 (respectively, odd with respect to the smoothing

at v1, . . . , vk−1) if the number of oriented vertices in Gv1,...,vk−1
which are

incident to u in χ(G) is even (respectively, odd).

Remark 9.14. We have defined even vertices only for those free framed

graphs with many components which originate from given free framed

graphs with one component. First, it is sufficient to define the iteration

∆i
even(odd). Second, we have done it so as not to complicate the construc-

tion, but it is possible to do in the general case.

Proposition 9.2. ∆i
odd is a well-defined mapping from Z2G1 to Z2Gi+1.

Now, we can define the brackets [·] for graph-knots and {·} for graph-

links analogously to Sec. 8.4.2. For a graphG representing a free graph-knot

and for a graph H representing a free two-component graph-link consider

the following sums:

[G] =
∑

s even,1 comp.

Gs ∈ Z2G1 and {H} =
∑

s even, non-trivial

Hs ∈ Z2G2.

In the first formula, the sums are taken over all smoothings at all

even vertices, and only those summands are taken into account where

corankZ2(A(Gs) + E) = 0. In the second formula, the sums are taken

over all smoothings at all even vertices, and Hs is not equivalent to any

simple graph having two vertices with framing 0 which are adjacent only

to each other. Thus, if G has k even vertices, then [G] will contain at most

2k summands, and if all vertices of G are odd, then we shall have exactly

one summand, the graph G itself. The same is true for H and {H}.

Theorem 9.8. If G and G′ represent the same free graph-knot, then the

following equality holds: [G] = [G′]. If H and H ′ represent the same free

graph-link with two components, then {H} = {H ′}.

The proof of Theorem 9.8 verbally reproduces the proof of Theorem 8.9

according to the main principle or, maybe, a slight modification of it.

Definition 9.23. We call a labeled graph G (respectively, a looped graph

L) minimal if there is no representative of the graph-link corresponding to

G (respectively, the homotopy class of L) having strictly smaller number of

vertices than G (respectively, L) has.

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Chapter 9. Theory of Graph-Links 489

Theorem 9.9 (cf. Theorem 8.1). Let G (respectively, H) be a simple

labeled graph representing a free graph-knot (a two-component graph-link)

with all odd vertices in the sense of Definition 9.19 (respectively, Defini-

tion 9.20), such that no decreasing second Reidemeister move is applicable

to G (respectively, H). Then G (respectively, H) is minimal.

As a consequence of this theorem we may deduce the following

Corollary 9.4. The graph G shown in Fig. 9.5 (left), representing a free

graph-knot, is minimal. In particular, the corresponding free graph-knot is

non-trivial and has no realizable representatives.

The first claim of the corollary is trivial: we just check the conditions

of the theorem and see that G is minimal. To see that the second claim

indeed holds, we shall need to go through the proof of Theorem 9.8, where

we see that any representative G′ of the graph-knot F has G as a smoothing,

that is, G lies inside each representative G′ of the same graph-link, and if

G is not realizable, then so is G′ according to Proposition 9.1. Analogously,

one sees that the free two-component graph-link H with the representative

H shown in Fig. 9.17 has no realizable representative because {H} = H.

Note that H in Fig. 9.17 is equivalent to the Bouchet graph shown in the

right part of the picture by Ω4-graph move; so they represent the same

two-component free graph-link.

Let us consider one more example.

Proposition 9.3. The looped graph K shown in Fig. 9.9 is minimal and

non-realizable.

The proof consists of the following steps.

First, note that ∆(K) consists of seven summands L +
∑

i Li, where

only one summand (corresponding to the vertex x) is a two-component free

graph-link with all odd vertices; for each of the remaining summands Li,

there is at least one even vertex.

Now, the two-component free graph-link generated by L has the rep-

resentative shown in Fig. 9.17; all framings of the vertices are 0. To see

it, one should consecutively perform the following operations for K. First,

we “smooth” it at the crossing x (it can be done only at the expense of

changing our circuit to the rotating one at some vertex different from x as

a Gauss circuit cannot represent link). After that, we have to make the

circuit rotating at all other vertices. All these steps are shown in Fig. 9.18

(of course one can apply the map from Theorem 9.3 and immediately get
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=

Fig. 9.17 The two-component free link.

the final graph, but we have decided to perform all transformations for

clearness).

Now, consider the bracket {∆(K)} = L +
∑

i{Li}. Note that all the

graph-links generated by summands {Li} have representatives with strictly

less than six vertices since each of Li has at least one even vertex; on the

other hand, the graph-link generated by L has no representative with less

than six crossings; so, this element L is not canceled in the sum. Since it

is not realizable, the free framed knot K is not realizable either.

9.4 A generalization of Kauffman’s bracket and other in-

variants. Minimality theorems

We have already considered the minimality theorem for graph-links (see

Theorem 9.9) and the minimality theorems for links (see Secs. 4.5 and 5.10).

In this section we present minimality theorems which use Kauffman’s

bracket generalization for graph-links. Let us generalize the Kauffman

bracket polynomial and some notions for the case of graph links.

Let s ⊂ V (G) be a subset of the set V (G) of vertices of G. Set G(s) to

be the induced subgraph of the graph G with the set of vertices V (G(s)) = s

and the set of edges E(G(s)) such that {u, v} ∈ E(G(s)), where u, v ∈ s,
if and only if {u, v} ∈ E(G).

Definition 9.24. We call a subset of V (G) a state of G. The A-state is

the state consisting of all the vertices of G labeled (a,−), a ∈ {0, 1}, and
no vertex labeled (b,+), b ∈ {0, 1}. Analogously, the B-state is the state

consisting of all vertices of G labeled (b,+) and no vertex labeled (a,−).
The opposite state to a state s is the set of vertices complementary to

s (the opposite state to the A-state is the B-state). Two states are called

neighboring if they differ only in one vertex, which belongs to one state
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Fig. 9.18 The two-component free link.

and not to the other state. The distance between two states is equal to the

number of the vertices in which the two states differ. We define the number

of circles in a state s as corankZ2A(G(s)) + 1.

The Kauffman bracket polynomial of a labeled graph G is

⟨G⟩(a) =
∑
s

aα(s)−β(s)(−a2 − a−2)corankZ2A(G(s)),

where the sum is taken over all states s of G, α(s) is equal to the sum of the
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vertices labeled (a,−) from s and the vertices labeled (b,+) from V (G) \ s,
β(s) = |V (G)| − α(s).

Theorem 9.10. The Kauffman bracket polynomial of a labeled graph is

invariant under Ωg2− Ωg4
′ and gets multiplied by (−a±3) under Ωg1.

Definition 9.25. Define the Jones polynomial for a labeled graph G with

corankZ2(A(G) + E) = 0 as X(G) = (−a)−3w(G)⟨G⟩(a).

Remark 9.15. The Jones polynomial can be defined for any graph-link,

but first we have to define the notion of an “oriented” graph-link. For

simplicity we are not going to do it in this book.

Theorem 9.11. The Jones polynomial is an invariant of graph-knots.

The main results concerning minimality theorems in the classical case

come from the well-known Kauffman–Murasugi–Thistlethwaite theorem,

Theorem 4.6.

Recall that a splitting point of a connected virtual diagram is a classical

crossing v such that after deleting the corresponding vertex v′ from the

frame of the corresponding atom, the frame breaks up into more connected

components than one.

In [211, 221], Theorem 4.6 is generalized for virtual diagrams. The

estimate span⟨K⟩ 6 4n can be sharpened to span⟨K⟩ 6 4n − 4g, where g

is the genus of the atom.

From the “atomic” point of view, alternating link diagrams are those

having atom genus zero (more precisely, diagram has genus zero if it is a

connected sum of several alternating diagrams).

For virtual links, we have a notion of a quasialternating diagram [221].

This is a virtual diagram obtained from classical alternating diagrams by

detours and virtualizations. Note the works [317, 318] where the authors

consider virtual alternating diagrams.

Definition 9.26. Non-split diagram is a connected virtual diagram without

splitting points.

Let us generalize the notions introduced above for graph-links.

Definition 9.27. A labeled graph G on n vertices is alternating if k +

l = n + 2, where k is the number of circles in the A-state s1, i.e. k =

corankZ2 A(G(s1)) + 1, and l is the number of circles in the B-state s2 of

G, i.e. l = corankZ2 A(G(s2)) + 1.
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A labeled graph G is adequate if the number of circles k in the A-state is

locally minimal, that is, there is no neighboring state for the A-state with

k + 1 circles, and the same is true for the number of circles in the B-state.

Remark 9.16. This definition of an adequate graph generalizes (see,

e.g. [286]) the classical definition of an adequate diagram: Neither circle of

the A-state nor the B-state splits into a pair of circles after one resmooth-

ing.

From the definition of an alternating graph we have the following propo-

sition.

Proposition 9.4. The framing of each vertex of an alternating graph is

zero.

Definition 9.28. A labeled graph G is non-split if it has no isolated ver-

tices.

Definition 9.29. For a labeled graph G the atom genus is 1−(k+ l−n)/2,
where k and l are the numbers of circles in the A-state s1 and the B-

state s2 of G, respectively, i.e. k = corankZ2 A(G(s1)) + 1 and l =

corankZ2 A(G(s2)) + 1.

Note that this number agrees with the atom genus in the general case.

We just use χ = 2 − 2g, where χ is the Euler characteristic, and count χ

by using the number of crossings n, number of edges 2n and the number of

2-cells (A-state circles and B-state circles).

Proposition 9.5. A labeled graph G is alternating if and only if its atom

genus is equal to 0.

Lemma 9.12. For any labeled graph G on n vertices we have

span⟨G⟩ 6 4n− 4g(G),

where g(G) is the genus of the corresponding atom.

Proof. Indeed, the assertion of this lemma comes from the definition of

the Kauffman bracket and the atom genus. Denote the number of circles

in the A-state of G by k, and denote the number of circles in the B-state

of G by l.

It is easy to see that there is no state giving a term with a degree more

than the degree of the leading term of the Kauffman bracket coming from

the A-state, and there is no state giving a term with a degree less than
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the degree of the leading term of the Kauffman bracket coming from the

B-state.

The leading term of the Kauffman bracket coming from the A-state has

degree n+2(k−1), and the lowest term coming from the B-state has degree

−n− 2(l − 1).

It is obvious that the span of the Kauffman bracket ⟨G⟩ is less than or

equal to 2n+ 2(k + l − 2).

Since g(G) = 1− (k + l − n)/2 we get the claim of the lemma. �

Lemma 9.13. For an adequate labeled graph G on n vertices we have

span⟨G⟩ = 4n− 4g(G),

where g(G) is the genus of the corresponding atom.

Proof. Indeed, it is sufficient to check that the leading term coming from

the A-state of G is not canceled by any other term coming from another

state (the argument for the lowest term coming from the B-state is the

same).

To do that, let us consider the term aα(s)−β(s)(−a2)corankZ2A(G(s)) for a

state s. For the A-state, we have α = n, β = 0, γ = k. If we switch one

crossing to the B-smoothing, then α is decreased by 1, β is increased by 1

and hence the degree of aα−β is decreased by 2. We may compensate this

only if corankZ2A(G(s)) is increased by 1. This may happen only if there

is a state s̃ neighboring to the A-state, with corankZ2A(G(s̃)) = k. Thus,

the diagram is inadequate.

Terms corresponding to other states have the degree equal to or less

than the degree of the term corresponding to the state s. This completes

the proof. �

Lemma 9.14. An alternating labeled graph G is adequate if and only if it

is non-split.

Proof. The direction (=⇒) is obvious.

Now, assume that the diagram G is inadequate, alternating and has no

isolated vertices. Denote the number of circles of the A-state by k, and

that of the B-state by l. Without loss of generality, assume that there is a

state s with α(s) = n − 1, β(s) = 1 and corankZ2A(G(s)) = k. Consider

the state s̃ opposite to the state s. Obviously, the number of circles in this

state s̃ is l − 1 (the total number cannot exceed k + l). Denote the vertex

of G where the A-state differs from s by v. Thus, the labeled graph G′

obtained by changing the label of the vertex v has genus 0, too.
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Since G is alternating, all single-circle states are at the same distance

from the A-state. On the other hand, all single-circle states are at the same

distance from s. This means that these single-circle states (as subsets of

{1, . . . , n}) either all contain v or all do not contain v.

Assume they all contain v. We argue that v is an isolated vertex. Indeed,

if there were a vertex w adjacent to v, then, starting from a single-circle

state containing v and changing it at v and w, we would get another single-

circle state not containing v. This completes the proof. �

Lemmas 9.12–9.14 together yield the following theorem.

Theorem 9.12. An alternating non-split labeled graph is minimal.

Proof. Let G be an alternating non-split labeled graph with n vertices.

Assume the contrary. Then we have

4n = span⟨G⟩ = span⟨G′⟩ 6 4n′ − 4g(G′),

where n′ is the number of crossings of G′, and g(G′) is the atom genus of

G′. The inequality n′ < n leads to a contradiction, which completes the

proof. �

1

2 3

4

56
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+
_ +

+ _

_

_

Fig. 9.19 The Bouchet graph BW3.

Example 9.4. Consider the graph BW3, depicted in Fig. 9.19, consisting

of seven vertices with the following incidences: i is connected to j if and

only if i − j ≡ ±1 (mod 6), i, j = 1, . . . , 6, and 7 is connected to 2, 4, 6.

Label all even vertices by (0,+), and label all odd vertices by (0,−). BW3

is alternating. By Theorem 9.12, BW3 is minimal.
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Theorem 9.13. The graph-link generated by the labeled graph BW3 is non-

realizable.

Here we give a sketch of the proof of this fact.

Before proving this result, we give some definitions and formulate some

assertions.

Let F be a graph-link with more than one component. Let G be any

representative of F with V (G) = {v1, . . . , vn}.

Definition 9.30. We say that a vertex vi ∈ V (G) lies on one component of

G if corankZ2 Bi(G) ̸= corankZ2 B̂i(G). Otherwise, we say that vi belongs

to two different components.

Remark 9.17. Let G′ = G\{vi}, i.e. G′ is obtained from G by deleting the

vertex vi and all the edges incident to this vertex. In the realizable case, this

operation corresponds to a smoothing of the crossing corresponding to the

vertex vi. Since B̂i(G) = B(G′), we get that corankZ2 B̂i(G) is equal to the

number of components of the link after this smoothing. It is not difficult

to see that corankZ2 Bi(G) equals the number of components of the link

obtained by smoothing the crossing corresponding to vi in the other way.

Therefore, in the realizable case, Definition 9.30 means that vi lies on

one component if after two smoothings we have links with different number

of components. This definition coincides with the “real” definition of a

vertex when it lies on one component.

Remark 9.18. Note that in Definition 9.17 we called a vertex lying on one

component, oriented.

Let us define the following relation on the set of all vertices belonging

to two different components.

Definition 9.31. Let vi and vj be two vertices from V (G) belonging to

two different components. We say that at these vertices two components

meet if either vi = vj , or vi lies on one component of the labeled graph

G \ {vj}.

Remark 9.19. In the realizable case, Definition 9.31 means that after a

smoothing of one vertex, the other one lies on the component obtained by

“joining” two components sharing the first vertex.

It is not difficult to prove the following lemma.
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Lemma 9.15. The relation from Definition 9.31 is an equivalence relation

on the set of vertices belonging to two different components.

Let us consider equivalence classes and define the number ϑ(G) to be

the number of equivalence classes having an odd number of vertices.

Theorem 9.14. The number ϑ(G) is invariant under Reidemeister graph-

moves.

This theorem can be proved by following the main principle. In the

realizable case, the claim of the theorem follows straightforwardly from

the definitions, and in the general case, we have the following definitions

reformulated in the language of adjacent matrices.

It is easy to show that the graph-link generated by BW3 has four com-

ponents and ϑ(BW3) = 7, and for any realizable graph-link with four com-

ponents we have ϑ to be strictly less than 7.
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[114] Goussarov, M., Polyak, M. and Viro, O. (2000). Finite type invariants of
classical and virtual knots, Topology 39, pp. 1045–1068.

[115] Green, J. Virtual knot tables, preprint, http://www.math.toronto.edu/
∼drorbn/Students/GreenJ/.

[116] Grishanov, S. A. and Vassiliev, V. A. (2009). Fiedler type combinatorial
formulas for generalized Fiedler type invariants of knots inM2×R1, Topology
Appl. 156, 14, pp. 2307–2316.

[117] Habegger, N. and Masbaum, G. (2000). The Kontsevich integral and Mil-
nor’s invariants, Topology 39, 6, pp. 1253–1289.

[118] Haken, W. (1961). Theorie der Normalflächen, Acta Math. 105, pp. 245–
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1T -Relation, 288
2T -Relation, 310

generalized, 310
4-Graph, 354

minimal, 392
simplifiable, 392

4T -Relation, 288
generalized, 291

A-State, 128, 490
A-Structure, 129
B-State, 128, 490
B-Structure, 130
J-Invariant, 292
VA-Polynomial, 82
d-Diagram, 136

framed, 136
f -Graph, 137
k-Graph, 2
k-Transformation, 313
n-System, 275

ordered, 275
virtual, 271

Admissible word set, 62
Alexander module, 79
Annulus

essential, 52
inessential, 52
vertical, 31

Arc, 4, 60, 61, 113
long, 60
non-compact, 94

of a chord diagram, 133
short, 61
trivial, 34
vertical, 34

Arrow
bad, 297

Atom, 128
connected, 128
height, 130
orientable, 128
spherical, 129
torus, 129

Axiomatics
of parity, 353

Borromean rings, 4
Boundary, 182
Braid

pure, 22
virtual, 258, 259

even, 259
pure, 259

Branch, 3
Breaking, 96
Burau representation, 266

Cable, 145, 147
Categorification, 177
Chain, 182
Changing circuit, 329
Chord, 133

even, 351
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Gaussian, 316
non-Gaussian

with framing 0, 316
with framing 1, 316

odd, 351
Chords

linked, 134
unlinked, 135

Circle
core, 133
horizontal, 34
innermost, 34
outermost, 34
subcritical, 129
supercritical, 129
trivial, 34

Circuit
Gauss, 312, 316
rotating, 312, 316

Closure, 95, 377
Kishino, 307
of a virtual braid, 261

Cobordism
atomic, 449
checkerboard, 449
combinatorial, 420
elementary, 421
of words, 422
two-atomic, 449

Coboundary, 182
Cochain, 182
Cocycle, 182
Collection

admissible, 151
Coloring

monochrome, 57
proper, 57, 78

Complex
Khovanov, 177

topological, 179
Koszul, 178
Wehrli, 245

Complexes
quasiisotopic, 183

Component
of a hierarchy link, 113

of a link, 1
unicursal, 9

Configuration
even symmetric, 421

Covering
orientable, 130, 206

Crossing, 3
even, 363
flat, 16
flat classical, 16
negative, 3
odd, 26, 363

of first type, 427
of second type, 427

positive, 3
semivirtual, 293
splitting, 244
virtual, 8

Cube
anticommutative, 186, 197
bifurcation, 184, 186
commutative, 197
state, 139

Curve
left, 405
null-cobordant, 419
right, 405
singular, 292
slice, 419

Curves
homotopic, 403

Cusp, 435
Cycle, 182, 338

bad, 208
orientable, 209
right, 208

Degree, 2, 303
of an invariant, 294

Dehn twist, 15
Derivative, 286
Destabilization, 22, 31

along annulus, 31
Diagonal, 255
Diagram

1-complete, 143
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2-complete, 256
M -hierarchy, 113
adequate, 146, 169
alternating, 3
chord, 132, 133, 287

connected, 348
dual, 173
framed, 133, 134, 315
labeled, 457
oriented, 134

connected, 4, 36, 145
descending, 296
Gauss, 10

irreducible, 352
odd, 352

hierarchy, 113
minimal, 143
non-orientable, 196
non-split, 492
of a knot, 3
of a virtual braid, 258
of a virtual link, 8
orientable, 196
proper, 60
quasialternating, 145, 492
reduced, 142
regular, 270
semiadequate, 146
virtual, 8

connected, 9
long, 94
singular, 302

with semivirtual crossings, 293
Diagrams

cobordant, 421
Differential

partial, 185, 214
Dimension

graded, 182
Disc

boundary incompressible, 51
clean, 51
compressing, 50
inessential, 51
spanning, 420

Distance, 491

Double involution, 67

Edge, 2
bad, 208
cyclic, 2, 354
right, 208, 209

Edges
equivalent, 9
opposite, 2

Element
final, 98
initial, 98

Embedding
proper, 31

Equivalence
oriented, 138

Euler characteristic
graded, 183
of an atom, 128

Euler tour, 312, 313

Filtration, 380, 382
Vassiliev, 286

Form
normal, 25

Formula
combinatorial, 282

Frame of an atom, 128
Framing

of a chord, 457
of a vertex, 459

Frobenius extension, 245
Function

generalized weight, 292
generating, 346
Morse, 444

simple, 444

Genus
of a cobordism, 434
of a link, 36
of a virtual link, 131, 215
of an atom, 36, 128, 493
Seifert, 36, 38, 39
slice, 419, 433, 435
Turaev, 128, 215
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underlying, 35
Grading, 182, 380

homological, 182
quantum, 182

Graph
k-valent, 2
adequate, 493
alternating, 492
framed, 2, 459
free framed, 462

realizable, 462
intersection, 308

labeled, 459
labeled, 459
looped, 463
looped interlacement, 453, 463
minimal, 488
non-realizable, 459
non-split, 493
realizable, 308, 459
Reeb, 444
simple, 2
underlying, 4
unicursal, 316

Graph-knot, 454, 465
Graph-link, 462

free, 455, 462
non-realizable, 455, 479
realizable, 465

Graph-move, 461
Group

classical, 75
of a braid, 22
of virtual braids, 259

stably, 261
virtual, 75
with peripheral structure, 58

Groupoid, 7, 58, 62

Height, 130, 131, 182, 191
of a Khovanov homology, 243
of a state, 184
of an edge, 197

Homotopy class
free, 455
non-realizable, 455, 479

of looped graphs, 454, 464
free, 464

realizable, 465
Hurwitz action, 275

Idempotency, 7, 62
Image

mirror, 313
Immersion

generic, 11, 419
Index, 382

of a chord, 382
of a crossing, 382
self-linking, 351
Whitney, 165

Invariant
coloring, 57
finite-type, 281, 286, 293
of order n, 292
quantum, xviii, 25, 281
universal Vassiliev–Kontsevich, 281
Vassiliev, 281, 286

Isomorphism
of framed 4-graphs, 2
of virtual quandles, 71

Isotopy, 1, 4
rigid, 283

Kauffman bracket, 123, 491
even, 411
for rigid knots, 166

Khovanov homology, 182
Knot, 1, 359

classical, 1
figure eight, 4
free, 351, 355, 455

long, 356
Kishino, 357
long

classical, 94
trivial, 94
virtual, 94

null-cobordant, 435
oriented, 1
prime, 7
slice, 435
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trivial, 4
virtual, 8, 9

compact, 95
flat, 16, 357
rigid, 25, 164
singular, 303
twisted, 215

welded, 15
Knot complexity, 4
Knot group, 5, 57
Knots

combinatorially cobordant, 420
isotopic, 1

Label, 444
Level

subcritical, 129
supercritical, 129

Line
double, 432, 437
of first type, 441
of second type, 441

Link, 1
classical, 1
colored, 2
framed, 146, 289
free, 355, 455
hierarchy, 113
Hopf, 4
minimal representative, 31
orientable, 196
oriented, 1

framed, 2
singular, 285
trivial, 4

free, 355
virtual, 8, 9, 30

alternating, 205
oriented, 31
singular, 303

Whitehead, 4
Links

framed isotopy, 2
Local complementation, 329, 460
Loop

free, 2

Manifold
boundary irreducible, 51
Haken, 52
irreducible, 50
sufficiently large, 51

Mapping
Frobenius, 245
functorial, 377

Markov transformation, 262
Matrix, 82

adjacency, 320, 465
Alexander, 79

generalized, 90
factorization, 178

Molecule, 444
Morphism

elementary, 359
Move

decreasing, 13
detour, 8
forbidden, 15
increasing, 13
local, 265
Markov, 24, 262

virtual, 24
Reidemeister, 4

first, 355
framed, 147
second, 355
third, 355
virtual, 12

semivirtual, 12
Mutant, 127
Mutation, 126

Number
crossing, 414

classical, 413
virtual, 413

of circles, 491
of components, 355, 465
self-linking, 26
writhe, 9, 465

Operation
decreasing, 322
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pivot, 329
pivoting, 460
star, 314

framed, 317
Orientability

of an atom, 128
Orientation

alternating, 198
Overcrossing, 3, 258

early, 97, 98

Pairing
homological, 437

Parity, 360
Gaussian, 351, 362, 440

justified, 427, 441
of a double line, 441

justified, 427
relative, 381
universal, 368
weakened, 361

Pattern, 49
boundary, 51

Plate, 31
Point

crossing, 338
self-crossing, 338
self-tangency

direct, 290
inverse, 290

splitting, 140, 492
Polyak algebra, 282
Polygon, 369
Polynomial

Alexander, 80
Jones, 214, 492

even, 411
Jones–Kauffman, 121, 123
Kauffman

surface, 162
Presentation

Dehn, 5
Wirtinger, 5, 57

Product
tensor

ordered, 219

unordered, 184
Projection, 381

Quandle, 7, 58, 62
long, 97

linear, 101
virtual, 59, 68

Relation
defining, 63
four-term, 288
one-term, 288
strange, 98
two-term, 310

generalized, 310
Vassiliev, 286

Representative
minimal, 50, 392

singular, 39
Result of surgery, 320

Section
regular, 428
singular, 427

Segment
odd of first type, 432
odd of second type, 432

Self-distributivity, 7, 62
Shadow, 4
Shift

grading, 182
height, 182

Sign
of a chord, 457
of a vertex, 459

Smoothing, 122, 362, 386
1-even, 386
even, 386
for a free framed graph, 480

Span of a polynomial, 142, 167
Stabilization, 22, 31
State, 386

neighboring, 490
of a diagram, 122
of a graph, 490
opposite, 490

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



July 30, 2012 21:52 World Scientific Book - 9in x 6in VirtKn

Index 521

Strand of a braid, 23
Structure

of opposite edges, 2, 129
peripheral, 68
source–sink, 198

Subcube, 139
Subdiagram, 296, 377
Subgraph

even, 484
Sum

connected, 37, 38
classical, 39
of long virtual knots, 38

disconnected, 36
Summation

geometric, 30, 49
Surface

admissible, 33
basis, 49
boundary

compressible, 51
incompressible, 51

compressible, 51
essential, 33
fundamental, 49
incompressible, 51
normal, 29, 49
proper, 32, 49
spanning, 434
thickened, 31

Surgery, 309, 363
Symbol, 286
System

Frobenius, 245
weight, 289

Tangle
free, 388

Theory
closed, 377
of free knots, 16
of pseudoknots, 17
of quasiknots, 17

Thickening
orientable, 215

Thickness

of a complex, 255
of a diagram, 255

Torsion, 57
Trefoil, 4
Turaev delta, 406

Undercrossing, 3, 258
early, 97, 98

Universal (R,A)-construction, 247
Unknot, 4

free, 355

Value
non-singular, 444

Vassiliev obstruction, 338
Vertex, 354

even, 362, 483, 487
with respect to a smoothing,

488
Gaussian, 315
non-Gaussian

with framing 0, 316
with framing 1, 316

odd, 362, 483, 487
with respect to a smoothing,

488
oriented, 481
terminal, 386

Virtualization, 16, 125

Width, 167
of a complex, 255
of a diagram, 255

Word
cyclic, 314
double occurrence, 314
framed, 315, 316
Gauss, 352
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SERIES ON KNOTS AND EVERYTHING

Editor-in-charge:  Louis H. Kauffman (Univ. of Illinois, Chicago)

The Series on Knots and Everything: is a book series polarized around the theory of
knots. Volume 1 in the series is Louis H Kauffman’s Knots and Physics.

One purpose of this series is to continue the exploration of many of the themes
indicated in Volume 1. These themes reach out beyond knot theory into physics,
mathematics, logic, linguistics, philosophy, biology and practical experience. All of
these outreaches have relations with knot theory when knot theory is regarded as a
pivot or meeting place for apparently separate ideas. Knots act as such a pivotal place.
We do not fully understand why this is so. The series represents stages in the
exploration of this nexus.

Details of the titles in this series to date give a picture of the enterprise.

Published*:

Vol. 1: Knots and Physics (3rd Edition)
by L. H. Kauffman

Vol. 2: How Surfaces Intersect in Space — An Introduction to Topology (2nd Edition)
by J. S. Carter

Vol. 3: Quantum Topology
edited by L. H. Kauffman & R. A. Baadhio

Vol. 4: Gauge Fields, Knots and Gravity
by J. Baez & J. P. Muniain

Vol. 5: Gems, Computers and Attractors for 3-Manifolds
by S. Lins

Vol. 6: Knots and Applications
edited by L. H. Kauffman

Vol. 7: Random Knotting and Linking
edited by K. C. Millett & D. W. Sumners

Vol. 8: Symmetric Bends: How to Join Two Lengths of Cord
by R. E. Miles

Vol. 9: Combinatorial Physics
by T. Bastin & C. W. Kilmister

Vol. 10: Nonstandard Logics and Nonstandard Metrics in Physics
by W. M. Honig

Vol. 11: History and Science of Knots
edited by J. C. Turner & P. van de Griend

*The complete list of the published volumes in the series can also be found at
http://www.worldscibooks.com/series/skae_series.shtml
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Vol. 12: Relativistic Reality: A Modern View
edited by J. D. Edmonds, Jr.

Vol. 13: Entropic Spacetime Theory
by J. Armel

Vol. 14: Diamond — A Paradox Logic
by N. S. Hellerstein

Vol. 15: Lectures at KNOTS ’96
by S. Suzuki

Vol. 16: Delta — A Paradox Logic
by N. S. Hellerstein

Vol. 17: Hypercomplex Iterations — Distance Estimation and Higher Dimensional Fractals
by Y. Dang, L. H. Kauffman & D. Sandin

Vol. 18: The Self-Evolving Cosmos: A Phenomenological Approach to Nature’s
Unity-in-Diversity
by S. M. Rosen

Vol. 19: Ideal Knots
by A. Stasiak, V. Katritch & L. H. Kauffman

Vol. 20: The Mystery of Knots — Computer Programming for Knot Tabulation
by C. N. Aneziris

Vol. 21: LINKNOT: Knot Theory by Computer
by S. Jablan & R. Sazdanovic

Vol. 22: The Mathematics of Harmony — From Euclid to Contemporary Mathematics and
Computer Science
by A. Stakhov (assisted by S. Olsen)

Vol. 23: Diamond: A Paradox Logic (2nd Edition)
by N. S. Hellerstein

Vol. 24: Knots in HELLAS ’98 — Proceedings of the International Conference on Knot
Theory and Its Ramifications
edited by C. McA Gordon, V. F. R. Jones, L. Kauffman, S. Lambropoulou &
J. H. Przytycki

Vol. 25: Connections — The Geometric Bridge between Art and Science (2nd Edition)
by J. Kappraff

Vol. 26: Functorial Knot Theory — Categories of Tangles, Coherence, Categorical
Deformations, and Topological Invariants
by David N. Yetter

Vol. 27: Bit-String Physics:  A Finite and Discrete Approach to Natural Philosophy
by H. Pierre Noyes; edited by J. C. van den Berg

Vol. 28: Beyond Measure: A Guided Tour Through Nature, Myth, and Number
by J. Kappraff

Vol. 29: Quantum Invariants — A Study of Knots, 3-Manifolds, and Their Sets
by T. Ohtsuki

Vol. 30: Symmetry, Ornament and Modularity
by S. V. Jablan
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Vol. 31: Mindsteps to the Cosmos
by G. S. Hawkins

Vol. 32: Algebraic Invariants of Links
by J. A. Hillman

Vol. 33: Energy of Knots and Conformal Geometry
by J. O’Hara

Vol. 34: Woods Hole Mathematics — Perspectives in Mathematics and Physics
edited by N. Tongring & R. C. Penner

Vol. 35: BIOS — A Study of Creation
by H. Sabelli

Vol. 36: Physical and Numerical Models in Knot Theory
edited by J. A. Calvo et al.

Vol. 37: Geometry, Language, and Strategy
by G. H. Thomas

Vol. 38: Current Developments in Mathematical Biology
edited by K. Mahdavi, R. Culshaw & J. Boucher

Vol. 39: Topological Library
Part 1: Cobordisms and Their Applications
edited by S. P. Novikov & I. A. Taimanov

Vol. 40: Intelligence of Low Dimensional Topology 2006
edited by J. Scott Carter et al.

Vol. 41: Zero to Infinity: The Fountations of Physics
by P. Rowlands

Vol. 42: The Origin of Discrete Particles
by T. Bastin & C. Kilmister

Vol. 43: The Holographic Anthropic Multiverse
by R. L. Amoroso & E. A. Ranscher

Vol. 44: Topological Library
Part 2: Characteristic Classes and Smooth Structures on Manifolds
edited by S. P. Novikov & I. A. Taimanov

Vol. 45: Orbiting the Moons of Pluto
Complex Solutions to the Einstein, Maxwell, Schrödinger and Dirac Equations
by E. A. Rauscher & R. L. Amoroso

Vol. 46: Introductory Lectures on Knot Theory
edited by L. H. Kauffman, S. Lambropoulou, S. Jablan & J. H. Przytycki

Vol. 47: Introduction to the Anisotropic Geometrodynamics
by S. Siparov

Vol. 48: An Excursion in Diagrammatic Algebra: Turning a Sphere from Red to Blue
by J. S. Carter

Vol. 49: Hopf Algebras

by D. E. Radford

Vol. 50: Topological Library
Part 3: Spectral Sequences in Topology
edited by S. P. Novikov & I. A. Taimanov

EH - Virtual Knots.pmd 8/3/2012, 2:03 PM4

VIRTUAL KNOTS: The State of the Art
http://www.worldscientific.com/worldscibooks/10.1142/8438#t=toc
© World Scientific Publishing Co.     No further distribution is allowed.



Vol. 51 Virtual Knots: The State of the Art

by V. O. Manturov & D. P. Ilyutko
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