2020-10-20 Kähler geometry

Definition (test emfiguration)
A test configuration of a polarized mawipld (M, L) with exponent v consists of the following.

1. a scheme M with a \mathbb{C}^{*}-action
2. a C^{*}-equiv variant line bundle

$$
\mathcal{L} \rightarrow M
$$

3. a Hat \mathbb{C}^{*}-equivariant map
$\pi: \mu \longrightarrow \mathbb{C}$
where \mathbb{C}^{*} acts $\cap \mathbb{C}$ by stand ind multiplication such that $\quad M_{t}=\pi^{-1}(t)$
(a) $M_{t}=\pi^{-1}(t) \cong M$.
for ${ }^{\forall} t \neq 0$ in \mathbb{C}

$$
(\exists \in \neq 0)
$$

(b)

Point here is chat M_{0} (the central fiber) could the singular, but admits a \mathbb{C}^{*}-action.

Remark Bercause of \mathbb{C}^{*}-action

$$
\left(\mu_{t}, \mathcal{L}\left(\mu_{\mu_{t}}\right) \cong\left(M_{s},\left.L\right|_{M_{s}}\right)\right.
$$

fr all $\tau \neq 0$ ad $s \neq 0$.
Remmk F latress implics that for v lagge
$\pi_{*} \mathcal{L} \longrightarrow \mathbb{C}$ is a vectan bunlle.
(sheaf of $H^{0}\left(v, L I_{v}\right), v \subset \mathbb{C}$.)
of rark $h^{0}\left(\mu, L^{n}\right)==\operatorname{di} H^{0}\left(M, L^{2}\right)$

Det (product configuration)
Suppose (M,L) admits a $\mathbb{C}^{*}-a c t: m$.
Then $\left(M \times \mathbb{C}, L^{r} \times \mathbb{C}\right)$ is maturally a
test confignratim.
This is called the prodect configuratim.
Remah Given (M, L), dere are mang test configurations.

Detinitim of Donaldson-Futekei inivariat.
Let $\left(M_{0}, L_{0}\right)$ be a pularized Scheme.
$\operatorname{dim}_{m} M_{0}=m$.
Let $w(k)$ be the weight of the $\mathbb{C}^{ \pm}$-action or $H^{0}\left(M_{\theta}, L_{0}^{k}\right)$.

Computed n y equivariat Rienpun-Roch weight $\underset{\sim}{\log _{1}(L)} H^{0}\left(M_{0}, L_{0}^{L}\right)$
(Buline-Getzlen-Vergue), polynomial in k of degpee Let $d(k)=d n H^{0}\left(M_{0}, L_{0}^{k}\right)$.
computed by Riemann-Roch, poly nomial is k of deqree m.
$x=\frac{c_{1}\left(k^{k}\right)^{m}}{m!}+$ lower order in k.
$h^{0}\left(l^{k}\right)$ by K+daiva vamishiv.

$$
\frac{w(k)}{k d(k)}=F_{0}+F_{1} k^{-1}+\cdots
$$

Det $D F(M)=-F_{1} \quad$ fr $\left(M_{0}, L_{0}\right)$
" Draddson - Futaki iv vainarT."

Det A polarized manifold (M.L) is said to be K - polystable if tr avy test comfiguration (μ, L), The central fiber $\left(M_{0},\left.\mathcal{Z}\right|_{M_{0}}\right)$ has non-prsitive $F_{1}(D F(\mu) \geqq 0)$, and $F_{c}=0$ of and aly of (μ, \mathcal{L}) is a product configuration.
Yau - Tian - Dmaldsm comjec Tunu
Let (M, L) be a polarized mani fold. There exists a Käuler netur of constant scalar curvatirs in the Cables daco $c_{1}(L)$ of ad ouly of (M, L) is K-poly stable.
Renark $F_{n}\left(M, K_{M}^{-1}\right) F_{\text {ano }}$, thi was solved by Chem.Douddsm-Sun, Tiam 2012 - 2015.
Remank This corj may not be True
For updated crij, see
S.K. Danaldson anXiv. 1808.03995

- R. Penvan-J. Ross Mard. Res. Letins ool24 (2017).

Rewash For Tour surfaces, OK by Danddon. ${ }^{(5)}$
For true case ok for any dinasim.

$$
\begin{aligned}
& \text { Cher-Chery: } \\
& \text { weiyoug He: }) \rightarrow \text { Legendre }
\end{aligned}
$$

Lemma when $\left(M_{0}, L_{0}\right)$ is smooth.

$$
\begin{aligned}
F_{1}= & - \text { cost } f(x)\left(=-\cos \int_{m} u_{x} s w^{n}\right) \\
& \text { cost }>0 .
\end{aligned}
$$

where x is the infinitesimal generator of the \mathbb{C}^{*}-action.
Proof $w(k)$ is computed by the equiv variant Riemann-Roch formula
$w(k)=$ the degree 1 Term in t of

$$
\int_{M} e^{k\left(w+t u_{x}\right)} \tau d(t L(x)+(4))
$$

where $i(x) v=-\sqrt{-} \bar{\partial} n_{x}, \int u_{x} a^{m}=0$.
θ type $(1,0)$-connection of $\tau^{\prime} M$
$(\mathbb{O})=d \theta+\theta \wedge \theta$ arvilune form.
$(H)^{0,2}=0$.

$$
\begin{equation*}
L(x)=\nabla_{x}-L_{x} \in C^{\infty}\left(M, E \operatorname{lnd} \tau^{\prime} M\right) . \tag{6}
\end{equation*}
$$

See Berline-Getzler-Vergne. 's brole.
$d(k)$ is gien by R. Roch.

$$
d(k)=\int_{\mu} e^{k \omega} \tau d(\nVdash)
$$

Write $w(k)$ and $d(k)$

$$
\begin{aligned}
& w(k)=h_{0} k^{m+1}+b_{1} k^{m}+\cdots \\
& d(k)=a_{0} k^{m}+a_{1} k^{m-1}+\cdots
\end{aligned}
$$

Then

$$
\begin{aligned}
& a_{0}=\frac{1}{m!} \int_{n} \omega^{m}=\frac{1}{m!} \int c_{1}(L)^{m}=\operatorname{col}(H, \omega) \text {. } \\
& a_{1}=\frac{1}{(m-1)!} \int_{M} c_{1}(L)^{k-1} \wedge \frac{w_{2}^{n-1}}{c_{1}\left(T^{\prime} M\right)} \\
& \operatorname{scal}_{\text {c }}(s) \text {. } \\
& =\frac{1}{2(m-1)!} \int \rho_{\omega} \wedge w^{w-1}=\frac{1}{2 m!} \int_{M}^{\delta} S \omega^{m} \\
& \left(S=g^{i j} R_{i j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& b_{0}=\frac{1}{(m+1)!} \int_{M}(m+1) n_{x} \omega^{m} \\
& b_{1}=\frac{1}{m!} \int_{M} m a_{x} w^{n-1} \wedge \frac{1}{2} c_{1}(M) \\
& +\frac{1}{m!} \int \frac{\operatorname{div} X \cdot w^{m}}{q} \\
& \binom{\left.\left(\nabla_{x}-L_{x}\right)(\tau)=\nabla_{x} T-[x, \tau]\right)=\nabla_{Y} X}{\nabla_{x}-L_{x}=\nabla_{i} X^{\prime}} \\
& 0
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\frac{w(k)}{k d(k)} & =\frac{b_{0} k^{m+1}+b_{1} k^{w} t \ldots}{a_{0} k^{m+1}+a_{0} k^{m} t \ldots} \\
& =\frac{b_{0}}{a_{0}} \frac{k^{m+1}+\frac{b_{1}}{b_{0}} k^{m} t \ldots}{k^{m+1}+\frac{a_{1}}{a_{0}} k^{n} t \ldots} \\
& =T_{0}^{a_{0}}\left(1+\left(\frac{b_{1}}{b_{0}}-\frac{a_{1}}{a_{0}}\right) k^{-1}+\cdots\right.
\end{array}\right)
$$

$$
\begin{aligned}
F_{1} & =\frac{1}{v l(M, w)^{2}}\left(\frac{\operatorname{vol}(M)}{2} \int_{M} u_{x} S \frac{w^{m}}{m!}\right) \\
& =\frac{1}{2 \operatorname{bl}(M, w)} \int_{M} u_{x} s \frac{w^{w}}{m!} \\
F_{1} & =-\frac{1}{2 w!\operatorname{vl}(M, w)} f(X)
\end{aligned}
$$

My oingivd def

$$
\begin{aligned}
S-S_{0} & =\Delta F \\
f(x)=\int x F w^{n} & =\int u^{i} F_{i} w^{n} \\
& =-\int u \Delta F w^{n} \\
& =-\int u\left(S-S_{0}\right) w^{m} \\
& =-\int u S w^{2}
\end{aligned}
$$

$$
\left(\int u w^{m}=0\right)
$$

Next Tim
Tuesday Oet 27 . h

