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PROPORTION OF HEAVY SLEEPERS

• Suppose a person is interested in learning about the sleeping habits of American
college students

• She hears that doctors recommend eight hours of sleep for an average adult

• What proportion of college students get at least eight hours of sleep?

• Here we think of a population consisting of all American college students and let p
represent the proportion of this population who sleep (on a typical night during the
week) at least eight hours

• We are interested in learning about the location of p

• Examples taken from Albert, J. (2009), Bayesian Computation with R, Springer
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PROPORTION OF HEAVY SLEEPERS
• The value of the proportion p is unknown

• From the Bayesian viewpoint, a person’s beliefs about the uncertainty in this propor-
tion are represented by a probability distribution placed on this parameter

• This distribution reflects the person’s subjective prior opinion about plausible values
of p

• A random sample of students from a particular university will be taken to learn about
this proportion

• But first the researcher does some initial research to learn about the sleeping habits
of college student

• This research will help her in constructing a prior distribution

• A first paper reports that most students spend only six hours per day sleeping,
whereas a second one, based on a sample of 100 students, tells that ”approximately
70% reported receiving only five to six hours of sleep on the weekdays, 28% receiv-
ing seven to eight, and only 2% receiving the healthy nine hours for teenagers”
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PROPORTION OF HEAVY SLEEPERS

• Based on this information, the person doing the study believes that college students
generally get less than eight hours of sleep and so p (the proportion that sleep at
least eight hours) is likely smaller than .5

• After some reflection, her best guess at the value of p is .3

• But it is very plausible that this proportion could be any value in the interval from 0
to .5

• A sample of 27 students is taken, and, in this group, 11 record that they had at least
eight hours of sleep the previous night

• Based on the prior information and these observed data, the researcher is interested
in estimating the proportion p

• In addition, she is interested in predicting the number of students that get at least
eight hours of sleep if a new sample of 20 students is taken
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PROPORTION OF HEAVY SLEEPERS

• Suppose that our prior density for p is denoted by π(p)

• If we regard a ”success” as sleeping at least eight hours and we take a random
sample with s successes and f failures, then the likelihood function is given by

L(p) ∝ ps(1− p)f

• The posterior distribution is given by π(p|data) ∝ L(p)π(p)

• We demonstrate posterior distribution calculations using two different choices of the
prior density π(p) corresponding to two methods for representing the researcher’s
prior knowledge about the proportion p
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PROPORTION OF HEAVY SLEEPERS

• A simple approach for assessing a prior for p is to write down a list of plausible
proportion values and then assign weights to these values

• The person in our example believes that possible values of p are
.05, .15, .25, .35, .45, .55, .65, .75, .85, .95

• Based on her beliefs, she assigns these values the corresponding weights
1,5.2,8,7.2,4.6,2.1,0.7,0.1,0,0,
which can be converted to prior probabilities by dividing each weight by the sum

• In R, we define p to be the vector of proportion values and prior the corresponding
weights that we normalize to probabilities

p=seq(0.05,0.95,0.1)
prior=c(1,5.2,8,7.2,4.6,2.1,0.7,0.1,0,0)
prior=prior/sum(prior)
plot(p,prior,type="h",ylab="Prior Probability")
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PROPORTION OF HEAVY SLEEPERS

• In our example, 11 of 27 students sleep a sufficient number of hours, so s = 11 and
f = 16, and the likelihood function is L(p) ∝ p11(1− p)16, 0 < p < 1

• The R function pdisc in the package LearnBayes computes posterior probabilities

• The package LearnBayes has to be installed the first time, connecting to a CRAN
mirror and downloading the package once found in the (very long) list of available
packages

• The package can be used in a new session only after typing library(LearnBayes)

• To use pdisc, one inputs the vector of proportion values p, the vector of prior prob-
abilities prior, and a data vector data consisting of s and f

• The output of pdisc is a vector of posterior probabilities

• The cbind command is used to display a table of the prior and posterior probabilities
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PROPORTION OF HEAVY SLEEPERS

• The xyplot function in the lattice package is used to construct comparative line
graphs of the prior and posterior distributions (remember of installing lattice, if
not installed yet, and typing library(lattice))

• Posterior probability of falling in {.25, .35, .45} is .940 (p = .35, .45 largest) and
means: .315 (prior) and .382 (posterior)

library(LearnBayes);library(lattice)
data=c(11,16)
post=pdisc(p,prior,data)
round(cbind(p,prior,post),2)
PRIOR=data.frame("prior",p,prior)
POST=data.frame("posterior",p,post)
names(PRIOR)=c("Type","P","Probability")
names(POST)=c("Type","P","Probability")
data=rbind(PRIOR,POST)
xyplot(Probability˜P|Type,data=data,layout=c(1,2),

+ type="h",lwd=3,col="black")
postmean=sum(p*post);priormean=sum(p*prior)
postmean;priormean
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PROPORTION OF HEAVY SLEEPERS

• Since the proportion is a continuous parameter, an alternative approach is to con-
struct a density π(p) on the interval (0,1) that represents the person’s initial beliefs

• Suppose she believes that p is equally likely to be smaller or larger than .3

• Moreover, she is 90% confident that p is less than .5

• Beta prior π(p) ∝ pa−1(1− p)b−1, 0 < p < 1

• The hyperparameters a and b are chosen to reflect the user’s prior beliefs about p

• The mean of a beta prior is m = a/(a+ b) and the variance of the prior is
v = m(1−m)/(a+ b+1), but it is difficult in practice for a user to assess values
of m and v to obtain values of the beta parameters a and b

• It is easier to obtain a and b indirectly through statements about the percentiles

• Here the person believes that the median and 90-th percentiles of the proportion are
given, respectively, by .3 and .5
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PROPORTION OF HEAVY SLEEPERS

• The function beta.select in the LearnBayes package is useful for finding the
shape parameters of the beta density that match this prior knowledge

• The inputs to beta.select are two lists, quantile1 and quantile2, that define
these two prior percentiles, and the function returns the values of the matching beta
parameters

quantile2=list(p=.9,x=.5)
quantile1=list(p=.5,x=.3)
beta.select(quantile1,quantile2)

• We see that this prior information is matched with a beta density with a = 3.26 and
b = 7.19

• Combining this beta prior with the likelihood function, one can show that the posterior
density is also of the beta form with updated parameters a+s = 3.26+11 = 14.26
and b+ f = 7.19+ 16 = 23.19

π(p|data) ∝ p14.26−1(1− p)23.19−1, 0 < p < 1
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PROPORTION OF HEAVY SLEEPERS

• Example of a conjugate analysis, with prior and posterior of same functional form

• Since the prior, likelihood, and posterior are all in the beta family, we can use the R
command dbeta (d=density) to compute the values of prior, likelihood, and posterior

• Note that the likelihood is not a density but here it is convenient to treat it as such

• The densities are displayed using three applications of the R curve command

• The graph helps show that the posterior density in this case compromises between
the initial prior beliefs and the information in the data

a=3.26;b=7.19;s=11;f=16
curve(dbeta(x,a+s,b+f),from=0,to=1,xlab="p",

+ ylab="Density",lty=1,lwd=4)
curve(dbeta(x,s+1,f+1),add=TRUE,lty=2,lwd=4
curve(dbeta(x,a,b),add=TRUE,lty=3,lwd=4)
legend(.7,4,c("Prior","Likelihood","Posterior"),

+ lty=c(3,2,1),lwd=c(3,3,3))
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PROPORTION OF HEAVY SLEEPERS
•

• We illustrate different ways of summarizing the beta posterior distribution to make
inferences about the proportion of heavy sleepers p

• The beta cdf and inverse cdf functions pbeta and qbeta are useful in computing
probabilities and constructing interval estimates for p

• Is it likely that the proportion of heavy sleepers is greater than .5?

• This is answered by computing the posterior probability P (p ≥ .5|data), i.e. .0684,
as given by the R command
1− pbeta(0.5, a+ s, b+ f)

• This probability is small, so it is unlikely that more than half of the students are heavy
sleepers

• A 90% interval estimate, i.e. (.256, .513)for p is found by computing the 5-th and
95-th percentiles of the beta density as given by the R command
qbeta(c(0.05,0.95), a+ s, b+ f)
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PROPORTION OF HEAVY SLEEPERS
• These summaries are exact because they are based on R functions for the beta

posterior density

• An alternative method of summarization of a posterior density is based on simulation

• In this case, we can simulate a large number of values from the beta posterior density
and summarize the simulated output ps

• Using the random beta command rbeta, we simulate 1000 random proportion val-
ues from the Beta(a+ s, b+ f) posterior and display the posterior as a histogram
of the simulated values

ps=rbeta(1000,a+s,b+f)
hist(ps,xlab="p",main="")

• The probability that the proportion is larger than .5 is estimated using the proportion
of simulated values in this range

sum(ps>=0.5)/1000

• Why does the probability change if I generate another time the sample ps?
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PROPORTION OF HEAVY SLEEPERS

• The probability changes at each generation of ps, since each sample is different
unless we set a ”seed” with the same number each time, i.e.

set.seed(22); ps=rbeta(1000,a+s,b+f)
sum(ps>=0.5)/1000

• The exact posterior mean of a Beta(a+ s, b+ f) distribution is

a+ s

(a+ s) + (b+ f)
= .381,

while the approximate one is given by the sample mean (different at each generation
unless a seed is set)

set.seed(22); ps=rbeta(1000,a+s,b+f); mean(ps)
(a+s)/(a+s+b+f)

• A 90% interval estimate, e.g. (.260, .517), can be estimated by the 5-th and 95-th
sample quantiles of the simulated sample
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PROPORTION OF HEAVY SLEEPERS

• I can compare with a 95% interval estimate or another 90% interval estimate

quantile(ps,c(0.05,0.95))
quantile(ps,c(0.025, 0.975))
quantile(ps,c(0.02,0.92))

• Sometimes the, say 95%, interval with smallest measure is sought and it is called
Highest Posterior Density (HPD) interval

• HPD intervals can be easily found for symmetric unimodal distribution, not for Beta

• These summaries of the posterior density for p based on simulation are approxi-
mately equal to the exact values based on calculations from the beta distribution
and they are getting closer when increasing the size of the sample
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PROPORTION OF HEAVY SLEEPERS
• So far we focused on learning about the population proportion of heavy sleepers p

• Suppose our person is also interested in predicting the number of heavy sleepers ỹ
in a future sample of m = 20 students

• If the current beliefs about p are contained in the density m(p), then the predictive
density of ỹ is given by

f(ỹ) =

∫
f(ỹ|p)m(p)dp

• If m(p) = π(p), prior density, then we refer to this as the prior predictive density

• If m(p) = π(p|data), posterior density, then f is a posterior predictive density

• How to predict y ”successes” (heavy sleepers) in a new sample of m students?

– Binomial model, dependent on p, for ỹ successes in a future sample of size m

fB(y|m, p) =
(m
y

)
py(1− p)m−y, y = 0,1, . . . ,m

– Distribution on p based on the current knowledge, i.e posterior π(p|data)
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PROPORTION OF HEAVY SLEEPERS

• Consider the case of a discrete distribution π(p|data) defined for {pi}

• ⇒ f(ỹ) =
∑

i fB(ỹ|m, pi)π(pi|data)

• The function pdiscp in the LearnBayes package can be used to compute the
predictive probabilities when p is given a discrete distribution

• p is a vector of proportion values and prior a vector of current probabilities

• m is the future sample size and ys the numbers of successes

• The output is a vector of the corresponding predictive probabilities

p=seq(0.05,0.95,.1)
prior= c(1,5.2,8,7.2,4.6,2.1,0.7,0.1,0,0)
prior=prior/sum(prior);m=20;ys=0:20
pred=pdiscp(p,prior,m,ys)
round(cbind(0:20,pred),3)
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PROPORTION OF HEAVY SLEEPERS

• We see from the output that the most likely numbers of successes in this future
sample are ỹ = 5 and ỹ = 6.

• Suppose instead that we model our beliefs about p using a Beta(a, b) prior

• In this case, we can analytically integrate out p to get a closed-form expression for
the predictive density

f(ỹ) =

∫
fB(ỹ|m, p)π(p)dp

=
(m
ỹ

)B(a+ ỹ, b+m− ỹ)

B(a, b)
, ỹ = 0,1, . . . ,m

where B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
is the beta function
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PROPORTION OF HEAVY SLEEPERS
• The predictive probabilities using the beta density are computed using pbetap

• The inputs to this function are the vector ab of beta parameters a and b, the size of
the future sample m, and the vector of numbers of successes y

• The output is a vector of predictive probabilities corresponding to the values in y

• We illustrate this computation using the Beta(3.26,7.19) prior used to reflect the
person’s beliefs about the proportion of heavy sleepers at the school

ab=c(3.26,7.19)
m=20;ys=0:20
pred=pbetap(ab,m,ys)

• We computed the predictive density for two choices of prior densities

• One convenient way of computing a predictive density for any prior is by simulation

• To obtain ỹ, we first simulate, say, p∗ from π(p), and then simulate ỹ from the bino-
mial distribution fB(ỹ|p∗)

19



PROPORTION OF HEAVY SLEEPERS
• We demonstrate this simulation approach for the Beta(3.26,7.19) prior

• We first simulate 1000 draws from the prior and store the simulated values in p

• Then we simulate values of ỹ for these random p’s using the rbinom function

• To summarize the simulated draws of ỹ, we first use the table command to tabulate
the distinct values

• We save the frequencies of ỹ in a vector freq

• Then we convert the frequencies to probabilities by dividing each frequency by the
sum and use the plot command to graph the predictive distribution

p=rbeta(1000,3.26,7.19)
y=rbinom(1000,20,p)
table(y)
freq=table(y)
ys=as.integer(names(freq))
predprob=freq/sum(freq)
plot(ys,predprob,type="h",xlab="y", ylab="Predictive Probability")
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PROPORTION OF HEAVY SLEEPERS

• Suppose we wish to summarize this discrete predictive distribution by an interval that
covers at least 90% of the probability

• The R function discint in the LearnBayes package is useful for this purpose

• In the output, the vector ys contains the values of ỹ and predprob contains the
associated probabilities found from the table output

• The matrix dist contains the probability distribution with the columns ys and predprob

• The function discint has two inputs: the matrix dist and a given coverage prob-
ability covprob

• The output is a list where the component set gives the credible set and prob gives
the exact coverage probability

dist=cbind(ys,predprob)
dist
covprob=.9
discint(dist,covprob)
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HEART TRANSPLANT MORTALITY RATE

• Consider the problem of learning about the rate of success of heart transplant surgery
of a particular hospital in the United States

• A first problem is related to notion of ”success” in this case

• A very unrealistic notion would be ”success = the person has the same chance of
dying in the next five years as another one who did not need a transplant”

• For this hospital, we observe the number of transplant surgeries n, and the number
of deaths within 30 days of surgery y is recorded (this is the notion of ”success” that
we consider)

• One could predict the probability of death for an individual patient

• This prediction could be based on a model (e.g. logistic regression) that uses infor-
mation such as patients’ medical condition before surgery, gender, and race but we
will make the very simplifying assumption that all patients have the same conditions
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HEART TRANSPLANT MORTALITY RATE

• We will rather focus on the expected number of deaths in a hospital and such number
will depend on two quantities

– The number n of transplants

– The mortality rate λ per each individual

• Here λ is the parameter of interest (we have always to identify what we are interested
in!) and we will analyze it following a Bayesian approach, i.e. using both data and
expertise (when available)

• We model the number of deaths y with a Poisson distribution with mean nλ

• A Poisson r.v. X ∼ P(θ) has density f(x|θ) =
θx

x!
e−θ, x = 0,1,2, . . .

• The mean of such r.v. is E(X) = θ

• Given a sample X = (X1, . . . , Xm) from X ∼ P(θ), the MLE is θ̂ =

∑m
i=1Xi

m

23



HEART TRANSPLANT MORTALITY RATE

• In our case (y deaths out of n transplants), the MLE is λ̂ = y/n

• Unfortunately, this estimate can be poor when the number of deaths y is close to
zero (consider also the cases of 1 deaths out of 5 transplants vs. 2 deaths out of 5
transplants)

• In this situation when small death counts are possible, it is desirable to use a Bayesian
estimate that uses prior knowledge about the size of the mortality rate

• A gamma distribution G(α, β) is a convenient choice for a prior on λ

• Its density is f(λ) =
βα

Γ(α)
λα−1e−βλ, λ, α, β > 0

• A convenient source of prior information is heart transplant data from a small group of
hospitals that we believe has the same rate of mortality as the rate from the hospital
of interest
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HEART TRANSPLANT MORTALITY RATE

• Suppose we observe the number of deaths zj and the number of transplants nj for
ten hospitals (j = 1, . . . ,10), where each zj is Poisson with mean njλ

• We would like to find a posterior distribution for λ based on those past data and use
it as a prior distribution for λ for this particular hospital

• If we assign λ the standard noninformative prior π(λ) ∝ λ−1, then the updated
distribution for λ, given these data from the ten hospitals, is

π(λ) ∝ λ

∑10

j=1
zj−1

e
−λ

∑10

j=1
nj

• The information leads to a prior G(α, β) with α =
∑10

j=1 zj and β =
∑10

j=1 nj

• In this example, we consider
∑10

j=1 zj = 16 and
∑10

j=1 nj = 15174 so that the prior
is G(16,15174)

• The posterior is G(α+ y, β + n) since π(λ|y, n) ∝ λye−nλ · λα−1e−βλ
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HEART TRANSPLANT MORTALITY RATE

• We now present an approach useful to check if prior and ssmling densities have
been specified properly

• The (prior) predictive density of y (i.e. before any data are observed) can be com-
puted using the formula

f(y) =
f(y|λ)π(λ)

π(λ|y)

• That follows from Bayes Theorem: π(λ|y) =
f(y|λ)π(λ)

f(y)

• By using the posterior density, one performs inference about the unknown parameter
conditional on the Bayesian model that includes the assumptions of sampling density
and the prior density
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HEART TRANSPLANT MORTALITY RATE

• One can check the validity of the proposed model by inspecting the predictive density

• If the observed data value yobs is consistent with the predictive density f(y), then
the model seems reasonable

• On the other hand, if yobs is in the extreme tail portion of the predictive density, then
this casts doubt on the validity of the Bayesian model, and perhaps the prior density
or the sampling density has been misspecified
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HEART TRANSPLANT MORTALITY RATE

• We consider inference about the heart transplant death rate for two hospitals: one
that has experienced a small number of surgeries and a second that has experienced
many surgeries

• First consider hospital A, which experienced only one death (yobs = 1) with 66
transplants

• The MLE of this hospital’s rate, 1/66, is suspect due to the small observed number
of deaths

• The following R calculations illustrate the Bayesian calculations

• After the gamma prior parameters α and β and number of surgeries n are obtained,
the predictive density of the values y = 0,1, . . . ,10 is found by using the preceding
formula and the R functions dpois and dgamma

• The formula for the predictive density is valid for all λ, but to ensure that there is no
underflow in the calculations, the values of f(y) are computed for the prior mean
value λ = α/β
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HEART TRANSPLANT MORTALITY RATE

• Note that practically all of the probability of the predictive density is concentrated on
the two values y = 0 and y = 1

• The observed number of deaths (yobs=1) is in the middle of this predictive distribution,
so there is no reason to doubt our Bayesian model

• The posterior density of λ can be summarized by simulating 1000 values from the
gamma density

alpha=16;beta=15174
yobs=1; n=66
y=0:10
lam=alpha/beta
py=dpois(y,lam*n)*dgamma(lam,alpha,beta)/dgamma(lam,alpha+y,beta+n)
cbind(y,round(py,3))
lambdaA=rgamma(1000,alpha+yobs,beta+n)
par(mfrow=c(2,1));hist(lambdaA);boxplot(lambdaA)
summary(lambdaA)
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HEART TRANSPLANT MORTALITY RATE

• Consider the estimation of a different hospital that experiences many surgeries

• Hospital B had yobs = 4 deaths, with n = 1767 transplants

• For these data, we again have R compute the prior predictive density and simulate
1000 draws from the posterior density using the rgamma command

• Again we see that the observed number of deaths seems consistent with this model
since yobs = 4 is not in the extreme tails of this distribution

n=1767; yobs=4; y=0:10
py=dpois(y,lam*n)*dgamma(lam,alpha,beta)/dgamma(lam,alpha+y,beta+n)
cbind(y,round(py,3))
lambdaB=rgamma(1000,alpha+yobs,beta+n)
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HEART TRANSPLANT MORTALITY RATE
• To see the impact of the prior density on the inference, it is helpful to display the prior

and posterior distributions on the same graph

• Density estimates of the simulated draws from the posterior distributions of the rates
are shown for hospitals A and B

• The gamma prior density is also displayed in each case

• We see that for hospital A, with relatively little experience in surgeries, the prior
information is significant and the posterior distribution resembles the prior distribution

• In contrast, for hospital B, with many surgeries, the prior information is less influential
and the posterior distribution resembles the likelihood function

par(mfrow=c(2,1))
plot(density(lambdaA),main="HOSPITAL A",xlab="lambdaA",lwd=3)
curve(dgamma(x,alpha,beta),add=TRUE)
legend("topright",legend=c("prior","posterior"),lwd=c(1,3))
plot(density(lambdaB),main="HOSPITAL B",xlab="lambdaB",lwd=3)
curve(dgamma(x,alpha,beta),add=TRUE)
legend("topright",legend=c("prior","posterior"),lwd=c(1,3))

31



TEST OF THE FAIRNESS OF A COIN
• Suppose you are interested in assessing the fairness of a coin

• You observe y, binomially distributed with parameters n and p, and you are inter-
ested in testing the hypothesis H that p = .5

• If y is observed, then it is usual practice to make a decision on the basis of the
p-value: 2min{P (Y ≤ y), P (Y ≥ y)}

• If this p-value is small, then you reject the hypothesis H and conclude that the coin
is not fair

• Suppose, for example, the coin is flipped 20 times and only 5 heads are observed

• In R we compute the probability .021 of obtaining five or fewer heads

pbinom(5,20,0.5)

• The p-value here is 2× .021 = .042

• Since this value is smaller than the common significance level of .05, you would
decide to reject the hypothesis H and conclude that the coin is not fair
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TEST OF THE FAIRNESS OF A COIN

• Consider this problem from a Bayesian perspective

• There are two possible models here – either the coin is fair (p = .5) or the coin is
not fair (p ̸= .5)

• Suppose that you are indifferent between the two possibilities, so you initially assign
each model a probability of 1/2

• Now, if you believe the coin is fair, then your entire prior distribution for p would be
concentrated on the value p = .5

• If instead the coin is unfair, you would assign a different prior distribution on (0,1),
call it π1(p), that would reflect your beliefs about the probability of an unfair coin

• Suppose you assign a Beta(a, a) prior on p

• This beta distribution is symmetric about .5 – it says that you believe the coin is not
fair, and the probability is close to p = .5
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TEST OF THE FAIRNESS OF A COIN

• To summarize, your prior distribution in this testing situation can be written as the
mixture

π(p) = .5I(p = .5) + .5I(p ̸= .5)π1(p),
where I(A) is an indicator function equal to 1 if the event A is true and otherwise is
equal to 0

• After observing the number of heads in n tosses, we would update our prior distri-
bution by Bayes’ rule
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TEST OF THE FAIRNESS OF A COIN

• After observing the number of heads in n tosses, we would update our prior distri-
bution by Bayes’ rule

• The posterior density for p can be written as

π(p|y) = λ(y)I(p = .5) + (1− λ(y))π∗
1(p|y), where

– π∗
1(p|y) is Beta(a+ y, a+ n− y)

– λ(y) is the posterior probability of the model where the coin is fair, i.e.

λ(y) =
.5p(y|.5)

.5p(y|.5) + .5f1(y)

– p(y|.5) is the binomial density for y when p = .5

– f1(y) is the (prior) predictive density for y using the beta density π1(p) (i.e. the
integral of binomial*beta w.r.t. p)

• In R, the posterior probability of fairness λ(y) is easily computed

35



TEST OF THE FAIRNESS OF A COIN

• The R command dbinom will compute the binomial probability p(y|.5)

• The predictive density for y can be computed using the identity

f1(y) =
f(y|p)π1(p)

π∗
1(p|y)

• Assume first that we assign a Beta(10,10) prior for p when the coin is not fair and
we observe y = 5 heads in n = 20 tosses

• The posterior probability of fairness (0.280) is stored in the R variable lambda

• We get the surprising result that the posterior probability of the hypothesis of fairness
H is .28, which is less evidence against fairness than is implied by the p-value
calculation above

n=20;y=5;a=10;p=0.5
m1=dbinom(y,n,p)*dbeta(p,a,a)/dbeta(p,a+y,a+n-y)
lambda=dbinom(y,n,p)/(dbinom(y,n,p)+m1)
lambda
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TEST OF THE FAIRNESS OF A COIN

• The function pbetat in the LearnBayes package performs a test of a binomial
proportion

• The inputs to the function are:

– the value of p to be tested

– the prior probability of that value

– a vector of parameters of the beta prior when the hypothesis is not true

– a vector of numbers of successes and failures

• In this example, the syntax would be pbetat(p,.5,c(a,a),c(y,n-y))

• The output variable post is the posterior probability that p = .5, which agrees with
the calculation

• The output variable bf is the Bayes factor in support of the null hypothesis
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