2021-10-27 Kähler geometry

0

Recall we defined "stable or bits" in a vector space V with a group action of G C SL (V). Blow-up at the origin OEV. Then we get 0 (-17 - 1P N ZCP^N and Consider a subman fild OP (-1) -> IP N V $\mathcal{O}_{Z}(-1) \longrightarrow Z$ Think of Z as a parameter space of { varietils & a fuertor Idlesy on france manifolds y you are interested in. 2 can le infinite dimensional, but for du noment we assume dim 2 < 00.

pFZ (seni) stable Pef x to ~ Ly det Grz closed and finite stabilize $(resp. Ga \cap rpro setim = p)$ $P(v) \supset 2 \not \Rightarrow$ We next describe Kempit-Ness picture. We replace Z by a symplectic manifold N. (2=N but 2 algebraic variety, N symplectic ofd) Let (H, S) be a symplectic manifold N, i.e. 2 satisties the following · I closed 2-form. $\Omega : TN \times TN \longrightarrow \mathbb{R}$ i.e. if $\mathcal{N}(X,T) = 0$ for $\forall T$ then X = 0 $\chi = \partial$.

called a symplectic form. (3) Ω i Example If (M, w) is time, or take form (M, w) = (M, S)be a hie group acting Let K (U, R) as symplectomorphisms (symplectic diffeomorphism) i.e. $\forall j \in K, \ j^* \Omega = \Omega$ Let k be the his algebra of K. Then Kxck defines a vector field on N which we denote by the same letter X and $L_X \mathcal{R} = 0$. L_X hie derivative (\cdot) $\frac{d}{dt}\Big|_{t=0} = \frac{E \cdot x p (t \times)^* \Omega}{1 - 1 - 1} = L_X \Omega$ $=\frac{1}{M}\left(1+\frac{1}{1+0}\right) = 0$ Since $L_X = Aoi(X) + i(X) d$, A = 0. we have $0 = L_{x} \Omega = d(i(x) \Omega).$

So i(x) si closed. E XER is a Hamiltonian wecTa field Det if i (x) I is exact, i.e. 3 $u_{x} \in C^{\infty}(N)$ s.T. $i(x) \Omega = -Au_{x}$ Nx is called the Hamiltonian function of X. (Instead you can start with nec"(N)) then, since Ω is non-degenerate, 3 x p.t. n'(x) I = -du X = X n is called the Hamiltonian vector field An. Dit Lit k be the dual of K. M: N -> kt is a moment map for the actim of K $\bigoplus_{\substack{A \neq a \\ a \neq a}} (i) \langle A \mu, \chi \rangle = -i(\chi) \Omega$ (2) $g^* \mu = \mu \circ Ad(g) : k$ -equivariant. $\mu_{g(p)}(x) = \mu_{p}(Ad(q)x)$

 $(\overline{5})$ $M_{X}(p) = \langle \mu c p \rangle, X \rangle$. Then Set $du_{\chi} = (d\mu, \chi) = -\overline{i}(\chi) \Omega$: Un is a Hamiltonian function. [I] = H²_{PR} (N) is an integral class. Suppose $1 \quad 0 \rightarrow 2 \quad \neg R \rightarrow R / 2 \rightarrow 0$ $\left(H^{2}(N; 2) \rightarrow H^{2}(N:\mathbb{R}) \stackrel{\sim}{=} H^{2}(\mathbb{N}) \right)$ $\frac{1}{1} \xrightarrow{1} N \quad \text{couplex line bundle with}$ $c_{i}(\Lambda) = C \Omega J.$ Let V bé a connection of A. e break frame. $\nabla e = e \cdot 0$ O local 1-form. (connection form) Suppose I do = Q. (Fennal fact: Zf ERI is an integral class) The such L and V always exist.

section. Let ~ = ~ - gro $\Lambda^{\star}|_{\mathcal{V}} \cong \mathcal{V} \times \mathbb{C}^{\star}$ Locally on U $\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\$ $\widetilde{\theta} := \frac{dz}{z} + \theta$ Proposition: & defines a global l-form on N^{*}. (This is the connection form for the principal C⁴-burdle N^{*} dr is the Maner-Cartan form.) $f = e \sigma$ $= e^{2} f = e \sigma$ $= e^{2} f^{w}$ $f = e \sigma$ $= e^{2} f^{w}$ $f = e \sigma w$ $V \qquad P = 2 e^{2} f^{w}$ $= e \sigma w$ $\therefore 2 = \sigma w$ $\nabla e = e \delta m U, \quad \nabla f = f \delta m V.$ $V = f \delta m V.$ $V = \delta \sigma + e A \sigma$ $\delta \sigma = \delta \sigma + e A \sigma$ $\delta \sigma = \delta \sigma \sigma$