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今日唐诗
山行
杜牧

远上寒山石径斜，

白云生处有人家。

停车坐爱枫林晚，

霜叶红于二月花。
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We shall consider knots as embeddings of a circle in three-space.

Definition 1.1
We define an n-secant of the knot K as an oriented line intersecting K at
exactly n points. By an n-secant we mean an ordered n-tuple of points
on the knot K (no two of them belong to a straight segment of the knot
K), which lie on an n-secant line in the given order.

We shall call 2-secant simply secants, we shall call 3-secants trisecants,
and we shall call 4-secants quadrisecants.
The set of n-secants is Sn = Kn \ ∆̃, where ∆̃ denotes the set of n-tuples
where some two of n points form a segment belonging completely to K.
Note that the set of secants S = S2 is homeomorphic to the ring
S1 × (0, 1).
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The types of trisecants
Denote the set of trisecants T ⊂ K3 \ ∆̃. Each trisecant abc may have
two cyclic orders depending on the orientation of the knot.We denote
them by the smallest element in the lexicographic order: abc or acb and
call them the direct and the reversed order respectively. The two types of
quadrisecants are given in Fig. 1. Changing the orientation of the knot to
the opposite one changes the trisecant type.

Figure 1: The reversed (left) and the direct (right) trisecants

Denote the set of direct trisecants by T d and denote the set of reversed
trisecants by T r. It is clear that T d ∩ T r = ∅. Changing the orientation
of the knot or of the secant line permutes the sets T d and T r.
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Types of quadrisecants
Points of the quadrisecant abcd appear on the knot K in some cyclic order.
There are 3 different orders of quadrisecant points on the knot, if we don’t pay
attention to the orientation of the knot K. Each order is given by its
lexicographically minima representative (type) abcd, abdc, or acbd.

Figure 2: Simple, reversed, and alternating quadrisecants

Definition 1.2
Quadrisecants of types acbd, abcd, and abdc are called alternating, simple, and
reversed quadrisecants, respectively.

When considering quadrisecants abcd we shall, as usual, orient the knot K in
such a way that b ∈ γad. Then the cyclic order of points on K will be abcd,
abcd, or acbd depending on the type.
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Essential secants

Definition 1.3

Let α, β, and γ be three simple curves with ends a and b forming a
linked Θ-graph, see Fig. 3. LetX = R3 \ (α∪ γ), and δ be a curve parallel
to α ∪ β in X. (By parallel we mean that α ∪ β and δ cobound an
embedded annulus in X.) We assume that δ is homologically trivial in X,
i.e., the linking index between δ and α ∪ γ equals zero. Let
h = h(α, β, γ) ∈ π1(X) be the (free) homotopy class of the curve δ. We
call the triple (α, β, γ) inessential if the class h is trivial. Otherwise we
call the triple (α, β, γ) essential.

In other words, the oriented triple (α, β, γ) is inessential, if there exists a
disc D with boundary α ∪ β without interior intersections with the knot
α ∪ γ (self-intersections of the disc D and its interior intersections with β
are allowed).
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Essential secants

Figure 3: In the knotted Θ-graph α ∪ β ∪ γ the triple (α, β, γ) is essential. To
see this, let us consider the curve δ parallel to α ∪ β and having zero
intersection index with α∪ γ and note that it is homotopically non-trivial in the
complement R3 \ (α ∪ γ). In the figure β is the segment ab; hence we can say
that the arc α = γab of the knot α ∪ γ is essential.
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Essential secants
Let a, b ∈ K. Denote the knot arc from the point a to the point b
(according to the knot orientation) by γab, and denote its length by ℓab.
The secant from a to b will be denoted by ab.

Definition 1.4

1. Assume the knot K is non-trivial, a, b ∈ K � ℓ = ab. We say that the
arc γab is essential, if for each ϵ > 0 there exists an ϵ- perturbation ℓ′ of
the segment ℓ (with the same ends), such that K∪ ℓ′ form a Θ-graph, for
which the triple (γab, ℓ′, γba) is essential.
2. The secant ab of the knot K is essential if both arcs γab and γba are
essential. Otherwise the arc is inessential. Denote the set of essential
secants by ES ⊂ S.
3. We say that the n-secant a1a2 . . . an is essential, if the secant aiai+1 is
essential for each i such that on one of the arcs γaiai+1 or γai+1ai there are
no other points aj.

S.Kim, V.O.Manturov, I.M.Nikonov Lecture 8. Quadrisecants of knots



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definitions Existence of quadrisecants The self-linking number Problems

Existence of quadrisecants

Theorem (E. Pannwitz, 1933)
In each non-trivial generic polygonal knot there exists at least 2u2

quadrisecants where u is the unknotting number.

Theorem (G. Kuperberg, 1994)
Each non-trivial smooth knot has an essential quadrisecant.

Theorem (E. Denne, 2004)
Each non-trivial smooth knot has at least one alternating quadrisecant.

Theorem (A. Cruz-Cota and T. Ramirez-Rosas, 2015)
Let K be a generic polygonal knot with n edges. Then K has no more
than n

12 (n − 3)(n − 4)(n − 5) quadrisecants.
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Existence of quadrisecants

Theorem 2.1 (E. Denne, 2004)
Each nontrivial knot has at least one alternating quadrisecant.

Remark 2.2
Note that the quadrisecant appears when one has some trisecants with
common points. The quadrisecant abcd contains the three trisecants:
(1)abc, (2)abd, (3)acd, (4)bcd. Pannwitz [Pann] proved the existence of
a quadrisecant by considering pairs of trisecants (1)abc and (3)acd.
Kuperberg [Kup] proved that quadrisecants exists by using pairs of
trisecants (2)abd and (3)acd. Schmitz [Schm] was proving the existence
of alternating quadrisecants by considering families (1)abc and (2)abd,
however in his proof some quadrisecants can degenerate into a trisecant.
Later we shall use the approach of Schmitz.
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Existence of trisecants

Lemma 2.3 ([Pann])

Every point of a non-trivial knot K is an initial point of some trisecant.

Proof.
Assume a ∈ K does not serve as the first point of any trisecant. Then the
union of segments ab, b ∈ K, is a disc with boundary K. If two chords ab
and ac intersect at a point distinct from a, then one of them is a subset
of the other. Then they form a trisecant (abc or acb), contradiction.
Thus, the disc is embedded, hence, the knot K is trivial.
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Existence of quadrisecants
Let us consider the projection π12 : K3 → K2, π12(xyz) = xy, and let
T = π12(T ) ⊂ S be the image of the set of trisecants T . Let us
introduce the notation Td := π12(T d) and Tr := π12(T r).

Lemma 2.4

Let ab ∈ Td ∩ Tr in S. This meanst that there exist points c, d such
that abc ∈ T r � abd ∈ T d. Then either abcd or abdc is an alternating
quadrisecant.

Thus, in order to prove the existence of an alternating quadrisecant, it
suffices to check that Td ∩Tr ̸= ∅ in S. To this end we shall first consider
generic polygonal knots. We shall prove the existence of alternating
quadrisecant by passing to the limit, and then extend the result to
smooth knots.
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A generic polygonal knot

Definition 2.5

A polygonal knot K in R3 is generic, if the following conditions hold:
No four vertices of the knot K are coplanar, no three vertices are
collinear.
For any three pairwise skew edges of the knot K there exist no other
edge K lying in the quadric generated by these edges.
There knot has no n-secants for n ≥ 5.

Proposition 2.6

The set of generic n-vertex polygonal knots is open and dense in R3n.

S.Kim, V.O.Manturov, I.M.Nikonov Lecture 8. Quadrisecants of knots



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definitions Existence of quadrisecants The self-linking number Problems

Trisecants for a polygonal knot: adjacent edges
Let ei and ei+1 be adjacenet edges of a knot. If some edge ej intersects
some part of the plane generated by ei and ei+1, then we get a
one-parameter family of quadrisecants. This family is homeomorphic to
[0, 1] or to [0, 1) depending on the domain intersected by ej (see Fig. 6).
A quadrisecant appears when the fourth edge intersects one of the
trisecants. By genericiry, two non-adjacent edges can not be coplanar,
hence, in this case there is no more than one quadrisecant.

Figure 4: The plane is generated by edges ei, ei+1. A trisecant intersecting
ei, ei+1 exists only if the third edge intersects one of the domains marked by
(*). The family of trisecants intersecting ei, ei+1, ej is homeomorphic to [0, 1];
the family of trisecants intersecting ei, ei+1, ek is homeomorphic to [0, 1).
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Trisecants for a polygonal knot: skew edges
A triple of pairwise skew lines l1, l2, l3 generates a unic conic surface, the
ruled surface H (see Fig. 5). It is either hyperbolic paraboloid (if three
lines are parallel to one plane) or one-sheeted hyperboloid. On the
surface H there are two families of straight line generators. The lines
l1, l2, l3 belong to the same family of generators, and any line intersecting
them belongs to the same family. Hence, the fourth linel4 intersecting H
gives rise to one or two lines intersecting l1, l2, l3 and l4.

Figure 5: One-sheeted hyperboloid and hyperbolic paraboloid
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The set of trisecants

Proposition 2.7

Let K be a non-trivial generic polygonal knot. Then the closure of the set
of trisecants T is a compact one-dimensional manifold with boundary
piecewise-linearly embedded in K3 so that T ⊂ K3 \ ∆̃ � ∂T ⊂ ∆.
Moreover, each component T is either a simple closed curve or a simple
open arc.

Proposition 2.8

Let K be a non-trivial generic polygonal knot. Then the projection πij
(1 ≤ i < j ≤ 3) gives rise to a piecewise smooth immmersion T to the set
of secants S in such a way that T = πij(T ) has only double
self-intersections.

Consider the closure of the set of secants S: S = (K2 \ ∆̃)∪ ∆̃+ ∪ ∆̃−, ���
∆̃− = {(a, b) ∈ K2 | γab = ab} and ∆̃+ = {(a, b) ∈ K2 | γba = ba}.
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The boundary of the set of trisecants

Figure 6: On the left, the interval of adjacent trisecants ends with a degenerate
trisecant vvp or pvv. The corresponding trisecant intervals for S are on the
right. The intervals in Td and Tr correspond to trisecants with orders e1e2e3
and e3e2e1 respectively.

Lemma 2.9

Let K be a non-trivial generic polygonal knot. Then Tr ∩ ∆̃− = ∅ and
Td ∩ ∆̃+ = ∅.
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The set of significant trisecants
To find a significant quadrisecant, let us consider trisecants abc, for
which the segment bc is essential. Hence, ET = π−1

23 (ES) ∩ T . Set
ET d = ET ∩ T d and ET r = ET ∩ T r.
Definition 2.10
Let ET = π12(ET ) be the projection of the set of essential trisecants to
the set of secants S; similarly, let us define ETd := π12(ET d) �
ETr := π12(ET r).

As the set T, the set ET is an immersion into S of a one-dimensional
manifold and it can have only transverse double points.

Lemma 2.11

Let ab ∈ ETd ∩ ETr in S. Consequently, there exist c and d such that
abc ∈ ET r and abd ∈ ET d. Then abcd or abdc is an essential alternating
quadrisecant.
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Definition 2.12
A closed simple curve α : [0, 1] → S goes around S one time, if its
homotopy class is equal to 1 in π1(S) ≡ Z.

Figure 7: A curve winding 1 time around the set S

Lemma 2.13 (Pannwitz)

Let K be a non-trivial generic polygonal knot. Any curve which goes
around S one time is a non-trivial generic polygonal knot. Each curve
which goes around S once, intersects the set ET of essential trisecants.
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Proof of Lemma 2.13
Let us first consider the case when the curve α does not contain
trisecants. Let α = (x(s), y(s)) be a parametrisation of the curve. Let us
construct the rays −→xy \ xy, see Fig.. 23.

Figure 8: A ray −→xy \ xy.

The union of rays together with the point ∞ forms a disc D, whose
boundary is the knot K. Then, by Dehn’s lemma there exists an
embedded disc with boundary K. Hence, the knot K is trivial.
Contradiction completes the proof.
Now, let us consider the general case. One may assume that the
intersection α ∩ T is finite.
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Proof of Lemma 2.13
For each non-essential trisecant on α by using a surgery one can remove
an intersection between the spanning disc D and the knot K, as shown. 9.

Figure 9: Surgery for a non-essential trisecant
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A homological lemma

Proposition 2.14

Let A and B be closed subsets in the annulus S such that A does not
intersect ∆+ and B does not intersect ∆−. If A ∩ B = ∅, then there
exists a curve passing once around S and not intersecting A ∪ B.
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Theorem 2.15

Each non-trivial generic polygonal knot in R3 has an essential
quadrisecant.

Proof.
Assume that ETs ∩ ETd = ∅ in S. According to Proposition 2.14 there
exists a path passing once around S and not intersecting
ET = ETs ∪ ETd. This contradicts Lemma 2.13. Consequently,
ETs ∩ ETd ̸= ∅. Then, by Lemma 2.11 there exists at least one
alternating quadrisecant.

Corollary 2.16
Ever smooth non-trivial knot in R3 has an essential alternating
quadrisecant.
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The total curvature of the curve

Definition 2.17
The total curvature of a closed broken line is equal to the difference between
the sum of angles between all adjacent edges and πn, where n is the number of
edges of the broken line.
The total curvature of a smooth curve is equal to the curvilinear first-type
integral of the curvature.

Theorem 2.18
Any non-trivial knot in R3 has total curvature strictly greater than 4π.

Proof.
The knot K has an alternating quadrisecant. An alternating quadrisecant is a
quadrilateral inscribed in K having total curvature 4π. Note that the addition
of vertices to the broken line inscribed in K does not decrease the total
curvature and increases the curvature if the added vertex belongs to one of the
planes spanned by other vertices of the broken line. Hence, the total curvature
of a non-trivial knot is strictly greater than 4π.
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The 2-hull

Definition 2.19

Let K be a closed curve in R3. Denote by n-hull hn(K) of the knot K the
set of points p ∈ R3 such that K intersects each plane P passing through
p at least 2n times.

Theorem 2.20

Any non-trivial knot has a non-empty 2-hull.

Proof.
We know that the knot K has an alternating essential quadrisecant abcd.
Then each point t of the segment bc lies in the 2-hull of the knot K.
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Later on, we shall consider long knots, i.e., embeddings f of the segment
I = [0, 1] into the cube I3 with fixed ends and tangent vectors at end
points. Denote the space of embeddings by Emb(I, I3).
For each long knot f consider the submanifold Coi(f) and the subset
Int(∆3) consisting of triples of points t1 < t2 < t3 such that f(t1), f(t2)
and f(t3) are collinear and f(ti) lies on the straight line between the other
points, see Fig. 10.

Figure 10: Collinear points on the knot giving rise to a point of Co1(f).
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The self-linking index

Proposition 3.1
For each generic long knot parametrised by f ∈ Emb(I, I3) the closure
Coi[f] of the set Coi(f) is a one-dimensional submanifold in ∆3. Herewith
the boundary of the manifold Co1[f] belongs to the faces
∆3

(1=2) = {t1 = t2} and ∆3
(3=4) = {t3 = 1}, and the boundary of the

manifolds Co3[f] belongs to the faces ∆3
(0=1) = {t1 = 0} and

∆3
(2=3) = {t2 = t3}.

Definition 3.2
Let us define the closure of the manifold with boundary Co1[f] as an
arbitrary piecewise-smooth 1-manifold Co1[f] such that
Co1[f] ∩ Int(∆3) = Co1(f) and Co1[f] ∩ ∂(∆3) ⊂ ∆3

(1=2) ∪∆3
(3=4). The

closure Co3[f] is defined analogously.
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The self-linking index

Definition 3.3
For a long knot K parametrised by f ∈ Emb(I, I3) we define the
self-linking invariant as ν2(K) = lk(Co1[f],Co3[f]) ∈ Z.

Theorem 3.4
The self-linking index ν2 is an invariant of long knots.

Proof.
Since the sets ∆3

(1=2) ∪∆3
(3=4) and ∆3

(0=1) ∪∆3
(2=3) are contractible and

have no common interior points, then ν2(K) does not depend on the
choice of closures Co1[f] and Co3[f].
A generic homotopy between two parametrisations f and g of the knot K
gives rise to an oriented cobordism between manifolds Coi[f] and Coi[g].
Hence, lk(Co1[f],Co3[f]) = lk(Co1[g],Co3[g]).
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An example

Figure 11: The trefoil and the figure eight. The (x1, x2)-projection. We mark
points with x3 = 0. On the arcs between marked points the coordinate x3 has
exactly one local maximum or minimum.
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Example. Degenerate trisecants

Figure 12: Boundary trisecants

Figure 13: Tangent trisecants
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Example. Quadrisecants

Figure 14: Quadrisecants of knots

Figure 15: The sets of knot trisecants
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In order to find the linking index ν2, it suffices to count the intersection
points between planar projections of manifolds Coi[f]. The following
lemma turns out to be useful.
Lemma 3.5

Let ρ : ∆3 → ∆2 be the orthogonal projection along t1, and let f be the
parametrisation of the knot K. The intersection of projections Co1[f] and
Co3[f] with respect to ρ corresponds to quadrisecants of the knot K.

Proof.
The intersection of Co3[f] and Co1[f] corresponds to a triple of points
f(t∗1), f(t∗2), f(t∗3) lying on the line L∗ and to the triple f(t′1), f(t′2), f(t′3) on
the line L′, where t∗2 = t′2 and t∗3 = t′3. Then L∗ = L′, hence, the points
f(t′1), f(t∗1), f(t′2) and f(t′3) are collinear.

Theorem 3.6

The value of the invariant ν2 for the trefoil is +1, and for the figure eight
knot it is ν2 = −1− 1 + 1 = −1.

S.Kim, V.O.Manturov, I.M.Nikonov Lecture 8. Quadrisecants of knots



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Definitions Existence of quadrisecants The self-linking number Problems

The space C4(I3), consisting of collinear configurations of four points has
twelve components. If (x1, x2, x3, x4) is a quadrisecant, let us orient the
line from x1 to x2. The choice of orientation gives rise to a permutation
of {1, 2, 3, 4}: σ(i) = j where i-th point on the line xj. According to the
choice of orientation σ(2) > σ(1); this gives twelve permutations.

Definition 3.7

Let C4 denotes the subset of collinear configurations in C4(R3)
corresponding to the 4-cycle (3142). Let the long knot K ⊆ I3 be
parametrised by the map f : I → I3. With each quadruple
x = (f(t1), f(t2), f(t3), f(t4)) ∈ C4 we associate the sign ϵx equal to the
sign of the determinant of the matrix:[
|f(t3)− f(t2)| · det[v, f′(t1), f′(t3)] |f(t3)− f(t1)| · det[v, f′(t2), f′(t3)]
|f(t4)− f(t2)| · det[v, f′(t4), f′(t1)] |f(t4)− f(t1)| · det[v, f′(t2), f′(t4)]

]
��� v = f(t2)− f(t1).
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Using the sign notation, we may reformulate the definition of self-linking
index as follows.
Proposition 3.8

Let K = im(f) be a generic long knot in I3. Then

ν2(K) =
∑

x∈C4(K)∩C4

ϵx

Proof.
The linking index ν2(K) = lk(Co1[f],Co3[f]) is equal to the sum of signs
of projections ρ(Co1[f]) and ρ(Co3[f]), where ρ(Co3[f]) forms an
overcrossing. By Lemma 3.5, these crossings bijectively correspond to
quadrisecants of the type (3142). One readily checks that the crossing
sign is ϵx.
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Theorem 3.9

The self-linking index ν2 is a Vassiliev invariant of order 2.

Proof.
Let us show that the third derivative of this invariant is zero, i.e., for each knot K and
a set of two crossing (changes) c1, c2, c3 one has:∑

σ⊂[3]

(−1)|σ|ν2(Kσ) = 0, (1)

where [3] = {1, 2, 3} � Kσ denotes the knot obtained from K by changing the
crossings ci for i ∈ σ. One can assume that the crossing change is performed inside
the ball Bi, 1 ≤ i ≤ 3, and that there is no line passing through these three balls.
Then no quadrisecant l on one of the eight knots Kσ intersects all the three balls.
Hence, the whole alternating sum of quadrisecants can be split into:

a) Sums corresponding to quadrisecants passing through the balls B1,B2

b) Sums corresponding to quadrisecants passing through the balls B1,B3

c) Sums corresponding to quadrisecants passing through the balls B2,B3

d) Sums corresponding to quadrisecants passing through no more than one of the
balls B1,B2,B3.

It is easy to see that each of these (alternating) sums is zero, which completes the
proof.
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Corollary 3.10

The self-linking index ν2(K) coincides with the coefficient c2(K) of the
second degree in the Alexader-Conway polynomial.
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Research Problems
1 One research problem about the self-linking number: how to make

this invariant “non-commutative”.
This invariant is a certain COUNT of points in a certain
configuration space. Is is possible to generalise this count (sum) to a
product (as generators of a certain group)?

2 Construct the theory of quadrisecants for rectangular knots (i.e.
polygonal knots with all edges parallel to one of the axes Ox,Oy,Oz).
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