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2 Basic of Graphs

In this second part of our course, we will discuss many interesting results in graph theory. We
first introduce several basic definitions about graphs.

Definition 2.1. A graph G = (V, E) consists of a vertex set V and an_edge set E, where the
elements of V' are called vertices and the elements of E C (5) = {{z,y} : x,y € V'} are called
edges.

e Definition 2.1 provides the definition of a simple undirected graph, which is the very common
graph we concern in this course. The word “undirected” means that the edge set E contains
unordered pairs. Otherwise, G is called a directed graph. A graph is simple if it has no loops or
multiple edges. A loop is an edge whose endpoints are equal. Multiple edges are edges having

the same pair of endpoints. n_
e We say vertices z and y are adjacent if {z, y}E/E_kwrite r~gyorx~yorazy € k.
— _
e We say the edge xy is incident to the endpoints x and y.
e Let e(G) be the number of edges in G, i.e., e(G) = |E(G)|. [
/,——_—

e The degree of a vertex v in GG, denoted by dg(v), is the number of edges in G incident to v.

B

=
e The neighborhoo is the set of vertices that are adjacent to v, i.e., Ng(v) =
{u € V(G) : u ~ v}. Thus we have dg(v) = |Ng(v)|.

e A graph G’ = (V', E’) is a subgraph of G = (V,E) if V/ CV and E’ C Eﬂ(‘g,), ie(, G’ CG.
- —F—
e A subgraph G' = (V' E’) of G = (V, E) is induced, if E' = EN (‘g/ ), write G' = G[V'].

Definition 2.2. Two graphs G = (V,E) and G' = (V',E') are isomorphic if there exists a
bijection f : V. — V' such that i ~¢ j if and only if f(i) ~q f(J).

e A graph on n vertices is a complete graph (or a clique), denoted by@if all pairs of vertices
are adjacent. So we have e(K,,) = (g)

e A graph on n vertices is called an independent set, denoted by I, if it contains no edge at

all.
_ 7 3
e Given a graph G = (V, E), its complement is a graph G = (V, E°) with E° = (})\E.
——————————————————————

e The degree sequence of a graph G = (V, E) is a sequence of degrees of all vertices listed in 7
a non-decreasing order. ; 2’_ z 7 T, ( ‘,

e The patf length k — 1 is a graph vjvs...v;, where v; ~ vy for ¢ € [k — 1] and v; # vy
for any j # [ € [F]. Note that the length of a path P (denoted by |P|) is the number gf edges in
P. — P ‘ZLA

c b T T

e A cycl§ C;, bf length k is a gra% v1V2... 0,V Where v; ~ v for @ € [k] , vk = v1, and
vj # vy for any 7 # 1 € [k].

e Let G be a simple graph with vertex set V(G) = {v1,...,v,} and edge set E(G) =
{e1,...,em}. The adjacency matrix of G, denoted by A(G), is the n-by-n matrix in which
entry a; j is the number of edges in G with endponts {v;, v;]. The incidence matrix M (G) is the
n-by-m matrix in which entry m, ; is 1 if v; is an endpoint of e; and 0 ofherwise.

24



e A graph G is planar, if we can draw GG on the plane such that its edges intersect only at
their endpoints.

Remark 2.3!(Euler’s Formula);z Let G = (V, E) be a connected planar graph with v vertices and
e edges, and leT r be The number of regions in which some given embedding of G divides the plane.

Thenv—e+r=2.

Exercise 2.4. Show that K4 is planar but K5 is not. k -3
3
Exercise 2.5. Show thatw.

The following Handshaking Lemma is the most basic lemma in graph theory.

Lemma 2.6 (Handshaking Lemma). In any graph G = (V, E),

D da(v) = 2¢(G). J\ML& C»MM

veV

Proof. Let F' = {(e,v) : e € E(G),v € V(G) such that v is incident to e}. Then

Y 2=|F|=) dav).

ecE(GQ) veV

Corollary 2.7. In any graph G, the number of vertices with odd degree is eveﬁ/

Proof. Let O = {v € V(G) : d(v) is odd} and € = {v € V(G) : d(v) is even}. Then by Lemma
2.6,

veO veE

2e(G) = > da(v) + > da(v). \/
Thus we have ) _,dg(v) is even, moreover we have |O| is even. 1

Corollary 2.8. In any graph G, if there exists a vertex with odd degree, then there are at least

two vertices with odd degree. \/
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