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Plan of the course (10 lectures)

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel, 2015)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman, 2020+)

5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation
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Plan of this lecture

Invariant measures of KPZ equation

1 Renormalization, Cole-Hopf solution, Approximation-1

1.1 Approximation-1: Simple
1.2 Cole-Hopf solution

2 Approximation-2: Suitable to find invariant measures

3 Invariant measures of Cole-Hopf solution and SHE

4 Proof of Theorem 3 and Corollary 4

4.1 Cole-Hopf transform for Approximation-2
4.2 Limit of Aε(x ,Z ) (Boltzmann-Gibbs principle)
4.3 Proof of Theorem 5
4.4 Proof of Theorem 3 and Corollary 4

5 Remarks from the viewpoint of interacting particle
systems
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(Takeuchi-Sano-Sasamoto-Spohn)
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1. Renormalization, Cole-Hopf solution, Approximation-1

▶ In Lecture No 1, we introduced KPZ equation (1),
the renormalized KPZ equation (2) and
Cole-Hopf solution (3) of KPZ equation:

∂th = 1
2
∂2
xh +

1
2
(∂xh)

2 + Ẇ (t, x), (1)

∂th = 1
2
∂2
xh +

1
2
{(∂xh)2 − δx(x)}+ Ẇ (t, x), (2)

h(t, x) := log Z (t, x), (3)

where Z is the solution of multiplicative linear stochastic
heat equation (SHE):

∂tZ = 1
2
∂2
xZ + ZẆ (t, x). (4)

▶ We may consider on R or T = [0, 1), but mostly on R in
this lecture.

▶ The product of Z and Ẇ in (4) should be understood in
Itô’s sense (in mild form or in generalized functions’
sense).
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▶ As we saw, SHE (4) is well-posed and a heuristic
application of Itô’s formula to h(t, x) in (3) leads to the
renormalized KPZ equation (2).

▶ Our first goal is to give mathematically rigorous
foundation to this procedure.

▶ The ill-posedness of KPZ equation (1) comes from the
mismatch between the nonlinear term and the noise.

▶ We can not deal with the KPZ eq directly. We consider
its approximation by replacing the noise by smooth one.

▶ However, the solution of the equation with the noise
simply replaced by smooth one does not converge in the
limit.

▶ We need to introduce some additional diverging factor to
compensate in removing smoothness of the noise. This is
called the renormalization.
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1.1. Approximation-1: Simple

▶ Symmetric convolution kernel: Let η ∈ C∞
0 (R) s.t.

η(x) ≥ 0, η(x) = η(−x) and
∫
R η(x)dx = 1 be given, and

set ηε(x) := 1
ε
η( x

ε
) for ε > 0.

▶ Smeared noise:
Ẇ ε(t, x) = Ẇ (t) ∗ ηε(x) ≡ ⟨Ẇ (t), ηε(x − ·)⟩

▶ Approximating equation-1: Let h = hε be a solution of

∂th = 1
2
∂2
xh +

1
2

(
(∂xh)

2 − cε
)
+ Ẇ ε(t, x), (5)

where

cε =

∫
R
ηε(y)2dy

(
=

1

ε
∥η∥2L2(R)

)
.

▶ cε ↗ ∞ as ε ↓ 0. cε is called a renormalization. Without
cε, the solution hε does not converge.

▶ Note that Ẇ ε is smooth in x , but it remains stochastic in
t. The solution hε of (5) is smooth in x .
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1.2. Cole-Hopf solution

▶ As in Lecture No 1, consider the Cole-Hopf transform of
h = hε defined by Z = Z ε := eh, then Z satisfies

∂tZ = 1
2
∂2
xZ + ZẆ ε(t, x).

(The product ZẆ ε is defined in Itô’s sense.)

▶ Indeed, apply Itô’s formula for z = eh to see

∂tZ = Z∂th +
1
2
Z (∂th)

2

= 1
2
Z{∂2

xh + (∂xh)
2 − cε}+ ZẆ ε + 1

2
Zcε

= 1
2
∂2
xZ + ZẆ ε,

since Z{∂2
xh + (∂xh)

2} = ∂2
xZ .

▶ See next page for (∂th)
2 = cε.

▶ In Lecture No 1, we computed ∂th starting from Z .
Here, conversely, we start from h and compute ∂tZ .
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▶ (∂th)
2 = cε or (dh)2 = cεdt is seen from

(dh(t, x))2 = (dW ε(t, x))2

=

∫
ηε(x − y)dW (t, y)dy ·

∫
ηε(x − z)dW (t, z)dz

=

∫∫
ηε(x − y)ηε(x − z)δ(y − z)dydz · dt

=

∫
ηε(x − y)2dy · dt = cεdt

▶ Recall dW (t, y)dW (t, z) = δ(y − z)dt from the relation
of the covariance.

▶ The renormalization cε in (5) was chosen such that it
cancels with this diverging Itô correction term.
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▶ As we have shown, Z = Z ε is the solution of

∂tZ
ε = 1

2
∂2
xZ

ε + Z εẆ ε(t, x).

▶ It is not difficult to show (Bertini-Giacomin 1997) that
Z ε → Z as ε ↓ 0, the sol of the linear stochastic heat
equation (defined in Itô’s sense) (4):

∂tZ = 1
2
∂2
xZ + ZẆ (t, x),

with a multiplicative noise. (4) is a well-posed equation.

▶ This implies hε → hCH as ε ↓ 0, i.e., the solution h = hε

of the approximating KPZ equation-1 converges to the
Cole-Hopf solution of the KPZ equation defined by (3):

hCH(t, x) := log Z (t, x).

▶ Comparison theorem for (4): Z (0) > 0 ⇒ Z (t) > 0.
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▶ The following is copied from Lecture No 1.

▶ The equation satisfied by hCH :

∂thCH = 1
Z
∂tZ − 1

2
1
Z2 (∂tZ )

2

= 1
Z

(
1
2
∂2
xZ + ZẆ

)
− 1

2
δx(x)

= 1
2

(
∂2
xhCH + (∂xhCH)

2
)
+ Ẇ − 1

2
δx(x)

▶ Thus, for the Cole-Hopf solution hCH , at least
heuristically, we obtain the renormalized KPZ equation
(2):

∂th = 1
2
∂2
xh +

1
2
{(∂xh)2 − δx(x)}+ Ẇ (t, x).
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2. Approximation-2: Suitable to find invariant measures

▶ We introduce another KPZ approximating equation:

∂th = 1
2
∂2
xh +

1
2

(
(∂xh)

2 − cε
)
∗ ηε2 + Ẇ ε(t, x), (6)

where η2(x) = η ∗ η(x), ηε2(x) = 1
ε
η2(

x
ε
).

▶ Recall cε = ηε2(0).
▶ General principle (Onsager relation, fluctuation-dissipation relation):

Consider the SPDE
∂th = F (h) + Ẇ ,

and let A be a certain operator. Then, the structure of the
invariant measures essentially does not change for

∂th = A2F (h) + AẆ .

▶ Indeed, we will show in Proposition 1 below that the
distribution of B ∗ ηε(x), where B is the periodic
Brownian motion (in case T) or the two-sided Brownian
motion (in case R), is invariant for the sol. h=hε of (6).
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Explanation of fluctuation-dissipation relation
(reversible and finite-dimensional case, cf. Lecture No 2)

▶ Let V ∈ C 1(Rd) and consider SDE:

dXt = −1
2
∇V (Xt)dt + dBt

▶ Then Xt is reversible under the measure e−Vdx .

▶ (Fluctuation-dissipation relation) For a matrix
A = (αij)1≤i ,j≤d , consider SDE:

dYt = −1
2
A∗A∇V (Yt)dt + AdBt ,

▶ Yt is also reversible under e−Vdx .
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▶ KPZ equation has an asymmetric part (growing part) so
that the situation is not exactly the same
(→ Yaglom reversibility).

▶ However, as we expect, the 2nd Approximating SPDE (6)
has a good property in its invariant (stationary) measures.

▶ Let νε be the distribution of ∂x(B ∗ ηε(x)), where B is
the two-sided Brownian motion. νε is independent of

choice of B(0).

Proposition 1
νε is stationary for the tilt process ∂xh of the SPDE (6).

▶ At the KPZ level, the invariant measure is not a finite
measure (→ Thm 3 below).

▶ To avoid this, in Prop 1, we consider its slope (tilt), i.e.
at the Burgers’ level.

Two-sided Brownian motion: {B(x)}x≥0 and {B(x)}x≤0 are independent
Brownian motions (conditioned on B(0)) regarding x as time parameter
(for latter, take −x as time parameter) and continuously connected at 0.
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Sketch of the proof:
▶ Step 1: Consider on a discrete torus TN = {1, 2, . . . ,N}.

The discretization of (∂xh)
2 should be carefully chosen as

1
3

{
(hi+1 − hi )

2 + (hi − hi−1)
2 + (hi+1 − hi )(hi − hi−1)

}
, i ∈ TN

Discrete version of νε defined on TN is invariant. → see
next page how we apply the result in Lecture No 2.

▶ Step 2: Continuum limit as N → ∞ leads to the result on
T. This can be easily extended to a large torus M · T ≃
[−M

2
, M

2
) of size M .

▶ Step 3: To show on R, take an infinite-volume limit as
M → ∞ by usual tightness and martingale problem
approach.
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More on Step 1:
▶ Take α : Z → [0,∞) such that α(i) = α(−i) and

α(i) = 0 for i : |i | ≥∃K , instead of η(x) in (6).
▶ For h = (hi ≡ h(i))i∈TN

∈ RTN , we define

∆h(i) = h(i + 1) + h(i − 1)− 2h(i),

G1(i , h) = (hi+1 − hi)
2 + (hi − hi−1)

2,

G2(i , h) = (hi+1 − hi)(hi − hi−1), i ∈ TN ,

▶ Convolution of two functions β, γ on TN is defined by
(β ∗ γ)(i) =

∑
k∈TN

β(i − k)γ(k), with i − k understood
in modulo N .

▶ We consider SDE for ht = (ht(i))i∈TN
∈ RTN :

dht(i) =
λ1

2
∆ht(i)dt + λ2{α2 ∗ G1(i , ht) + α2 ∗ G2(i , ht)}dt + λ3dw

α
t (i),

(7)

where λ1, λ2, λ3 ∈ R are arbitrary constants, α2 = α ∗ α,
wα
t = α ∗ wt and wt = (wt(i))i∈TN

are independent BMs.
▶ (7) is a discretization of (6) disregarding constant drift cε.
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▶ We consider three operators on RTN : for f ∈ C 2(RTN ),

Lα
0 f (h) =

λ1

2

∑
i∈TN

∆h(i) ∂f
∂hi

+
λ2
3

2

∑
i,j∈TN

α2(i − j) ∂2f
∂hi∂hj

,

Aα
1 f (h) =

∑
i∈TN

(α2 ∗ G1)(i , h)
∂f
∂hi

,

Aα
2 f (h) =

∑
i∈TN

(α2 ∗ G2)(i , h)
∂f
∂hi

,

▶ Then, Lα := Lα
0 + λ2Aα

1 + λ2Aα
2 is the generator of the

SDE (7).
▶ Let µN(dh) = e−IαN (h)dh be the measure on RTN , where

IαN (h) =
λ1

2λ2
3

∑
j∈TN

{α−1 ∗ h(j + 1)− α−1 ∗ h(j)}2

dh =
∏
i∈TN

dh(i),

α−1 = inverse matrix of α = {α(i − j)}i ,j∈TN
.
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Lemma 2
For every f , g ∈ C 2

b (RTN ), we have the symmetry of Lα
0 :∫

g(h)Lα
0 f (h)dµN =

∫
f (h)Lα

0 g(h)dµN .

In particular,
∫
Lα

0 f (h)dµN = 0. Moreover, we have∫
Aα

1 f (h)dµN = −
∫

Aα
2 f (h)dµN i.e.

∫ (
Aα

1 +Aα
2

)
f (h)dµN = 0.

Accordingly, we have that
∫
RTN Lαf (h)dµN = 0.

▶ This lemma shows the infinitesimal invariance of µN for
Lα (→Recall Lecture No 2).

▶ In the finite-dimensional setting, infinitesimal invariance
implies the invariance. We apply Echeveria’s result (1982)
by noting the well-posedness of the martingale problem
corresponding to the SDE (7). End of Step 1
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Remark:
▶ Infinitesimal invariance can be directly shown for the

SPDE (6) based on Wiener-Itô chaos expansion of tame
functions Φ of the form Φ(h) = f (⟨h, φ1⟩, . . . , ⟨h, φn⟩):∫

LεΦ(h)νε(dh) = 0,

where Lε := Lε
0 +Aε is (pre) generator of the SPDE (6)

and

Lε
0Φ(h) =

1
2

∫
R2

D2Φ(x1, x2; h)η
ε
2(x1 − x2)dx1dx2 +

1
2

∫
R
∂2
xh(x)DΦ(x ; h)dx ,

AεΦ(h) = 1
2

∫
R

(
(∂xh)

2 − cε
)
∗ ηε2(x)DΦ(x ; h)dx .

▶ Indeed, Lε
0 is symmetric, while Aε is asymmetric:∫

ΨLε
0Φdν

ε =

∫
ΦLε

0Ψdνε,

∫
ΨAεΦdνε = −

∫
ΦAεΨdνε.

• F, in Séminaire de Probab., LNM 2137, special issue for M. Yor, 2015
(for coupled KPZ equation)
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▶ Combined with the well-posedness of Lε-martingale
problem, which can be shown at least on T, it is expected
that the infinitesimal invariance implies Proposition 1.
But this is not clear in infinite-dimensional setting
(extension of Echeverria’s result is unknown).

▶ Note that we have

νε : invariant ⇔
∫
C
etL

ε

Φ(h)νε(dh) =

∫
C
Φ(h)νε(dh)

⇒
∫
C
LεΦ(h)νε(dh) = 0 (inf. invariance)

for a wide class of Φ (and all t ≥ 0).

▶ We can prove the last identity (integration by parts
formula) due to the method of stochastic analysis.
But, ⇐ is unclear.
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3. Invariant measures of Cole-Hopf solution and SHE

▶ It’s important to know the asymptotic behavior of the
solutions of the KPZ equation as t → ∞.

▶ The goal is to give a class of invariant (=stationary)
measures of the stochastic heat equation (4):

∂tZ = 1
2
∂2
xZ + ZẆ (t, x)

and for the Cole-Hopf solution of the KPZ equation (3):

h(t, x) := log Z (t, x).

▶ We apply Proposition 1 and let ε ↓ 0.

▶ We state the result only on R, but it holds also on
T = [0, 1).
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▶ [For Z ] Let µc , c ∈ R be the distribution of
eB(x)+cx , x ∈ R, called geometric Brownian motion when
c = 0, on C+ = C (R, (0,∞)), where B(x), x ∈ R, is the
two-sided Brownian motion such that

µc(B(0) ∈ dy) = dy .

▶ [For h] Let νc be the distribution of B(x) + cx , BM with
drift c , on C = C (R,R).

▶ Note that these are not probability measures but infinite
measures.
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Theorem 3
{µc}c∈R are invariant (stationary) under SHE (4), i.e.,

Z (0)
law
= µc ⇒ Z (t)

law
= µc for all t ≥ 0 and c ∈ R.

(or Eµc
[f (Z (t))] = const in t for a certain class of f on C+.)

Corollary 4
{νc}c∈R are invariant under the Cole-Hopf solution of the
KPZ equation.

▶ c means the average tilt (=slope) of the interface.

▶ We have different invariant measures for different average
tilts.

▶ Reversibility does not hold, but a kind of Yaglom
reversibility holds, cf. Remark above.
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▶ (Scale invariance) If Z (t, x) is a solution of SHE (4), then

Z c(t, x) := ecx+
1
2 c

2tZ (t, x + ct)

is also a solution (with a new white noise). Therefore,
once the invariance of µ0 is shown, µc is also invariant for
every c ∈ R.

▶ Thus, we assume c = 0 and write µ = µ0.
▶ Or, equivalently for h(t, x), for every c ∈ R,

hc(t, x) := hCH(t, x + ct) + cx + 1
2c

2t.

is a Cole-Hopf solution (with a new white noise).

▶ One expects µc , c ∈ R to be all extremal invariant
measures (except constant multipliers), but this remains
open; cf. F-Spohn for ∇φ-interface model.
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4. Proof of Theorem 3 and Corollary 4

4.1. Cole-Hopf transform for SPDE (6) (=Approximation-2)

▶ νε in Proposition 1 converges to ν (=ν0, i.e., c = 0, i.e.
Wiener measure s.t. ν(B(0) ∈ dy) = dy) as ε ↓ 0.

▶ Therefore, our goal is to pass to the limit ε ↓ 0 in the
KPZ approximating equation (6):

∂th = 1
2∂

2
xh + 1

2

(
(∂xh)

2 − cε
)
∗ ηε2 + Ẇ ε(t, x).

▶ We consider its Cole-Hopf transform: Z (≡ Z ε) := eh.
Then, by Itô’s formula, Z satisfies the SPDE:

∂tZ = 1
2∂

2
xZ + Aε(x ,Z ) + ZẆ ε(t, x), (8)

where

Aε(x ,Z ) =
1

2
Z (x)

{(
∂xZ

Z

)2

∗ ηε2(x)−
(
∂xZ

Z

)2

(x)

}
.

▶ The term Aε(x ,Z ) looks vanishing as ε ↓ 0.
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▶ But this is not true. Indeed, under the average in time t,
Aε(x ,Z ) can be replaced by a linear function 1

24
Z (→ see

Thm 5 below).

▶ The limit as ε ↓ 0 (under stationarity of tilt),

∂tZ = 1
2
∂2
xZ+

1
24
Z + ZẆ (t, x).

▶ Or, heuristically at KPZ level,

∂th = 1
2
∂2
xh +

1
2
{(∂xh)2 − δx(x)}+ 1

24
+ Ẇ (t, x).

▶ This shows for the solution hε(t, x) of the KPZ
approximating eq-2 (6):

hε → hCH + 1
24
t,

where hCH = hCH(t, x) is the Cole-Hopf solution.

▶ “+ 1
24
t” doesn’t affect the invariant measure(→ seebelow)
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4.2. Limit of Aε(x ,Z ) (Boltzmann-Gibbs principle)

▶ Asymptotic replacement of Aε(x ,Z ε(s)) by 1
24Z

ε(s, x).

▶ To avoid the infiniteness of invariant measures, we view
hε(t, ρ) =

∫
hε(t, x)ρ(x)dx (height averaged by ρ ∈ C∞

0 (R), ≥ 0,∫
ρ(x)dx = 1) in modulo 1 (called wrapped process).

Theorem 5 (Boltzmann-Gibbs principle)
For every φ ∈ C0(R) satisfying supp φ ∩ supp ρ = ∅, we have that

lim
ε↓0

Eπ⊗νε

[{∫ t

0

ds

∫
R

(
Aε(x ,Z ε(s))− 1

24Z
ε(s, x)

)
φ(x)dx

}2
]
= 0,

where π is the uniform measure for hε(0, ρ) ∈ [0, 1) and νε is the
distribution of B ∗ ηε.

▶ Set

Aε(φ,Z ) :=

∫
R

(
Aε(x ,Z )− 1

24Z (x)
)
φ(x)dx
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4.3. Proof of Theorem 5
(1) Reduction of equilibrium dynamic problem to static one:
▶ The expectation in Thm 5 is bounded by (H−1-norm)2,

which can be represented by a variational formula with
(H1-norm)2 = Dirichlet form:

Eπ⊗νε
[{∫ t

0

ds Aε(φ,Z ε
s )
}2]

≤ Ct∥Aε(φ,Z )∥2−1,ε (H−1-norm)

:= Ct sup
Φ∈L2(π⊗νε)

{
2Eπ⊗νε

[Aε(φ,Z )Φ]− ⟨Φ, (−Lε
0)Φ⟩π⊗νε

}
,

where Lε
0 is the symmetric part of Lε. This is a generic

bound in a stationary situation.
▶ In fact, roughly, writing µ = π ⊗ νε,F = Aε,

Eµ
[{∫ t

0

ds F (Zs)
}2]

=

∫ t

0

ds1

∫ t

0

ds2E
µ[F (Zs1)F (Zs2)]

= 2

∫ t

0

ds1

∫ s1

0

ds2E
µ[Fe(s1−s2)Lε

F ]

≤ 2t

∫ ∞

0

ds Eµ[FesL
ε
0 F ] = 2t⟨(−Lε

0)
−1F ,F ⟩µ
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Remark The above estimate can be extended to that on

Eµ
[

sup
0≤t≤T

{∫ t

0
ds F (Zs)

}2]
by the same H−1-norm (with C

changed), see Komorowski-Landim-Olla, “Fluctuations in
Markov Processes”, Springer, 2012, Lemma 2.4 (p.48). In the
proof, backward martingale and Dynkin’s formula are used to
give a cancellation. This is sometimes called Itô-Tanaka
trick.

▶ Now we need to estimate the H−1-norm, in which

2Eπ⊗νε

[Aε(φ,Z )Φ] = Eπ
[
ZρE

νε

[Bε(φ,Z )Φ(h(ρ),∇h)]
]
,

where Zρ = exp{
∫
R logZ (x)ρ(x)dx}, Bε(x ,Z ) = 2

Aε(x,Z)− 1
24Z

Zρ
and

Bε(φ,Z ) =
∫
R Bε(x ,Z )φ(x)dx .
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(2) The key is the following static bound:

▶ C̃ := C/ ∼, the quotient space of C = C (R,R) under the
equivalence relation h ∼ h + c for constants c .

Proposition 6
For Φ = Φ(∇h) ∈ L2(C̃, ν) s.t. ∥Φ∥21,ε=⟨Φ, (−Lε

0)Φ⟩π⊗νε <∞,
and φ satisfying the condition of Theorem 5, we have that∣∣E νε [Bε(φ,Z )Φ]

∣∣ ≤ C (φ)
√
ε∥Φ∥1,ε, (9)

with some positive constant C (φ), which depends only on φ,
for all ε: 0 < ε ≤ δ

4
∧ 1, where δ := dist(suppφ, supp ρ).

▶ Once this proposition is shown, the proof of Theorem 5 is
concluded, since the sup in the definition of H−1-norm is
bounded by

≤ Ct sup
Φ
{2eC (φ)

√
ε∥Φ∥1,ε −∥Φ∥21,ε} = const(

√
ε)2 → 0.

▶ Recall Zρ = eh(ρ) ∈ [1, e] with h(ρ) ∈ [0, 1].
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Point of the proof of Proposition 6

(1) We first summarize Wiener-Itô chaos expansion
([FQ, p. 189∼])

▶ Recall that ν is the (two-sided) Wiener measure on

C̃ := C/∼ ∼= {B ∈ C;B(0) = 0}, where C = C (R,R).
(Recall h(·) ∼ h(·) + c .)

▶ Then, we have the orthogonal decomposition of L2(C̃, ν):

L2(C̃, ν) = ⊕∞
n=0Hn

∼= ⊕∞
n=0L̂

2(Rn) (symmetric Fock space)

▶ Here, for φn ∈ L̂2(Rn), i.e. φn ∈ L2(Rn) and symmetric in
n-variables, define I (φn) as the multiple Wiener integral:

I (φn) :=
1

n!

∫
Rn

φn(x1, . . . , xn)dB(x1) · · · dB(xn)

and Hn is defined as

Hn := {I (φn) ∈ L2(C̃, ν);φn ∈ L̂2(Rn)}
for n ≥ 1 and H0 := {const}.

▶ I (φn) is called nth order Wiener functional (chaos).
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▶ Thus, for any Φ ∈ L2(C̃, ν), there exist φn ∈ L̂2(Rn),
n ≥ 0 such that

Φ =
∞∑
n=0

I (φn),

and

• ∥Φ∥2L2(ν) =
∞∑
n=0

∥I (φn)∥2L2(ν) =
∞∑
n=0

1
n!∥φn∥2L2(Rn),

• (I (φn), I (φm))L2(ν) ≡ E ν [I (φn)I (φm)] = 0 if n ̸= m.

hold.

▶ Diagram formula ([FQ, Lemma 3.9]) gives the chaos
expansion of the product I (φn1) · · · I (φnm) (→ see below).

▶ In particular, one can compute the expectation of Φ as
E [Φ] = I (φ0) = φ0.
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(2) Now we come to the proof of Proposition 6
▶ Recalling that ∂xh = ∂x(B ∗ ηε) under νε, by Itô’s formula

(∂xh)
2 =

{∫
R
ηε(x − y)dB(y)

}2

= Ψε(x) + cε, (10)

where Ψε(x) =
∫
R2 η

ε(x − x1)η
ε(x − x2)dB(x1)dB(x2),

which is a 2nd order Wiener functional (chaos).
▶ In particular, the renormalization constant cε can be

expressed as

cε = E
[( ∫

R η
ε(x − y)dB(y)

)2] (
= ∥ηε∥2L2(R)

)
.

and it is sometimes denoted by .
▶ Therefore, transforming

(
∂xZ
Z

)2 − cε back to (∂xh)
2 − cε,

E νε [Bε(x ,Z )Φ] = E
[
2
Aε(x ,Z)− 1

24
Z(x)

Zρ
Φ
]

= E νε
[Z (x)

Zρ

(
{Ψε ∗ ηε2(x)−Ψε(x)} − 1

12

)
Φ
]
,
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▶ To compute this expectation,
▶ {Ψε ∗ ηε2(x)−Ψε(x)}: 2nd order Wiener functional,
▶ 1

12 : 0th order

thus we need to pick up the 2nd order and 0th order
terms of the products of two Wiener functionals Z(x)

Zρ
×Φ.

▶ We apply the diagram formula to compute the Wiener
chaos expansion of products of two functions.

▶ Diagrams γ to compute 2nd Wiener chaos and 0th order
term in Z(x)

Zρ
× Φ.

For 2nd Wiener chaos: For 0th order term:

n + 2 n n n
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▶ [Chaos expansion of Z(x)
Zρ

] Under ν,

Z (x)

Zρ
= eB(x)−

∫
R B(y)ρ(y)dy

= ea(x)

{
1 +

∞∑
n=1

1

n!

∫
Rn

ϕ⊗n
x (u1, . . . , un)dB(u1) · · · dB(un)

}
,

where,

ϕx(u) = 1(−∞,x](u)−
∫ ∞

u

ρ(y)dy ,

a(x) = 1
2

∫
R
ϕx(u)

2du.

▶ Note that the kernel ϕx has jump.

▶ ∥Φ∥21,ε can be expressed by (∞-dimensional) Dirichlet
form (→ [FQ, Lemma 3.8]).

▶ Further details are left to [FQ].
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(3) We only give a remark on the constant 1
24

▶ The same factor 1
24

(24 = 4!) appears in several KPZ
related papers such as [Bertini-Giacomin 1997],
[Borodin-Corwin-Ferrari 2012], ........

▶ For general convolution kernel η, this constant is given by
J/2, where

J = P(R1 + R3 > 0,R2 + R3 > 0)− P(R1 > 0,R2 > 0),

and {Ri}3i=1 are i.i.d. r.v.s distributed under η2(x)dx
▶ If η is symmetric,

P(R1 + R3 > 0,R2 + R3 > 0) = P(R1 − R3 > 0,R2 − R3 > 0)

= P(R3 = minRi ) =
1
3 ,

so that J = 1
3
− 1

4
= 1

12
.

▶ If the support of η ⊂ [0,∞) (or ⊂ (−∞, 0]), then J = 0.

▶ See the next page for the reason that the above quantity
J appears.
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▶ Recall (10) to see that Ψε ∗ ηε2(x)−Ψε(x) is 2nd order
Wiener chaos with kernel:

2
{∫

ηε(y − x1)η
ε(y − x2)η

ε
2(x − y)dy − ηε(x − x1)η

ε(x − x2)
}
.

▶ The product and sum (in n) of (n + 2)th order chaos of
Z(x)
Zρ

, nth order chaos of Φ and the above quantity (2nd

order) produces the quantity J . (Recall the kernel ϕx in
Z(x)
Zρ

has jump.)

▶ This cancels with 0th order term 1
12
E νε

[Z(x)
Zρ

Φ
]
.

▶ The product and sum of n ↔ Z(x)
Zρ

, n + 2 ↔ Φ and above

quantity ↔ 2 is bounded by the square root of Dirichlet
form ∥Φ∥1,ε. (End of the proof of Prop 6)
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4.4. Proof of Theorem 3 and Corollary 4

▶ Wrapping can be removed by showing uniform estimate:

sup
0<ε<1

E

[
sup

0≤t≤T
hε(t, ρ)2

]
< ∞.

Namely, height cannot move very fast. This is shown only
on a torus (since we need Poincaré inequality).

▶ Under the stationary situation of the tilt processes, in the
limit, we obtain the SHE:

∂tZ = 1
2∂

2
xZ + 1

24Z + ZẆ (t, x). (11)

▶ This looks different from the original SHE (4), but the
solution Zt of (11) gives the solution Z̃t of (4) under the
simple transformation Z̃t := e−

t
24Zt .

▶ This implies the invariance of the distribution of the
geometric Brownian motion for the tilt process
determined by the SHE (4), and therefore that of BM for
Cole-Hopf solution.
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▶ The above argument combined with Proposition 1 at
approximating level shows the invariance of µ for tilt
processes. (→ Theorem 3)

▶ To rewrite this to the height processes ht , we introduce
the transformation hε(x ,Z ) := log(Z ∗ ηε(x)). Then, the
evolution of hε(x ,Zt) is governed only by the tilt variables
and the initial data hε(x ,Z0). (→ Corollary 4)

▶ Hoshino, SPA 128, 2018 proved the convergence of the
solutions of Approximating Eq-1 and Approximating Eq-2
as ε ↓ 0 in non-stationary setting by applying
paracontrolled calculus (→ see also Lecture No 4 in
coupled KPZ equation setting.)
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5. Remarks from the viewpoint of interacting particle systems

▶ The stationary measure of the SHE (4) can be obtained
by particle system approximation.
- σt = {σt(i)} ∈ {±1}Z: WASEP (with weak asymmetry ε

1
2 )

- ζt : height (or summed) process with height difference σt ,
sometimes called SOS-dynamics,

- ξεt : (Discrete) Cole-Hopf transform of ζt scaled in

space and time.

▶ [Bertini-Giacomin ’97] showed that ξεt (x) ⇒ Zt(x), the
solution of SHE (4) weakly as ε ↓ 0 (→ Lecture No 1).

▶ WASEP σt has Bernoulli product measure on X = {±1}Z
as its stationary measure
⇒ limε↓0 ζ

ε
t (fluctuation scaling limit, i.e., CLT) should

have Wiener measure as its stationary measure
(as ζt is the sum of σt).

⇒ Zt should have the distribution of geometric BM as
its stationary measure.

40 / 41



Summary of this lecture.

1. KPZ equation:

∂th = 1
2∂

2
xh + 1

2 (∂xh)
2 + Ẇ (t, x), x ∈ R.

2. KPZ approximating equation-2 with W ε(t, x) = ⟨W (t), ηε(x − ·)⟩:

∂th = 1
2∂

2
xh + 1

2

(
(∂xh)

2 − cε
)
∗ ηε2 + Ẇ ε(t, x)

has invariant measure νε (=distribution of B ∗ ηε).

3. Cole-Hopf transform Z := eh leads to the SPDE:

∂tZ = 1
2∂

2
xZ + 1

2Z

{(
∂xZ

Z

)2

∗ ηε2 −
(
∂xZ

Z

)2
}

+ ZẆ ε(t, x)

4. As ε ↓ 0, one can replace the middle term by 1
24Z under time

average and get the SPDE in the limit:

∂tZ = 1
2∂

2
xZ + 1

24Z + ZẆ (t, x), x ∈ R.
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