KPZ limit for interacting particle systems —Invariant measures of KPZ equation—

Tadahisa Funaki

Waseda University

November 24th+26th, 2020

Yau Mathematical Sciences Center, Mini-Course, Nov 17-Dec 17, 2020 Lecture No 3

• F-Quastel, Stoch. PDE: Anal. Comp. 3, 2015

Plan of the course (10 lectures)

- 1 Introduction
- 2 Supplementary materials

Brownian motion, Space-time Gaussian white noise, (Additive) linear SPDEs, (Finite-dimensional) SDEs, Martingale problem, Invariant/reversible measures for SDEs, Martingales

- 3 Invariant measures of KPZ equation (F-Quastel, 2015)
- 4 Coupled KPZ equation by paracontrolled calculus (F-Hoshino, 2017)
- 5 Coupled KPZ equation from interacting particle systems (Bernardin-F-Sethuraman, 2020+)
 - 5.1 Independent particle systems
 - 5.2 Single species zero-range process
 - 5.3 *n*-species zero-range process
 - 5.4 Hydrodynamic limit, Linear fluctuation
 - 5.5 KPZ limit=Nonlinear fluctuation

Plan of this lecture

Invariant measures of KPZ equation

- 1 Renormalization, Cole-Hopf solution, Approximation-1
 - 1.1 Approximation-1: Simple
 - 1.2 Cole-Hopf solution
- 2 Approximation-2: Suitable to find invariant measures
- 3 Invariant measures of Cole-Hopf solution and SHE
- 4 Proof of Theorem 3 and Corollary 4
 - 4.1 Cole-Hopf transform for Approximation-2
 - 4.2 Limit of $A^{\varepsilon}(x, Z)$ (Boltzmann-Gibbs principle)
 - 4.3 Proof of Theorem 5
 - 4.4 Proof of Theorem 3 and Corollary 4
- 5 Remarks from the viewpoint of interacting particle systems

4/41

1. Renormalization, Cole-Hopf solution, Approximation-1

 In Lecture No 1, we introduced KPZ equation (1), the renormalized KPZ equation (2) and Cole-Hopf solution (3) of KPZ equation:

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} (\partial_x h)^2 + \dot{W}(t, x), \tag{1}$$

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} \{ (\partial_x h)^2 - \delta_x(x) \} + \dot{W}(t, x), \quad (2)$$

$$h(t,x) := \log Z(t,x), \tag{3}$$

where Z is the solution of multiplicative linear stochastic heat equation (SHE):

$$\partial_t Z = \frac{1}{2} \partial_x^2 Z + Z \dot{W}(t, x).$$
 (4)

- We may consider on \mathbb{R} or $\mathbb{T} = [0, 1)$, but mostly on \mathbb{R} in this lecture.
- The product of Z and W in (4) should be understood in Itô's sense (in mild form or in generalized functions' sense).

- As we saw, SHE (4) is well-posed and a heuristic application of Itô's formula to h(t, x) in (3) leads to the renormalized KPZ equation (2).
- Our first goal is to give mathematically rigorous foundation to this procedure.
- The ill-posedness of KPZ equation (1) comes from the mismatch between the nonlinear term and the noise.
- We can not deal with the KPZ eq directly. We consider its approximation by replacing the noise by smooth one.
- However, the solution of the equation with the noise simply replaced by smooth one does not converge in the limit.
- We need to introduce some additional diverging factor to compensate in removing smoothness of the noise. This is called the renormalization.

- 1.1. Approximation-1: Simple
 - Symmetric convolution kernel: Let $\eta \in C_0^{\infty}(\mathbb{R})$ s.t. $\eta(x) \ge 0, \ \eta(x) = \eta(-x) \text{ and } \int_{\mathbb{R}} \eta(x) dx = 1 \text{ be given, and}$ set $\eta^{\varepsilon}(x) := \frac{1}{\varepsilon} \eta(\frac{x}{\varepsilon}) \text{ for } \varepsilon > 0.$
 - Smeared noise: $\dot{W}^{\varepsilon}(t,x) = \dot{W}(t) * \eta^{\varepsilon}(x) \equiv \langle \dot{W}(t), \eta^{\varepsilon}(x-\cdot) \rangle$
 - Approximating equation-1: Let $h = h^{\varepsilon}$ be a solution of

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} ((\partial_x h)^2 - c^{\varepsilon}) + \dot{W}^{\varepsilon}(t, x),$$
 (5)

where

$$c^{\varepsilon} = \int_{\mathbb{R}} \eta^{\varepsilon}(y)^2 dy \left(= \frac{1}{\varepsilon} \|\eta\|_{L^2(\mathbb{R})}^2 \right).$$

- $c^{\varepsilon} \nearrow \infty$ as $\varepsilon \downarrow 0$. c^{ε} is called a renormalization. Without c^{ε} , the solution h^{ε} does not converge.
- Note that W^e is smooth in x, but it remains stochastic in t. The solution h^e of (5) is smooth in x.

1.2. Cole-Hopf solution

As in Lecture No 1, consider the Cole-Hopf transform of h = h^ε defined by Z = Z^ε := e^h, then Z satisfies

 $\partial_t Z = \frac{1}{2} \partial_x^2 Z + Z \dot{W}^{\varepsilon}(t, x).$

(The product $Z\dot{W}^{\varepsilon}$ is defined in Itô's sense.) Indeed, apply Itô's formula for $z = e^h$ to see

$$\begin{split} \partial_t Z &= Z \partial_t h + \frac{1}{2} Z (\partial_t h)^2 \\ &= \frac{1}{2} Z \{ \partial_x^2 h + (\partial_x h)^2 - c^{\varepsilon} \} + Z \dot{W}^{\varepsilon} + \frac{1}{2} Z c^{\varepsilon} \\ &= \frac{1}{2} \partial_x^2 Z + Z \dot{W}^{\varepsilon}, \end{split}$$

since $Z\{\partial_x^2 h + (\partial_x h)^2\} = \partial_x^2 Z$.

- See next page for $(\partial_t h)^2 = c^{\varepsilon}$.
- In Lecture No 1, we computed ∂_th starting from Z. Here, conversely, we start from h and compute ∂_tZ.

$$(\partial_t h)^2 = c^{\varepsilon} \text{ or } (dh)^2 = c^{\varepsilon} dt \text{ is seen from}$$

$$(dh(t,x))^2 = (dW^{\varepsilon}(t,x))^2$$

$$= \int \eta^{\varepsilon} (x-y) dW(t,y) dy \cdot \int \eta^{\varepsilon} (x-z) dW(t,z) dz$$

$$= \iint \eta^{\varepsilon} (x-y) \eta^{\varepsilon} (x-z) \delta(y-z) dy dz \cdot dt$$

$$= \int \eta^{\varepsilon} (x-y)^2 dy \cdot dt = c^{\varepsilon} dt$$

- Recall $dW(t, y)dW(t, z) = \delta(y z)dt$ from the relation of the covariance.
- The renormalization c^ε in (5) was chosen such that it cancels with this diverging Itô correction term.

• As we have shown, $Z = Z^{\varepsilon}$ is the solution of

$$\partial_t Z^{\varepsilon} = \frac{1}{2} \partial_x^2 Z^{\varepsilon} + Z^{\varepsilon} \dot{W}^{\varepsilon}(t, x).$$

It is not difficult to show (Bertini-Giacomin 1997) that Z^ε → Z as ε ↓ 0, the sol of the linear stochastic heat equation (defined in Itô's sense) (4):

$$\partial_t Z = \frac{1}{2} \partial_x^2 Z + Z \dot{W}(t, x),$$

with a multiplicative noise. (4) is a well-posed equation.

This implies h^ε → h_{CH} as ε↓ 0, i.e., the solution h = h^ε of the approximating KPZ equation-1 converges to the Cole-Hopf solution of the KPZ equation defined by (3):

$$h_{CH}(t,x) := \log Z(t,x).$$

• Comparison theorem for (4): $Z(0) > 0 \Rightarrow Z(t) > 0$.

- ► The following is copied from Lecture No 1.
- The equation satisfied by h_{CH} :

$$\partial_t h_{CH} = \frac{1}{Z} \partial_t Z - \frac{1}{2} \frac{1}{Z^2} (\partial_t Z)^2$$

= $\frac{1}{Z} (\frac{1}{2} \partial_x^2 Z + Z \dot{W}) - \frac{1}{2} \delta_x(x)$
= $\frac{1}{2} (\partial_x^2 h_{CH} + (\partial_x h_{CH})^2) + \dot{W} - \frac{1}{2} \delta_x(x)$

Thus, for the Cole-Hopf solution h_{CH}, at least heuristically, we obtain the renormalized KPZ equation (2):

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} \{ (\partial_x h)^2 - \delta_x(x) \} + \dot{W}(t,x).$$

- 2. Approximation-2: Suitable to find invariant measures
 - ► We introduce another KPZ approximating equation:

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} \left((\partial_x h)^2 - c^{\varepsilon} \right) * \eta_2^{\varepsilon} + \dot{W}^{\varepsilon}(t, x), \qquad (6)$$

where $\eta_2(x) = \eta * \eta(x), \ \eta_2^{\varepsilon}(x) = \frac{1}{\varepsilon} \eta_2(\frac{x}{\varepsilon}).$

- Recall $c^{\varepsilon} = \eta_2^{\varepsilon}(0)$.
- General principle (Onsager relation, fluctuation-dissipation relation): Consider the SPDE

$$\partial_t h = F(h) + \dot{W},$$

and let A be a certain operator. Then, the structure of the invariant measures essentially does not change for

$$\partial_t h = A^2 F(h) + A \dot{W}.$$

Indeed, we will show in Proposition 1 below that the distribution of B * η^ε(x), where B is the periodic Brownian motion (in case T) or the two-sided Brownian motion (in case R), is invariant for the sol. h=h^ε of (6).

Explanation of fluctuation-dissipation relation (reversible and finite-dimensional case, cf. Lecture No 2)

• Let $V \in C^1(\mathbb{R}^d)$ and consider SDE:

$$dX_t = -\frac{1}{2}\nabla V(X_t)dt + dB_t$$

Then X_t is reversible under the measure e^{-V}dx.
 (Fluctuation-dissipation relation) For a matrix A = (α_{ij})_{1≤i,j≤d}, consider SDE:

 $dY_t = -\frac{1}{2}A^*A\nabla V(Y_t)dt + AdB_t,$

• Y_t is also reversible under $e^{-V} dx$.

- KPZ equation has an asymmetric part (growing part) so that the situation is not exactly the same (
 → Yaglom reversibility).
- However, as we expect, the 2nd Approximating SPDE (6) has a good property in its invariant (stationary) measures.
- Let ν^ε be the distribution of ∂_x(B * η^ε(x)), where B is the two-sided Brownian motion. ν^ε is independent of choice of B(0).

Proposition 1

 ν^{ε} is stationary for the tilt process $\partial_{x}h$ of the SPDE (6).

- ► At the KPZ level, the invariant measure is not a finite measure (→ Thm 3 below).
- To avoid this, in Prop 1, we consider its slope (tilt), i.e. at the Burgers' level.

Two-sided Brownian motion: $\{B(x)\}_{x\geq 0}$ and $\{B(x)\}_{x\leq 0}$ are independent Brownian motions (conditioned on B(0)) regarding x as time parameter (for latter, take -x as time parameter) and continuously connected at 0.

Sketch of the proof:

Step 1: Consider on a discrete torus $\mathbb{T}_N = \{1, 2, ..., N\}$. The discretization of $(\partial_x h)^2$ should be carefully chosen as

$$\frac{1}{3}\left\{(h_{i+1}-h_i)^2+(h_i-h_{i-1})^2+(h_{i+1}-h_i)(h_i-h_{i-1})\right\},\ i\in\mathbb{T}_N$$

Discrete version of ν^{ε} defined on \mathbb{T}_N is invariant. \rightarrow see next page how we apply the result in Lecture No 2.

- Step 2: Continuum limit as $N \to \infty$ leads to the result on \mathbb{T} . This can be easily extended to a large torus $M \cdot \mathbb{T} \simeq \left[-\frac{M}{2}, \frac{M}{2}\right)$ of size M.
- Step 3: To show on ℝ, take an infinite-volume limit as M→∞ by usual tightness and martingale problem approach.

More on Step 1:

Convolution of two functions β, γ on \mathbb{T}_N is defined by $(\beta * \gamma)(i) = \sum_{k \in \mathbb{T}_N} \beta(i-k)\gamma(k)$, with i-k understood in modulo N.

• We consider SDE for
$$h_t = (h_t(i))_{i \in \mathbb{T}_N} \in \mathbb{R}^{\mathbb{T}_N}$$
:

$$dh_t(i) = \frac{\lambda_1}{2} \Delta h_t(i) dt + \lambda_2 \{\alpha_2 * G_1(i, h_t) + \alpha_2 * G_2(i, h_t)\} dt + \lambda_3 dw_t^{\alpha}(i),$$
(7)

where $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ are arbitrary constants, $\alpha_2 = \alpha * \alpha$, $w_t^{\alpha} = \alpha * w_t$ and $w_t = (w_t(i))_{i \in \mathbb{T}_N}$ are independent BMs. (7) is a discretization of (6) disregarding constant drift c^{ε} . • We consider three operators on $\mathbb{R}^{\mathbb{T}_N}$: for $f \in C^2(\mathbb{R}^{\mathbb{T}_N})$,

$$\begin{split} \mathcal{L}_{0}^{\alpha}f(h) &= \frac{\lambda_{1}}{2}\sum_{i\in\mathbb{T}_{N}}\Delta h(i)\frac{\partial f}{\partial h_{i}} + \frac{\lambda_{2}^{2}}{2}\sum_{i,j\in\mathbb{T}_{N}}\alpha_{2}(i-j)\frac{\partial^{2}f}{\partial h_{i}\partial h_{j}},\\ \mathcal{A}_{1}^{\alpha}f(h) &= \sum_{i\in\mathbb{T}_{N}}(\alpha_{2}*G_{1})(i,h)\frac{\partial f}{\partial h_{i}},\\ \mathcal{A}_{2}^{\alpha}f(h) &= \sum_{i\in\mathbb{T}_{N}}(\alpha_{2}*G_{2})(i,h)\frac{\partial f}{\partial h_{i}}, \end{split}$$

Then, L^α := L^α₀ + λ₂A^α₁ + λ₂A^α₂ is the generator of the SDE (7).

• Let $\mu_N(dh) = e^{-I_N^{\alpha}(h)}dh$ be the measure on $\mathbb{R}^{\mathbb{T}_N}$, where

$$\begin{split} I_N^{\alpha}(h) &= \frac{\lambda_1}{2\lambda_3^2} \sum_{j \in \mathbb{T}_N} \{ \alpha^{-1} * h(j+1) - \alpha^{-1} * h(j) \}^2 \\ dh &= \prod_{i \in \mathbb{T}_N} dh(i), \\ \alpha^{-1} &= \text{inverse matrix of } \alpha = \{ \alpha(i-j) \}_{i,j \in \mathbb{T}_N}. \end{split}$$

Lemma 2 For every $f, g \in C_b^2(\mathbb{R}^{\mathbb{T}_N})$, we have the symmetry of \mathcal{L}_0^{α} :

$$\int g(h)\mathcal{L}_0^{\alpha}f(h)d\mu_N = \int f(h)\mathcal{L}_0^{\alpha}g(h)d\mu_N.$$

In particular, $\int \mathcal{L}_0^{\alpha} f(h) d\mu_N = 0$. Moreover, we have

$$\int \mathcal{A}_1^{\alpha} f(h) d\mu_N = -\int \mathcal{A}_2^{\alpha} f(h) d\mu_N \quad i.e. \quad \int \left(\mathcal{A}_1^{\alpha} + \mathcal{A}_2^{\alpha} \right) f(h) d\mu_N = 0.$$

Accordingly, we have that $\int_{\mathbb{R}^{T_N}} \mathcal{L}^{\alpha} f(h) d\mu_N = 0.$

- ▶ This lemma shows the infinitesimal invariance of μ_N for \mathcal{L}^{α} (→Recall Lecture No 2).
- In the finite-dimensional setting, infinitesimal invariance implies the invariance. We apply Echeveria's result (1982) by noting the well-posedness of the martingale problem corresponding to the SDE (7). End of Step 1 □

Remark:

Infinitesimal invariance can be directly shown for the SPDE (6) based on Wiener-Itô chaos expansion of tame functions Φ of the form Φ(h) = f(⟨h, φ₁⟩,...,⟨h, φ_n⟩):

$$\int \mathcal{L}^{\varepsilon} \Phi(h) \nu^{\varepsilon}(dh) = 0,$$

where $\mathcal{L}^{\varepsilon} := \mathcal{L}_0^{\varepsilon} + \mathcal{A}^{\varepsilon}$ is (pre) generator of the SPDE (6) and

$$\begin{split} \mathcal{L}_0^{\varepsilon}\Phi(h) &= \frac{1}{2} \int_{\mathbb{R}^2} D^2 \Phi(x_1, x_2; h) \eta_2^{\varepsilon}(x_1 - x_2) dx_1 dx_2 + \frac{1}{2} \int_{\mathbb{R}} \partial_x^2 h(x) D\Phi(x; h) dx, \\ \mathcal{A}^{\varepsilon}\Phi(h) &= \frac{1}{2} \int_{\mathbb{R}} \left((\partial_x h)^2 - c^{\varepsilon} \right) * \eta_2^{\varepsilon}(x) D\Phi(x; h) dx. \end{split}$$

• Indeed, $\mathcal{L}_0^{\varepsilon}$ is symmetric, while $\mathcal{A}^{\varepsilon}$ is asymmetric:

$$\int \Psi \mathcal{L}_0^{\varepsilon} \Phi d\nu^{\varepsilon} = \int \Phi \mathcal{L}_0^{\varepsilon} \Psi d\nu^{\varepsilon}, \quad \int \Psi \mathcal{A}^{\varepsilon} \Phi d\nu^{\varepsilon} = - \int \Phi \mathcal{A}^{\varepsilon} \Psi d\nu^{\varepsilon}.$$

• F, in Séminaire de Probab., LNM **2137**, special issue for M. Yor, 2015 (for coupled KPZ equation)

- Combined with the well-posedness of L^ε-martingale problem, which can be shown at least on T, it is expected that the infinitesimal invariance implies Proposition 1. But this is not clear in infinite-dimensional setting (extension of Echeverria's result is unknown).
- Note that we have

$$u^{\varepsilon}: \text{ invariant } \Leftrightarrow \int_{\mathcal{C}} e^{t\mathcal{L}^{\varepsilon}} \Phi(h) \nu^{\varepsilon}(dh) = \int_{\mathcal{C}} \Phi(h) \nu^{\varepsilon}(dh)$$

 $\Rightarrow \int_{\mathcal{C}} \mathcal{L}^{\varepsilon} \Phi(h) \nu^{\varepsilon}(dh) = 0 \quad (\text{inf. invariance})$

for a wide class of Φ (and all $t \ge 0$).

 We can prove the last identity (integration by parts formula) due to the method of stochastic analysis.
 But, \(\equiv is unclear.)

- 3. Invariant measures of Cole-Hopf solution and SHE
 - ▶ It's important to know the asymptotic behavior of the solutions of the KPZ equation as $t \to \infty$.
 - The goal is to give a class of invariant (=stationary) measures of the stochastic heat equation (4):

$$\partial_t Z = \frac{1}{2} \partial_x^2 Z + Z \dot{W}(t, x)$$

and for the Cole-Hopf solution of the KPZ equation (3):

$$h(t,x) := \log Z(t,x).$$

- We apply Proposition 1 and let $\varepsilon \downarrow 0$.
- We state the result only on \mathbb{R} , but it holds also on $\mathbb{T} = [0, 1)$.

- [For Z] Let μ^c, c ∈ ℝ be the distribution of e^{B(x)+cx}, x ∈ ℝ, called geometric Brownian motion when c = 0, on C₊ = C(ℝ, (0, ∞)), where B(x), x ∈ ℝ, is the two-sided Brownian motion such that μ^c(B(0) ∈ dy) = dy.
- For *h*] Let *v^c* be the distribution of B(x) + cx, BM with drift *c*, on C = C(ℝ, ℝ).
- Note that these are not probability measures but infinite measures.

Theorem 3 $\{\mu^c\}_{c\in\mathbb{R}}$ are invariant (stationary) under SHE (4), i.e., $Z(0) \stackrel{law}{=} \mu^c \Rightarrow Z(t) \stackrel{law}{=} \mu^c$ for all $t \ge 0$ and $c \in \mathbb{R}$. (or $E^{\mu^c}[f(Z(t))] = const$ in t for a certain class of f on C_{+} .)

Corollary 4

 $\{\nu^c\}_{c\in\mathbb{R}}$ are invariant under the Cole-Hopf solution of the KPZ equation.

- c means the average tilt (=slope) of the interface.
- We have different invariant measures for different average tilts.
- Reversibility does not hold, but a kind of Yaglom reversibility holds, cf. Remark above.

• (Scale invariance) If Z(t, x) is a solution of SHE (4), then

$$Z^{c}(t,x) := e^{cx+\frac{1}{2}c^{2}t}Z(t,x+ct)$$

is also a solution (with a new white noise). Therefore, once the invariance of μ^0 is shown, μ^c is also invariant for every $c \in \mathbb{R}$.

- Thus, we assume c = 0 and write $\mu = \mu^0$.
- Or, equivalently for h(t, x), for every $c \in \mathbb{R}$,

$$h^{c}(t,x) := h_{CH}(t,x+ct) + cx + \frac{1}{2}c^{2}t.$$

is a Cole-Hopf solution (with a new white noise).

One expects μ^c, c ∈ ℝ to be all extremal invariant measures (except constant multipliers), but this remains open; cf. F-Spohn for ∇φ-interface model.

- 4. Proof of Theorem 3 and Corollary 4
- 4.1. Cole-Hopf transform for SPDE (6) (=Approximation-2)
 - ▶ ν^{ε} in Proposition 1 converges to ν (= ν^{0} , i.e., c = 0, i.e. Wiener measure s.t. $\nu(B(0) \in dy) = dy)$ as $\varepsilon \downarrow 0$.
 - Therefore, our goal is to pass to the limit ε ↓ 0 in the KPZ approximating equation (6):

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} ((\partial_x h)^2 - c^{\varepsilon}) * \eta_2^{\varepsilon} + \dot{W}^{\varepsilon}(t, x).$$

We consider its Cole-Hopf transform: Z (≡ Z^ε) := e^h. Then, by Itô's formula, Z satisfies the SPDE:

$$\partial_t Z = \frac{1}{2} \partial_x^2 Z + A^{\varepsilon}(x, Z) + Z \dot{W}^{\varepsilon}(t, x), \tag{8}$$

where

$$A^{\varepsilon}(x,Z) = \frac{1}{2}Z(x)\left\{\left(\frac{\partial_{x}Z}{Z}\right)^{2} * \eta_{2}^{\varepsilon}(x) - \left(\frac{\partial_{x}Z}{Z}\right)^{2}(x)\right\}.$$

• The term $A^{\varepsilon}(x, Z)$ looks vanishing as $\varepsilon \downarrow 0$.

- ▶ But this is not true. Indeed, under the average in time t, $A^{\varepsilon}(x, Z)$ can be replaced by a linear function $\frac{1}{24}Z$ (\rightarrow see Thm 5 below).
- The limit as $\varepsilon \downarrow 0$ (under stationarity of tilt),

 $\partial_t Z = \frac{1}{2} \partial_x^2 Z + \frac{1}{24} Z + Z \dot{W}(t, x).$

Or, heuristically at KPZ level,

 $\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} \{ (\partial_x h)^2 - \delta_x(x) \} + \frac{1}{24} + \dot{W}(t,x).$

► This shows for the solution h^ε(t, x) of the KPZ approximating eq-2 (6):

 $h^{\varepsilon} \rightarrow h_{CH} + \frac{1}{24}t,$

where $h_{CH} = h_{CH}(t, x)$ is the Cole-Hopf solution. • " $+\frac{1}{24}t$ " doesn't affect the invariant measure (\rightarrow see below) 4.2. Limit of $A^{\varepsilon}(x, Z)$ (Boltzmann-Gibbs principle)

• Asymptotic replacement of $A^{\varepsilon}(x, Z^{\varepsilon}(s))$ by $\frac{1}{24}Z^{\varepsilon}(s, x)$.

▶ To avoid the infiniteness of invariant measures, we view $h^{\varepsilon}(t,\rho) = \int h^{\varepsilon}(t,x)\rho(x)dx$ (height averaged by $\rho \in C_0^{\infty}(\mathbb{R}), \ge 0$, $\int \rho(x)dx = 1$) in modulo 1 (called wrapped process).

Theorem 5 (Boltzmann-Gibbs principle) For every $\varphi \in C_0(\mathbb{R})$ satisfying supp $\varphi \cap$ supp $\rho = \emptyset$, we have that

$$\lim_{\varepsilon \downarrow 0} E^{\pi \otimes \nu^{\varepsilon}} \left[\left\{ \int_0^t ds \int_{\mathbb{R}} \left(A^{\varepsilon}(x, Z^{\varepsilon}(s)) - \frac{1}{24} Z^{\varepsilon}(s, x) \right) \varphi(x) dx \right\}^2 \right] = 0,$$

where π is the uniform measure for $h^{\varepsilon}(0,\rho) \in [0,1)$ and ν^{ε} is the distribution of $B * \eta^{\varepsilon}$.

• Set $A^{\varepsilon}(\varphi, Z) := \int_{\mathbb{R}} \left(A^{\varepsilon}(x, Z) - \frac{1}{24} Z(x) \right) \varphi(x) dx$

4.3. Proof of Theorem 5

(1) Reduction of equilibrium dynamic problem to static one:

► The expectation in Thm 5 is bounded by (H⁻¹-norm)², which can be represented by a variational formula with (H¹-norm)² = Dirichlet form:

$$\begin{split} & E^{\pi \otimes \nu^{\varepsilon}} \left[\left\{ \int_{0}^{t} ds \, A^{\varepsilon}(\varphi, Z_{s}^{\varepsilon}) \right\}^{2} \right] \\ & \leq Ct \| A^{\varepsilon}(\varphi, Z) \|_{-1,\varepsilon}^{2} \quad (H^{-1}\text{-norm}) \\ & := Ct \sup_{\Phi \in L^{2}(\pi \otimes \nu^{\varepsilon})} \left\{ 2E^{\pi \otimes \nu^{\varepsilon}} \left[A^{\varepsilon}(\varphi, Z) \Phi \right] - \langle \Phi, (-\mathcal{L}_{0}^{\varepsilon}) \Phi \rangle_{\pi \otimes \nu^{\varepsilon}} \right\}, \end{split}$$

where $\mathcal{L}_0^{\varepsilon}$ is the symmetric part of $\mathcal{L}^{\varepsilon}$. This is a generic bound in a stationary situation.

▶ In fact, roughly, writing $\mu = \pi \otimes \nu^{\varepsilon}, F = A^{\varepsilon}$,

$$E^{\mu}\left[\left\{\int_{0}^{t} ds F(Z_{s})\right\}^{2}\right] = \int_{0}^{t} ds_{1} \int_{0}^{t} ds_{2} E^{\mu}[F(Z_{s_{1}})F(Z_{s_{2}})]$$
$$= 2\int_{0}^{t} ds_{1} \int_{0}^{s_{1}} ds_{2} E^{\mu}[Fe^{(s_{1}-s_{2})\mathcal{L}^{\varepsilon}}F]$$
$$\leq 2t \int_{0}^{\infty} ds E^{\mu}[Fe^{s\mathcal{L}_{0}^{\varepsilon}}F] = 2t\langle(-\mathcal{L}_{0}^{\varepsilon})^{-1}F,F\rangle_{\mu}$$

Remark The above estimate can be extended to that on $E^{\mu} \left[\sup_{0 \le t \le T} \left\{ \int_{0}^{t} ds F(Z_s) \right\}^{2} \right]$ by the same H^{-1} -norm (with *C* changed), see Komorowski-Landim-Olla, "Fluctuations in Markov Processes", Springer, 2012, Lemma 2.4 (p.48). In the proof, backward martingale and Dynkin's formula are used to give a cancellation. This is sometimes called Itô-Tanaka trick.

Now we need to estimate the H^{-1} -norm, in which

$$2E^{\pi\otimes\nu^{\varepsilon}}\left[A^{\varepsilon}(\varphi,Z)\Phi\right]=E^{\pi}\left[Z_{\rho}E^{\nu^{\varepsilon}}\left[B^{\varepsilon}(\varphi,Z)\Phi(h(\rho),\nabla h)\right]\right],$$

where $Z_{\rho} = \exp\{\int_{\mathbb{R}} \log Z(x)\rho(x)dx\}, B^{\varepsilon}(x,Z) = 2\frac{A^{\varepsilon}(x,Z) - \frac{1}{24}Z}{Z_{\rho}}$ and $B^{\varepsilon}(\varphi,Z) = \int_{\mathbb{R}} B^{\varepsilon}(x,Z)\varphi(x)dx.$

(2) The key is the following static bound:

• $\tilde{C} := C / \sim$, the quotient space of $C = C(\mathbb{R}, \mathbb{R})$ under the equivalence relation $h \sim h + c$ for constants c.

Proposition 6

For $\Phi = \Phi(\nabla h) \in L^2(\tilde{C}, \nu)$ s.t. $\|\Phi\|_{1,\varepsilon}^2 = \langle \Phi, (-\mathcal{L}_0^{\varepsilon})\Phi \rangle_{\pi \otimes \nu^{\varepsilon}} < \infty$, and φ satisfying the condition of Theorem 5, we have that

$$\left|E^{\nu^{\varepsilon}}\left[B^{\varepsilon}(\varphi, Z)\Phi\right]\right| \leq C(\varphi)\sqrt{\varepsilon}\|\Phi\|_{1,\varepsilon},\tag{9}$$

with some positive constant $C(\varphi)$, which depends only on φ , for all ε : $0 < \varepsilon \leq \frac{\delta}{4} \wedge 1$, where $\delta := \operatorname{dist}(\operatorname{supp} \varphi, \operatorname{supp} \rho)$.

Once this proposition is shown, the proof of Theorem 5 is concluded, since the sup in the definition of H⁻¹-norm is bounded by

$$\leq Ct \sup_{\Phi} \{ 2eC(\varphi) \sqrt{\varepsilon} \|\Phi\|_{1,\varepsilon} - \|\Phi\|_{1,\varepsilon}^2 \} = \operatorname{const}(\sqrt{\varepsilon})^2 \to 0.$$

• Recall
$$Z_{
ho} = e^{h(
ho)} \in [1, e]$$
 with $h(
ho) \in [0, 1]$.

Point of the proof of Proposition 6

(1) We first summarize Wiener-Itô chaos expansion ([FQ, p. 189~])

• Recall that ν is the (two-sided) Wiener measure on $\widetilde{C} := C/\sim \cong \{B \in C; B(0) = 0\}$, where $C = C(\mathbb{R}, \mathbb{R})$. (Recall $h(\cdot) \sim h(\cdot) + c$.)

► Then, we have the orthogonal decomposition of $L^2(\widetilde{C}, \nu)$: $L^2(\widetilde{C}, \nu) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n \cong \bigoplus_{n=0}^{\infty} \widehat{L}^2(\mathbb{R}^n)$ (symmetric Fock space)

▶ Here, for $\varphi_n \in \hat{L}^2(\mathbb{R}^n)$, i.e. $\varphi_n \in L^2(\mathbb{R}^n)$ and symmetric in *n*-variables, define $I(\varphi_n)$ as the multiple Wiener integral:

$$I(\varphi_n) := \frac{1}{n!} \int_{\mathbb{R}^n} \varphi_n(x_1, \ldots, x_n) dB(x_1) \cdots dB(x_n)$$

and \mathcal{H}_n is defined as

$$\mathcal{H}_n := \{ I(\varphi_n) \in L^2(\widetilde{\mathcal{C}}, \nu); \varphi_n \in \hat{L}^2(\mathbb{R}^n) \}$$

for $n \geq 1$ and $\mathcal{H}_0 := \{\text{const}\}.$

• $I(\varphi_n)$ is called *n*th order Wiener functional (chaos).

• Thus, for any $\Phi \in L^2(\widetilde{C}, \nu)$, there exist $\varphi_n \in \hat{L}^2(\mathbb{R}^n)$, $n \ge 0$ such that

$$\Phi=\sum_{n=0}^{\infty}I(\varphi_n),$$

and

•
$$\|\Phi\|_{L^{2}(\nu)}^{2} = \sum_{n=0}^{\infty} \|I(\varphi_{n})\|_{L^{2}(\nu)}^{2} = \sum_{n=0}^{\infty} \frac{1}{n!} \|\varphi_{n}\|_{L^{2}(\mathbb{R}^{n})}^{2},$$

•
$$(I(\varphi_n), I(\varphi_m))_{L^2(\nu)} \equiv E^{\nu}[I(\varphi_n)I(\varphi_m)] = 0$$
 if $n \neq m$.

hold.

- ▶ Diagram formula ([FQ, Lemma 3.9]) gives the chaos expansion of the product $I(\varphi_{n_1}) \cdots I(\varphi_{n_m})$ (→ see below).
- ► In particular, one can compute the expectation of Φ as $E[\Phi] = I(\varphi_0) = \varphi_0.$

(2) Now we come to the proof of Proposition 6

▶ Recalling that $\partial_x h = \partial_x (B * \eta^{\varepsilon})$ under ν^{ε} , by Itô's formula

$$(\partial_{x}h)^{2} = \left\{\int_{\mathbb{R}}\eta^{\varepsilon}(x-y)dB(y)\right\}^{2} = \Psi^{\varepsilon}(x) + c^{\varepsilon}, \quad (10)$$

where $\Psi^{\varepsilon}(x) = \int_{\mathbb{R}^2} \eta^{\varepsilon} (x - x_1) \eta^{\varepsilon} (x - x_2) dB(x_1) dB(x_2)$, which is a 2nd order Wiener functional (chaos).

 \triangleright In particular, the renormalization constant c^{ε} can be expressed as

$$c^{\varepsilon} = E\left[\left(\int_{\mathbb{R}} \eta^{\varepsilon}(x-y)dB(y)\right)^{2}\right] \left(= \|\eta^{\varepsilon}\|_{L^{2}(\mathbb{R})}^{2}\right).$$

and it is sometimes denoted by $c_{\epsilon}^{\mathbf{v}}$. Therefore, transforming $\left(\frac{\partial_{x}Z}{Z}\right)^{2} - c^{\varepsilon}$ back to $(\partial_{x}h)^{2} - c^{\varepsilon}$,

$$\begin{split} E^{\nu^{\varepsilon}}\left[B^{\varepsilon}(x,Z)\Phi\right] &= E\left[2\frac{A^{\varepsilon}(x,Z)-\frac{1}{24}Z(x)}{Z_{\rho}}\Phi\right] \\ &= E^{\nu^{\varepsilon}}\left[\frac{Z(x)}{Z_{\rho}}\left(\left\{\Psi^{\varepsilon}*\eta_{2}^{\varepsilon}(x)-\Psi^{\varepsilon}(x)\right\}-\frac{1}{12}\right)\Phi\right], \end{split}$$

To compute this expectation,

• { $\Psi^{\varepsilon} * \eta_2^{\varepsilon}(x) - \Psi^{\varepsilon}(x)$ }: 2nd order Wiener functional,

• $\frac{1}{12}$: 0th order

thus we need to pick up the 2nd order and 0th order terms of the products of two Wiener functionals $\frac{Z(x)}{Z_0} \times \Phi$.

- We apply the diagram formula to compute the Wiener chaos expansion of products of two functions.
- Diagrams γ to compute 2nd Wiener chaos and 0th order term in ^{Z(x)}/_{Z_ρ} × Φ.

For 2nd Wiener chaos:

For 0th order term:

• [Chaos expansion of
$$\frac{Z(x)}{Z_{\rho}}$$
] Under ν ,

$$\frac{Z(x)}{Z_{\rho}} = e^{B(x) - \int_{\mathbb{R}} B(y)\rho(y)dy}$$
$$= e^{a(x)} \left\{ 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^n} \phi_x^{\otimes n}(u_1, \dots, u_n) dB(u_1) \cdots dB(u_n) \right\},$$

where,

$$\phi_x(u) = \mathbb{1}_{(-\infty,x]}(u) - \int_u^\infty \rho(y) dy,$$
$$a(x) = \frac{1}{2} \int_{\mathbb{R}} \phi_x(u)^2 du.$$

• Note that the kernel ϕ_x has jump.

- ||Φ||²_{1,ε} can be expressed by (∞-dimensional) Dirichlet form (→ [FQ, Lemma 3.8]).
- Further details are left to [FQ].

(3) We only give a remark on the constant $\frac{1}{24}$

The same factor ¹/₂₄ (24 = 4!) appears in several KPZ related papers such as [Bertini-Giacomin 1997], [Borodin-Corwin-Ferrari 2012],

For general convolution kernel η, this constant is given by J/2, where

$$J = P(R_1 + R_3 > 0, R_2 + R_3 > 0) - P(R_1 > 0, R_2 > 0),$$

and $\{R_i\}_{i=1}^3$ are i.i.d. r.v.s distributed under $\eta_2(x)dx$ If η is symmetric,

$$P(R_1 + R_3 > 0, R_2 + R_3 > 0) = P(R_1 - R_3 > 0, R_2 - R_3 > 0)$$

= $P(R_3 = \min R_i) = \frac{1}{3},$

so that J = ¹/₃ - ¹/₄ = ¹/₁₂.
If the support of η ⊂ [0,∞) (or ⊂ (-∞, 0]), then J = 0.
See the next page for the reason that the above quantity J appears.

Recall (10) to see that Ψ^ε * η^ε₂(x) − Ψ^ε(x) is 2nd order Wiener chaos with kernel:

$$2\Big\{\int \eta^{\varepsilon}(y-x_1)\eta^{\varepsilon}(y-x_2)\eta^{\varepsilon}(x-y)dy-\eta^{\varepsilon}(x-x_1)\eta^{\varepsilon}(x-x_2)\Big\}.$$

- ► The product and sum (in *n*) of (n + 2)th order chaos of $\frac{Z(x)}{Z_{\rho}}$, *n*th order chaos of Φ and the above quantity (2nd order) produces the quantity *J*. (Recall the kernel ϕ_x in $\frac{Z(x)}{Z_{\rho}}$ has jump.)
- This cancels with 0th order term $\frac{1}{12}E^{\nu^{\varepsilon}}\left[\frac{Z(x)}{Z_{o}}\Phi\right]$.
- The product and sum of n ↔ Z(x)/Z_ρ, n + 2 ↔ Φ and above quantity ↔ 2 is bounded by the square root of Dirichlet form ||Φ||_{1,ε}. (End of the proof of Prop 6)

4.4. Proof of Theorem 3 and Corollary 4

Wrapping can be removed by showing uniform estimate:

$$\sup_{0<\varepsilon<1} E\left[\sup_{0\le t\le T}h^{\varepsilon}(t,\rho)^{2}\right]<\infty.$$

Namely, height cannot move very fast. This is shown only on a torus (since we need Poincaré inequality).

Under the stationary situation of the tilt processes, in the limit, we obtain the SHE:

$$\partial_t Z = \frac{1}{2} \partial_x^2 Z + \frac{1}{24} Z + Z \dot{W}(t, x). \tag{11}$$

- ► This looks different from the original SHE (4), but the solution Z_t of (11) gives the solution Z̃_t of (4) under the simple transformation Z̃_t := e^{-t/24}Z_t.
- This implies the invariance of the distribution of the geometric Brownian motion for the tilt process determined by the SHE (4), and therefore that of BM for Cole-Hopf solution.

- The above argument combined with Proposition 1 at approximating level shows the invariance of µ for tilt processes. (→ Theorem 3)
- To rewrite this to the height processes h_t, we introduce the transformation h^ε(x, Z) := log(Z * η^ε(x)). Then, the evolution of h^ε(x, Z_t) is governed only by the tilt variables and the initial data h^ε(x, Z₀). (→ Corollary 4)

► Hoshino, SPA 128, 2018 proved the convergence of the solutions of Approximating Eq-1 and Approximating Eq-2 as ε ↓ 0 in non-stationary setting by applying paracontrolled calculus (→ see also Lecture No 4 in coupled KPZ equation setting.)

5. Remarks from the viewpoint of interacting particle systems

The stationary measure of the SHE (4) can be obtained by particle system approximation.

- $\sigma_t = \{\sigma_t(i)\} \in \{\pm 1\}^{\mathbb{Z}}$: WASEP (with weak asymmetry $\varepsilon^{\frac{1}{2}}$)

- ζ_t : height (or summed) process with height difference σ_t , sometimes called SOS-dynamics,
- ξ_t^{ε} : (Discrete) Cole-Hopf transform of ζ_t scaled in space and time.
- [Bertini-Giacomin '97] showed that ξ^ε_t(x) ⇒ Z_t(x), the solution of SHE (4) weakly as ε ↓ 0 (→ Lecture No 1).
- WASEP σ_t has Bernoulli product measure on $\mathcal{X} = \{\pm 1\}^{\mathbb{Z}}$ as its stationary measure
 - $\Rightarrow \lim_{\varepsilon \downarrow 0} \zeta_t^{\varepsilon} \text{ (fluctuation scaling limit, i.e., CLT) should}$ have Wiener measure as its stationary measure $(as <math>\zeta_t$ is the sum of σ_t).
 - \Rightarrow Z_t should have the distribution of geometric BM as its stationary measure.

Summary of this lecture.

1. KPZ equation:

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} (\partial_x h)^2 + \dot{W}(t, x), \quad x \in \mathbb{R}$$

2. KPZ approximating equation-2 with $W^{\varepsilon}(t,x) = \langle W(t), \eta^{\varepsilon}(x-\cdot) \rangle$:

$$\partial_t h = \frac{1}{2} \partial_x^2 h + \frac{1}{2} ((\partial_x h)^2 - c^{\varepsilon}) * \eta_2^{\varepsilon} + \dot{W}^{\varepsilon}(t, x)$$

has invariant measure ν^{ε} (=distribution of $B * \eta^{\varepsilon}$).

3. Cole-Hopf transform $Z := e^h$ leads to the SPDE:

$$\partial_t Z = \frac{1}{2} \partial_x^2 Z + \frac{1}{2} Z \left\{ \left(\frac{\partial_x Z}{Z} \right)^2 * \eta_2^\varepsilon - \left(\frac{\partial_x Z}{Z} \right)^2 \right\} + Z \dot{W}^\varepsilon(t, x)$$

As ε ↓ 0, one can replace the middle term by ¹/₂₄Z under time average and get the SPDE in the limit:

$$\partial_t Z = \frac{1}{2} \partial_x^2 Z + \frac{1}{24} Z + Z \dot{W}(t, x), \quad x \in \mathbb{R}.$$