KPZ limit for interacting particle systems —Invariant measures of KPZ equation-

Tadahisa Funaki

Waseda University
November 24th+26th, 2020

[^0]- F-Quastel, Stoch. PDE: Anal. Comp. 3, 2015

Plan of the course (10 lectures)
1 Introduction
2 Supplementary materials
Brownian motion, Space-time Gaussian white noise, (Additive) linear SPDEs, (Finite-dimensional) SDEs, Martingale problem, Invariant/reversible measures for SDEs, Martingales
3 Invariant measures of KPZ equation (F-Quastel, 2015)
4 Coupled KPZ equation by paracontrolled calculus (F-Hoshino, 2017)
5 Coupled KPZ equation from interacting particle systems (Bernardin-F-Sethuraman, 2020+)
5.1 Independent particle systems
5.2 Single species zero-range process
$5.3 n$-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation

Plan of this lecture

Invariant measures of KPZ equation
1 Renormalization, Cole-Hopf solution, Approximation-1
1.1 Approximation-1: Simple
1.2 Cole-Hopf solution

2 Approximation-2: Suitable to find invariant measures
3 Invariant measures of Cole-Hopf solution and SHE
4 Proof of Theorem 3 and Corollary 4
4.1 Cole-Hopf transform for Approximation-2
4.2 Limit of $A^{\varepsilon}(x, Z)$ (Boltzmann-Gibbs principle)
4.3 Proof of Theorem 5
4.4 Proof of Theorem 3 and Corollary 4

5 Remarks from the viewpoint of interacting particle systems

1. Renormalization, Cole-Hopf solution, Approximation-1

- In Lecture No 1, we introduced KPZ equation (1), the renormalized KPZ equation (2) and Cole-Hopf solution (3) of KPZ equation:

$$
\begin{align*}
& \partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\partial_{x} h\right)^{2}+\dot{W}(t, x), \tag{1}\\
& \partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left\{\left(\partial_{x} h\right)^{2}-\delta_{x}(x)\right\}+\dot{W}(t, x), \tag{2}\\
& h(t, x):=\log Z(t, x), \tag{3}
\end{align*}
$$

where Z is the solution of multiplicative linear stochastic heat equation (SHE):

$$
\begin{equation*}
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+Z \dot{W}(t, x) . \tag{4}
\end{equation*}
$$

- We may consider on \mathbb{R} or $\mathbb{T}=[0,1)$, but mostly on \mathbb{R} in this lecture.
- The product of Z and \dot{W} in (4) should be understood in Itô's sense (in mild form or in generalized functions' sense).
- As we saw, SHE (4) is well-posed and a heuristic application of Itô's formula to $h(t, x)$ in (3) leads to the renormalized KPZ equation (2).
- Our first goal is to give mathematically rigorous foundation to this procedure.
- The ill-posedness of KPZ equation (1) comes from the mismatch between the nonlinear term and the noise.
- We can not deal with the KPZ eq directly. We consider its approximation by replacing the noise by smooth one.
- However, the solution of the equation with the noise simply replaced by smooth one does not converge in the limit.
- We need to introduce some additional diverging factor to compensate in removing smoothness of the noise. This is called the renormalization.
1.1. Approximation-1: Simple
- Symmetric convolution kernel: Let $\eta \in C_{0}^{\infty}(\mathbb{R})$ s.t. $\eta(x) \geq 0, \eta(x)=\eta(-x)$ and $\int_{\mathbb{R}} \eta(x) d x=1$ be given, and set $\eta^{\varepsilon}(x):=\frac{1}{\varepsilon} \eta\left(\frac{x}{\varepsilon}\right)$ for $\varepsilon>0$.
- Smeared noise: $\dot{W}^{\varepsilon}(t, x)=\dot{W}(t) * \eta^{\varepsilon}(x) \equiv\left\langle\dot{W}(t), \eta^{\varepsilon}(x-\cdot)\right\rangle$
- Approximating equation-1: Let $h=h^{\varepsilon}$ be a solution of

$$
\begin{equation*}
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\left(\partial_{x} h\right)^{2}-c^{\varepsilon}\right)+\dot{W}^{\varepsilon}(t, x), \tag{5}
\end{equation*}
$$

where

$$
c^{\varepsilon}=\int_{\mathbb{R}} \eta^{\varepsilon}(y)^{2} d y\left(=\frac{1}{\varepsilon}\|\eta\|_{L^{2}(\mathbb{R})}^{2}\right) .
$$

- $c^{\varepsilon} \nearrow \infty$ as $\varepsilon \downarrow 0 . c^{\varepsilon}$ is called a renormalization. Without c^{ε}, the solution h^{ε} does not converge.
- Note that \dot{W}^{ε} is smooth in x, but it remains stochastic in t. The solution h^{ε} of (5) is smooth in x.
1.2. Cole-Hopf solution
- As in Lecture No 1, consider the Cole-Hopf transform of $h=h^{\varepsilon}$ defined by $Z=Z^{\varepsilon}:=e^{h}$, then Z satisfies

$$
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+Z \dot{W}^{\varepsilon}(t, x) .
$$

(The product $Z \dot{W}^{\varepsilon}$ is defined in Itô's sense.)

- Indeed, apply Itô's formula for $z=e^{h}$ to see

$$
\begin{aligned}
\partial_{t} Z & =Z \partial_{t} h+\frac{1}{2} Z\left(\partial_{t} h\right)^{2} \\
& =\frac{1}{2} Z\left\{\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}-c^{\varepsilon}\right\}+Z \dot{W}^{\varepsilon}+\frac{1}{2} Z c^{\varepsilon} \\
& =\frac{1}{2} \partial_{x}^{2} Z+Z \dot{W}^{\varepsilon},
\end{aligned}
$$

since $Z\left\{\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}\right\}=\partial_{x}^{2} Z$.

- See next page for $\left(\partial_{t} h\right)^{2}=c^{\varepsilon}$.
- In Lecture No 1 , we computed $\partial_{t} h$ starting from Z. Here, conversely, we start from h and compute $\partial_{t} Z$.
- $\left(\partial_{t} h\right)^{2}=c^{\varepsilon}$ or $(d h)^{2}=c^{\varepsilon} d t$ is seen from

$$
\begin{aligned}
& (d h(t, x))^{2}=\left(d W^{\varepsilon}(t, x)\right)^{2} \\
& =\int \eta^{\varepsilon}(x-y) d W(t, y) d y \cdot \int \eta^{\varepsilon}(x-z) d W(t, z) d z \\
& =\iint \eta^{\varepsilon}(x-y) \eta^{\varepsilon}(x-z) \delta(y-z) d y d z \cdot d t \\
& =\int \eta^{\varepsilon}(x-y)^{2} d y \cdot d t=c^{\varepsilon} d t
\end{aligned}
$$

- Recall $d W(t, y) d W(t, z)=\delta(y-z) d t$ from the relation of the covariance.
- The renormalization c^{ε} in (5) was chosen such that it cancels with this diverging Itô correction term.
- As we have shown, $Z=Z^{\varepsilon}$ is the solution of

$$
\partial_{t} Z^{\varepsilon}=\frac{1}{2} \partial_{x}^{2} Z^{\varepsilon}+Z^{\varepsilon} \dot{W}^{\varepsilon}(t, x) .
$$

- It is not difficult to show (Bertini-Giacomin 1997) that $Z^{\varepsilon} \rightarrow Z$ as $\varepsilon \downarrow 0$, the sol of the linear stochastic heat equation (defined in Itô's sense) (4):

$$
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+Z \dot{W}(t, x),
$$

with a multiplicative noise. (4) is a well-posed equation.

- This implies $h^{\varepsilon} \rightarrow h_{C H}$ as $\varepsilon \downarrow 0$, i.e., the solution $h=h^{\varepsilon}$ of the approximating KPZ equation- 1 converges to the Cole-Hopf solution of the KPZ equation defined by (3):

$$
h_{C H}(t, x):=\log Z(t, x) .
$$

- Comparison theorem for (4): $Z(0)>0 \Rightarrow Z(t)>0$.
- The following is copied from Lecture No 1.
- The equation satisfied by $h_{C H}$:

$$
\begin{aligned}
\partial_{t} h_{C H} & =\frac{1}{Z} \partial_{t} Z-\frac{1}{2} \frac{1}{Z^{2}}\left(\partial_{t} Z\right)^{2} \\
& =\frac{1}{Z}\left(\frac{1}{2} \partial_{x}^{2} Z+Z \dot{W}\right)-\frac{1}{2} \delta_{x}(x) \\
& =\frac{1}{2}\left(\partial_{x}^{2} h_{C H}+\left(\partial_{x} h_{C H}\right)^{2}\right)+\dot{W}-\frac{1}{2} \delta_{x}(x)
\end{aligned}
$$

- Thus, for the Cole-Hopf solution $h_{C H}$, at least heuristically, we obtain the renormalized KPZ equation (2):

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left\{\left(\partial_{x} h\right)^{2}-\delta_{x}(x)\right\}+\dot{W}(t, x)
$$

2. Approximation-2: Suitable to find invariant measures

- We introduce another KPZ approximating equation:

$$
\begin{equation*}
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\left(\partial_{x} h\right)^{2}-c^{\varepsilon}\right) * \eta_{2}^{\varepsilon}+\dot{W}^{\varepsilon}(t, x), \tag{6}
\end{equation*}
$$

where $\eta_{2}(x)=\eta * \eta(x), \eta_{2}^{\varepsilon}(x)=\frac{1}{\varepsilon} \eta_{2}\left(\frac{x}{\varepsilon}\right)$.

- Recall $c^{\varepsilon}=\eta_{2}^{\varepsilon}(0)$.
- General principle (Onsager relation, fluctuation-dissipation relation): Consider the SPDE

$$
\partial_{t} h=F(h)+\dot{W},
$$

and let A be a certain operator. Then, the structure of the invariant measures essentially does not change for

$$
\partial_{t} h=A^{2} F(h)+A \dot{W} .
$$

- Indeed, we will show in Proposition 1 below that the distribution of $B * \eta^{\varepsilon}(x)$, where B is the periodic Brownian motion (in case \mathbb{T}) or the two-sided Brownian motion (in case \mathbb{R}), is invariant for the sol. $h=h^{\varepsilon}$ of (6).

Explanation of fluctuation-dissipation relation
(reversible and finite-dimensional case, cf. Lecture No 2)

- Let $V \in C^{1}\left(\mathbb{R}^{d}\right)$ and consider SDE:

$$
d X_{t}=-\frac{1}{2} \nabla V\left(X_{t}\right) d t+d B_{t}
$$

- Then X_{t} is reversible under the measure $e^{-v} d x$.
- (Fluctuation-dissipation relation) For a matrix $A=\left(\alpha_{i j}\right)_{1 \leq i, j \leq d}$, consider SDE:

$$
d Y_{t}=-\frac{1}{2} A^{*} A \nabla V\left(Y_{t}\right) d t+A d B_{t}
$$

- Y_{t} is also reversible under $e^{-V} d x$.
- KPZ equation has an asymmetric part (growing part) so that the situation is not exactly the same (\rightarrow Yaglom reversibility).
- However, as we expect, the 2nd Approximating SPDE (6) has a good property in its invariant (stationary) measures.
- Let ν^{ε} be the distribution of $\partial_{x}\left(B * \eta^{\varepsilon}(x)\right)$, where B is the two-sided Brownian motion. ν^{ε} is independent of choice of $B(0)$.

Proposition 1

ν^{ε} is stationary for the tilt process $\partial_{x} h$ of the SPDE (6).

- At the KPZ level, the invariant measure is not a finite measure (\rightarrow Thm 3 below).
- To avoid this, in Prop 1, we consider its slope (tilt), i.e. at the Burgers' level.

[^1]
Sketch of the proof:

- Step 1: Consider on a discrete torus $\mathbb{T}_{N}=\{1,2, \ldots, N\}$. The discretization of $\left(\partial_{x} h\right)^{2}$ should be carefully chosen as

$$
\frac{1}{3}\left\{\left(h_{i+1}-h_{i}\right)^{2}+\left(h_{i}-h_{i-1}\right)^{2}+\left(h_{i+1}-h_{i}\right)\left(h_{i}-h_{i-1}\right)\right\}, i \in \mathbb{T}_{N}
$$

Discrete version of ν^{ε} defined on \mathbb{T}_{N} is invariant. \rightarrow see next page how we apply the result in Lecture No 2.

- Step 2: Continuum limit as $N \rightarrow \infty$ leads to the result on \mathbb{T}. This can be easily extended to a large torus $M \cdot \mathbb{T} \simeq$ $\left[-\frac{M}{2}, \frac{M}{2}\right)$ of size M.
- Step 3: To show on \mathbb{R}, take an infinite-volume limit as $M \rightarrow \infty$ by usual tightness and martingale problem approach.

More on Step 1:

- Take $\alpha: \mathbb{Z} \rightarrow[0, \infty)$ such that $\alpha(i)=\alpha(-i)$ and $\alpha(i)=0$ for $i:|i| \geq{ }^{\exists} K$, instead of $\eta(x)$ in (6).
- For $h=\left(h_{i} \equiv h(i)\right)_{i \in \mathbb{T}_{N}} \in \mathbb{R}^{\mathbb{T}_{N}}$, we define

$$
\begin{aligned}
& \Delta h(i)=h(i+1)+h(i-1)-2 h(i), \\
& G_{1}(i, h)=\left(h_{i+1}-h_{i}\right)^{2}+\left(h_{i}-h_{i-1}\right)^{2}, \\
& G_{2}(i, h)=\left(h_{i+1}-h_{i}\right)\left(h_{i}-h_{i-1}\right), \quad i \in \mathbb{T}_{N},
\end{aligned}
$$

- Convolution of two functions β, γ on \mathbb{T}_{N} is defined by $(\beta * \gamma)(i)=\sum_{k \in \mathbb{T}_{N}} \beta(i-k) \gamma(k)$, with $i-k$ understood in modulo N.
- We consider SDE for $h_{t}=\left(h_{t}(i)\right)_{i \in \mathbb{T}_{N}} \in \mathbb{R}^{\mathbb{T}_{N}}$:

$$
\begin{equation*}
d h_{t}(i)=\frac{\lambda_{1}}{2} \Delta h_{t}(i) d t+\lambda_{2}\left\{\alpha_{2} * G_{1}\left(i, h_{t}\right)+\alpha_{2} * G_{2}\left(i, h_{t}\right)\right\} d t+\lambda_{3} d w_{t}^{\alpha}(i), \tag{7}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$ are arbitrary constants, $\alpha_{2}=\alpha * \alpha$, $w_{t}^{\alpha}=\alpha * w_{t}$ and $w_{t}=\left(w_{t}(i)\right)_{i \in \mathbb{T}_{N}}$ are independent BMs.

- (7) is a discretization of (6) disregarding constant drift c^{ε}.
- We consider three operators on $\mathbb{R}^{\mathbb{T}_{N}}:$ for $f \in C^{2}\left(\mathbb{R}^{\mathbb{T}_{N}}\right)$,

$$
\begin{aligned}
& \mathcal{L}_{0}^{\alpha} f(h)=\frac{\lambda_{1}}{2} \sum_{i \in \mathbb{T}_{N}} \Delta h(i) \frac{\partial f}{\partial h_{i}}+\frac{\lambda_{3}^{2}}{2} \sum_{i, j \in \mathbb{T}_{N}} \alpha_{2}(i-j) \frac{\partial^{2} f}{\partial h_{i} \partial h_{j}}, \\
& \mathcal{A}_{1}^{\alpha} f(h)=\sum_{i \in \mathbb{T}_{N}}\left(\alpha_{2} * G_{1}\right)(i, h) \frac{\partial f}{\partial h_{i}}, \\
& \mathcal{A}_{2}^{\alpha} f(h)=\sum_{i \in \mathbb{T}_{N}}\left(\alpha_{2} * G_{2}\right)(i, h) \frac{\partial f}{\partial h_{i}},
\end{aligned}
$$

- Then, $\mathcal{L}^{\alpha}:=\mathcal{L}_{0}^{\alpha}+\lambda_{2} \mathcal{A}_{1}^{\alpha}+\lambda_{2} \mathcal{A}_{2}^{\alpha}$ is the generator of the SDE (7).
- Let $\mu_{N}(d h)=e^{-I_{N}^{\alpha}(h)} d h$ be the measure on $\mathbb{R}^{\mathbb{T}_{N}}$, where

$$
\begin{aligned}
I_{N}^{\alpha}(h) & =\frac{\lambda_{1}}{2 \lambda_{3}^{2}} \sum_{j \in \mathbb{T}_{N}}\left\{\alpha^{-1} * h(j+1)-\alpha^{-1} * h(j)\right\}^{2} \\
d h & =\prod_{i \in \mathbb{T}_{N}} d h(i), \\
\alpha^{-1} & =\text { inverse matrix of } \alpha=\{\alpha(i-j)\}_{i, j \in \mathbb{T}_{N}} .
\end{aligned}
$$

Lemma 2
For every $f, g \in C_{b}^{2}\left(\mathbb{R}^{\mathbb{T}_{N}}\right)$, we have the symmetry of \mathcal{L}_{0}^{α} :

$$
\int g(h) \mathcal{L}_{0}^{\alpha} f(h) d \mu_{N}=\int f(h) \mathcal{L}_{0}^{\alpha} g(h) d \mu_{N} .
$$

In particular, $\int \mathcal{L}_{0}^{\alpha} f(h) d \mu_{N}=0$. Moreover, we have

$$
\int \mathcal{A}_{1}^{\alpha} f(h) d \mu_{N}=-\int \mathcal{A}_{2}^{\alpha} f(h) d \mu_{N} \quad \text { i.e. } \quad \int\left(\mathcal{A}_{1}^{\alpha}+\mathcal{A}_{2}^{\alpha}\right) f(h) d \mu_{N}=0 .
$$

Accordingly, we have that $\int_{\mathbb{R}^{\mathbb{T}}} \mathcal{L}^{\alpha} f(h) d \mu_{N}=0$.

- This lemma shows the infinitesimal invariance of μ_{N} for $\mathcal{L}^{\alpha}(\rightarrow$ Recall Lecture No 2).
- In the finite-dimensional setting, infinitesimal invariance implies the invariance. We apply Echeveria's result (1982) by noting the well-posedness of the martingale problem corresponding to the SDE (7).

End of Step 1

Remark:

- Infinitesimal invariance can be directly shown for the SPDE (6) based on Wiener-Itô chaos expansion of tame functions Φ of the form $\Phi(h)=f\left(\left\langle h, \varphi_{1}\right\rangle, \ldots,\left\langle h, \varphi_{n}\right\rangle\right)$:

$$
\int \mathcal{L}^{\varepsilon} \Phi(h) \nu^{\varepsilon}(d h)=0
$$

where $\mathcal{L}^{\varepsilon}:=\mathcal{L}_{0}^{\varepsilon}+\mathcal{A}^{\varepsilon}$ is (pre) generator of the SPDE (6) and

$$
\begin{aligned}
& \mathcal{L}_{0}^{\varepsilon} \Phi(h)=\frac{1}{2} \int_{\mathbb{R}^{2}} D^{2} \Phi\left(x_{1}, x_{2} ; h\right) \eta_{2}^{\varepsilon}\left(x_{1}-x_{2}\right) d x_{1} d x_{2}+\frac{1}{2} \int_{\mathbb{R}} \partial_{x}^{2} h(x) D \Phi(x ; h) d x, \\
& \mathcal{A}^{\varepsilon} \Phi(h)=\frac{1}{2} \int_{\mathbb{R}}\left(\left(\partial_{x} h\right)^{2}-c^{\varepsilon}\right) * \eta_{2}^{\varepsilon}(x) D \Phi(x ; h) d x .
\end{aligned}
$$

- Indeed, $\mathcal{L}_{0}^{\varepsilon}$ is symmetric, while $\mathcal{A}^{\varepsilon}$ is asymmetric:

$$
\int \Psi \mathcal{L}_{0}^{\varepsilon} \Phi d \nu^{\varepsilon}=\int \Phi \mathcal{L}_{0}^{\varepsilon} \Psi d \nu^{\varepsilon}, \quad \int \Psi \mathcal{A}^{\varepsilon} \Phi d \nu^{\varepsilon}=-\int \Phi \mathcal{A}^{\varepsilon} \Psi d \nu^{\varepsilon}
$$

- F, in Séminaire de Probab., LNM 2137, special issue for M. Yor, 2015 (for coupled KPZ equation)
- Combined with the well-posedness of $\mathcal{L}^{\varepsilon}$-martingale problem, which can be shown at least on \mathbb{T}, it is expected that the infinitesimal invariance implies Proposition 1.
But this is not clear in infinite-dimensional setting (extension of Echeverria's result is unknown).
- Note that we have

$$
\begin{aligned}
\nu^{\varepsilon}: \text { invariant } & \Leftrightarrow \int_{\mathcal{C}} e^{t \mathcal{L}^{\varepsilon}} \Phi(h) \nu^{\varepsilon}(d h)=\int_{\mathcal{C}} \Phi(h) \nu^{\varepsilon}(d h) \\
& \Rightarrow \int_{\mathcal{C}} \mathcal{L}^{\varepsilon} \Phi(h) \nu^{\varepsilon}(d h)=0 \quad \text { (inf. invariance) }
\end{aligned}
$$

for a wide class of Φ (and all $t \geq 0$).

- We can prove the last identity (integration by parts formula) due to the method of stochastic analysis. But, \Leftarrow is unclear.

3. Invariant measures of Cole-Hopf solution and SHE

- It's important to know the asymptotic behavior of the solutions of the KPZ equation as $t \rightarrow \infty$.
- The goal is to give a class of invariant (=stationary) measures of the stochastic heat equation (4):

$$
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+Z \dot{W}(t, x)
$$

and for the Cole-Hopf solution of the KPZ equation (3):

$$
h(t, x):=\log Z(t, x)
$$

- We apply Proposition 1 and let $\varepsilon \downarrow 0$.
- We state the result only on \mathbb{R}, but it holds also on $\mathbb{T}=[0,1)$.
- [For Z] Let $\mu^{c}, c \in \mathbb{R}$ be the distribution of $e^{B(x)+c x}, x \in \mathbb{R}$, called geometric Brownian motion when $c=0$, on $\mathcal{C}_{+}=C(\mathbb{R},(0, \infty))$, where $B(x), x \in \mathbb{R}$, is the two-sided Brownian motion such that

$$
\mu^{c}(B(0) \in d y)=d y .
$$

- [For h] Let ν^{c} be the distribution of $B(x)+c x, \mathrm{BM}$ with drift c, on $\mathcal{C}=C(\mathbb{R}, \mathbb{R})$.
- Note that these are not probability measures but infinite measures.

Theorem 3

$\left\{\mu^{c}\right\}_{c \in \mathbb{R}}$ are invariant (stationary) under SHE (4), i.e.,
$Z(0) \stackrel{\text { law }}{=} \mu^{c} \Rightarrow Z(t) \stackrel{\text { law }}{=} \mu^{c}$ for all $t \geq 0$ and $c \in \mathbb{R}$.
(or $E^{\mu^{c}}[f(Z(t))]=$ const in t for a certain class of f on \mathcal{C}_{+}.)

Corollary 4

$\left\{\nu^{c}\right\}_{c \in \mathbb{R}}$ are invariant under the Cole-Hopf solution of the $K P Z$ equation.

- c means the average tilt (=slope) of the interface.
- We have different invariant measures for different average tilts.
- Reversibility does not hold, but a kind of Yaglom reversibility holds, cf. Remark above.
- (Scale invariance) If $Z(t, x)$ is a solution of SHE (4), then

$$
Z^{c}(t, x):=e^{c x+\frac{1}{2} c^{2} t} Z(t, x+c t)
$$

is also a solution (with a new white noise). Therefore, once the invariance of μ^{0} is shown, μ^{c} is also invariant for every $c \in \mathbb{R}$.

- Thus, we assume $c=0$ and write $\mu=\mu^{0}$.
- Or, equivalently for $h(t, x)$, for every $c \in \mathbb{R}$,

$$
h^{c}(t, x):=h_{c H}(t, x+c t)+c x+\frac{1}{2} c^{2} t .
$$

is a Cole-Hopf solution (with a new white noise).

- One expects $\mu^{c}, c \in \mathbb{R}$ to be all extremal invariant measures (except constant multipliers), but this remains open; cf. F-Spohn for $\nabla \varphi$-interface model.

4. Proof of Theorem 3 and Corollary 4
4.1. Cole-Hopf transform for SPDE (6) (=Approximation-2)

- ν^{ε} in Proposition 1 converges to $\nu\left(=\nu^{0}\right.$, i.e., $c=0$, i.e. Wiener measure s.t. $\nu(B(0) \in d y)=d y)$ as $\varepsilon \downarrow 0$.
- Therefore, our goal is to pass to the limit $\varepsilon \downarrow 0$ in the KPZ approximating equation (6):

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\left(\partial_{x} h\right)^{2}-c^{\varepsilon}\right) * \eta_{2}^{\varepsilon}+\dot{W}^{\varepsilon}(t, x) .
$$

- We consider its Cole-Hopf transform: $Z\left(\equiv Z^{\varepsilon}\right):=e^{h}$. Then, by Itô's formula, Z satisfies the SPDE:

$$
\begin{equation*}
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+A^{\varepsilon}(x, Z)+Z \dot{W}^{\varepsilon}(t, x), \tag{8}
\end{equation*}
$$

where

$$
A^{\varepsilon}(x, Z)=\frac{1}{2} Z(x)\left\{\left(\frac{\partial_{x} Z}{Z}\right)^{2} * \eta_{2}^{\varepsilon}(x)-\left(\frac{\partial_{x} Z}{Z}\right)^{2}(x)\right\} .
$$

- The term $A^{\varepsilon}(x, Z)$ looks vanishing as $\varepsilon \downarrow 0$.
- But this is not true. Indeed, under the average in time t, $A^{\varepsilon}(x, Z)$ can be replaced by a linear function $\frac{1}{24} Z(\rightarrow$ see Thm 5 below).
- The limit as $\varepsilon \downarrow 0$ (under stationarity of tilt),

$$
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+\frac{1}{24} Z+Z \dot{W}(t, x) .
$$

- Or, heuristically at KPZ level,

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left\{\left(\partial_{x} h\right)^{2}-\delta_{x}(x)\right\}+\frac{1}{24}+\dot{W}(t, x) .
$$

- This shows for the solution $h^{\varepsilon}(t, x)$ of the KPZ approximating eq-2 (6):

$$
h^{\varepsilon} \rightarrow h_{C H}+\frac{1}{24} t,
$$

where $h_{C H}=h_{C H}(t, x)$ is the Cole-Hopf solution.

- " $+\frac{1}{24} t$ " doesn't affect the invariant measure (\rightarrow see below)
4.2. Limit of $A^{\varepsilon}(x, Z)$ (Boltzmann-Gibbs principle)
- Asymptotic replacement of $A^{\varepsilon}\left(x, Z^{\varepsilon}(s)\right)$ by $\frac{1}{24} Z^{\varepsilon}(s, x)$.
- To avoid the infiniteness of invariant measures, we view $h^{\varepsilon}(t, \rho)=\int h^{\varepsilon}(t, x) \rho(x) d x$ (height averaged by $\rho \in C_{0}^{\infty}(\mathbb{R}), \geq 0$, $\int \rho(x) d x=1$) in modulo 1 (called wrapped process).

Theorem 5 (Boltzmann-Gibbs principle)

For every $\varphi \in C_{0}(\mathbb{R})$ satisfying supp $\varphi \cap$ supp $\rho=\emptyset$, we have that

$$
\lim _{\varepsilon \downarrow 0} E^{\pi \otimes \nu^{\varepsilon}}\left[\left\{\int_{0}^{t} d s \int_{\mathbb{R}}\left(A^{\varepsilon}\left(x, Z^{\varepsilon}(s)\right)-\frac{1}{24} Z^{\varepsilon}(s, x)\right) \varphi(x) d x\right\}^{2}\right]=0
$$

where π is the uniform measure for $h^{\varepsilon}(0, \rho) \in[0,1)$ and ν^{ε} is the distribution of $B * \eta^{\varepsilon}$.

- Set

$$
A^{\varepsilon}(\varphi, Z):=\int_{\mathbb{R}}\left(A^{\varepsilon}(x, Z)-\frac{1}{24} Z(x)\right) \varphi(x) d x
$$

4.3. Proof of Theorem 5

(1) Reduction of equilibrium dynamic problem to static one:

- The expectation in Thm 5 is bounded by $\left(H^{-1} \text {-norm }\right)^{2}$, which can be represented by a variational formula with $\left(H^{1} \text {-norm }\right)^{2}=$ Dirichlet form:

$$
\begin{aligned}
& E^{\pi \otimes \nu^{\varepsilon}}\left[\left\{\int_{0}^{t} d s A^{\varepsilon}\left(\varphi, Z_{s}^{\varepsilon}\right)\right\}^{2}\right] \\
& \leq C t\left\|A^{\varepsilon}(\varphi, Z)\right\|_{-1, \varepsilon}^{2}\left(H^{-1} \text {-norm }\right) \\
& :=C t \sup _{\Phi \in L^{2}\left(\pi \otimes \nu^{\varepsilon}\right)}\left\{2 E^{\pi \otimes \nu^{\varepsilon}}\left[A^{\varepsilon}(\varphi, Z) \Phi\right]-\left\langle\Phi,\left(-\mathcal{L}_{0}^{\varepsilon}\right) \Phi\right\rangle_{\pi \otimes \nu^{\varepsilon}}\right\},
\end{aligned}
$$

where $\mathcal{L}_{0}^{\varepsilon}$ is the symmetric part of $\mathcal{L}^{\varepsilon}$. This is a generic bound in a stationary situation.

- In fact, roughly, writing $\mu=\pi \otimes \nu^{\varepsilon}, F=A^{\varepsilon}$,

$$
\begin{aligned}
& E^{\mu}\left[\left\{\int_{0}^{t} d s F\left(Z_{s}\right)\right\}^{2}\right]=\int_{0}^{t} d s_{1} \int_{0}^{t} d s_{2} E^{\mu}\left[F\left(Z_{s_{1}}\right) F\left(Z_{s_{2}}\right)\right] \\
& =2 \int_{0}^{t} d s_{1} \int_{0}^{s_{1}} d s_{2} E^{\mu}\left[F e^{\left(s_{1}-s_{2}\right) \mathcal{L}^{\varepsilon}} F\right] \\
& \leq 2 t \int_{0}^{\infty} d s E^{\mu}\left[F e^{s \mathcal{L}_{0}^{\varepsilon}} F\right]=2 t\left\langle\left(-\mathcal{L}_{0}^{\varepsilon}\right)^{-1} F, F\right\rangle_{\mu}
\end{aligned}
$$

Remark The above estimate can be extended to that on $E^{\mu}\left[\sup _{0 \leq t \leq T}\left\{\int_{0}^{t} d s F\left(Z_{s}\right)\right\}^{2}\right]$ by the same H^{-1}-norm (with C changed), see Komorowski-Landim-Olla, "Fluctuations in Markov Processes", Springer, 2012, Lemma 2.4 (p.48). In the proof, backward martingale and Dynkin's formula are used to give a cancellation. This is sometimes called Itô-Tanaka trick.

- Now we need to estimate the H^{-1}-norm, in which

$$
2 E^{\pi \otimes \nu^{\varepsilon}}\left[A^{\varepsilon}(\varphi, Z) \Phi\right]=E^{\pi}\left[Z_{\rho} E^{\nu^{\varepsilon}}\left[B^{\varepsilon}(\varphi, Z) \Phi(h(\rho), \nabla h)\right]\right],
$$

where $Z_{\rho}=\exp \left\{\int_{\mathbb{R}} \log Z(x) \rho(x) d x\right\}, B^{\varepsilon}(x, Z)=2 \frac{A^{\varepsilon}(x, Z)-\frac{1}{24} Z}{Z_{\rho}}$ and $B^{\varepsilon}(\varphi, Z)=\int_{\mathbb{R}} B^{\varepsilon}(x, Z) \varphi(x) d x$.
(2) The key is the following static bound:

- $\tilde{\mathcal{C}}:=\mathcal{C} / \sim$, the quotient space of $\mathcal{C}=\mathcal{C}(\mathbb{R}, \mathbb{R})$ under the equivalence relation $h \sim h+c$ for constants c.
Proposition 6
For $\Phi=\Phi(\nabla h) \in L^{2}(\tilde{\mathcal{C}}, \nu)$ s.t. $\|\Phi\|_{1, \varepsilon}^{2}=\left\langle\Phi,\left(-\mathcal{L}_{0}^{\varepsilon}\right) \Phi\right\rangle_{\pi \otimes \nu^{\varepsilon}}<\infty$, and φ satisfying the condition of Theorem 5, we have that

$$
\begin{equation*}
\left|E^{\nu^{\varepsilon}}\left[B^{\varepsilon}(\varphi, Z) \Phi\right]\right| \leq C(\varphi) \sqrt{\varepsilon}\|\Phi\|_{1, \varepsilon}, \tag{9}
\end{equation*}
$$

with some positive constant $C(\varphi)$, which depends only on φ, for all $\varepsilon: 0<\varepsilon \leq \frac{\delta}{4} \wedge 1$, where $\delta:=\operatorname{dist}(\operatorname{supp} \varphi, \operatorname{supp} \rho)$.

- Once this proposition is shown, the proof of Theorem 5 is concluded, since the sup in the definition of H^{-1}-norm is bounded by

$$
\leq C t \sup _{\Phi}\left\{2 e C(\varphi) \sqrt{\varepsilon}\|\Phi\|_{1, \varepsilon}-\|\Phi\|_{1, \varepsilon}^{2}\right\}=\operatorname{const}(\sqrt{\varepsilon})^{2} \rightarrow 0 .
$$

- Recall $Z_{\rho}=e^{h(\rho)} \in[1, e]$ with $h(\rho) \in[0,1]$.

Point of the proof of Proposition 6

(1) We first summarize Wiener-Itô chaos expansion
([FQ, p. 189~])

- Recall that ν is the (two-sided) Wiener measure on $\widetilde{\mathcal{C}}:=\mathcal{C} / \sim \cong\{B \in \mathcal{C} ; B(0)=0\}$, where $\mathcal{C}=C(\mathbb{R}, \mathbb{R})$. (Recall $h(\cdot) \sim h(\cdot)+c$.)
- Then, we have the orthogonal decomposition of $L^{2}(\widetilde{\mathcal{C}}, \nu)$:

$$
L^{2}(\widetilde{\mathcal{C}}, \nu)=\oplus_{n=0}^{\infty} \mathcal{H}_{n} \cong \oplus_{n=0}^{\infty} \hat{L}^{2}\left(\mathbb{R}^{n}\right) \quad \text { (symmetric Fock space) }
$$

- Here, for $\varphi_{n} \in \hat{L}^{2}\left(\mathbb{R}^{n}\right)$, i.e. $\varphi_{n} \in L^{2}\left(\mathbb{R}^{n}\right)$ and symmetric in n-variables, define $I\left(\varphi_{n}\right)$ as the multiple Wiener integral:

$$
I\left(\varphi_{n}\right):=\frac{1}{n!} \int_{\mathbb{R}^{n}} \varphi_{n}\left(x_{1}, \ldots, x_{n}\right) d B\left(x_{1}\right) \cdots d B\left(x_{n}\right)
$$

and \mathcal{H}_{n} is defined as

$$
\mathcal{H}_{n}:=\left\{I\left(\varphi_{n}\right) \in L^{2}(\widetilde{\mathcal{C}}, \nu) ; \varphi_{n} \in \hat{L}^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

for $n \geq 1$ and $\mathcal{H}_{0}:=\{$ const $\}$.

- $I\left(\varphi_{n}\right)$ is called nth order Wiener functional (chaos).
- Thus, for any $\Phi \in L^{2}(\widetilde{\mathcal{C}}, \nu)$, there exist $\varphi_{n} \in \hat{L}^{2}\left(\mathbb{R}^{n}\right)$, $n \geq 0$ such that

$$
\Phi=\sum_{n=0}^{\infty} I\left(\varphi_{n}\right),
$$

and

- $\|\Phi\|_{L^{2}(\nu)}^{2}=\sum_{n=0}^{\infty}\left\|I\left(\varphi_{n}\right)\right\|_{L^{2}(\nu)}^{2}=\sum_{n=0}^{\infty} \frac{1}{n!}\left\|\varphi_{n}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}$,
- $\left(I\left(\varphi_{n}\right), I\left(\varphi_{m}\right)\right)_{L^{2}(\nu)} \equiv E^{\nu}\left[I\left(\varphi_{n}\right) I\left(\varphi_{m}\right)\right]=0 \quad$ if $n \neq m$.
hold.
- Diagram formula ([FQ, Lemma 3.9]) gives the chaos expansion of the product $I\left(\varphi_{n_{1}}\right) \cdots I\left(\varphi_{n_{m}}\right)$ (\rightarrow see below).
- In particular, one can compute the expectation of Φ as

$$
E[\Phi]=I\left(\varphi_{0}\right)=\varphi_{0} .
$$

(2) Now we come to the proof of Proposition 6

- Recalling that $\partial_{x} h=\partial_{x}\left(B * \eta^{\varepsilon}\right)$ under ν^{ε}, by Itô's formula

$$
\begin{equation*}
\left(\partial_{x} h\right)^{2}=\left\{\int_{\mathbb{R}} \eta^{\varepsilon}(x-y) d B(y)\right\}^{2}=\psi^{\varepsilon}(x)+c^{\varepsilon}, \tag{10}
\end{equation*}
$$

where $\Psi^{\varepsilon}(x)=\int_{\mathbb{R}^{2}} \eta^{\varepsilon}\left(x-x_{1}\right) \eta^{\varepsilon}\left(x-x_{2}\right) d B\left(x_{1}\right) d B\left(x_{2}\right)$, which is a 2nd order Wiener functional (chaos).

- In particular, the renormalization constant c^{ε} can be expressed as

$$
c^{\varepsilon}=E\left[\left(\int_{\mathbb{R}} \eta^{\varepsilon}(x-y) d B(y)\right)^{2}\right]_{v}\left(=\left\|\eta^{\varepsilon}\right\|_{L^{2}(\mathbb{R})}^{2}\right) .
$$

and it is sometimes denoted by c_{ϵ}^{v}.

- Therefore, transforming $\left(\frac{\partial_{x} Z}{Z}\right)^{2}-c^{\varepsilon}$ back to $\left(\partial_{x} h\right)^{2}-c^{\varepsilon}$,

$$
\begin{aligned}
& E^{\nu^{\varepsilon}}\left[B^{\varepsilon}(x, Z) \Phi\right]=E\left[2 \frac{A^{\varepsilon}(x, Z)-\frac{1}{24} Z(x)}{Z_{\rho}} \phi\right] \\
& =E^{\nu^{\varepsilon}}\left[\frac{Z(x)}{Z_{\rho}}\left(\left\{\Psi^{\varepsilon} * \eta_{2}^{\varepsilon}(x)-\Psi^{\varepsilon}(x)\right\}-\frac{1}{12}\right) \Phi\right],
\end{aligned}
$$

- To compute this expectation,
- $\left\{\Psi^{\varepsilon} * \eta_{2}^{\varepsilon}(x)-\Psi^{\varepsilon}(x)\right\}:$ 2nd order Wiener functional,
- $\frac{1}{12}$: 0th order
thus we need to pick up the 2 nd order and 0 th order terms of the products of two Wiener functionals $\frac{Z(x)}{Z_{\rho}} \times \Phi$.
- We apply the diagram formula to compute the Wiener chaos expansion of products of two functions.
- Diagrams γ to compute 2nd Wiener chaos and Oth order term in $\frac{Z(x)}{Z_{\rho}} \times \Phi$.

For 2nd Wiener chaos:
For 0th order term:

$n+2$
n

$n \quad n$

- [Chaos expansion of $\frac{Z(x)}{Z_{\rho}}$] Under ν,

$$
\begin{aligned}
\frac{Z(x)}{Z_{\rho}} & =e^{B(x)-\int_{\mathbb{R}} B(y) \rho(y) d y} \\
& =e^{a(x)}\left\{1+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{\mathbb{R}^{n}} \phi_{x}^{\otimes n}\left(u_{1}, \ldots, u_{n}\right) d B\left(u_{1}\right) \cdots d B\left(u_{n}\right)\right\}
\end{aligned}
$$

where,

$$
\begin{aligned}
& \phi_{x}(u)=1_{(-\infty, x]}(u)-\int_{u}^{\infty} \rho(y) d y \\
& a(x)=\frac{1}{2} \int_{\mathbb{R}} \phi_{x}(u)^{2} d u
\end{aligned}
$$

- Note that the kernel ϕ_{x} has jump.
- $\|\Phi\|_{1, \varepsilon}^{2}$ can be expressed by (∞-dimensional) Dirichlet form (\rightarrow [FQ, Lemma 3.8]).
- Further details are left to [FQ].
(3) We only give a remark on the constant $\frac{1}{24}$
- The same factor $\frac{1}{24}(24=4!)$ appears in several KPZ related papers such as [Bertini-Giacomin 1997], [Borodin-Corwin-Ferrari 2012],
- For general convolution kernel η, this constant is given by $J / 2$, where

$$
J=P\left(R_{1}+R_{3}>0, R_{2}+R_{3}>0\right)-P\left(R_{1}>0, R_{2}>0\right),
$$

and $\left\{R_{i}\right\}_{i=1}^{3}$ are i.i.d. r.v.s distributed under $\eta_{2}(x) d x$

- If η is symmetric,

$$
\begin{aligned}
P\left(R_{1}+R_{3}>0, R_{2}+R_{3}>0\right) & =P\left(R_{1}-R_{3}>0, R_{2}-R_{3}>0\right) \\
& =P\left(R_{3}=\min R_{i}\right)=\frac{1}{3},
\end{aligned}
$$

so that $J=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}$.

- If the support of $\eta \subset[0, \infty)$ (or $\subset(-\infty, 0])$, then $J=0$.
- See the next page for the reason that the above quantity J appears.
- Recall (10) to see that $\Psi^{\varepsilon} * \eta_{2}^{\varepsilon}(x)-\Psi^{\varepsilon}(x)$ is 2 nd order Wiener chaos with kernel:

$$
2\left\{\int \eta^{\varepsilon}\left(y-x_{1}\right) \eta^{\varepsilon}\left(y-x_{2}\right) \eta_{2}^{\varepsilon}(x-y) d y-\eta^{\varepsilon}\left(x-x_{1}\right) \eta^{\varepsilon}\left(x-x_{2}\right)\right\} .
$$

- The product and sum (in n) of ($n+2$)th order chaos of $\frac{Z(x)}{Z_{\rho}}, n$th order chaos of Φ and the above quantity (2nd order) produces the quantity J. (Recall the kernel ϕ_{x} in $\frac{Z(x)}{Z_{\rho}}$ has jump.)
- This cancels with 0th order term $\frac{1}{12} E^{\nu^{\varepsilon}}\left[\frac{Z(x)}{Z_{\rho}} \Phi\right]$.
- The product and sum of $n \leftrightarrow \frac{Z(x)}{Z_{\rho}}, n+2 \leftrightarrow \Phi$ and above quantity $\leftrightarrow 2$ is bounded by the square root of Dirichlet form $\|\Phi\|_{1, \varepsilon}$.
(End of the proof of Prop 6)
4.4. Proof of Theorem 3 and Corollary 4
- Wrapping can be removed by showing uniform estimate:

$$
\sup _{0<\varepsilon<1} E\left[\sup _{0 \leq t \leq T} h^{\varepsilon}(t, \rho)^{2}\right]<\infty .
$$

Namely, height cannot move very fast. This is shown only on a torus (since we need Poincaré inequality).

- Under the stationary situation of the tilt processes, in the limit, we obtain the SHE:

$$
\begin{equation*}
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+\frac{1}{24} Z+Z \dot{W}(t, x) . \tag{11}
\end{equation*}
$$

- This looks different from the original SHE (4), but the solution Z_{t} of (11) gives the solution \tilde{Z}_{t} of (4) under the simple transformation $\tilde{Z}_{t}:=e^{-\frac{t}{24}} Z_{t}$.
- This implies the invariance of the distribution of the geometric Brownian motion for the tilt process determined by the SHE (4), and therefore that of BM for Cole-Hopf solution.
- The above argument combined with Proposition 1 at approximating level shows the invariance of μ for tilt processes. (\rightarrow Theorem 3)
- To rewrite this to the height processes h_{t}, we introduce the transformation $h^{\varepsilon}(x, Z):=\log \left(Z * \eta^{\varepsilon}(x)\right)$. Then, the evolution of $h^{\varepsilon}\left(x, Z_{t}\right)$ is governed only by the tilt variables and the initial data $h^{\varepsilon}\left(x, Z_{0}\right)$. (\rightarrow Corollary 4)
- Hoshino, SPA 128, 2018 proved the convergence of the solutions of Approximating Eq-1 and Approximating Eq-2 as $\varepsilon \downarrow 0$ in non-stationary setting by applying paracontrolled calculus (\rightarrow see also Lecture No 4 in coupled KPZ equation setting.)

5. Remarks from the viewpoint of interacting particle systems

- The stationary measure of the SHE (4) can be obtained by particle system approximation.
- $\sigma_{t}=\left\{\sigma_{t}(i)\right\} \in\{ \pm 1\}^{\mathbb{Z}}$: WASEP (with weak asymmetry $\varepsilon^{\frac{1}{2}}$)
- ζ_{t} : height (or summed) process with height difference σ_{t}, sometimes called SOS-dynamics,
- ξ_{t}^{ε} : (Discrete) Cole-Hopf transform of ζ_{t} scaled in space and time.
- [Bertini-Giacomin '97] showed that $\xi_{t}^{\varepsilon}(x) \Rightarrow Z_{t}(x)$, the solution of SHE (4) weakly as $\varepsilon \downarrow 0(\rightarrow$ Lecture No 1$)$.
- WASEP σ_{t} has Bernoulli product measure on $\mathcal{X}=\{ \pm 1\}^{\mathbb{Z}}$ as its stationary measure
$\Rightarrow \lim _{\varepsilon \downarrow 0} \zeta_{t}^{\varepsilon}$ (fluctuation scaling limit, i.e., CLT) should have Wiener measure as its stationary measure (as ζ_{t} is the sum of σ_{t}).
$\Rightarrow Z_{t}$ should have the distribution of geometric BM as its stationary measure.

Summary of this lecture.

1. KPZ equation:

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\partial_{x} h\right)^{2}+\dot{W}(t, x), \quad x \in \mathbb{R}
$$

2. KPZ approximating equation-2 with $W^{\varepsilon}(t, x)=\left\langle W(t), \eta^{\varepsilon}(x-\cdot)\right\rangle$:

$$
\partial_{t} h=\frac{1}{2} \partial_{x}^{2} h+\frac{1}{2}\left(\left(\partial_{x} h\right)^{2}-c^{\varepsilon}\right) * \eta_{2}^{\varepsilon}+\dot{W}^{\varepsilon}(t, x)
$$

has invariant measure $\nu^{\varepsilon}\left(=\right.$ distribution of $\left.B * \eta^{\varepsilon}\right)$.
3. Cole-Hopf transform $Z:=e^{h}$ leads to the SPDE:

$$
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+\frac{1}{2} Z\left\{\left(\frac{\partial_{x} Z}{Z}\right)^{2} * \eta_{2}^{\varepsilon}-\left(\frac{\partial_{x} Z}{Z}\right)^{2}\right\}+Z \dot{W}^{\varepsilon}(t, x)
$$

4. As $\varepsilon \downarrow 0$, one can replace the middle term by $\frac{1}{24} Z$ under time average and get the SPDE in the limit:

$$
\partial_{t} Z=\frac{1}{2} \partial_{x}^{2} Z+\frac{1}{24} Z+Z \dot{W}(t, x), \quad x \in \mathbb{R}
$$

[^0]: Yau Mathematical Sciences Center, Mini-Course, Nov 17-Dec 17, 2020 Lecture No 3

[^1]: Two-sided Brownian motion: $\{B(x)\}_{x \geq 0}$ and $\{B(x)\}_{x \leq 0}$ are independent Brownian motions (conditioned on $B(0)$) regarding x as time parameter (for latter, take $-x$ as time parameter) and continuously connected at 0 .

