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1. Renormalization, Cole-Hopf solution, Approximation-1

» In Lecture No 1, we introduced KPZ equation (1),
the renormalized KPZ equation (2) and
Cole-Hopf solution (3) of KPZ equation:

Och = 302h + 1(9.h)? + W(t,x), (1)
0uh = 10%h + HOHP — .00} + Wit (2)
h(t,x) := log Z(t, x), (3)

where Z is the solution of multiplicative linear stochastic
heat equation (SHE):

0,2 = 10?7 + ZW(t, x). (4)

2
» We may consider on R or T = [0, 1), but mostly on R in
this lecture.
> The product of Z and W in (4) should be understood in
[t6's sense (in mild form or in generalized functions’
sense).



As we saw, SHE (4) is well-posed and a heuristic
application of 1t8's formula to h(t, x) in (3) leads to the
renormalized KPZ equation (2).

Our first goal is to give mathematically rigorous
foundation to this procedure.

The ill-posedness of KPZ equation (1) comes from the
mismatch between the nonlinear term and the noise.

We can not deal with the KPZ eq directly. We consider
its approximation by replacing the noise by smooth one.

However, the solution of the equation with the noise
simply replaced by smooth one does not converge in the
limit.

We need to introduce some additional diverging factor to
compensate in removing smoothness of the noise. This is
called the renormalization.



1.1.

Approximation-1: Simple

Symmetric convolution kernel: Let n € C§°(R) s.t.

n(x) >0, n(x) = n(—x) and [ n(x)dx = 1 be given, and
set 7)°(x) := (%) for e > 0.

Smeared noise: '

We(t, x) = W(t) *n°(x) = (W(t),°(x —-))
Approximating equation-1: Let h = h® be a solution of

Och = 30%h 4+ 1((9ch)? — &) + Wo(t,x),  (5)

1
_ 2 _ 2
¢ = [rrer (= it

c® S ooasel 0. c®is called a renormalization. Without
c®, the solution h® does not converge.

where

Note that W¢ is smooth in X, but it remains stochastic in
t. The solution h® of (5) is smooth in x.



. Cole-Hopf solution

As in Lecture No 1, consider the Cole-Hopf transform of
h = h® defined by Z = Z° := e", then Z satisfies

0.2 = 1027 + ZW*(t,x).

(The product ZWe is defined in Itd's sense.)
Indeed, apply 1t6's formula for z = e” to see

0 Z = Z0ch + 3Z(9,h)?
= 3Z{03h + (0ch)? — ¢} + ZWF + 3 Zc°
= 1027 + ZW-,
since Z{02h + (d<h)?} = 92Z.
See next page for (9:h)? = c*.

In Lecture No 1, we computed 0,h starting from Z.
Here, conversely, we start from h and compute 0;Z.



» (0:h)? = c© or (dh)? = c°dt is seen from
(dh(t,x))* = (dW*(t,x))?
/ “(x — y)dW(t, y)dy - / “(x — 2)dW(t, 2)dz

// X — Y (x — 2)3(y — 2)dydz - dt

/ “(x — y)3dy - dt = c°dt

» Recall dW(t,y)dW(t,z) = é(y — z)dt from the relation
of the covariance.

» The renormalization ¢ in (5) was chosen such that it
cancels with this diverging It6 correction term.



As we have shown, Z = Z¢ is the solution of
0, Z° = L02Z° + Z°W*(t, x).

It is not difficult to show (Bertini-Giacomin 1997) that
/¢ — Z as € ] 0, the sol of the linear stochastic heat
equation (defined in It6's sense) (4):

07 = 1027 + ZW(t, x),

— 2
with a multiplicative noise. (4) is a well-posed equation.

This implies h® — hey as € | 0, i.e., the solution h = h*
of the approximating KPZ equation-1 converges to the
Cole-Hopf solution of the KPZ equation defined by (3):

hen(t, x) = log Z(t, x).

Comparison theorem for (4): Z(0) > 0= Z(t) > 0.



» The following is copied from Lecture No 1.
» The equation satisfied by hcy:

ath(_'H - %atz - %%(&2)2

= 3(300Z + ZW) — 30.(x)
= % (a)%hCH -+ (GXhCH)z) -+ W — %(SX(X)

» Thus, for the Cole-Hopf solution hcy, at least
heuristically, we obtain the renormalized KPZ equation

(2):
O:h = 102h + L{(0.h)? — 6.(x)} + W(t,x).



2. Approximation-2: Suitable to find invariant measures

» We introduce another KPZ approximating equation:

O:h = %8fh + %((axh)2 —¢%) x5+ We(t,x),  (6)
where 12(x) = 1% 1(x), 75(x) = 212(%).
» Recall c¢ = 75(0).
» General principle (Onsager relation, fluctuation-dissipation relation):
Consider the SPDE _
deh = F(h) + W,

and let A be a certain operator. Then, the structure of the
invariant measures essentially does not change for

dch = A2F(h) + AW,

» Indeed, we will show in Proposition 1 below that the
distribution of B x 1°(x), where B is the periodic
Brownian motion (in case T) or the two-sided Brownian
motion (in case R), is invariant for the sol. h=h® of (6).



Explanation of fluctuation-dissipation relation
(reversible and finite-dimensional case, cf. Lecture No 2)

» Let V € C}Y(R?) and consider SDE:

» Then X; is reversible under the measure e~V dx.

» (Fluctuation-dissipation relation) For a matrix
A = (wj)1<ij<d, consider SDE:

dY, = —LA*AVV(Y,)dt + AdB,

» Y, is also reversible under e~V dx.



» KPZ equation has an asymmetric part (growing part) so
that the situation is not exactly the same
(— Yaglom reversibility).

» However, as we expect, the 2nd Approximating SPDE (6)
has a good property in its invariant (stationary) measures.

» Let v° be the distribution of 0,(B * 1°(x)), where B is
the two-sided Brownian motion. v¢ is independent of
choice of B(0).

Proposition 1
V¢ Is stationary for the tilt process Oh of the SPDE (6).
» At the KPZ level, the invariant measure is not a finite
measure (— Thm 3 below).

» To avoid this, in Prop 1, we consider its slope (tilt), i.e.
at the Burgers' level.

Two-sided Brownian motion: {B(x)}x>0 and {B(x)}«<o are independent
Brownian motions (conditioned on B(0)) regarding x as time parameter
(for latter, take —x as time parameter) and continuously connected at 0.



Sketch of the proof:
» Step 1: Consider on a discrete torus Ty = {1,2,..., N},
The discretization of (0, h)? should be carefully chosen as

H{(hisr — i) + (hi — hi—1)* + (hixa — hi)(hi — hi—l)}> €Ty

Discrete version of v defined on Ty is invariant. — see
next page how we apply the result in Lecture No 2.

» Step 2: Continuum limit as N — oo leads to the result on
T. This can be easily extended to a large torus M - T =~
[—%, %) of size M.

» Step 3: To show on R, take an infinite-volume limit as
M — oo by usual tightness and martingale problem

approach.



More on Step 1:
» Take a: Z — [0, 00) such that a(i) = a(—i) and
a(i) =0 for i : |i| > K, instead of n(x) in (6).
» For h= (h; = h(i))ier, € R™, we define

)
Ah(i) = h(i + 1) + h(i — 1) — 2h(i),
Gi(i, h) = (hixa — hi)? + (i — hi1)?,
G2( ,h) = (h,+1 — h,)(h, — h,'_l), | € TN,

» Convolution of two functions 3,7 on Ty is defined by

(B*y)(i) = D ke, BUi — k)y(k), with i — k understood
in modulo N.
» We consider SDE for h, = (h:(i))ier, € R™:

AL

dh.(i) = Aht( Ndt + Xof{ao * Gi(i, he) + an x Go(i, hy) }dt + Asdw* (i),

(7)
where A1, As, A3 € R are arbitrary constants, a, = a * a,
w = o * wy and wy = (wg(f))ier, are independent BMs.
» (7) is a discretization of (6) disregarding constant drift c®



» We consider three operators on R™: for f € C3(Rv),

=33 AR+ ST oali— ) g

i€Ty €T
AF(h) = D (a2 GI)(i h) G
i€Ty
AZF(h) = > _ (a2 &)(i, h)
i€Tn

» Then, L% := L§ + M AT + M AS is the generator of the
SDE (7).
» Let puy(dh) = e~ 'W(Ndh be the measure on R™, where

=3 > {a7 xh(i+1) -t xh(j)}

JGTN

dh =[] dn(i),

i€Ty

a~ ! = inverse matrix of @ = {a(i —j)}i,jeTN'



Lemma 2
For every f,g € CZ2(R™), we have the symmetry of L§:

[ ebrzcshydun = [ h)csehydin.
In particular, [ L§f(h)dun = 0. Moreover, we have
/Ai"f(h)du,v _ —/Ag“f(h)du,\, je. / (AL + A3) F()dpun = .

Accordingly, we have that [, L*f(h)dun = 0.

» This lemma shows the infinitesimal invariance of puy for
L* (—Recall Lecture No 2).

» In the finite-dimensional setting, infinitesimal invariance
implies the invariance. We apply Echeveria’s result (1982)
by noting the well-posedness of the martingale problem
corresponding to the SDE (7). End of Step 1 [



Remark:

» Infinitesimal invariance can be directly shown for the
SPDE (6) based on Wiener-1td chaos expansion of tame
functions ® of the form ®(h) = f({(h, v1),...,(h,¢n)):

/EECD(h)uE(dh) =0,

where £ := L5 + A° is (pre) generator of the SPDE (6)
and

cio(h =3 [

D*®(x1, x2; h)ns (3 — xo)dxadxo + 3 /8§h(X)D¢(X; h)dx,
R? R

A*®(h) = %/ ((0xh)? = %) * 5 (x) DP(x; h)dx.
R
» Indeed, L£j is symmetric, while A® is asymmetric:

/\Ilﬁgd)dzﬁ = /cb,cgwdzﬁ, /\IIAECDduE = f/chfwyf.

e F, in Séminaire de Probab., LNM 2137, special issue for M. Yor, 2015
(for coupled KPZ equation)



» Combined with the well-posedness of £°-martingale
problem, which can be shown at least on T, it is expected
that the infinitesimal invariance implies Proposition 1.
But this is not clear in infinite-dimensional setting
(extension of Echeverria's result is unknown).

» Note that we have
V5 invariant @/ o (h)y (dh)z/d)(h)ya(dh)
c
:>/£5 =0 (inf. invariance)

for a wide class of ® (and all t > 0).

» We can prove the last identity (integration by parts
formula) due to the method of stochastic analysis.
But, <= is unclear. n



3. Invariant measures of Cole-Hopf solution and SHE

» It's important to know the asymptotic behavior of the
solutions of the KPZ equation as t — oo.

» The goal is to give a class of invariant (=stationary)
measures of the stochastic heat equation (4):

0.2 = 1027 + ZW(t,x)
and for the Cole-Hopf solution of the KPZ equation (3):
h(t, x) := log Z(t, x).

» We apply Proposition 1 and let ¢ | 0.

» \We state the result only on R, but it holds also on
T =[0,1).



» [For Z] Let 1€, ¢ € R be the distribution of
eB()te x € R, called geometric Brownian motion when
c=0,onCy =C(R,(0,00)), where B(x),x € R, is the
two-sided Brownian motion such that

1°(B(0) € dy) = dy.

» [For h] Let v be the distribution of B(x) + cx, BM with
drift ¢, on C = C(R,R).

» Note that these are not probability measures but infinite
measures.



Theorem 3
{1 }cer are invariant (stationary) under SHE (4), i.e.,

Z(0) ’aW,f = Z(t) 2 pc for all t >0 and c € R.
(or E¥[f(Z(t))] = const in t for a certain class of f on C,.)

Corollary 4

{v°}cer are invariant under the Cole-Hopf solution of the
KPZ equation.

» ¢ means the average tilt (=slope) of the interface.

» We have different invariant measures for different average
tilts.

» Reversibility does not hold, but a kind of Yaglom
reversibility holds, cf. Remark above.



» (Scale invariance) If Z(t,x) is a solution of SHE (4), then
Z(t,x) = ecx+%c2t2(t,x + ct)

is also a solution (with a new white noise). Therefore,
once the invariance of 10 is shown, € is also invariant for
every ¢ € R.

» Thus, we assume ¢ = 0 and write ;i = °.

» Or, equivalently for h(t, x), for every c € R,

he(t, x) := hep(t, x + ct) + cx + 3c°t.

is a Cole-Hopf solution (with a new white noise).

» One expects u¢, ¢ € R to be all extremal invariant
measures (except constant multipliers), but this remains
open; cf. F-Spohn for V-interface model.



4. Proof of Theorem 3 and Corollary 4

4.1.

>

>

Cole-Hopf transform for SPDE (6) (=Approximation-2)
v° in Proposition 1 converges to v (:VO, ie., c=0, i.e.
Wiener measure s.t. ¥(B(0) € dy) = dy) ase ] 0.

Therefore, our goal is to pass to the limit € | 0 in the
KPZ approximating equation (6):

Och = 2020+ 1 ((9xh)? — %) x5 + WE(t, x).

We consider its Cole-Hopf transform: Z (= Z¢) := e

Then, by It6’s formula, Z satisfies the SPDE:
0 Z = 1027 + A°(x, Z) + ZW*(t, x), (8)

where

A (x.2) = 32() { (‘932)2 n5(x) - (332)2 (x>} -

The term A°(x, Z) looks vanishing as € | 0.




» But this is not true. Indeed, under the average in time t,
A%(x, Z) can be replaced by a linear function iZ (— see
Thm 5 below).

» The limit as ¢ | 0 (under stationarity of tilt),
0.2 =102Z+L7Z + ZW(t,x).
» Or, heuristically at KPZ level,
O:h = 1020 + L{(0.h)? — 6.(x)} + & + W(t,x).

» This shows for the solution h°(t, x) of the KPZ
approximating eq-2 (6):

€ 1
h —>hCH+ﬂt,

where hcy = hep(t, x) is the Cole-Hopf solution.
> “4-Lt" doesn't affect the invariant measure (— see below)



4.2. Limit of A°(x, Z) (Boltzmann-Gibbs principle)

> Asymptotic replacement of A°(x, Z%(s)) by 5 Z°(s, x).

» To avoid the infiniteness of invariant measures, we view
he(t,p) = [ h°(t,x)p(x)dx (height averaged by p € C§°(R), > 0,
J p(x)dx = 1) in modulo 1 (called wrapped process).

Theorem 5 (Boltzmann-Gibbs principle)
For every p € Go(R) satisfying supp ¢ N supp p = 0, we have that

im provt H/otds/R <A5(x, Z(s)) — 21425(5,X))<p(x)dx}2‘| =0,

where T is the uniform measure for h°(0, p) € [0,1) and v° is the
distribution of B x n°.

> Set

A (p, Z) = /R (AS(X,Z)fQ%Z(X))(p(X)dX



4.3. Proof of Theorem 5
(1) Reduction of equilibrium dynamic problem to static one:
» The expectation in Thm 5 is bounded by (H~*-norm)?,
which can be represented by a variational formula with
(H-norm)? = Dirichlet form:

Erev H/ ds A%, ZE)H

< Ct|A%(¢, )21 (H  -norm)

=ct sup {2E" (A6, 2)0] (O, (~L5)P)rerr |
del?(r@re)

where Lj is the symmetric part of £°. This is a generic

bound in a stationary situation.
» In fact, roughly, Writing w=rRuvF=A°,

E“H/ ds F(Z /d51/ ds, E*[F(Zs,)F(Zs,)]
0

t
:2/ dSl/ d52E“[Fe (s1—s2) L7 F]

0 0

(o)
< zt/ ds E*[Fe* F] = 2t((~L5) ' F, F),
0



Remark The above estimzate can be extended to that on
E“[ sup {fot ds F(Zs)} } by the same H~!-norm (with C

0<t<T
changed), see Komorowski-Landim-Olla, “Fluctuations in

Markov Processes”, Springer, 2012, Lemma 2.4 (p.48). In the
proof, backward martingale and Dynkin’s formula are used to
give a cancellation. This is sometimes called 1t6-Tanaka

trick. ]

» Now we need to estimate the H~1-norm, in which
2E™ (A% (0, 2)] = E7 | Z,E”" [B*(p. Z)®(h(p). Vh)]
A% (x,2)— 2 Z
where Z, = exp{ [, log Z(x)p(x)d}, B(x, Z) = 2925 ang
B*(p, Z) = [g B*(x, Z)(x)dx.



(2) The key is the following static bound:
» C :=C/ ~, the quotient space of C = C(R,R) under the
equivalence relation h ~ h + ¢ for constants c.
Proposition 6

For ® = &(Vh) € L2(C,v) s.t.||®|]3 .= (P, (—L§) D) rewe < 0,
and o satisfying the condition of Theorem 5, we have that

|E7 [B%(0, 2)®]| < C(£)VE]P|1es (9)

with some positive constant C(y), which depends only on ¢,
foralle: 0 <e < % A1, where § := dist(supp ¢, supp p).

» Once this proposition is shown, the proof of Theorem 5 is
concluded, since the sup in the definition of H~!-norm is
bounded by

< Ct Sip{ZeC(w)\/qu’Hl,s —[[®]i.} = const(vE)* — 0.

> Recall Z, = e¥) € [1, e] with h(p) € [0, 1].



Point of the proof of Proposition 6

(1) We first summarize Wiener-1t6 chaos expansion

([FQ, p. 189~])
» Recall that v is the (two-sided) Wiener measure on

C:=C/~ ={B €(;B(0) =0}, where C = C(R,R).
(Recall h(:) ~ h(:) + c.) N

» Then, we have the orthogonal decomposition of L%(C,v):

L2(C,v) = @& g Hy = &2 [2(R")  (symmetric Fock space)
> Here, for ¢, € [2(R"), i.e. ¢, € [2(R") and symmetric in

n-variables, define /(¢,) as the multiple Wiener integral:

1
l(n) =y [ enlot o 3m)dBlx) - dB(x)
Rn

n!

and H, is defined as
Mo = {I(pn) € L*(C,v); g € [*(R")}

for n > 1 and H, := {const}.
» [(pn) is called nth order Wiener functional (chaos).



> Thus, for any ® € L2(C,v), there exist ¢, € [2(R"),

n > 0 such that
O = "I(¢gn)
n=0
and

i ||¢H%2(l,) = Z ”/(@n)H%z(y) = Z ol H‘Pn”Lz Rn)>

n=0

o (I{(en), Ilem)) 2wy = E" I (n)l(pm)] =0 if n 7 m.

hold.
» Diagram formula ([FQ, Lemma 3.9]) gives the chaos
expansion of the product I(p,,) - 1(¢n,) (— see below).

» In particular, one can compute the expectation of ® as
E[®] = I{¢0) = po.



(2) Now we come to the proof of Proposition 6
» Recalling that 0,h = 0x(B *n°) under 14, by 1t6's formula

(0ch)? = {/R'rf(x - y)dB(y)}2 =V (x) + ¢, (10)

where We(x) = [0, 7°(x — x1)n° (x — x2)dB(x1)dB(xz),
which is a 2nd order Wiener functional (chaos).

» In particular, the renormalization constant ¢ can be
expressed as

2
¢ = E|( Lo x=dBW)) | (= 171 )-
and it is sometimes denoted by DS
» Therefore, transforming (QXZ) — ¢° back to (0xh)? —

A (x,2)~ 53 Z()
Zp

- £ [Z (w150 - v () - 35)0]

E” [B*(x, Z)0] = E[z cb}




» To compute this expectation,
> {Wexn5(x) — We(x)}: 2nd order Wiener functional,
> %: Oth order
thus we need to pick up the 2nd order and Oth order
terms of the products of two Wiener functionals ( ) x &.
» We apply the diagram formula to compute the Wlener
chaos expansion of products of two functions.
» Diagrams v to compute 2nd Wiener chaos and Oth order
term in %Z) x ¢,

For 2nd Wiener chaos: For Oth order term:
[ ]

n+2 n n n



» [Chaos expansion of %:)] Under v,

Z(X) _ B0~ f. BOIp)dy
Zl’
alx - 1 n
= e >{1+2n!/w¢;® (ur,...,up)dB(uy)---
where,

0:(0) = 1@~ [ o).
a(x) =1 /R 6. (u)2du.

» Note that the kernel ¢, has jump.

dB(u,,)}7

> ||®||3. can be expressed by (co-dimensional) Dirichlet

form (— [FQ, Lemma 3.8]).
» Further details are left to [FQ].



(3) We only give a remark on the constant -

>

v

The same factor 5 (24 = 4!) appears in several KPZ
related papers such as [Bertini-Giacomin 1997],
[Borodin-Corwin-Ferrari 2012], ........

For general convolution kernel 7, this constant is given by
J/2, where

J:P(R1+R3>0,R2+R3>0)*P(R1>0,R2>0),

and {R;}3_, are i.i.d. r.v.s distributed under n,(x)dx
If 1 is symmetric,

P(R1+R3>O,R2+R3>O):P(Rl—R3>O,R2—R3>O)
=P(R3:minR,-):%7

1 1

sothat J=3—1=4.

If the support of  C [0,00) (or C (—o0,0]), then J = 0.
See the next page for the reason that the above quantity
J appears.



Recall (10) to see that W& x n5(x) — We(x) is 2nd order
Wiener chaos with kernel:

2f [ = )l — )il = )y — o (x — s - )

The product and sum (in n) of (n + 2)th order chaos of
%’:), nth order chaos of ® and the above quantity (2nd
order) produces the quantity J. (Recall the kernel ¢, in

%’:) has jump.)

» This cancels with Oth order term iE”E [ZZ(:) d)].

» The product and sum of n <> ( ), n—+2 < ® and above

quantity <> 2 is bounded by the square root of Dirichlet
form ||®]]1 .. (End of the proof of Prop 6) [



. Proof of Theorem 3 and Corollary 4

Wrapping can be removed by showing uniform estimate:

sup E [ sup hE(t,p)ﬂ < 00.
O<e<l [0<t<T
Namely, height cannot move very fast. This is shown only

on a torus (since we need Poincaré inequality).
Under the stationary situation of the tilt processes, in the
limit, we obtain the SHE:

0Z =127+ %7+ ZW(t,x). (11)

This looks different from the original SHE (4), but the
solution Z; of (11) gives the solution Z, of (4) under the
simple transformation Zt =e 24Zt

This implies the invariance of the distribution of the
geometric Brownian motion for the tilt process
determined by the SHE (4), and therefore that of BM for
Cole-Hopf solution.



» The above argument combined with Proposition 1 at
approximating level shows the invariance of p for tilt
processes. (— Theorem 3)

» To rewrite this to the height processes h;, we introduce
the transformation h*(x, Z) := log(Z % 1n°(x)). Then, the
evolution of h*(x, Z;) is governed only by the tilt variables
and the initial data h°(x, Z,). (— Corollary 4)

» Hoshino, SPA 128, 2018 proved the convergence of the
solutions of Approximating Eg-1 and Approximating Eq-2
as ¢ | 0 in non-stationary setting by applying
paracontrolled calculus (— see also Lecture No 4 in
coupled KPZ equation setting.)



5. Remarks from the viewpoint of interacting particle systems

» The stationary measure of the SHE (4) can be obtained
by particle system approximation.
- 0r = {o(i)} € {£1}2: WASEP (with weak asymmetry 5%)
- (¢ height (or summed) process with height difference oy,
sometimes called SOS-dynamics,
- £§: (Discrete) Cole-Hopf transform of (; scaled in
space and time.
» [Bertini-Giacomin '97] showed that &;(x) = Z:(x), the
solution of SHE (4) weakly as € | 0 (— Lecture No 1).
» WASEP o, has Bernoulli product measure on X = {+1}Z
as its stationary measure
= lim.jo (¢ (fluctuation scaling limit, i.e., CLT) should
have Wiener measure as its stationary measure
(as (; is the sum of o).
= Z; should have the distribution of geometric BM as
its stationary measure.



Summary of this lecture.

1. KPZ equation:
Och = 302h + 1(0<h)* + W(t,x), x€R.

2. KPZ approximating equation-2 with We(t,x) = (W(t),n°(x — -)):
Och = 302h + L((0<h)? — %) = ns + W=(t,x)

has invariant measure v° (=distribution of B * n*).

3. Cole-Hopf transform Z := e leads to the SPDE:
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4. As e | 0, one can replace the middle term by 2—142 under time
average and get the SPDE in the limit:

0Z =127+ 5Z+ZW(t,x), xeR



