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INTRODUCTION TO p-ADIC HODGE THEORY
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Abstract. Since Tate proposed the famous Hodge-Tate decomposition conjecture in the 1960s, p-
adic Hodge theory has undergone profound and continuous development over the subsequent sixty
years, with new ideas and tools constantly emerging. Among these, the theory of perfectoid rings
is one of the most striking breakthroughs and has gradually become a foundational language for
understanding modern p-adic geometry.

This lecture notes starts from a historical perspective to explain the role and status of perfectoids
in p-adic geometry, and uses this as a main thread to introduce the basic framework and core ideas
of p-adic Hodge theory. We will present the deep and beautiful techniques of p-adic geometry to
graduate students and advanced undergraduates in a friendly and detailed manner.

More specifically, we begin with how Tate used local class field theory to compute Galois coho-
mology in the discretely valued case, then introduce the notion of perfectoids and prove several key
results, including the tilting correspondence, cohomological descent in the arc topology, and the
almost purity theorem. Using these tools, we compute the cohomology of the fundamental group
of smooth algebraic varieties, which has been a central topic of p-adic Hodge theory over the past
sixty years. Finally, we discuss the extension of these methods to general (non-discrete) valuation
rings and look ahead to the future development of p-adic Hodge theory.
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1. A Glance at p-adic Hodge Theory

1.a. Hodge decomposition. One of the most fundamental theorem in complex geometry concerning
about the singular cohomology of complex manifolds is the following so-called Hodge decomposition.

Theorem 1.1. Let X be a projective smooth variety over C. Then, there is a canonical decomposition

Hn
sing(X,C) ∼=

⊕
i+j=n

Hj(X,Ωi
X/C).(1.1.1)

The standard proof used essentially techniques in analysis: the n-th de Rham cohomology classes
are represented uniquely by n-th harmonic forms ([Voi02, 5.23]), and the latter can be decomposed
into direct sums of (i, j)-type harmonic forms ([Voi02, 6.10]), the space of which is canonically iso-
morphic to Hj(X,Ωi

X/C) ([Voi02, 6.18]).
Let’s take a view from the p-adic geometry.
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1.b. C and Cp. If we complete the field of rational numbers Q with respect to the archimedean norm,
we obtain the field of real number R; if we complete Q with respect to a non-archimedean norm, we
obtain the field of p-adic numbers Qp. Recall that R and Qp are the only two types of completions
that Q has by a theorem of Ostrowski.

Recall that the non-archimedean norm on Qp corresponds to the discrete valuation ring
Zp = lim

n→∞
Z/pnZ(1.1.2)

where the valuation map is
vp : Zp −→ N ∪ {∞},(1.1.3)

pnu 7−→ n, ∀n ∈ N and u ∈ Z×
p ,

0 7−→ ∞.

The discrete valuation field Qp is the fraction field of Zp given by inverting p: Qp = Zp[1/p]. We
refer to [Bou06a] for basic theory on valuation rings.

Taking an algebraic closure of R, we obtain the field of complex numbers C which has degree 2
over R; taking an algebraic closure of Qp, we obtain an infinite Galois extension Qp. Notice that Qp

is still a valuation field (but not discrete) with respect to the valuation ring Zp, where the latter is the
integral closure of Zp in Qp (see [Bou06a, VI, §8.6, Proposition 6] and [Sta25, 04GH]). The extended
valuation map is

vp : Zp −→ Q≥0 ∪ {∞},(1.1.4)
x 7−→ vp(NQp(x)/Qp

(x))/[Qp(x) : Qp].

But Qp is not complete with respect to its valuation (i.e., Zp is not p-adically complete, Zp 6= Ẑp =

limn→∞ Zp/p
nZp as 1+p1+1/p+p2+1/p2

+ · · · ∈ Ẑp is transcendental over Qp). We put Cp = Ẑp[1/p],
which is a complete algebraically closed valuation field by Krasner’s lemma.

Notice that C and Cp have the same cardinalities as that of R. Hence, they have the same
transcendental degree a over Q and thus they are both algebraic closures of the purely transcendental
extension Q(Ti|i ∈ a) of Q (see [Sta25, 030D, 09GV]). In conclusion, there is a field isomorphism

C ∼= Cp.(1.1.5)
Although these two fields are isomorphic, the way they are defined actually endows them totally dif-

ferent topology. It is clear that the Euclidean topology on C is connected, while the non-archimedean
topology on Cp is totally disconnected.

1.c. Hodge-Tate decomposition. The same thing happens to a projective smooth variety X over
Cp. When fixing a field isomorphism C ∼= Cp, we have an isomorphism of schemes XC ∼= X. However,
the Euclidean topology on XC as a manifold is totally different from the étale or Zariski topology on
X as a scheme.

But a surprising fact that these two different topology actually give the same cohomological in-
variants (which thus reflects the geometric nature of X) as long as we fix C ∼= Cp:

Hn
sing(XC,C) ∼= Hn

ét(X,Cp),(1.1.6)
where the latter is defined as Cp ⊗Zp

(limr→∞ Hn
ét(X,Z/prZ)). This is Artin’s comparison theorem,

see [SGA 4III, XI.4.4].
Therefore, the terms involved in the Hodge decomposition (1.1.1) actually come from algebraic

geometry and Theorem 1.1 implies that

Hn
ét(X,Cp) ∼=

⊕
i+j=n

Hj(X,Ωi
X/C).(1.1.7)

A priori, this isomorphism depends on the arbitrary choice of the field isomorphism C ∼= Cp. But
both sides are algebraic, we naturally ask

Question 1.2. Is there a purely algebraic proof or a canonical construction of (1.1.7)? If so, how is
the valuation ring structure Qp ⊇ Zp involved here?

This question is the central theme of p-adic Hodge theory. It started by Tate [Tat67], where he
explained what does the “canonical construction” should mean and solve the question for abelian
varieties over a finite extension K of Qp with good reductions. Although it looks like a very special
case, his strategy is generalized greatly by Faltings [Fal88] to solve the question for proper smooth
varieties over K. Thus, the canonical decomposition (1.1.7) is also called the Hodge-Tate decom-
position. While Tate’s proof specializes only to abelian varieties, Faltings invented a bunch of new

https://stacks.math.columbia.edu/tag/04GH
https://stacks.math.columbia.edu/tag/030D
https://stacks.math.columbia.edu/tag/09GV
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techniques to realize Tate’s strategy over general smooth varieties, including almost purity theorem
and Galois cohomology computation. Nowadays, Faltings’ techniques have been developed and sub-
sumed within perfectoid theory after Scholze [Sch12, Sch13], which we are going to explain to graduate
and undergraduate students in a friendly and detailed manner in this lecture series.

It would be too technical and difficult if we start directly with these deep techniques. Instead, we
begin with Tate’s groundbreaking work [Tat67] to trace the origins of these modern techniques.

Question 1.2 essentially requires a good understanding of the p-adic cohomology. The key making
p-adic cohomology distinguished is the valuation ring structure Qp ⊇ Zp and the ramification above
it. Before we try to understand ramification above X following Faltings, let’s simply understand
ramification above the single point Qp following Tate.

1.d. Ramification of Qp over Qp.

Example 1.3. Consider a compatible system of primitive pn-th roots of unity (ζpn)n∈N, i.e., ζppn+1 =

ζpn and ζp 6= ζ1 = 1. Using basics in algebraic number theory, we can prove that Qp(ζpn) is
a totally ramified extension of Qp with valuation ring Zp[ζpn ] (see [Ser79] or [He25, 5.4]). This
explicit expression of valuation rings (or integral closures) enables us to compute every invariant
about the ramification behavior. For instance, ζpn − 1 is a uniformizer of Qp(ζpn) with valuation
vp(ζpn − 1) = 1

pn−1(p−1) , and the valuation of the different ideal DQp(ζpn )/Qp
is n− 1

p−1 for n ≥ 1.

Qp Zp
oo uniformizer π vp(π) vp(DQp(ζpn )/Qp

)

Qp(ζp∞)

OO

Zp[ζp∞ ]oo

OO

(non-discrete)

...

OO

...

OO

...
...

...

Qp(ζp2)

OO

Zp[ζp2 ]oo

OO

ζp2 − 1 1
p(p−1) 2− 1

p−1

Qp(ζp)

OO

Zp

EE

Zp[ζp]oo

OO

ζp − 1 1
p−1 1− 1

p−1

Qp

OO

Z×
p

CC

Zp
oo

OO

p 1 0

(1.3.1)

But how to understand ramification above Qp(ζp∞)? Tate answers this question by the following
theorem.

Theorem 1.4 ([Tat67, §3]). Let K be a complete discrete valuation field extension of Qp, K∞ a
totally ramified Zp-extension of K. Let Kn be the subfield of K∞ corresponding to the closed subgroup
pnZp of Gal(K∞/K) = Zp for any n ∈ N.

(1) (Regular ramification) There is a constant c and a bounded sequence (an)n∈N of integers such
that for any n ∈ N, the valuation of the different ideal

vp(DKn/K) = n+ c+ p−nan.(1.4.1)

(2) (Almost unramification) For any finite field extension L of K, if we denote by Ln the composite
of L with Kn for any n ∈ N ∪ {∞}. Then,

vp(DLn/Kn
)→ 0 when n→∞.(1.4.2)

In other words, DL∞/K∞ ([He25, 4.1.2]) is equal to mL∞ or OL∞ (we call L∞ is almost
unramified over K∞).

Remark 1.5. (1) Tate’s proof to these results essentially used higher ramification groups and local
class field theory.

(2) Tate used these results to compute the p-adic cohomology for Qp, i.e., Hn
ét(Spec(Qp),Cp), see

[Tat67, §3.3].
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(3) Faltings adopted the same strategy to understand the ramification above a smooth variety
X. Roughly speaking, for a small smooth algebra R over Cp, he constructed a “regularly
ramified” tower R → R∞ such that there is no more ramification beyond R∞ in the almost
sense. In fact, this R∞ is “pre-perfectoid” and we will show the almost purity theorem for
perfectoid rings and Galois cohomology computation for this specific tower R→ R∞.

2. Definition of Perfectoids

2.a. Review of deformation theory. We refer to [Ill71] and [Ill72] for a systematic development
of deformation theory and suggest to read Grothendieck’s definitions of smoothness [EGA IV4, §17]
or Illusie’s expository notes [Ill96, §1,2] at first before jumping into the most general theory.

Recall that a thickening of affine schemes is a closed immersion Spec(R0) → Spec(R) such that
R0 = R/I with I2 = 0. For example, each closed immersion in Spec(Fp) → Spec(Z/p2Z) →
Spec(Z/p3Z)→ · · · is a thickening.

Question 2.1. Given a flat R0-algebra A0, is there a flat R-algebra A with A0 = A⊗R R0?

Spec(A)

��

Spec(A0)oo

��
Spec(R)

⌞
Spec(R0)oo

(2.1.1)

Example 2.2. Consider the baby case A0 = R0[T ]. Then, there is an obvious lifting A = R[T ].

R[T ] // R0[T ]

R //

OO

R0

OO
(2.2.1)

In fact, any flat lifting of R0[T ] is isomorphic to R[T ]: let A′ be a flat R-algebra with A′/IA′ = R0[T ].
Then, we consider the R-algebra homomorphism R[T ] → A′ sending T to T ′ ∈ A′ a lifting of
T ∈ R0[T ]. It is an isomorphism by the exact sequence 0 → IA′ → A′ → A′/IA′ → 0 and the
identity IA′ = I ⊗R A′ = I ⊗R0

A′/IA′. Moreover, the automorphism group of the flat lifting R[T ]
is isomorphic to IA = I ⊗R0

A0, where each a ∈ IA corresponds to the automorphism sending T to
T + a.

In general, there is a standard simplicial resolution of A0 by free algebras over R0 ([Ill71, I.1.5.5.6],
see also [Sta25, 08N8])

· · · ////// P1 = R0[R0[A0]]
//// P0 = R0[A0] // A0.(2.2.2)

The cotangent complex of A0 over R0 is the associated complex of A0-modules ([Ill71, II.1.2.3], see
also [Sta25, 08PL])

LA0/R0
= (· · · → Ω1

P1/R0
⊗P1

A0 → Ω1
P0/R0

⊗P0
A0).(2.2.3)

Theorem 2.3 ([Ill71, III.2.1.2.3]). For the lifting problem 2.1, we have:

(1) There is an element ω ∈ Ext2A0
(LA0/R0

, A0 ⊗R0
I), which vanishes if and only if there exists

a flat lifting A.
(2) When ω = 0, the set of isomorphism classes of all the flat liftings A is a torsor under

Ext1A0
(LA0/R0

, A0 ⊗R0
I).

(3) The automorphism group of a flat lifting A is canonical isomorphic to Ext0A0
(LA0/R0

, A0⊗R0

I).

In particular, when A0 = R0[T ], we see that LA0/R0
= Ω1

A0/R0

∼= A0 is a free A0-module of rank
1. Thus, we can deduce 2.2 from 2.3.

https://stacks.math.columbia.edu/tag/08N8
https://stacks.math.columbia.edu/tag/08PL
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Question 2.4. Given a morphism of flat R0-algebras f0 : A0 → A′
0 together with fixed flat R-algebras

A and A′ with A0 = A⊗RR0 and A′
0 = A′⊗RR0, is there a morphism f : A→ A′ with f0 = f⊗RR0?

Spec(A)

��

f

� �

Spec(A′
0)oo

f0

��
Spec(A)

��

⌞
Spec(A0)oo

��
Spec(R) Spec(R0)oo

(2.4.1)

Theorem 2.5 ([Ill71, III.2.2.2]). For the lifting problem 2.4, we have:
(1) There is an element ω ∈ Ext1A0

(LA0/R0
, A′

0 ⊗R0 I), which vanishes if and only if there exists
a lifting f .

(2) When ω = 0, the set of isomorphism classes of all the liftings f is a torsor under Ext0A0
(LA0/R0

, A′
0⊗R0

I).

2.b. Universal p-deformation: Witt rings. We fix a perfect Fp-algebra R in this subsection, i.e.,
the Frobenius map Frob : R→ R sending x to xp is an isomorphism.

Lemma 2.6 ([GR03, 6.5.13.(i)]). The cotangent complex LR/Fp
= 0 in the derived category of R-

modules.

Proof. The Frobenius induces an endomorphism of the standard resolution

· · · // P1

Frob

��

// P0

Frob

��

// R //

Frob

��

0

· · · // P1
// P0

// R // 0.

(2.6.1)

Since Frob : R
∼−→ R is an isomorphism, by the functoriality of cotangent complexes ([Ill71,

II.1.2.3.2]), we see that Frob : LR/Fp
→ LR/Fp

is an isomorphism of complexes (this morphism
does not coincides with (2.6.2) in the level of complexes). On the other hand, it coincides with the
following morphism in the derived category of R-modules ([Ill71, II.1.2.6.2])

· · · // Ω1
P1/Fp

⊗P1 R

Frob

��

// Ω1
P0/Fp

⊗P1 R

Frob

��
· · · // Ω1

P1/Fp
⊗P1

R // Ω1
P0/Fp

⊗P1
R.

(2.6.2)

Since Frob(dx) = dxp = pxp−1dx = 0 for any dx ∈ Ω1
Pn/Fp

and n ∈ N. We see that the isomorphism
Frob : LR/Fp

→ LR/Fp
is the zero map in the derived category of R-module and thus LR/Fp

= 0. □

Proposition 2.7. There exists a p-adically complete and flat Zp-algebra W with W/pW = R.
Moreover, it is unique up to a unique isomorphism.

Proof. By deformation theory (2.3 and 2.6), there is a unique flat Z/p2Z-algebra R2 with R2/pR2 = R.
Consider the derived tensor product of LR2/(Z/p2Z) with the exact sequence of R2-modules 0→ pR2 →
R2 → R → 0, we obtain a distinguished triangle (where we used the fact that R ⊗L

R2
LR2/(Z/p2Z) =

LR/Fp
by [Ill71, II.2.2.1])

pR2 ⊗L
R LR/Fp

−→ LR2/(Z/p2Z) −→ LR/Fp
−→(2.7.1)

which implies that LR2/(Z/p2Z) = 0 by 2.6. Repeating this argument, we obtain unique (up to a
unique isomorphism) flat liftings

· · · // // R3
// // R2

// // R1 = R

· · · // // Z/p3Z // //

OO

Z/p2Z // //

OO

Z/pZ = Fp

OO(2.7.2)

with LRn/(Z/pnZ) = 0 in the derived category.
Then, we take W = limn→∞ Rn. As Rn+1/p

nRn+1 = Rn by construction, we have W/pnW = Rn

for any n ≥ 1 ([Sta25, 09B8]) and thus W is p-adically complete.

https://stacks.math.columbia.edu/tag/09B8
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Consider the injection Z/pn−1Z ·p−→ Z/pnZ. Tensoring with the flat Z/pnZ-module Rn, we obtain
an injection Rn−1

·p−→ Rn. Taking inverse limit over n ∈ N, we get an injection W
·p−→ W , in other

words, W is p-torsion free (hence flat over Zp).
The uniqueness of W follows from that of the diagram (2.7.2). □

Definition 2.8. We denote by W (R) the unique p-adically complete flat Zp-algebra with W (R)/pW (R) =
R. We call it the Witt ring of the perfect Fp-algebra R.

Remark 2.9. By deformation theory (2.5 and 2.6), any morphism of perfect Fp-algebras R → R′

lifts uniquely to a ring homomorphism W (R) → W (R′). In other words, there is an equivalence of
categories

{p-complete flat Zp-algebras A with A/pA perfect} ∼= {perfect Fp-algebras R}(2.9.1)
A 7→ A/pA

W (R)←[ R.

Lemma 2.10. There is a unique multiplicative section [ ] : R → W (R) of the canonical surjection
W (R)→ R.

Proof. For any x ∈ R and n ∈ N, we take a lifting yn ∈ W (R)/pnW (R) of x1/pn ∈ R. Since (yn +
pz)p

n ≡ yp
n

n mod pnW (R) for any z ∈W (R), we see that yp
n

n ∈W (R)/pnW (R) is a lifting of x ∈ R

independent of the choice of yn. We take [x] = (. . . , yp
2

2 , yp1 , y0) ∈ W (R) = limn→∞ W (R)/pnW (R).
It is clear that [ ] : R → W (R) is a well-defined multiplicative section of W (R) → R. This verifies
the existence.

For the uniqueness, let [ ]′ : R→W (R) be another multiplicative section. For any x ∈ R, we have
[x]′ = [x] + py for some y ∈ W (R). Taking pn-th power, we get [xpn

]′ ≡ [xpn

] mod pnW (R). Since
R is perfect, any element of R is of the form xpn for some x ∈ R. Thus, [x]′ ≡ [x] mod pnW (R) for
any x ∈ R and n ∈ N. Taking inverse limit over n ∈ N, we get [x]′ = [x] in W (R). □

Proposition 2.11 (Teichmüler expansion). For any x ∈W (R), there is a unique sequence x0, x1, x2, . . .
in R such that

x = [x0] + p[x1] + p2[x2] + · · · .(2.11.1)

In particular, x ∈W (R)× if and only if x0 ∈ R×.

Proof. For any x ∈W (R), let x0 be its image in R. Then, x = [x0] + px′ for a unique x′ ∈W (R) by
the flatness of W (R) over Zp. Inductively repeating the construction, we obtain the existence and
uniqueness of the sequence x0, x1, x2, . . . .

If x ∈ W (R)×, then its image x0 ∈ R is also a unit. The converse is also true since W (R) is
p-adically complete. □

Remark 2.12. (1) (Frobenius) By 2.9, there is a unique ring isomorphism F : W (R) → W (R)
lifting the Frobenius on R. In particular, for any x = [x0] + p[x1] + p2[x2] + · · · ∈ W (R), we
have F (x) = [xp

0] + p[xp
1] + p2[xp

2] + · · · .
(2) (Verschiebung) There is a canonical additive map V = pF−1 : W (R) → W (R) sending

x = [x0] + p[x1] + p2[x2] + · · · ∈W (R) to V (x) = p[x
1/p
0 ] + p2[x

1/p
1 ] + p3[x

1/p
2 ] + · · · ∈W (R).

(3) (Witt vectors) There is a canonical bijection

W (R)
∼−→

∞∏
n=0

R(2.12.1)

∞∑
n=0

pn[xn] 7−→ (ap
n

n )n∈N.

The latter is the usual presentation of the elements in Witt rings, see [Bou06b, IX.§1] or
[Ser79, II.§6].

(4) (Addition and multiplication formulas in Teichmüler expansions) For any x, y ∈ W (R), we
put x = [x0]+p[x1]+p2[x2]+· · · and y = [y0]+p[y1]+p2[y2]+· · · . We hope to write explicitly
the Teichmüler expansions of x+ y and xy in terms of x0, x1, . . . , y0, y1, . . . . Unwinding the
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construction 2.10 of Teichmüler liftings, we can compute out by hand that
(x+ y)0 = x0 + y0,(2.12.2)

(x+ y)1 = x1 + y1 +
(x

1/p
0 )p + (y

1/p
0 )p − (x

1/p
0 + y

1/p
0 )p

p
= x1 + y1 −

p−1∑
i=1

1

p

(
p

i

)
x

i
p

0 y
p−i
p

0 ,(2.12.3)

(xy)0 = x0y0,(2.12.4)
(xy)1 = x0y1 + x1y0,(2.12.5)

(xy)2 = x0y2 + x2y0 + x1y1 −
p−1∑
i=1

1

p

(
p

i

)
(x1y0)

i
p (x0y1)

p−i
p .(2.12.6)

In general, after passing to the form of Witt vectors in (3), then the explicit addition and
multiplication formulas are inductively computed out in [Bou06b, IX.§1.3, (12) and (13)] or
[Ser79, II.§6, Theorem 6], which can be translated back into the following theorem.

Theorem 2.13 ([Bou06b, IX.§1.3, (a) and (b)]). For any x, y ∈ W (R), we put x = [x0] + p[x1] +
p2[x2] + · · · and y = [y0] + p[y1] + p2[y2] + · · · .

(1) There is a homogeneous polynomial Sn ∈ Z[X1/pn

0 , X
1/pn−1

1 , . . . , Xn, Y
1/pn

0 , Y
1/pn−1

1 , . . . , Yn]
of degree 1 for any n ∈ N such that for any x, y ∈W (R),

x+ y = [S0(x, y)] + p[S1(x, y)] + p2[S2(x, y)] + · · · ∈W (R),(2.13.1)

where Sn(x, y) ∈ R is the value of the polynomial Sn at Xi = xi and Yi = yi for any 0 ≤ i ≤ n.
(2) There is a homogeneous polynomial Pn ∈ Z[X1/pn

0 , X
1/pn−1

1 , . . . , Xn, Y
1/pn

0 , Y
1/pn−1

1 , . . . , Yn]

of degree 2 that is homogeneous of degree 1 with respect to the variables (X1/pn

0 , X
1/pn−1

1 , . . . , Xn)

and also homogeneous of degree 1 with respect to the variables (Y
1/pn

0 , Y
1/pn−1

1 , . . . , Yn) for
any n ∈ N such that for any x, y ∈W (R),

xy = [P0(x, y)] + p[P1(x, y)] + p2[P2(x, y)] + · · · ∈W (R),(2.13.2)

where Pn(x, y) ∈ R is the value of the polynomial Pn at Xi = xi and Yi = yi for any 0 ≤ i ≤ n.

2.c. Universal ξ-deformation: perfect prisms. Since W (R) is the “universal p-deformation” of
a perfect Fp-algebra R, in order to define the “mixed-characteristic analogue of perfect algebras”, we
would like to realize W (R) as a “universal ξ-deformation”. We firstly need to define what ξ is.

Definition 2.14. A perfect prism is a pair (A, I) consisting of a ring A and an ideal I of A such that
(1) A is a p-complete flat Zp-algebra with R = A/pA perfect (i.e., A = W (R)).
(2) I = (ξ) for some ξ = [ξ0]+p[ξ1]+p2[ξ2]+ · · · ∈W (R) such that R is ξ0-complete and ξ1 ∈ R×

(we call such an element of W (R) distinguished).

Remark 2.15. Since we want to realize A = W (R) as a “universal ξ-deformation”, it is natural to
require that it is ξ-complete and ξ-torsion free. We will see that they are guaranteed by the second
condition 2.14.(2) in the following lemmas.

Lemma 2.16. Let R be a perfect Fp-algebra, d ∈ R. Then, any element of R that is killed by a power
of d is also killed by a p-power root of d, i.e., R[d∞] = R[d1/p

∞
]. In particular, R is d-torsion-bounded.

Proof. If dx = 0, then (dx)1/p
n

= 0 by perfectness, i.e., d1/pn

x1/pn

= 0. Hence, d1/pn

x = d1/p
n

x1/pn ·
x1−1/pn

= 0. □

Lemma 2.17 (completeness). Any perfect prism (A, (ξ)) is (p, ξ)-complete.

Proof. Firstly, we take induction on n ≥ 1 to see that W (R)/pn is ξ-complete (where R = A/pA).
By Zp-flatness of W (R), there is an exact sequence 0 → W (R)/pn−1 ·p−→ W (R)/pn → W (R)/p =
R → 0. Since R is ξ-torsion bounded by 2.16, taking ξ-completion still produces an exact sequence
0→ (W (R)/pn−1)∧ → (W (R)/pn)∧ → R̂ = R→ 0 ([He25, 8.8]), where R is ξ-complete by definition
2.14.(2). By induction, we see that (W (R)/pn)∧ = W (R)/pn.

Then, as W (R) is p-adically complete by definition, we have W (R) = limn→∞ W (R)/pn =
limn→∞ limm→∞ W (R)/(pn, ξm) = limr→∞ W (R)/(pr, ξr) = limr→∞ W (R)/(p, ξ)r, where the last
equality follows from (p2r, ξ2r) ⊆ (p, ξ)2r ⊆ (pr, ξr). In other words, W (R) is (p, ξ)-complete. □

Lemma 2.18. Let A be a p-complete Zp-flat algebra with A/pA perfect, ξ a distinguished element of
A, x ∈ A. Then, ξ · x is distinguished if and only if x ∈ A×.
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Proof. We write A = W (R) and ξ = [ξ0] + pξ′, x = [x0] + px′ ∈W (R).
If x ∈ W (R)×, i.e., x0 ∈ R× by 2.11. Then, ξ · x = [ξ0x0] + p(ξ′[x0] + [ξ0]x

′ + pξ′x′). On the one
hand, R is ξ0x0-complete as it is ξ0-complete. On the other hand, since ξ′[x0] + [ξ0]x

′ + pξ′x′ ≡ ξ′x0

mod (p, ξ) is a unit, it is also a unit in W (R) by (p, ξ)-completeness (2.17). Therefore, ξ · x is
distinguished.

Conversely, if ξ · x is distinguished, then ξ′[x0] + [ξ0]x
′ + pξ′x′ is a unit in W (R). Modulo (p, ξ),

we see from the previous discussion that ξ′x0 is a unit in R/ξ0R. This implies that x0 ∈ R× (as R is
ξ0-complete) and thus x ∈W (R)×. □

Lemma 2.19 (nonzero divisor). Let (A, I) be a perfect prism. Then, any generator ξ of I is a
distinguished nonzero divisor of A.

Proof. By definition, there exists a distinguished generator ξ = [ξ0] + pξ′ of I, i.e., ξ′ ∈ W (R)× by
2.11. Then, any generator of I is still distinguished by 2.18.

To see any generator of I is a nonzero divisor, consider x = [x0] + p[x1] + p2[x2] + · · · ∈W (R) and
suppose that ξ · x = 0. Then, we have ([ξ0] + pξ′)x = 0. For any positive odd number n, we have
([ξ0]

n + pnξ′n)x = 0 and thus pnx ∈ [ξn0 ]W (R). By the uniqueness of the Teichmüler expansion, we
see that each xi ∈ ξn0R for any odd number n. But since R is ξ0-complete, we must have xi = 0, i.e.,
x = 0. □

Now we start to technically realize A as a “universal ξ-deformation” of A/ξA.

Lemma 2.20. Let R be a ring, I an ideal of R such that R/I is of characteristic p and that R is
I-adically complete. Then, the canonical map

lim←−
Frob

R −→ lim←−
Frob

R/IR(2.20.1)

is a bijection, where lim←−Frob
R := lim(· · · Frob−→ R

Frob−→ R) as a multiplicative monoid.

Proof. For (· · · , x2, x1, x0) ∈ lim←−Frob
R/IR, we take liftings · · · , y2, y1, y0 of these coordinates in R.

Notice that for any n,m ∈ N and z ∈ I, (yn+m + z)p
n ≡ yp

n

n+m mod In+1R as p ∈ I. Thus,
yp

n

n+m ∈ R/In+1R does not depend on the choice of yn+m. Then, we see that limn→∞ yp
n

n+m is a
well-defined element in R = limn→∞ R/In+1R. We put

y = (· · · , lim
n→∞

yp
n

n+2, lim
n→∞

yp
n

n+1, lim
n→∞

yp
n

n ) ∈ lim←−
Frob

R.(2.20.2)

It is clearly that y is well-defined and the assignment x 7→ y gives an inverse to the canonical map
(2.20.1). □

Proposition 2.21. The following functor from the category of of perfect prisms to the category of
rings

{perfect prisms} −→ {rings}(2.21.1)
(A, I) 7−→ A/I,

is fully faithful.

Proof. Let S be a ring lying in the essential image of (2.21.1). We take a perfect prism (A, I) with
A/I ∼= S. Then, we have

A = W (R) // //

����

A/p = R

����
S ∼= A/I // // S/p ∼= R/ξ0.

(2.21.2)

Since R is a ξ0-complete perfect Fp-algebra, R ∼←− lim←−Frob
R

∼−→ lim←−Frob
R/ξ0R ∼= S♭ := lim←−Frob

S/pS

by 2.20. In particular, the canonical map S♭ → S/pS is surjective. By deformation theory (2.5 and
2.6), the canonical surjection S♭ → S/pS lifts uniquely to a morphism θ : W (S♭)→ S (which remains
surjective by déviassage). By deformation theory again, we see that the isomorphism A/I ∼= S lifts
uniquely to an isomorphism A ∼= W (S♭). All in all, the functor from the essential image of (2.21.1) to
the category of perfect prisms sending S to (W (S♭), ker(θ)) is well-defined and forms a quasi-inverse
to (2.21.1). □

Definition 2.22. A perfectoid ring is a ring S such that S ∼= A/I for some perfect prism (A, I).
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Remark 2.23. Note that possibly many perfectoid rings S could have the same perfect Fp-algebra
S♭, since the choice of an distinguished principal ideal (ξ) on W (S♭) could be many (even if we fix
ξ0 ∈ R = S♭, it seems that different choices of ξ1 ∈ R× could lead to different ideals I = (ξ) ⊆W (R)).
But I don’t have an explicit example in hand.

However, this issue does not exists when we work over a fixed perfect prism, see the tilting corre-
spondence in the following.
2.d. Tilting correspondence of perfectoids. Our definition for perfectoids immediately implies
the tilting correspondence as long as we have the following rigidity lemma:
Lemma 2.24 (rigidity). Let (A, I)→ (B, J) be a morphism of perfect prisms. Then, J = IB.
Proof. We only need to show that for generator ξ of J , if ξ · x is distinguished then x ∈ B×. This is
proved in 2.18. □
Theorem 2.25. Given a perfect prism (A, I), we put

A = W (R) // //

����

A/p = R

����
S = A/ξ // // S/p = R/ξ0.

(2.25.1)

Then, the base change induces equivalences of categories

{perfect (A, I)-prisms (A′, IA′)} ∼
β

//

≀α

��

{ξ0-complete perfect R-algebras R′}

≀γ

��
{perfectoid S-algebras S′} ∼

δ
//
{

relatively perfect (S/p) = (R/ξ0)-algebras T with T = T ♭/ξ♭0T
♭
}

(2.25.2)

where ξ♭0 = (· · · , ξ1/p
2

0 , ξ
1/p
0 , ξ0) ∈ (R/ξ0R)♭.

Proof. By the rigidity lemma 2.24, the category of perfect (A, I)-prisms (A′, IA′) is the category of
perfect prisms (B, J) with a morphism (A, I) → (B, J). Hence, it is equivalent to the category of
perfectoid rings S′ with a morphism S = A/I → S′ by 2.21, i.e., α is an equivalence.

Unwinding the definition 2.14, the category of perfect (A, I)-prisms (A′, IA′) is the category of
p-complete Zp-algebras A′ with A′/pA′ perfect ξ0-complete and a morphism A → A′. Hence, it is
equivalent to the category of ξ0-complete perfect Fp-algebras R′ with a morphism R = A/pA → R′

by 2.9, i.e., β is an equivalence.
Recall that R

∼←− R♭ ∼−→ (R/ξ0R)♭ identifying ξ0 with ξ♭0 by 2.20 and that the Frobenius induces
an isomorphism R/ξ

1/p
0

∼−→ R/ξ0. The same holds true for any ξ0-complete perfect R-algebra R′.
In particular, γ is a well-defined functor. To see that it is an equivalence, we only need to show
that for any relatively perfect (R/ξ0)-algebra T with T = T ♭/ξ♭0T

♭, T ♭ is a ξ0-complete perfect R-
algebra. As R = (R/ξ0)

♭, we see T ♭ is naturally a perfect R-algebra. Moreover, T ♭ = lim(· · · Frob−→
T ♭/ξ0T

♭ Frob−→ T ♭/ξ0T
♭ Frob−→ T ♭/ξ0T

♭) = lim(· · · → T ♭/ξp
2

0 T ♭ → T ♭/ξp0T
♭ → T ♭/ξ0T

♭), where we
applied the identification Frobn : T ♭/ξ0T

♭ ∼−→ T ♭/ξp
n

0 T ♭. This shows that T ♭ is ξ0-complete. Hence,
γ is an equivalence.

The proof of 2.21 shows that δ is a well-defined functor making the diagram (2.25.2) commutative.
Hence, δ is an equivalence. □
Remark 2.26. We couldn’t simply apply deformation theory in the setting of 2.25 because the a
relatively perfect (S/p) = (R/ξ0)-algebra T may not be flat. To resolve this issue, one may consider
instead relatively perfect animated (S/p) = (R/ξ0)-algebra T , i.e., animated algebra T such that the
relative Frobenius T ⊗L

R/ξ0,Frob
R/ξ0 → T is an isomorphism, and then apply deformation theory for

animated algebras, see [Bha25, 3.2.6]. In another way, one can impose flatness assumptions in order
to use the classical deformation theory as follows.
Theorem 2.27. Given a perfect prism (A, I), we put

A = W (R) // //

����

A/p = R

����
S = A/ξ // // S/p = R/ξ0.

(2.27.1)
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Then, the base change induces equivalences of categories

{(p, ξ)-completely flat perfect (A, I)-prisms (A′, IA′)} ∼
β

//

≀α

��

{ξ0-completely flat ξ0-complete perfect R-algebras R′}

≀γ

��
{p-completely flat perfectoid S-algebras S′} ∼

δ
// {flat relatively perfect (S/p) = (R/ξ0)-algebras T}

(2.27.2)

where “I-completely flat” means “flat after modulo In for any n ∈ N” here.

Proof. Let T be a flat relatively perfect (S/p) = (R/ξ0)-algebra. By deformation over R→ R/ξ0 and
LT/(R/ξ0) = 0 ([GR03, 6.5.13.(i)]), there exists a unique ξ0-completely flat ξ0-complete R-algebra R′

with R′/ξ0R
′ = T (see the proof of 2.7 and 2.9). To see that γ is an equivalence, it remains to check

that R′ is perfect. As T is relatively perfect, we have R′/ξ0R
′ ⊗R/ξ0R,Frobpn R/ξ0R = R′/ξ0R

′ for
any n ∈ N. Since Frobp

n

: R/ξ0R→ R/ξ0R factors as R/ξ0R
∼−→ R/ξp

n

0 R→ R/ξ0R, the uniqueness
of the liftings implies that the Frobenius induces isomorphism Frobp

n

: R′/ξ0R
′ ∼−→ R′/ξp

n

0 R′. Thus,
R′ = limn→∞ R′/ξp

n

0 R′ = lim←−Frob
R′/ξ0R

′ = R′♭ is perfect.
Similarly, by deformation over S → S/p and LT/(S/p) = 0, there exists a unique p-completely flat

p-complete S-algebra S′ with S′/pS′ = T . To see that δ is an equivalence, it remains to check that
S′ is perfectoid. It suffices to check that S′ lies in the essential image of α. As the diagram (2.27.2)
commutes, we only need to prove that β is an equivalence.

We claim that a perfect (A, I)-prism (A′, IA′) is (p, ξ)-completely flat if and only if A′/(p, ξ)A′ is
flat over A/(p, ξ)A. Since A′ is p-torsion-free, we have A′⊗L

AA/pA = A′/pA′. Thus, A′⊗L
AA/(p, ξ) =

A′/pA′ ⊗L
A/pA A/(p, ξ) = R′ ⊗L

R R/ξ0, where R′ = A′/pA′ is a perfect Fp-algebra. In particular,
TorA1 (A

′, A/(p, ξ)) = TorR1 (R
′, R/ξ0) = 0 by 2.28. Then, the claim follows directly from [Sta25,

051C].
The claim implies that the category of (p, ξ)-completely flat perfect (A, I)-prisms (A′, IA′) is

equivalent to the category of p-complete Zp-algebras A′ with A′/pA′ perfect ξ0-complete ξ0-completely
flat and a morphism A→ A′. Hence, it is equivalent to the category of ξ0-completely flat ξ0-complete
perfect Fp-algebras R′ with a morphism R = A/pA→ R′ by 2.9, i.e., β is an equivalence. □

Lemma 2.28. Let R → R′ be a morphism of perfect Fp-algebras, d ∈ R. Consider the following
conditions:

(1) R/dR→ R′/dR′ is flat.
(2) R/dnR→ R′/dnR′ is flat for any n ∈ N.
(3) R[d]⊗R R′ → R′[d] is an isomorphism.
(4) R[d]⊗R R′ → R′[d] is surjective.
(5) TorR1 (R

′, R/d) = 0.
(6) R/dR⊗L

R R′ → R′/dR′ is an isomorphism.

Then, we have (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6).

Proof. (1) ⇒ (2): As R and R′ are perfect, the Frobenius induces isomorphism between R/dR →
R′/dR′ with R/dp

n

R→ R′/dp
n

R′. Thus, the latter is also flat.
(2) ⇒ (3): Note that R[d] ∩ dR = 0 by 2.16. Thus, the sequence of R/d2R-modules 0 → R[d] →

R/dR
·d−→ R/d2R is exact. Tensoring with R′/d2R′, the flatness implies that R′[d] = R[d]⊗R R′.

(3) ⇒ (4): This is clear.
(4) ⇒ (5): Consider the exact sequence 0 → R[d] → R

·d−→ R → R/dR → 0. Then, R/dR ⊗L
R R′

is represented by the total complex of R[d] ⊗L
R R′ → R′ ·d−→ R′. In particular, TorR1 (R

′, R/d) =
H1(R/dR⊗L

R R′) = Coker(R[d]⊗R R′ → R′[d]) = 0.
(5) ⇒ (6): As R is perfect, R[d] = R[d1/p

∞
] by 2.16 so that R/R[d] is a perfect Fp-algebra.

Recall that R/R[d] ⊗L
R R′ = R/R[d] ⊗R R′ by [BS17, 11.6]. We deduce from the exact sequence

0 → R[d] → R → R/R[d] → 0 that R[d] ⊗L
R R′ = R[d] ⊗R R′. In particular, R/dR ⊗L

R R′ is
concentrated in degree [−1, 0] by previous discussion. Thus, condition (5) implies that R/dR⊗L

RR′ =
R/dR⊗R R′ = R′/dR′. □

https://stacks.math.columbia.edu/tag/051C
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2.e. Properties of perfectoids. We fix a perfectoid ring S in this section. Recall that it is associated
with a commutative diagram

A = W (R) // //

����

A/p = R

����
S = A/ξ // // S/p = R/ξ0.

(2.28.1)

where R = S♭ by 2.21 and its proof.

Definition 2.29. A strict uniformizer ϖ of a perfectoid ring S is the image of [ξ0] ∈W (R).

Lemma 2.30 (p∞-roots). Any strict uniformizer ϖ ∈ pS× and admits a compatible p-power roots
(ϖ1/pn

)n∈N in S.

Proof. We write ξ = [x0] + pξ′ ∈ W (R) with ξ′ ∈ W (R)×. Modulo ξ, we see that ϖ = −pξ′ in S so
that ϖ ∈ pS×. On the other hand, ([ξ1/p

n

0 ])n∈N is a compatible p-power roots of ϖ. □

Lemma 2.31 (Frobenius isomorphism). The Frobenius induces an isomorphism S/ϖ1/pS
∼−→ S/ϖS.

Proof. Since R is perfect, the Frobenius on R/ξ0R is surjective with kernel generated by ξ
1/p
0 . Since

R/ξ0 = S/p identifying ξ
1/p
0 with ϖ1/p via the commutative diagram (2.28.1), the conclusion follows

immediately. □

Lemma 2.32 (almost torsion-free). S[ϖ∞] = S[ϖ1/p∞
] = R[ξ

1/p∞

0 ] = R[ξ∞0 ]. In particular, S is
p-torsion bounded.

Proof. Since p, ξ are both nonzero divisors on A by 2.19, there are canonical isomorphisms

(A/ξ)[p]
∼←− {(x, y) ∈ A2 | ξx = py}

{(pz, ξz) | z ∈ A}
∼−→ (A/p)[ξ](2.32.1)

y ←− [ (x, y) 7−→ x.

Thus, we have S[ϖ] = R[ξ0] as (S/p) = (R/ξ0)-modules. Then, for any n ≥ 1, we have S[ϖ1/pn

] =

(S[ϖ])[ϖ1/pn

] = (R[ξ0])[ξ
1/pn

0 ] = R[ξ
1/pn

0 ].
Since R is perfect, we have R[ξ

1/p∞

0 ] = R[ξ0] by 2.16. The above discussion implies that S[ϖ1/p∞
] =

S[ϖ]. This implies furthermore that S[ϖ1/p∞
] = S[ϖ∞]. □

Lemma 2.33 (completeness). S is p-complete.

Proof. As ξ is a nonzero divisor on A (2.19), there is an exact sequence 0 → A
·ξ−→ A → S → 0.

Since S is p-torsion bounded by 2.32, taking p-completion still produces an exact sequence 0→ A→
A→ Ŝ → 0 ([He25, 8.8]), where Â = A by 2.17. Hence, we get Ŝ = S, i.e., S is p-complete. □

Proposition 2.34 (perfectoidness criterion). A p-torsion-free ring S is perfectoid if and only if the
following conditions hold:

(1) S is p-complete.
(2) There exists π ∈ S such that πp ∈ pS×.
(3) The Frobenius induces an isomorphism S/πS

∼−→ S/pS.

Proof. These conditions are necessary by 2.33, 2.30 and 2.31. To see they are also sufficient, consider
S♭ = lim←−Frob

S/pS. The surjectivity part of condition (3) implies that the canonical projection S♭ →
S/pS, (· · · , x2, x1, x0) 7→ x0 is surjective. Hence, we can take ξ0 = (· · · , π2, π1 = π, π0 = πp) ∈ S♭.
Since S is p-torsion-free, the injectivity part of condition (3) implies that the kernel of S♭ → S/pS is
generated by ξ0. By deformation theory and a dévissage argument (2.5 and 2.6, see also 2.9), the exact
sequence S♭ ·ξ0−→ S♭ → S/pS → 0 lifts uniquely to an exact sequence 0→W (S♭)→W (S♭)→ S → 0,
where we used the fact that S is p-complete and p-torsion-free. Let ξ be the image of 1 under the
map W (S♭)→W (S♭) and denote the surjection W (S♭)→ S by θ.

To see that S is perfectoid, it remains to show that ξ is distinguished. By condition (2) we write
π0 = πp = pu. As θ([ξ

1/p
0 ]) ≡ π1 mod pS, we have θ([ξ0]) ≡ πp

1 ≡ pu mod p2S. This shows that
θ([ξ0]) = pv for some v ∈ S× as S is p-complete and p-torsion-free. Let w ∈ W (S♭)× be a lifting of
v. Then, [ξ0] − pw ∈ ker(θ) = (ξ) and is distinguished by construction. This implies that ξ is also
distinguished by a similar argument of 2.18. □
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2.f. Examples of perfectoids.
Lemma 2.35 (adding p∞-roots). Let S be a perfectoid ring. Then, the p-adic completion S〈X1/p∞〉
of S[X1/p∞

] is also perfectoid.
Proof. Since (S/pS)[X1/p∞

] is a flat relative perfect (S/pS)-algebra with the unique flat lifting
S〈X1/p∞〉. Thus, the proof of 2.27 shows that S〈X1/p∞〉 is perfectoid. □
Lemma 2.36 (perfect=perfectoid over Fp). Let S be an Fp-algebra. Then, S is perfectoid if and
only if S is perfect.
Proof. If S is perfect, then S = W (S)/pW (S) with perfect prism (W (S), (p)) (i.e., p is distinguished).

If S is perfectoid, then Fp → S is a morphism of perfectoid rings, which corresponds to a morphism
of perfect prisms (Zp, (p)) → (W (S♭), I) by 2.21. Then, I = pW (S♭) by the rigidity lemma 2.24.
Hence, S = W (S♭)/I = S♭ is perfect. □
Lemma 2.37 (perfectoid valuation ring). Let V be a p-complete valuation ring extension of Zp that
is not absolutely unramified. Then, V is perfectoid if and only if the Frobenius is surjective on V/pV .
In particular, if the fraction field of V is algebraically closed, then V is perfectoid.
Proof. Firstly, we claim that there exists π ∈ V with πp ∈ pV ×. As V is not absolutely unramified,
we can write p = π1π2 for some elements π1, π2 ∈ mV . Then, the surjectivity of the Frobenius on
V/pV implies that πi = xp

i +pyi for some xi, yi ∈ V (where i = 1, 2). Notice that xp
i = πi−pyi ∈ πiV

×

by construction. We get xp
1x

p
2 ∈ pV ×.

Since V is integrally closed in V [1/p], the Frobenius induces an injection V/πV → V/pV (see
[He24, 5.21]). Thus, the conclusion follows from the perfectoidness criterion 2.34. □
Lemma 2.38 (torsion-free quotient). Let S be a perfectoid ring. Then, its maximal p-torsion-free
quotient S = S/S[p∞] is also perfectoid.
Proof. Let ϖ be a strict uniformizer of S. Then, S[p∞] = S[ϖ∞] = S[ϖ1/p∞

] by 2.32. In particular,
S[p∞] ∩ ϖ1/pn

S = 0 for any n ∈ N. The exact sequence 0 → S[p∞] → S → S → 0 induces exact
sequences 0 → S[p∞] → S/ϖ1/pn

S → S/ϖ1/pn

S → 0. In particular, the Frobenius induces an
isomorphism S/ϖ1/pS

∼−→ S/ϖS by 2.31. Hence, the conclusion follows from the perfectoidness
criterion 2.34. □
Lemma 2.39 (integral closure). Let S be a perfectoid ring. Then, its integral closure S+ in S[1/p]
is also perfectoid.
Proof. After 2.38, we may assume that S is p-torsion-free. The injectivity of the Frobenius S/ϖ1/pS →
S/ϖS implies that S is p-integrally closed, i.e., for any x ∈ S[1/p] with xp ∈ S we have x ∈ S (see
[He24, 5.21]). Then, S → S+ is an almost isomorphism, i.e., ϖ1/p∞

S+ ⊆ S (see [He24, 5.25]).
We claim that the Frobenius induces an isomorphism S+/ϖ1/pS+ ∼−→ S+/ϖS+. It is injective

as S+ is p-integrally closed. For any z ∈ S+, the previous discussion allows us to write ϖ1/pz =

xp + ϖy for some x, y ∈ S. As z = (x/ϖ1/p2

)p + ϖ1−1/py, we see that x′ = x/ϖ1/p2 ∈ S+. We
continue to write z = x′p + ϖ1−1/py = x′p + ϖ1−1/p(y′p + ϖ1−1/pz′) for some y′, z′ ∈ S+. Thus,
z = (x′ + ϖ1/p−1/p2

y′)p + ϖz′′ for some z′′ ∈ S+. This shows the surjectivity of the Frobenius on
S+/ϖS+.

In conclusion, S+ is perfectoid by the perfectoidness criterion 2.34. □
Lemma 2.40 (tensor product). Let S2 ← S1 → S3 be morphisms of perfectoid rings. Then, the
p-completed tensor product S2⊗̂S1

S3 is perfectoid.
Proof. Let ξ = [ξ0] + pξ′ be a distinguished generator of Ker(W (S♭

1) → S1) (and thus also a distin-
guished generator of for S2 and S3 by the rigidity lemma 2.24). The given morphisms S2 ← S1 → S3

induce morphisms of perfect Fp-algebras S♭
2 ← S♭

1 → S♭
3. It is clear that the ξ0-completed tensor

product S♭
2⊗̂S♭

1
S♭
3 is still perfect.

Firstly, we claim that W (S♭
2)⊗W (S♭

1)
W (S♭

3)/p
n = W (S♭

2 ⊗S♭
1
S♭
3)/p

n for any n ∈ N. This holds for
n = 1. In general, it follows from taking induction and the following exact sequences

W (S♭
2)⊗W (S♭

1)
W (S♭

3)/p
n−1 ·p //

��

W (S♭
2)⊗W (S♭

1)
W (S♭

3)/p
n //

��

W (S♭
2)⊗W (S♭

1)
W (S♭

3)/p

≀
��

/ / 0

0 // W (S♭
2 ⊗S♭

1
S♭
3)/p

n−1 ·p // W (S♭
2 ⊗S♭

1
S♭
3)/p

n // S♭
2 ⊗S♭

1
S♭
3

// 0.

(2.40.1)
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Therefore, we have W (S♭
2)⊗̂

p

W (S♭
1)
W (S♭

3) = W (S♭
2⊗S♭

1
S♭
3), where the completion is p-adic, and thus

there is an exact sequence 0 → W (S♭
2)⊗̂

p

W (S♭
1)
W (S♭

3)
·p−→ W (S♭

2)⊗̂
p

W (S♭
1)
W (S♭

3) → S♭
2 ⊗S♭

1
S♭
3 → 0.

Since S♭
2 ⊗S♭

1
S♭
3 is ξ-torsion-bounded by 2.16, taking ξ-completion still produces an exact sequence

0→W (S♭
2)⊗̂W (S♭

1)
W (S♭

3)
·p−→W (S♭

2)⊗̂W (S♭
1)
W (S♭

3)→ S♭
2⊗̂S♭

1
S♭
3 → 0.

To show that W (S♭
2)⊗̂W (S♭

1)
W (S♭

3)/p
n = W (S♭

2⊗̂S♭
1
S♭
3)/p

n for any n ∈ N. We still take induction
on n. The case for n = 1 is proved above. In general, it follows from the following exact sequences

W (S♭
2)⊗̂W (S♭

1)
W (S♭

3)/p
n−1 ·p //

��

W (S♭
2)⊗̂W (S♭

1)
W (S♭

3)/p
n //

��

W (S♭
2)⊗̂W (S♭

1)
W (S♭

3)/p

≀
��

// 0

0 // W (S♭
2⊗̂S♭

1
S♭
3)/p

n−1 ·p // W (S♭
2⊗̂S♭

1
S♭
3)/p

n // S♭
2⊗̂S♭

1
S♭
3

// 0.

(2.40.2)

Therefore, we have W (S♭
2)⊗̂W (S♭

1)
W (S♭

3) = W (S♭
2⊗̂S♭

1
S♭
3). In particular, we have S2 ⊗S1

S3/p
n =

W (S♭
2)⊗̂W (S♭

1)
W (S♭

3)/(p
n, ξ) = W (S♭

2⊗̂S♭
1
S♭
3)/(p

n, ξ). Taking inverse limit on n ∈ N, we see that
S2⊗̂S1

S3 = W (S♭
2⊗̂S♭

1
S♭
3)/ξ is perfectoid. □
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