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“You, my forest and water! One swerves, while the other shall spout
Through your body like draught; one declares, while the first has a doubt.”

J. Brodsky

Òû, ìîé ëåñ è âîäà, êòî îáúåäåò, à êòî, êàê ñêâîçíÿê,

ïðîíèêàåò â òåáÿ, êòî ãëàãîëåò, à êòî îáèíÿê...

È. Áðîäñêèé

1



Central limit theorem
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Let X1, ..., Xn be a sequence of independent and identically distributed

random variables (heads or tails, measurements in uncorrelated experiments,

etc). Assume that the variance σ2 is finite and that the expected value is 0. Let

Sn := X1 + · · ·+Xn. Clearly, with probability one one has

X1 + · · ·+Xn

n
=

Sn

n
→ 0 as n → +∞ .

The Central Limit Theorem describes the expected deviation of the sum Sn

from 0. In a sense, it is one of the fundamental laws of Nature:

Cental Limit Theorem. The distribution of the the sum Sn normalized by the

factor 1√
n

tends to the normal distribution with mean 0 and variance σ2.



Random walk and brownian motion in the plane
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Random walk. For every step you flip two coins; depending of the combination

you go one step forward, one step backward, one step right, or one step left.
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Random walk. For every step you flip two coins; depending of the combination

you go one step forward, one step backward, one step right, or one step left.

Corollary of the Central Limit Theorem. The root of the mean square of the

translation distance after n steps of a random walk with zero mean is

√

E|S2
n| = σ

√
n = σ · n 1

2 .



Lorentz gas and Sinai billiard. Finite horizon.

5 / 33

Theorem (Bunimovich, Chernov, Sinai, 1991). For periodic configuration of
convex scatterers on the plane the particle after scaling by

√
t satisfies the

Central Limit Theorem if the horizon is finite (that is, if any ray intersects a

scatterer).



Lorentz gas and Sinai billiard. Infinite horizon.
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Theorem (Sz ász, Varjú, 2007; some ideas — Bleher, 1992).
In infinite horizon case, for example, for round scatterers placed at the lattice

points, the Central Limit Theorem still holds but the scaling should be by√
t ln t.

Chernov, Dolgopyat (2009) : further interesting results in this direction.

In all cases the diffusion rate is again 1

2
as for the random walk.



Diffusion in a periodic billiard (Ehrenfest “Windtree mode l”)
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Consider a billiard on the plane with Z
2-periodic rectangular obstacles.

Theorem (V. Delecroix, P. Hubert, S. Leli èvre, 2014). For all parameters of

the obstacle, for almost all initial directions, and for any starting point, the

billiard trajectory spreads in the plane with the speed ∼ t2/3. That is,

limt→+∞ log (diameter of trajectory of length t)/ log t = 2

3
6= 1

2
.

The diffusion rate 2

3
is given by the Lyapunov exponent of certain renormalizing

dynamical system associated to the initial one.

Remark. Changing the height and the width of the obstacle we get quite
different billiards, but this does not change the diffusion rate!
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the obstacle, for almost all initial directions, and for any starting point, the

billiard trajectory spreads in the plane with the speed ∼ t2/3. That is,

limt→+∞ log (diameter of trajectory of length t)/ log t = 2

3
6= 1

2
.

The diffusion rate 2

3
is given by the Lyapunov exponent of certain renormalizing

dynamical system associated to the initial one.

Remark. Changing the height and the width of the obstacle we get quite
different billiards, but this does not change the diffusion rate!



Diffusion in a periodic billiard (Ehrenfest “Windtree mode l”)

7 / 33

Consider a billiard on the plane with Z
2-periodic rectangular obstacles.

Theorem (V. Delecroix, P. Hubert, S. Leli èvre, 2014). For all parameters of
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From billiards to surface foliations
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

A B A

D
C

D

A B A

Identifying the equivalent patterns by a parallel translation we obtain a torus;

the billiard trajectory unfolds to a “straight line” on the corresponding torus.
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Consider a rectangular billiard. Instead of reflecting the trajectory we can reflect

the billiard table. The trajectory unfolds to a straight line. Folding back the

copies of the billiard table we project this line to the original trajectory. At any

moment the ball moves in one of four directions defining four types of copies of

the billiard table. Copies of the same type are related by a parallel translation.

A B A

D
C

D

A B A

Join the endpoints of a piece of trajectory after time t to obtain a closed loop

c(t) on the torus. Vertical and horizontal displacement after time t of the

unfolded billiard trajectory is described by the intersection numbers c(t) ◦ h
and c(t) ◦ v with a parallel h and a meridian v of the torus.

h

v
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Billiards in polygons
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Following Moon Duchin

let us play billiard in a

polygon which might be
more sophisticated than

a usual rectangle.

Actually, we assume

that a ball is very small,
the walls do not have

any holes, that there is

no friction, and that the

reflections are ideal and

follow the rules of optic.



Motivation to study billiards: gas of two molecules in a one-
dimensional chamber
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Consider two elastic balls (“molecules”) sliding along a rod. They are bounded

from two sides by solid walls. All collisions are ideal — without loss of energy.

m1 m2

x1 x2
x

0 a
x1a

x2
a
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Consider two elastic balls (“molecules”) sliding along a rod. They are bounded

from two sides by solid walls. All collisions are ideal — without loss of energy.

m1 m2

x1 x2
x

0 a
x1a

x2
a

Neglecting the sizes of the balls we can describe the configuration space of our

system using coordinates 0 < x1 ≤ x2 ≤ a of the balls, where a is the

distance between the walls. This gives a right isosceles triangle.



Gas of two molecules
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Rescaling the coordinates by square roots of masses
{

x̃1 =
√
m1x1

x̃2 =
√
m2x2

we get a new right triangle ∆ as a configuration space.

m1 m2

x1 x2
x

0

x̃1 =
√
m1x1

x̃2 =
√
m2x2
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Rescaling the coordinates by square roots of masses
{

x̃1 =
√
m1x1

x̃2 =
√
m2x2

we get a new right triangle ∆ as a configuration space.

m1 m2

x1 x2
x

0

x̃1 =
√
m1x1

x̃2 =
√
m2x2

Lemma In coordinates (x̃1, x̃2) trajectories of the system of two balls on a
rod correspond to billiard trajectories in the triangle ∆.



Closed billiard trajectories
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It is easy to find a periodic trajectory in an acute triangle:

Exercise. Show that the broken line joining the base points of the heights in

an acute triangle is a closed billiard trajectory (called Fagnano trajectory ).

Show that it is an inscribed triangle of the minimal possible perimeter.



Challenge
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It is difficult to believe, but for an obtuse triangle the problem is open:

Open Problem. Is there at least one periodic trajectory in any obtuse triangle?
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R. Schwartz has verified it by a rigorous heavily computer-assisted proof).
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It is difficult to believe, but for an obtuse triangle the problem is open:

Open Problem. Is there at least one periodic trajectory in any obtuse triangle?

The answer might be affirmative (for triangles with obtuse angle at most 100o

R. Schwartz has verified it by a rigorous heavily computer-assisted proof).

But even if it is affirmative, the natural question “And how many?..” is

completely and desperately open already for acute triangles.

Open Problem. Estimate the number N(Π, L) of periodic trajectories of

length at most L in a polygon Π as L → +∞.

Open Problem. Is the billiard flow ergodic for almost any triangle?



Unfolding billiard trajectories
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Identifying the boundary of two triangles we get a flat sphere. A billiard

trajectory unfolds to a geodesic on this flat sphere.



Flat surfaces
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The surface of the cube represents a flat sphere with eight conical singularities.

The metric does not have singularities on the edges. After parallel transport

around a conical singularity a vector comes back pointing to a direction different

from the initial one, so this flat metric has nontrivial holonomy. The nontrivial
holonomy allows, in particular, to generic geodesics to have self-intersections.



Flat metric with trivial holonomy
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A flat torus provides an example of a flat surface with trivial holonomy. Having

defined a direction to the North at one point of a flat torus, we can spread it to

all other points. A geodesic sent to, say, North-West-West direction will always

go in the North-West-West direction. We will construct now further examples of

such “very flat surfaces”.
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Unfolding rational billiards
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We can apply an unfolding procedure procedure (which was already applied to

a rectangular billiard) to any rational billiard.

Consider, for example, a triangle with angles π/8, 3π/8, π/2. It is easy to
check that a generic trajectory in such billiard table has 16 directions (instead

of 4 for a rectangle). Using 16 copies of the triangle we unfold the billiard into a

regular octagon with opposite sides identified by parallel translations.



Very flat surface of genus 2
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Identifying the opposite sides of a regular octagon we get a flat surface of

genus two. All the vertices of the octagon are identified into a single conical

singularity. We always consider such a flat surface endowed with a
distinguished (say, vertical) direction. By construction, the holonomy of the flat

metric is trivial. Thus, the vertical direction at a single point globally defines

vertical and horizontal foliations.
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Windtree flat surface
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Similarly, taking four copies of our Z2-periodic windtree billiard we can unfold it
to a foliation on a Z

2-periodic surface. Taking a quotient over Z2 we get a

compact surface endowed with a measured foliation. Vertical and horizontal

displacement (and thus, the diffusion) of billiard trajectories is described by the

intersection numbers c(t) ◦ h and c(t) ◦ v of the cycle c(t) obtained by closing

up a long piece of leaf with a “parallel” h and a “meridian” v. Here

h = h00 + h10 − h01 − h11 and v = v00 − v10 + v01 − v11.

h00

h01

h10

h11

v00 v10

v01 v11

Very flat metric. Automorphisms



Surfaces which are more flat than the others
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Note that the flat metric on the resulting surface has trivial holonomy, since the

identifications of the sides were performed by parallel translations. As before, a

billiard trajectory is unfolded to a geodesic on the surface. Note that geodesics

resemble geodesics on the torus: they do not have self-intersections!
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Note that the flat metric on the resulting surface has trivial holonomy, since the

identifications of the sides were performed by parallel translations. As before, a

billiard trajectory is unfolded to a geodesic on the surface. Note that geodesics

resemble geodesics on the torus: they do not have self-intersections!

We abandon rational billiards for a while and pass to a more systematic study

of “very flat” surfaces.



Outline of the story
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Billiards in polygons, straight line foliations on flat surfaces, horocyclic flows on

homogeneous spaces exhibit unusual behaviour of natural mean value quantities.

The corresponding deviation spectrum — a finite collection of numbers
generalizing the diffusion rate 2

3
in the windtree model, can be found studying

the renormalized dynamical system: the Teichmüller geodesic flow acting on

the moduli space of quadratic differentials. The fact that one can compute (or

estimate) the corresponding numbers comes from a beautiful interplay:

Dynamically, the moduli space of quadratic differentials pretends to be a

homogeneous space: Eskin–Mirzakhani-Mohammadi have recently proved

certain striking rigidity results (specific for homogeneous case).

Hodge theory provides rich geometric structure relating Lyapunov exponents

and characteristic numbers of holomorphic vector bundles over certain loci in

the moduli space first noticed by Maxim Kontsevich and by Giovanni Forni.
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Very flat surfaces: construction from a polygon
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Consider a broken line constructed from vectors ~v1, . . . , ~vk.

~v1

~v2

~v3

~v4

and another one constructed from the same vectors taken in another order.
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Consider a broken line constructed from vectors ~v1, . . . , ~vk.

~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

and another one constructed from the same vectors taken in another order. If

we are lucky enough the two broken lines do not intersect and form a polygon.



Very flat surfaces: construction from a polygon
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~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

Identifying the corresponding pairs of sides by parallel translations we get a

closed surface endowed with a flat metric.



Properties of very flat surfaces
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• The flat metric is nonsingular outside of a finite number of conical

singularities (inherited from the vertices of the polygon).

• The flat metric has trivial holonomy, i.e. parallel transport along any closed

path brings a tangent vector to itself.

• In particular, all cone angles are integer multiples of 2π.
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• The flat metric is nonsingular outside of a finite number of conical

singularities (inherited from the vertices of the polygon).

• The flat metric has trivial holonomy, i.e. parallel transport along any closed

path brings a tangent vector to itself.

• In particular, all cone angles are integer multiples of 2π.

• By convention, the choice of the vertical direction (“direction to the North”)

will be considered as a part of the “very flat structure”.

For example, a surface obtained from a rotated polygon is considered as a
different very flat surface.

• A conical singularity with the cone angle 2π ·N has N outgoing directions

to the North.



Example: conical singularity with cone angle 6π
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Locally a neighborhood of a conical point looks like a “monkey saddle”.

A neighborhood of a conical point with a cone angle 6π can be glued from six

metric half discs. At this conical point we have 3 distinct directions to the North.



Families of flat surfaces
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The polygon in our construction depends continuously on the vectors ~vj . This

means that the combinatorial geometry of the resulting flat surface (its genus g,

the number n and types 2π(d1 + 1), . . . , 2π(dn + 1) of the resulting conical
singularities) does not change under small deformations of the vectors ~vj . This

allows to consider a flat surface as an element of a family of flat surfaces

sharing common combinatorial geometry.

As an example of such family one can consider a family of flat tori of area one,

which can be identified with the space of lattices of area one:

\ SL(2,R) /
SO(2,R) SL(2,Z) = H

2/
SL(2,Z)
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deform a lattice.
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flat tori, we do not distinguish lattices which differ by a rotation or a homothety.
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• Choosing an appropriate homothety

and rotation we can place the

shortest vector of the lattice

to the horizontal unit vector.

• Consider the shortest vector

of the lattice located in the

upper half-plane.

• It lives outside
the unit disc.

• It belongs to the strip

−1/2 ≤ x ≤ 1/2.

We have constructed a fundamental domain in the space of lattices.



Family of flat tori

32 / 33

neighborhood of a
cusp = subset of
tori having short
closed geodesic

The corresponding “modular surface” is not compact: flat tori representing

points, which are close to the cusp, are almost degenerate: they have a very
short closed geodesic.

The modular surface inherits the hyperbolic metric from the upper half-plane.
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Billiard in a polygon: artistic image
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Varvara Stepanova. Joueurs de billard. Thyssen Museum, Madrid
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