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Operator algebras

We consider ∗-subalgebras M ⊂ B(H), where the ∗-operation is the
Hermitian adjoint.

I Operator norm:
for T ∈ B(H), we put ‖T‖ = sup{‖T ξ‖ | ξ ∈ H, ‖ξ‖ ≤ 1}.

C∗-algebras: norm closed ∗-subalgebras of B(H).

I Weak topology:
Ti → T if and only if 〈Tiξ, η〉 → 〈T ξ, η〉 for all ξ, η ∈ H.

Von Neumann algebras: weakly closed ∗-subalgebras of B(H).

Intimate connections to group theory, dynamical systems,
quantum information theory, representation theory, ...
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Commutative operator algebras

I Unital commutative C∗-algebras are of the form C (X ) where X is a
compact Hausdorff space.

algebraic topology, K-theory, continuous dynamics,
geometric group theory

I Commutative von Neumann algebras are of the form L∞(X , µ) where
(X , µ) is a standard probability space.

ergodic theory, measurable dynamics,
measurable group theory
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Discrete groups and operator algebras

Let G be a countable (discrete) group.

I Left regular unitary representation λ : G → U(`2(G )) : λgδh = δgh.

I span{λg | g ∈ G} is the group algebra C[G ].

I Take the norm closure: (reduced) group C∗-algebra C ∗r (G ).

I Take the weak closure: group von Neumann algebra L(G ).

We have G ⊂ C[G ] ⊂ C ∗r (G ) ⊂ L(G ).

At each inclusion, information gets lost natural rigidity questions.
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Open problems

I Kaplansky’s conjectures for torsion-free groups G .

• Unit conjecture: the only invertibles in C[G ] are multiples of group
elements λg .

• Idempotent conjecture: 0 and 1 are the only idempotents in C[G ].

• Kadison-Kaplansky: 0 and 1 are the only idempotents in C∗
r (G ).

I Kaplansky’s direct finiteness conjecture: if k is a field and a, b ∈ k[G ]
with ab = 1, then ba = 1. Holds if char k = 0, using operator alg.

I Free group factor problem: is L(Fn) ∼= L(Fm) if n 6= m ?

I Connes’ rigidity conjecture: L(PSL(n,Z)) 6∼= L(PSL(m,Z)) if
3 ≤ n < m.

I Stronger form: if G has property (T) and π : L(G )→ L(Γ) is a
∗-isomorphism, then G ∼= Γ and π is essentially given by such an
isomorphism.
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Operator algebras and group actions

Let G be a countable group.

Continuous dynamics and C∗-algebras

An action G y X of G by homeomorphisms of a compact Hausdorff space
X gives rise to the C∗-algebra C (X ) or G .

Measurable dynamics and von Neumann algebras

An action G y (X , µ) of G by measure class preserving transformations of
(X , µ) gives rise to a von Neumann algebra L∞(X ) o G .

I These operator algebras contain C (X ), resp. L∞(X ), as subalgebras.

I They contain G as unitary elements (ug )g∈G .

I They encode the group action: ug F u∗g = αg (F ) where
(αg (F ))(x) = F (g−1 · x).
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Amenable von Neumann algebras: full classification

Some run-up: Murray - von Neumann types.

Factor: a von Neumann algebra M with trivial center, i.e. M 6∼= M1 ⊕M2.

A factor M is of

I type I if there are minimal projections, i.e. M ∼= B(H),

I type II1 if not of type I and 1 ∈ M is a finite projection: if v∗v = 1,
then vv∗ = 1,

I type II∞ if not of type II1 but pMp of type II1 for a projection p ∈ M,

I type III otherwise.

Theorem (Murray - von Neumann): every II1 factor admits a faithful
normal trace τ : M → C. Trace property: τ(xy) = τ(yx).

Type of L∞(X )oG depends on the (non)existence of G -invariant
measures on X , while L(G ) is always of type II1.
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The hyperfinite II1 factor

Take M2(C) ⊂ M4(C) ⊂ M8(C) ⊂ · · · , where A 7→
(
A 0
0 A

)
.

Completion of direct limit: II1 factor R.

Definition (Murray - von Neumann)

A von Neumann algebra M is called approximately finite dimensional
(AFD) if there exists an increasing sequence of finite dimensional
subalgebras An ⊂ M with weakly dense union.

Theorem (Murray - von Neumann)

The II1 factor R constructed above is the unique AFD factor of type II1.
It is called the hyperfinite II1 factor.

What about other types? Which factors are AFD? L∞(X ) o G ?
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Amenability

Definition (von Neumann, 1929)

A countable group G is amenable if there exists a finitely additive
probability measure m on the subsets of G such that m(gU) = m(U) for
all g ∈ G and U ⊂ G .

Closely related to the Banach-Tarski paradox.

I (Banach - Tarski, 1924) It is possible to partition the ball of radius
one into finitely many subsets,

move these subsets by rotations and translations,

and obtain two balls of radius one.

I Reason: group of motions of R3 is not amenable (as a discrete group).

I (Tarski, 1929) There is no paradoxical decomposition of the unit disk.

I Reason: group of motions of R2 is amenable (as a discrete group).
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Examples

The following groups are amenable.

I Finite groups.

I Abelian groups.

I Stable under subgroups, direct limits and extensions.

The following groups are non-amenable.

I The free groups Fn.

I Groups containing F2.

I Also other examples.

Open problem :

Is the Thompson group amenable ?
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Amenability for von Neumann algebras

Definition (von Neumann, 1929)

A countable group G is amenable if there exists a finitely additive
probability measure m on the subsets of G such that m(gU) = m(U) for
all g ∈ G and U ⊂ G .

Equivalently: there exists a G -invariant state ω : `∞(G )→ C.

Hakeda-Tomiyama: a von Neumann algebra M ⊂ B(H) is amenable if
there exists a conditional expectation P : B(H)→ M.

L(G ) and L∞(X ) o G are amenable whenever G is amenable.

Theorem (Connes, 1976)

Every amenable von Neumann algebra is AFD ! In particular, all amenable
II1 factors are isomorphic with R !
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Modular theory: Tomita - Takesaki - Connes

Murray - von Neumann: II1 factors admit a trace τ : M → C,
τ(xy) = τ(yx).

Tomita - Takesaki: any faithful normal state ω : M → C on a von
Neumann algebra M gives rise to a one-parameter group σωt ∈ Aut(M)

such that ω(xy) = ω(y σω−i (x)) KMS condition.

Connes: this “time evolution” (σωt )t∈R is essentially independent of the
choice of ω.

I Connes - Takesaki: every type III factor M is of the form M ∼= N oR
where N is of type II∞.

I Restricting the action R y N to the center of N leads to an ergodic
flow R y (Z , η).

I This is an isomorphism invariant of M.
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Classification of amenable factors

Type III factor M ergodic flow R y (Z , η).

Definition (Connes)

A type III factor M is of

I type IIIλ if the flow is periodic: R y R/(log λ)Z,

I type III1 if the flow is trivial: Z = {?},
I type III0 if the flow is properly ergodic.

Classification of amenable factors

I (Connes) For each of the following types, there is a unique amenable
factor: type II1, type II∞, type IIIλ with 0 < λ < 1.

I (Connes, Krieger) The amenable factors of type III0 are exactly
classified by the associated flow.

I (Haagerup) There is a unique amenable III1 factor.
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Amenability for C∗-algebras

The correct notion is: nuclearity.

The C∗-algebra C ∗r (G ) is nuclear if and only if G is amenable.

Elliott program: classification of unital, simple, nuclear C∗-algebras by
K-theory and traces.

Huge efforts, by many people, over the past decades.

Currently approaching a final classification theorem,

for all unital, simple, nuclear C∗-algebras satisfying a (needed)
regularity property.
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Beyond amenability: Popa’s deformation/rigidity theory

Consider one of the most well studied group actions:

Bernoulli action G y (X , µ) =
∏

g∈G (X0, µ0) : (g · x)h = xg−1h.

I M = L∞(X ) o G is a II1 factor.

I Whenever G is amenable, we have M ∼= R.

Superrigidity theorem (Popa, Ioana, V)

If G has property (T), e.g. G = SL(n,Z) for n ≥ 3,

or if G = G1 × G2 is a non-amenable direct product group,

then L∞(X ) o G remembers the group G and its action G y (X , µ).

More precisely: if L∞(X ) o G ∼= L∞(Y ) o Γ for any other free, ergodic,
probability measure preserving (pmp) group action Γ y (Y , η),

then G ∼= Γ and the actions are conjugate (isomorphic).
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Free groups

Theorem (Popa - V)

Whenever n 6= m, we have that L∞(X ) o Fn 6∼= L∞(Y ) o Fm,

for arbitrary free, ergodic, pmp actions of the free groups.

I If L∞(X ) o Fn
∼= L∞(Y ) o Fm, there also exists an isomorphism π

such that π(L∞(X )) = L∞(Y ).

This is thanks to uniqueness of the Cartan subalgebra.

I Such a π induces an orbit equivalence: a measurable bijection
∆ : X → Y such that ∆(Fn · x) = Fm ·∆(x) for a.e. x ∈ X .

I (Gaboriau) The L2-Betti numbers of a group are invariant under orbit
equivalence.

We have β
(2)
1 (Fn) = n − 1.
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L2-Betti numbers of groups

I Let G be a countable group. View `2(G ) as a left G -module (by left
translation) and a right L(G )-module (by right translation).

I Atiyah, Cheeger-Gromov, Lück:

define β
(2)
n (G ) = dimL(G)H

n(G , `2(G )).

I Gaboriau: invariant under orbit equivalence.

Conjecture (Popa, Ioana, Peterson)

If L∞(X ) o G ∼= L∞(Y ) o Γ for some free, ergodic, pmp actions,

then β
(2)
n (G ) = β

(2)
n (Γ) for all n ≥ 0.

Big dream (many authors)

Define some kind of L2-Betti numbers for II1 factors.

Prove that β
(2)
1 (L(Fn)) = n − 1.
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