
Combinatorics

Instructor: Prof. Jie Ma

Combinatorics 2022, Tsinghua

• This class notes will be updating throughout this course.

• The course website can be found at https://ymsc.tsinghua.edu.cn/info/1050/2595.htm

Contents

1 Enumeration 2
1.1 Binomial Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Counting Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Inclusion and Exclusion Principle (IEP) . . . . . . . . . . . . . . . . . . . . . . . . 7
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1 Enumeration

First we give some standard notation that will be used throughout this course.

• Let n be a positive integer. We will use [n] to denote the set {1, 2, ..., n}.

• Given a set X, let |X| denote the size of X, that is the number of elements contained in X.

• We use “#” to express the word “number”.

• The factorial of n is the product

n! = n · (n− 1) · · · 2 · 1,

which can be extended to all non-negative integers by letting 0! = 1.

1.1 Binomial Coefficients

Let X be a set of size n. Define 2X = {A : A ⊆ X} to be the family of all subsets of X. Since
the size of 2X is equal to the number of binary vectors of length |X| or the number of functions
from X to {0, 1}, we have |2X | = 2|X| = 2n.

Let
(
X
k

)
= {A : A ⊆ X, |A| = k}, we will use

(
n
k

)
to denote |

(
X
k

)
|. For n < k, we know that(

n
k

)
= 0 by definition.

Fact 1.1. For integers n > 0 and 0 ≤ k ≤ n, we have |
(
X
k

)
| =

(
n
k

)
= n!

k!(n−k)! .

Proof. If k = 0, then it is clear that |
(
X
0

)
| = |{∅}| = 1 =

(
n
0

)
. Now we consider k > 0. Let

(n)k := n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

First we will show that number of ordered k-tuples (x1, x2, . . . , xk) with distinct xi ∈ X is (n)k.
There are n choices for the first element x1. When x1, . . . , xi is chosen, there are exactly n − i
choices for the element xi+1. So the number of ordered k-tuples (x1, x2, . . . , xk) with distinct
xi ∈ X is (n)k. Since any subset A ∈

(
X
k

)
corresponds to k! ordered k-tuples, it follows that

|
(
X
k

)
| = (n)k

k! = n!
k!(n−k)! . This finishes the proof.

Next we discuss more properties of binomial coefficients.

Fact 1.2. (1).
(
n
k

)
=
(

n
n−k

)
for 0 ≤ k ≤ n.

(2). 2n =
∑

0≤k≤n

(
n
k

)
.

(3).
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.(Pascal’s identity)

Proof. (1) is trivial. Since 2[n] = ∪0≤k≤n

([n]
k

)
, we see 2n =

∑
0≤k≤n

(
n
k

)
, proving (2). Finally,

we consider (3). Note that the first term on the right hand side
(
n−1
k−1

)
is the number of k-sets

containing a fixed element, while the second term
(
n−1
k

)
is the number of k-sets avoiding this

element. So their summation gives the total number of k-sets in [n], which is
(
n
k

)
. This finishes

the proof.
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Pascal’s triangle is a triangular array constructed by summing adjacent elements in preced-
ing rows. By Fact 1.2 (3), in the following graph we have that the k-th element in the n+ 1 row
is
(

n
k−1

)
.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Fact 1.3. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi ∈ {0, 1} is

(
n
k

)
.

Fact 1.4. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi > 0 is

(
k−1
n−1

)
.

Proof. This question is equivalent to ask: How many ways are there of distributing k sweets to
n children such that each child has at least one sweet.

Lay out the sweets in a single row of length k, and cut it into n pieces. Then give the sweets
of the ith piece to child i, which means that we need n− 1 cuts from k − 1 possibles.

Fact 1.5. The number of integer solutions (x1, . . . , xn) to the equation x1 + · · · + xn = k with
each xi ≥ 0 is

(
n+k−1
n−1

)
.

Proof 1. Let A = {integer solutions (x1, . . . , xn) to x1 + · · ·+ xn = k, xi ≥ 0} and A = {integer
solutions (y1, . . . , yn) to y1 + · · ·+ yn = n+ k, yi > 0}. Then |B| =

(
n+k−1
n−1

)
by Fact 1.4.

Define f : A → B, by f((x1, . . . , xn)) = (x1 + 1, . . . , xn + 1). It suffices to check that f is a
bijection, which we omit here.

Proof 2. Suppose we have k sweets (of the same sort), which we want to distribute to n children.
In how many ways can we do this? Let xi denote the number of sweets we give to the i-th child,
this question is equivalent to that state above.

We lay out the sweets in a single row of length r and let the first child pick them up from left
to right (can be 0). After a while we stop him/her and let the second child pick up sweets, etc.
The distribution is determined by the specifying the place of where to start a new child. This is
equal to select n− 1 elements from n+ r − 1 elements to be the child, others be the sweets (the
first child always starts at the beginning). So the answer is

(
n+k−1
n−1

)
.
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Exercise 1.6. Let X = [n] , A = {(a1, a2, . . . , ar)|ai ∈ X , 1 ≤ a1 ≤ a2 ≤ · · · ≤ ar ≤ n, ai+1−ai ≥
k + 1, i ∈ [r − 1]}. Prove that |A| =

(
n−k(r−1)

r

)
.

Exercise 1.7. Give a Combinatorial proof of

n∑
k=0

(
n

k

)(
k

m

)
=

(
n

m

)
2n−m.

Exercise 1.8. Give a Combinatorial proof of

m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
n

k

)(
m

k

)
2k.

1.2 Counting Mappings

Define XY to be the set of all functions f : Y → X.

Fact 1.9. |XY | = |X||Y |.

Proof. Let |Y | = r. We can view XY as the set of all strings x1x2 · · ·xr with elements xi ∈ X,
indexed by the r elements of Y . So |XY | = |X||Y |.

Fact 1.10. The number of injective functions f : [r] → [n] is (n)r.

Proof. We can view the injective function f as an ordered k-tuple (x1, x2, . . . , xr) with distinct
xi ∈ X, so the number of injective functions f : [r] → [n] is (n)r.

Definition 1.11 (The Stirling number of the second kind). Let S(r, n) be the number of
partitions of [r] into n unordered non-empty parts.

Exercise 1.12. Prove that

S(r, 2) =
2r − 2

2
=

1

2

r−1∑
i=1

(
r

i

)
.

Fact 1.13. The number of surjective functions f : [r] → [n] is n!S(r, n).

Proof. Since f is a surjective function if and only if for any i ∈ [n], f−1(i) ̸= ∅ if and only if
∪i∈[n]f

−1(i) = [r], and S(r, n) is the number of partition of [r] into n unordered non-empty parts,
we have the number of surjective functions f : [r] → [n] is n!S(r, n).

We say that any injective f : X → X is a permutation of X (also a bijection). We may
view a permutation in two ways: (1) it is a bijective from X to X. (2) a reordering of X.

Cycle notation describes the effect of repeatedly applying the permutation on the elements of
the set. It expresses the permutation as a product of cycles; since distinct cycles are disjoint, this
is referred to as “decomposition into disjoint cycles”.

Definition 1.14 (The Stirling number of the first kind). Let s(r, n) be the number of
permutations of [r] with exactly n cycles multiplied by (−1)(r−n).
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The following fact is a direct consequence of Fact 1.10.

Fact 1.15. The number of permutations of [n] is n!.

Exercise 1.16. (1) Let S(r, n) =

{
r
n

}
,give a Combinatorial proof of

{
n
k

}
=

{
n− 1
k − 1

}
+k

{
n− 1
k

}
.

(2) Let s(n, k) = (−1)n−k

[
n
k

]
, give a Combinatorial proof of

[
n
k

]
=

[
n− 1
k − 1

]
+(n−1)

[
n− 1
k

]
.

1.3 The Binomial Theorem

Define [xk]f to be the coefficient of the term xk in the polynomial f(x).

Fact 1.17. For j = 1, 2, . . . , n, let fj(x) =
∑

k∈Ij x
k where Ij is a set of non-negative integers,

and let f(x) =
∏n

j=1 fj(x). Then, [xk]f equals the number of solutions (i1, i2, . . . , in) to i1 + i2 +
· · ·+ in = k, where ij ∈ Ij.

Fact 1.18. Let f1, . . . , fn be polynomials and f = f1f2 · · · fn. Then,

[xk]f =
∑

i1+···+in=k,ij≥0

 n∏
j=1

[xij ]fj

 .

Theorem 1.19 (The Binomial Theorem). For any real x and any positive integer n, we have

(1 + x)n =
n∑

i=0

(
n

i

)
xi.

Proof 1. Let f = (1+x)n. By Fact 1.17 we have [xk]f equals the number of solutions (i1, i2, ..., in)
to i1 + i2 + · · ·+ in = k where ij ∈ {0, 1}, so [xk]f =

(
n
k

)
.

Proof 2. By induction on n. When n = 1, it is trivial. If the result holds for n − 1, then
(1 + x)n = (1 + x)(1 + x)n−1 = (1 + x)

∑n−1
i=0

(
n−1
i

)
xi =

∑n−1
i=1 (

(
n−1
i

)
+
(
n−1
i−1

)
)xi + 1 + xn. Since(

n−1
i

)
+
(
n−1
i−1

)
=
(
n
i

)
and

(
n
0

)
=
(
n
n

)
= 1, we have (1 + x)n =

∑n
i=0

(
n
i

)
xi.

Fact 1.20.
(
2n
n

)
=
∑n

i=0

(
n
i

)2
=
∑n

i=0

(
n
i

)(
n

n−i

)
.

Proof 1. Since (1 + x)2n = (1 + x)n(1 + x)n, by Fact 1.18, we have
(
2n
n

)
= [xn](1 + x)2n =∑n

i=0([x
i](1 + x)n)([xn−i](1 + x)n) =

∑n
i=0

(
n
i

)(
n

n−i

)
=
∑n

i=0

(
n
i

)2
.

Proof 2. (It is easy to find a combinatorial proof.)

Exercise 1.21 (Vandermonde’s Convolution Formula).(
n+m

k

)
=

k∑
j=0

(
n

j

)(
m

k − j

)
=
∑

i+j=k

(
n

i

)(
m

j

)
.
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Exercise 1.22. (
n+m

r +m

)
=
∑

i−j=r

(
n

i

)(
m

j

)
.

Exercise 1.23. Prove that
m∑
k=0

(
m

k

)(
n+ k

m

)
=

m∑
k=0

(
n

k

)(
m

k

)
2k.

by Binomial Theorem.

Fact 1.24. (1). ∑
all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2).
n∑

k=0

k

(
n

k

)
= n2n−1.

Proof. (1). We see that (1 + x)n =
∑n

i=0

(
n
i

)
xi. Taking x = 1 and x = −1, we have∑

all even k

(
n

k

)
=

∑
all odd k

(
n

k

)
= 2n−1.

(2). Let f(x) = (1+ x)n =
∑n

k=0

(
n
k

)
xk. Then f ′(x) = n(1 + x)n−1 =

∑n
k=0 k

(
n
k

)
xk−1. Let x = 1,

then we have
∑n

k=0 k
(
n
k

)
= n2n−1.

Definition 1.25. Let kj ≥ 0 be integers satisfying that k1 + k2 + · · ·+ km = n. We define(
n

k1, k2, · · · , km

)
:=

n!

k1!k2! · · · km!
.

• When m = 2,
(

n
k1,k2

)
=
(
n
k1

)
is the number of binary vectors of length n with k1 zero and

k2 ones, which is also the number of ordered partitions of [n] into 2 parts such that the ith
part has size ki.

• When m ≥ 3,
(

n
k1,k2,··· ,km

)
is the number of m−ary vectors of length n over [m] such that i

occurs ki times, which is also the number of ordered partitions of [n] into m parts such that
the ith part has size ki.

The following theorem is a generalization of the binomial theorem.

Exercise 1.26 (Multinomial Theorem). For any reals x1, . . . , xm and any positive integer
n ≥ 1, we have

(x1 + x2 + · · ·+ xm)n =
∑

k1+k2+···+km=n, kj≥0

(
n

k1, k2, · · · , km

)
xk11 xk22 · · ·xkmm .

Exercise 1.27. Suppose
∑m

i=1 ki = n with ki ≥ 1 for all i ∈ [m]. Then(
n

k1, k2, · · · , km

)
=

(
n− 1

k1 − 1, k2, · · · , km

)
+ · · ·+

(
n− 1

k1, k2, · · · , km − 1

)
.
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1.4 Inclusion and Exclusion Principle (IEP)

This lecture is devoted to Inclusion-Exclusion formula and its applications.

Let Ω be a ground set and let A1, A2, ..., An be subsets of Ω. Write Ac
i = Ω\Ai. Throughout

this lecture, we use the following notation.

Definition 1.28. Let A∅ = Ω. For any nonempty subset I ⊆ [n], let

AI =
⋂
i∈I

Ai.

For any integer k ≥ 0, let

Sk =
∑

I∈([n]
k )

|AI |.

Now we introduce Inclusion-Exclusion formula (in three equivalent forms) and give two proofs
as follows.

Theorem 1.29 (Inclusion-Exclusion Formula). We have

|A1 ∪A2 ∪ · · · ∪An| =
n∑

k=1

(−1)k+1Sk,

which is equivalent to ∣∣∣∣∣Ω∖
n⋃

i=1

Ai

∣∣∣∣∣ = |Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n| =

n∑
k=0

(−1)kSk,

and ∣∣∣∣∣Ω∖
n⋃

i=1

Ai

∣∣∣∣∣ = |Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n| =

∑
I⊆[n]

(−1)|I||AI |.

Proof (1). For any subset X ⊆ Ω, we define its characterization function 1X : Ω → {0, 1} by
assigning

1X(x) =

{
1, x ∈ X

0, x /∈ X.

Then we notice that
∑

x∈Ω 1X(x) = |X|. Let A = A1∪A2∪ · · ·∪An. Our key observation is that

(1A − 1A1)(1A − 1A2) · · · (1A − 1An)(x) ≡ 0,

which holds for any x ∈ Ω. Next we expand this product into a summation of 2n terms as follows:

1A +
∑

∅≠I⊆[n]

(−1)|I|(
∏
i∈I

1Ai) ≡ 0

holds for any x ∈ Ω. Summing over all x ∈ Ω, this gives that

|A|+
∑

∅≠I⊆[n]

(−1)|I||AI | = 0,
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which implies that

|A1 ∪A2 ∪ · · · ∪An| = |A| =
∑

∅≠I⊆[n]

(−1)|I|+1|AI | =
n∑

k=1

(−1)k+1Sk,

finishing the proof.

Proof (2). It suffices to prove that

1A1∪A2∪···∪An(x) =
n∑

k=1

(−1)k+1
∑

I∈([n]
k )

1AI
(x)

holds for all x ∈ Ω. Denote by LHS (resp. RHS) the left-hand side (resp. right-hand side) of the
above equation.

Assume that x is contained in exactly ℓ subsets, say A1, A2, . . . , Aℓ. If ℓ = 0, then clearly
LHS = 0 = RHS, so we are done. So we may assume that ℓ ≥ 1. In this case, we have LHS = 1
and

RHS = ℓ−
(
ℓ

2

)
+

(
ℓ

3

)
+ · · ·+ (−1)ℓ+1

(
ℓ

ℓ

)
= 1.

Note that the above equation holds since
∑ℓ

i=0(−1)i
(
ℓ
i

)
= (1− 1)ℓ = 0. This finishes the proof.

Next, we will demonstrate the power of Inclusion-Exclusion formula by using it to solve several
problems.

Definition 1.30. Let φ(n) be the number of integers m ∈ [n] which are relatively prime1 to n.

Theorem 1.31. If we express n = pa11 pa22 · · · patt , where p1, . . . , pt are distinct primes, then

φ(n) = n

t∏
i=1

(1− 1

pi
).

Proof. Let the ground set
Ω = [n]

and
Ai = {m ∈ [n] : pi|m}

for i ∈ {1, 2, . . . , t}. It implies

φ(n) =
∣∣{m ∈ [n] : m /∈ Ai for all i ∈ [t]}

∣∣ = ∣∣[n]\(A1 ∪A2 ∪ · · · ∪At)
∣∣.

By Inclusion-Exclusion formula,

φ(n) =
∑
I⊆[t]

(−1)|I||AI |,

1Here, “m is relatively prime to n” means that the greatest common divisor of m and n is 1.
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where AI = ∩i∈IAi = {m ∈ [n] : (
∏

i∈I pi)|m} and thus |AI | = n∏
i∈I pi

. We can derive that

φ(n) =
∑
I⊆[t]

(−1)|I|
n∏
i∈I pi

= n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

pt
),

as desired.

Exercise 1.32. For any positive integer n,∑
d|n

φ(d) = n.

1.5 Möbius Inversion Formula

Definition 1.33. The Möbius Function µ for a positive integer d is

µ(d) =


1, d is a product of even number of distinct primes (d = 1 included)

−1, d is a product of odd number of distinct primes

0, otherwise

Theorem 1.34. For any positive integer n,

∑
d|n

µ(d) =

{
1, n = 1

0, otherwise

Proof. If n = 1, it is trivial. For n = pa11 . . . parr ≥ 2,

∑
d|n

µ(d) =
∑

i1≤a1,...,ir≤ar

µ(pi11 . . . pirr ) =
r∑

i=0

(
r

i

)
(−1)i = 0.

Theorem 1.35 (Möbius Inversion Formula). Let f(n) and g(n) be two functions defined for
every positive integer n satisfying

f(n) =
∑
d|n

g(d).

Then we have
g(n) =

∑
d|n

µ(d)f(
n

d
).
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Proof. ∑
d|n

µ(d)f(
n

d
) =

∑
d|n

µ(
n

d
)f(d)

=
∑
d|n

µ(
n

d
)(
∑
d′|d

g(d′))

=
∑
d′|n

g(d′)
∑
n
d
| n
d′

µ(
n

d
)

=
∑
d′|n

g(d′)
∑
m| n

d′

µ(m)

=
∑

d′|n,d′ ̸=n

g(d′)× 0 + g(n)× 1

= g(n)

as desired.

1.6 Generating Functions

Definition 1.36. The (ordinary) generating function (GF) for an infinite sequence {a0, a1, . . . }
is a power series

f(x) =
∑
n≥0

anx
n.

We have two ways to view this power series.

(i). When the power series
∑

n≥0 anx
n converges (i.e. there exists a radius R > 0 of con-

vergence), we view GF as a function of x and we can apply operations of calculus on it
(including derivation and integration). For example, we know that

an =
f (n)(0)

n!
.

Recall the following sufficient condition on the radius of convergence that if |an| ≤ Kn for
some K > 0, then

∑
n≥0 anx

n converges in the interval (− 1
K , 1

K ).

(ii). When we are not sure of the convergence, we view the generating function as a formal series
and take additions and multiplications. Let a(x) =

∑
n≥0 anx

n and b(x) =
∑

n≥0 bnx
n.

Addition.
a(x) + b(x) =

∑
n≥0

(an + bn)x
n.

Multiplication. Let cn =
∑n

i=0 aibn−i. Then

a(x) · b(x) =
∑
n≥0

cnx
n.

Example 1.37. Consider the GF of {1, 1, 1, . . . }. We note 1
1−x =

∑∞
n=0 x

n holds for all −1 <
x < 1. From the point view of (i), its first derivative gives

1

(1− x)2
=

∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn.
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So we could view 1
(1−x)2

as the GF of {1, 2, 3, . . . } for all −1 < x < 1.

Problem 1.38. Let a0 = 1 and an = 2an−1 for n ≥ 1. Find an.

Solution. Consider the generating function,

f(x) =
∞∑
n=0

anx
n = 1 +

∞∑
n=1

anx
n = 1 + 2x

∞∑
n=1

an−1x
n−1 = 1 + 2xf(x).

So f(x) = 1
1−2x , which implies that f(x) =

∑+∞
n=0 2

nxn and an = 2n.

From this problem, we see one of the basic ideas for using generating function: in order to find
the general expression of an, we work on its generating function f(x); once we find the formula
of f(x), then we can expand f(x) into a power series and get an by choosing the coefficient of
the right term.

Problem 1.39. Let An be the set of strings of length n with entries from the set {a, b, c} and
with no “aa” occuring (in the consecutive positions). Find |An| for n ≥ 1.

Solution. Let an = |An|. We first observe that a1 = 3, a2 = 8. For n ≥ 3, we will find an by
recursion as follows. If the first string is ‘a’, the second string has two choices, ‘b’ or ‘c’. Then
the last n− 2 strings have an−2 choices. If the first string is ‘b’ or ‘c’, the last n− 1 strings have
an−1 choices. They are all different. Totally, for n ≥ 3, we have

an = 2an−1 + 2an−2.

Set a0 = 1, then an = 2an−1 + 2an−2 holds for n ≥ 2. The generating function of {an} is

f(x) =
∑
n≥0

anx
n = a0 + a1x+

∑
n≥2

(2an−1 + 2an−2)x
n = 1 + 3x+ 2x(f(x)− 1) + 2x2f(x),

which implies that

f(x) =
1 + x

1− 2x− 2x2
.

By Partial Fraction Decomposition, we calculate that

f(x) =
1−

√
3

2
√
3

1√
3 + 1 + 2x

+
1 +

√
3

2
√
3

1√
3− 1− 2x

,

which implies that

an =
1−

√
3

2
√
3

1√
3 + 1

(
−2√
3 + 1

)n

+
1 +

√
3

2
√
3

1√
3− 1

(
2√
3− 1

)n

.

Remark 1.40. Note that an must be an integer but its expression is a combination of irrational

terms! Observe that
∣∣∣ −2√

3+1

∣∣∣ < 1, so
(

−2√
3+1

)n
→ 0 as n → ∞. Thus, when n is sufficiently large,

this integer an is about the value of the second term 1+
√
3

2
√
3

1√
3−1

(
2√
3−1

)n
. Equivalently an will be

the nearest integer to that.
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Exercise 1.41. Define Fibonacci number Fn as follows: F1 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for
all n ≥ 0. Find Fn.

Definition 1.42. For any real r and an integer k ≥ 0, let(
r

k

)
=

r(r − 1) · · · (r − k + 1)

k!
.

Exercise 1.43. Prove that
( 1

2
k

)
= (−1)k−1·2

4k
(2k−2)!
k!(k−1)! .

Theorem 1.44 (Newton’s Binomial Theorem). For any real number r and x ∈ (−1, 1),

(1 + x)r =

∞∑
k=0

(
r

k

)
xk.

Proof. By Taylor series, it is obvious.

Corollary 1.45. Let r = −n for some integer n ≥ 0. Then(
−n

k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!
= (−1)k

(
n+ k − 1

k

)
.

Therefore

(1 + x)−n =
∞∑
k=0

(−1)k
(
n+ k − 1

k

)
xk,

which is equivalent to

(1− x)−n =

∞∑
k=0

(
n+ k − 1

k

)
xk.

Noting that(
n+ k − 1

k

)
= # integer solutions to x1 + x2 + · · ·+ xn = k where xi ≥ 0, 1 ≤ i ≤ n,

we can explain Equation (3.21) from another point of view as follows.
Recall the following facts.

Fact 1.46. For j ∈ [n], let fj(x) :=
∑

i∈Ij x
i, where Ij ⊂ N. Let bk be the number of solutions to

i1 + i2 + · · ·+ in = k for ij ∈ Ij. Then

n∏
j=1

fj(x) =
∞∑
k=0

bkx
k.

Fact 1.47. If f(x) =
∏k

i=1 fi(x) for polynomials f1, ..., fk, then

[xn]f =
∑

i1+i2+···+ik=n

k∏
j=1

(
[xij ]fj

)
,

where [xn]f is the coefficient of xn in f .
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Let fj = (1−x)−1 =
∑

i≥0 x
i, ∀j ∈ [n]. By Fact 1.46, we can get Equation 3.21 by considering

as (1− x)−n =
∏n

j=1 fj easily.

Exercise 1.48. Show (1− x)−n =
∑∞

k=0

(
n+k−1

k

)
xk by taking the nth derivative of (1− x)−1.

Problem 1.49. Let an be the number of ways to pay n Yuan using 1-Yuan bills, 2-Yuan bills
and 5-Yuan bills. What is the generating function of this sequence {an}?

Solution. Observe that an is the number of integer solutions (i1, i2, i3) to i1 + i2 + i3 = n, where
i1 ∈ I1 := {0, 1, 2, ...}, i2 ∈ I2 := {0, 2, 4, ...} and i3 ∈ I3 := {0, 5, 10, ...}. Let fj(x) :=

∑
m∈Ij x

m

for j = 1, 2, 3. By Fact 1.46, we have

+∞∑
n=0

anx
n = f1(x)f2(x)f3(x) =

1

1− x
· 1

1− x2
· 1

1− x5
.

1.7 Random Walks

Consider a real axis with integer points (0,±1,±2,±3, . . .) marked. A frog leaps among the
integer points according to the following rules:

(1). At beginning, it sits at 1.

(2). In each coming step, the frog leaps either by distance 2 to the right (from i to i+ 2), or by
distance 1 to the left (from i to i − 1), each of which is randomly chosen with probability
1
2 independently of each other.

Problem 1.50. What is the probability that the frog can reach “ 0”?

Solution. In each step, we use “+” or “−” to indicate the choice of the frog that is either to leap
right or leap left. Then the probability space Ω can be viewed as the set of infinite vectors, where
each entry is in {+,−}.

Let A be the event that the frog reaches “0”. Let Ai be the event that the frog reaches “0”
at the ith step for the first time. So A = ∪+∞

i=1Ai is a disjoint union. So P (A) =
∑+∞

i=1 P (Ai).
To compute P (Ai), we can define ai to be the number of trajectories (or vectors) of the first

i steps such that the frog starts at “1” and reaches “0” at the ith step for the first time. So

P (Ai) =
ai
2i
.

Then,

P (A) =
+∞∑
i=1

ai
2i
.

Let f(x) =
∑+∞

i=0 aix
i be the generating function of {ai}i≥0, where a0 := 0. Thus,

P (A) =

+∞∑
i=1

ai
2i

= f

(
1

2

)
.
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We then turn to find the expression of f(x).
Let bi be the number of trajectories of the first i steps such that the frog starts at “2” and

reaches “0” at the ith step for the first time.
Let ci be the number of trajectories of the first i steps such that the frog starts at “3” and

reaches “0” at the ith step for the first time.
First we express bi in terms of {aj}j≥1. Since the frog only can leap to left by distance 1,

if the frog can successfully jump from “i” to “0” in i steps, then this frog must reach “1” first.
Let j be the number of steps by which the frog reaches “1” for the first time. So there are aj
trajectories from “2” to “1” at the jth step for the first time. In the remaining i − j steps the
frog must jump from “1” to “0” and reach “0” at the coming (i− j)th step for the first time, so
there are ai−j trajectories that the frog can finish in exactly i− j steps. In total,

bi =
i−1∑
j=1

ajai−j .

As a0 = 0,

bi =

i∑
j=0

ajai−j .

We can get ∑
i≥0

bix
i = (

∑
i≥0

aix
i)2 = f2(x).

Similarly, if we count the number ci of trajectories from 3 to 0, we can obtain that

ci =
i∑

j=0

ajbi−j ,

which implies that ∑
i≥0

cix
i =

∑
i≥0

bix
i

∑
i≥0

aix
i

 = f3(x).

Let us consider ai from another point of view. After the first step, either the frog reaches “0”
directly (if it leaps to left, so a1 = 1), or it leaps to “3”. In the latter case, the frog needs to jump
from “3” to “0” using i− 1 steps. Thus for i ≥ 2, ai = ci−1.

Combining the above facts, we have

f(x) =
+∞∑
i=0

aix
i = x+

∑
i≥2

aix
i = x+

∑
i≥2

ci−1x
i = x+ x

+∞∑
j=0

cjx
j

 = x+ x · f3(x).

Let a := P (A) = f(1/2). Then we have a = 1
2 + a3

2 , i.e., (a− 1)(a2 + a− 1) = 0, implying that

a = 1,

√
5− 1

2
or

−
√
5− 1

1
.

Since P (A) ∈ [0, 1], we see P (A) = 1 or
√
5−1
2 .

14



Note that f(x) = x + xf3(x). Consider the inverse function of f(x), that is, g(x) := x
1+x3 .

Consider the figure of g(x). We find that g(x) is increasing around
√
5−1
2 but decreasing around

1. Since f(x) =
∑

aix
i is increasing, g(x) also increases. Thus it doesn’t make sense for g(x)

being around x = 1. This explains that P (A) =
√
5−1
2 , which is the golden section!

1.8 Exponential Generating Functions

Let N,Ne and No be the sets of non-negative integers, non-negative even integers and non-negative
odd integers, respectively.

Given n sets Ij of non-negative integers for j ∈ [n], let fj(x) =
∑

i∈Ij x
i. Let ak be the number

of integer solutions to i1 + i2 + · · · + in = k, where ij ∈ Ij . Then
∏n

j=1 fj(x) is the ordinary
generating function of {ak}k≥0.

Problem 1.51. Let Sn be the number of selections of n letters chosen from an unlimited supply
of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even.

Solution. We can write Sn as

Sn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N
1.

Using the previous fact, we see that Sn = [xn]f , where

f(x) =

(∑
i∈Ne

xi

)2
∑

j∈N
xj

 =

(
1

1− x2

)2

· 1

1− x
.

Problem 1.52. Let Tn be the number of arrangements (or words) of n letters chosen from an
unlimited supply of a’s, b’s and c’s such that both of the numbers of a’s and b’s are even. What
is the value of Tn?

Solution. To solve this, we define a new kind of generating functions.

Definition 1.53. The exponential generating function for the sequence {an}n≥0 is the power
series

f(x) =

∞∑
n=0

an · x
n

n!
.

Then we have the following fact.

Fact 1.54. If we have n letters including x a’s, y b’s and z c’s (i.e. x+ y+ z = n), then we can
form n!

x!y!z! distinct words using them.

Therefore, a selection (say x a’s, y b’s and z c’s) can contribute n!
x!y!z! arrangements to Tn.

This implies that

Tn =
∑

e1+e2+e3=n, e1,e2∈Ne, e3∈N

n!

e1!e2!e3!
.

15



Similar to defining the above f(x) for Sn, we define the following for Tn. Let

g(x) :=

(∑
i∈Ne

xi

i!

)2
∑

j∈N

xj

j!

 .

Claim. We have

[xn]g =
Tn

n!
.

Proof. To see this, we expand g(x). Then the term xn in g(x) becomes

∑
e1+e2+e3=n,
e1,e2∈Ne, e3∈N

xe1

e1!
· x

e2

e2!
· x

e3

e3!
=

 ∑
e1+e2+e3=n,
e1,e2∈Ne, e3∈N

n!

e1!e2!e3!

 xn

n!
= Tn · x

n

n!
.

So [xn]g = Tn
n! , i.e., g(x) is the exponential generating function of {Tn}. This finishes the proof

of Claim.

Using Taylor series: ex =
∑

j≥0
xj

j! and e−x =
∑

j≥0(−1)j x
j

j! , we have

ex + e−x

2
=
∑
j∈Ne

xj

j!
and

ex − e−x

2
=
∑
j∈No

xj

j!
.

By the previous fact, we get

g(x) =

(
ex + e−x

2

)2

· ex =
e3x + 2ex + e−x

4
=
∑
n≥0

(
3n + 2 + (−1)n

4

)
· x

n

n!
.

Therefore, we get that

Tn =
3n + 2 + (−1)n

4
.

Recall that the exponential generating function for the sequence {an}n≥0 is the power series

f(x) =
+∞∑
n=0

an · x
n

n!
.

As we shall see, ordinary generation functions can be used to find the number of selections;
while exponential generation functions can be used to find the number of arrangements or some
combinatorial objects involving ordering. We summarize this as the following facts.

Fact 1.55. Given Ij ⊆ N for j ∈ [n], let fj(x) =
∑
i∈Ij

xi. And let ak =
∑

i1+···+in=k,
ij∈Ij

1. Then

n∏
j=1

fj(x) =

+∞∑
k=0

akx
k.
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Fact 1.56. Given Ij ⊆ N for j ∈ [n], let gj(x) =
∑
i∈Ij

xi

i! . And let bk =
∑

i1+···+in=k,
ij∈Ij

k!
i1!i2!···in! . Then

n∏
j=1

gj(x) =

+∞∑
k=0

bk
k!
xk.

Fact 1.57. Let f(x) =
n∏

j=1
fj(x). Then

[xk]f =
∑

i1+···+in=k,
ij≥0

n∏
j=1

[xij ]fj .

Fact 1.58. Let f(x) =
n∏

j=1
fj(x) and let fj(x) =

+∞∑
k=0

a
(j)
k
k! x

k. Then

f(x) =
+∞∑
k=0

Ak

k!
xk,

if and only if

Ak =
∑

i1+...+in=k,
ij≥0

k!

i1!i2! · · · in!

( n∏
j=1

a
(j)
ij

)
.

Exercise 1.59. Find the number an of ways to send n students to four different classes (say R1,
R2, R3, R4) such that each class has at least one student.

Solution.

an =
∑

i1+i2+i3+i4=n,
ij≥1

n!

i1!i2!i3!i4!
.

Let Ij ⊆ N for j ∈ [4] and gj(x) =
∑
i≥1

xi

i! = ex − 1. By Fact 1.56, we have that

+∞∑
n=0

an
n!

xn = g1g2g3g4 = (
∑
i≥1

xi

i!
)4 = (ex − 1)4 = e4x−4e3x+6e2x−4ex+1 =

+∞∑
n=0

(4n−4·3n+6·2n−4)
xnn
n!

+1.

Thus an = 4n − 4 · 3n + 6 · 2n − 4 for n ≥ 4.

Exercise 1.60. Let an be the number of arrangements of type A for a group of n people, and let
bn be the number of arrangements of type B for a group of n people.

Define a new arrangement of n people called type C as follows:

• Divide the n people into 2 groups (say 1st and 2nd).

• Then arrange the 1st group by an arrangement of type A, and arrange the 2nd group by an
arrangement of type B.
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Let cn be the number of arrangements of type C of n people. Let A(x), B(x), C(x) be the
exponential generation function for {an}, {bn}, {cn} respectively. Prove that C(x) = A(x)B(x).

Proof. We can easily see that

cn =
∑

i+j=n,
i,j≥0

n!

i!j!
aibj .

Then by Fact 1.58, C(x) = A(x)B(x).

Exercise 1.61. Recall that S(n, k) · k! is equal to the number of surjections from [n] to [k].
For fixed k, compute the exponential generating function of S(n, k) · k!. Then find the value of
S(n, k) · k!.

Fact 1.62 (Lagrange Inversion Formula). Let f(x) be analytic (convergent power series) in a
neighborhood of z = 0 and f(0) ̸= 0. If w = z

f(z) , then z can be expressed as a power series

z =
∞∑
k=1

ckw
k

with a positive radius of convergence, where

ck =
1

k!
{( d

dz
)k−1(f(z))k}z=0.
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2 Basics of Graphs

In this second part of our course, we will introduce some basic definitions about graphs.

Definition 2.1. A graph G = (V,E) consists of a vertex set V and an edge set E, where the
elements of V are called vertices and the elements of E ⊆

(
V
2

)
= {{x, y} : x, y ∈ V } are called

edges.

This provides the definition of a simple undirected graph. The word “undirected” means that
the edge set E contains unordered pairs. Otherwise, G is called a directed graph. A graph is
simple if it has no loops or multiple edges. A loop is an edge whose endpoints are equal. Multiple
edges are edges having the same pair of endpoints.

• We say vertices x and y are adjacent if {x, y} ∈ E, write x ∼G y or x ∼ y or xy ∈ E.

• We say the edge xy is incident to the endpoints x and y.

• Let e(G) be the number of edges in G, i.e., e(G) = |E(G)|.

• The degree of a vertex v in G, denoted by dG(v), is the number of edges in G incident to v.

• The neighborhood of a vertex v is the set of vertices that are adjacent to v, i.e., NG(v) =
{u ∈ V (G) : u ∼ v}. Thus we have dG(v) = |NG(v)|.

• A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E∩
(
V ′

2

)
, i.e., G′ ⊆ G.

• A subgraph G′ = (V ′, E′) of G = (V,E) is induced, if E′ = E ∩
(
V ′

2

)
, write G′ = G[V ′].

Definition 2.2. Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a
bijection f : V → V ′ such that i ∼G j if and only if f(i) ∼G′ f(j).

• A graph on n vertices is a complete graph (or a clique), denoted by Kn, if all pairs of vertices
are adjacent. So we have e(Kn) =

(
n
2

)
.

• A graph on n vertices is called an independent set, denoted by In, if it contains no edge at
all.

• Given a graph G = (V,E), its complement is a graph G = (V,Ec) with Ec =
(
V
2

)
\E.

• The degree sequence of a graph G = (V,E) is a sequence of degrees of all vertices listed in
a non-decreasing order.

• The path Pk of length k − 1 is a graph v1v2...vk where vi ∼ vi+1 for i ∈ [k − 1] and vj ̸= vl
for any j ̸= l ∈ [k]. Note that the length of a path P (denoted by |P |) is the number of edges in
P.

• A cycle Ck of length k is a graph v1v2...vkv1 where vi ∼ vi+1 for i ∈ [k] , vk+1 = v1, and
vj ̸= vl for any j ̸= l ∈ [k].

• Let G be a simple graph with vertex set V (G) = {v1, . . . , vn} and edge set E(G) =
{e1, . . . , em}. The adjacency matrix of G, denoted by A(G), is the n-by-n matrix in which
entry ai,j is the number of edges in G with endpoints {vi, vj}. The incidence matrix M(G) is the
n-by-m matrix in which entry mi,j is 1 if vj is an endpoint of ej and 0 otherwise.

• A graph G is planar, if we can draw G on the plane such that its edges intersect only at
their endpoints.
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Theorem 2.3 (Euler’s Formula). Let G = (V,E) be a connected planar graph with v vertices and
e edges, and let r be the number of regions in which some given embedding of G divides the plane.
Then v − e+ r = 2.

Exercise 2.4. Show that K4 is planar but K5 is not.

Exercise 2.5. Show that K3,3 is not planar.

The following Handshaking Lemma is the most basic lemma in graph theory.

Lemma 2.6 (Handshaking Lemma). In any graph G = (V,E),∑
v∈V

dG(v) = 2e(G).

Proof. Let F = {(e, v) : e ∈ E(G), v ∈ V (G) such that v is incident to e}. Then∑
e∈E(G)

2 = |F | =
∑
v∈V

dG(v).

Corollary 2.7. In any graph G, the number of vertices with odd degree is even.

Proof. Let O = {v ∈ V (G) : d(v) is odd} and E = {v ∈ V (G) : d(v) is even}. Then by Lemma
2.6,

2e(G) =
∑
v∈O

dG(v) +
∑
v∈E

dG(v).

Thus we have
∑

v∈O dG(v) is even, moreover we have |O| is even.

Corollary 2.8. In any graph G, if there exists a vertex with odd degree, then there are at least
two vertices with odd degree.
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3 Double-counting Method

3.1 Basics

The basic setting of the double counting technique is as follows. Suppose that we are given two
finite sets A and B, and a subset S ⊆ A×B. If (a, b) ∈ S, then we say that a and b are incident.
Let Na be the number of elements b ∈ B such that (a, b) ∈ S, and Nb be the number of elements
a ∈ A such that (a, b) ∈ S. Then we have∑

a∈A
Na = |S| =

∑
b∈B

Nb.

Theorem 3.1. Let T (j) be the number of divisions of a positive integer j. Let T (n) = 1
n

∑n
j=1 T (j).

Then we have |T (n)−H(n)| < 1, where H(n) =
∑n

i=1
1
i is the nth Harmonic number.

Proof. Define a table X = (xij) where

xij =

{
1, if i|j
0, otherwise.

Then
n∑

j=1

T (j) =
∑

1≤i≤j≤n

xij =
n∑

i=1

⌊n
i
⌋,

which implies that

T (n) =
1

n

n∑
i=1

⌊n
i
⌋.

Then we have
|T (n)−H(n)| < 1.

Exercise 3.2. Prove that ∣∣∣∣∣ 1n
n∑

i=1

⌊n
i
⌋ −

n∑
i=1

1

i

∣∣∣∣∣ < 1.

3.2 Sperner’s Theorem

Definition 3.3. Let F ⊆ 2[n] be a family of subsets of [n]. We say F is independent (or F
is an independent system), if for any two A,B ∈ F , we have A ̸⊂ B and B ̸⊂ A. In other
words, F is independent if and only if there is no “containment” relationship between any two
subsets of F .

Fact 3.4. For a fixed k ∈ [n],
([n]
k

)
is an independent system.

Theorem 3.5 (Sperner’s Theorem). For any independent system F of [n], we have

|F| ≤
(

n

⌊n2 ⌋

)
.
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First we define a chain.

Definition 3.6. A chain of subsets of [n] is a sequence of distinct subsets such that

A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ Ak.

First proof of Sperner’s Theorem (Double-Counting). A maximal chain is a chain with the prop-
erty that no other subsets of [n] can be inserted into it to find a longer chain. We have the
following observations.

(1). Any maximal chain looks like:

ϕ ⊆ {x1} ⊆ {x1, x2} ⊆ · · · ⊆ {x1, ..., xk} ⊆ · · · ⊆ {x1, ..., xn}.

(2). There are exactly n! maximal chains.

This is because any such a maximal chain, say C : ϕ ⊆ {x1} ⊆ {x1, x2} ⊆ · · · ⊆ {x1, x2, ..., xn},
defines a unique permutation:

π : [n] → [n], π(i) = xi, ∀i ∈ [n].

Now we count the number of pairs (C, A) satisfying that:

• C is a maximal chain of [n].

• A ∈ C ∩ F .

Recall the rule of double counting given at the beginning that∑
C

NC = the number of pairs (C, A) =
∑
A

NA,

where NC is the number of subsets A ∈ C ∩ F and NA is the number of maximal chains C
containing A. It is key to observe that

• NC ≤ 1,

• NA = |A|!(n− |A|)!

So we have

n! =
∑
C

1 ≥
∑
C

NC =
∑
A∈F

NA =
∑
A∈F

|A|!(n− |A|)!

=
∑
A∈F

n!(
n
|A|
) ≥

∑
A∈F

n!(
n

⌊n
2
⌋
) =

n!(
n

⌊n
2
⌋
) |F|,

which implies that

|F| ≤
(

n

⌊n2 ⌋

)
.

This finishes the proof.
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Now we give another proof of Sperner’s Theorem.

Definition 3.7. A chain is symmetric if it consists of subsets of sizes k, k+1, ..., ⌊n2 ⌋, ..., n− k−
1, n− k for some k ≥ 0.

For example, when n = 3, {{2}, {2, 3}, {1, 2, 3}} is not symmetric. And when n = 4,
{ϕ, {1, 2, 3}} is not symmetric.

Theorem 3.8. The family 2[n] can be partitioned into a disjoint union of symmetric chains.

First proof of Theorem 3.8. We prove by induction on n.
The base case is n = 1. The family 2[n] = 2[1] = {∅, {1}}, which itself is a symmetric chain.

Thus this theorem is true for n = 1.
Now we may assume that 2[n] can be partitioned into a disjoint union of symmetric chains

e1, e2, . . . , et. Consider 2
[n+1], For any

ei = {Pk ⊆ Pk+1 ⊆ · · · ⊆ Pn−k},

define two new symmetric chains for 2[n+1]:

e′i = {Pk+1 ⊆ Pk+2 ⊆ · · · ⊆ Pn−k},

and
e′′i = {Pk ⊆ (Pk ∪ {n+ 1}) ⊆ (Pk+1 ∪ {n+ 1}) ⊆ · · · ⊆ (Pn−k ∪ {n+ 1})}.

We assert that ∪i{e′i, e′′i } is a disjoint union of symmetric chain for 2[n+1].

Exercise 3.9. Prove that ∪i{e′i, e′′i } is a disjoint union of symmetric chain for 2[n+1].

Second proof of Theorem 3.8. For each A ∈ 2[n], we define a sequence “a1a2...an” consisting of
left and right parentheses by defining

ai =

{
“(”, if i ∈ A
“)”, otherwise.

We then define the “partial pairing of parentheses” as follows:

(1). First, we pair up all pairs “()” of adjoint parentheses.

(2). Then, we delete these already paired parentheses.

(3). Repeat the above process until nothing can be done.

Note that when this process stops, the remaining unpaired parentheses must look like this:

))))(((((

We say two subsets A,B ∈ 2[n] have the same partial pairing, if the paired parentheses are the
same (even in the same positions).

We can define an equivalence “∼” on 2[n] by letting A ∼ B if and only if A,B have the same
partial pairing.
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Exercise 3.10. Each equivalence class indeed forms a symmetric chain.

Using this fact, now we see that 2[n] can be partitioned into disjoint equivalence classes, which
are disjoint symmetric chains. This finishes the proof.

Theorem 3.8 can rapidly imply Sperner’s Theorem.

Second proof of Sperner’s Theorem. Note that by definition, any symmetric chain contains ex-
actly one subset of size ⌊n2 ⌋. Since there are

(
n

⌊n
2
⌋
)
many subsets of size ⌊n2 ⌋, by Theorem 3.8,

we see that any partition of 2[n] into symmetric chains has to consist of exactly
(

n
⌊n
2
⌋
)
symmet-

ric chains. Each symmetric chain can contain at most one subset from |F| and thus we see
|F| ≤

(
n

⌊n
2
⌋
)
.

3.3 Littlewood-Offord Problem

Theorem 3.11. Fix a vector a⃗ = (a1, a2, ..., an) with each |ai| ≥ 1. Let S = {ϵ⃗ = (ϵ1, ϵ2, ..., ϵn) :
ϵi ∈ {1,−1} and ϵ⃗ · a⃗ ∈ (−1, 1)}, then |S| ≤

(
n

⌊n
2
⌋
)
.

Remark: Note that this is tight for many vectors a⃗.

Proof. For any ϵ⃗ ∈ S, define Aϵ⃗ = {i ∈ [n] : aiϵi > 0}. Let F = {Aϵ⃗ : ϵ⃗ ∈ S}. Then we have

|S| = |F|.

Now we claim that F is an independent system. Suppose for a contradiction that there exist
Aϵ⃗1 , Aϵ⃗2 ∈ F with Aϵ⃗1 ⊆ Aϵ⃗2 . That also says,{

ϵ⃗1 · a⃗ ∈ (−1, 1),
ϵ⃗2 · a⃗ ∈ (−1, 1),

which imply that
|ϵ1 · a⃗− ϵ2 · a⃗| < 2.

By definition, we have

ϵ⃗1 · a⃗ =
∑
i∈Aϵ⃗1

|ai| −
∑
i/∈Aϵ⃗1

|ai| = 2
∑
i∈Aϵ⃗1

|ai| −
n∑

i=1

|ai|.

Since Aϵ⃗1 ⊆ Aϵ⃗2 , we also have that

ϵ⃗2 · a⃗− ϵ⃗1 · a⃗ = 2(
∑
i∈Aϵ⃗2

|ai| −
∑
j∈Aϵ⃗1

|aj |) ≥ 2|ak| ≥ 2, for some k ∈ Aϵ⃗2 \Aϵ⃗1 .

This is a contradiction. By Sperner’s Theorem, we have |S| = |F| ≤
(

n
⌊n
2
⌋
)
. This finishes the

proof.
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3.4 Turán Type Problems

Definition 3.12. A graph G is bipartite if its vertex set can be partitioned into two parts (say
A and B) such that each edge joints one vertex in A and another in B.

This is equivalent to say that V (G) can be partitioned into two independent subsets. And
we say (A,B) is a bipartition of G. For example, all even cycles C2k are bipartite, while all odd
cycles C2k+1 are not.

Definition 3.13. Let Ka,b be the complete bipartite graph with two parts of sizes a and b.
This is a bipartite graph with edge set {{i, j} : i ∈ A, j ∈ B} where |A| = a and |B| = b.

Definition 3.14. Given a graph H, we say a graph G is H-free if G dose not contain a copy
of H as its subgraph.

For example, Ka,b is K3-free.

Definition 3.15. For fixed graph H, let the Turán number of H, denoted by ex(n,H), be the
maximum number of edges in an n-vertex H-free graph G.

Theorem 3.16. ex(n,C4) ⩽
n

4
(1 +

√
4n− 3).

Proof. Let G be a C4-free graph with n vertices. We need to show that e(G) ⩽
n

4
(1 +

√
4n− 3).

Consider S = {({u1, u2}, w) : u1wu2 is a path of length 2 in G}. Since G is C4-free, for fixed
{u1, u2}, there is at most one vertex w such that ({u1, u2}, w) ∈ S. So we have

|S| =
∑

{u1,u2}

the number of ({u1, u2}, w) ∈ S ⩽
∑

{u1,u2}

1 =

(
n

2

)
.

On the other hand, fixed a vertex w, the number of {u1, u2} such that ({u1, u2}, w) ∈ S exactly
equals

(
d(w)
2

)
, which implies that

|S| =
∑

w∈V (G)

(
d(w)

2

)
=

1

2

∑
w∈V (G)

d2(w)− e(G).

Putting the above together, we have(
n

2

)
≥ |S| = 1

2

∑
w∈V (G)

d2(w)− e(G).

Using Cauchy-Schwarz inequality, we have

n2 − n

2
≥ n

2

∑
w∈V (G)

d2(w)

n
− e(G) ≥ n

2

∑
w∈V (G)

(
d(w)

n

)2

− e(G),

which implies that
2e2(G)

n
− e(G) ≤ n2 − n

2
.

Solving it, we can derive easily that e(G) ≤ n
4 (1 +

√
4n− 3).
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Exercise 3.17. Prove that for all positive integer n ≥ 4, ex(n,C4) <
n
4 (1 +

√
4n− 3).

Hint: Look up the Friendship Theorem.

Corollary 3.18. We have ex(n,C4) ⩽ (12 + o(n))n
3
2 , where o(n) → 0 as n → ∞.

The upper bound in Corollary 3.18 is asymptotically tight because there is a construction as
follows.

Let p be a prime. Let
V = (Zp \ {0})× Zp

and
E = {{(a, b), (c, d)} : a, c ∈ Zp \ {0}, b, d ∈ Zp and ac = b+ d}.

We have |V | = (p−1)p and d((a, b)) = p−1, for any (a, b) ∈ V . Thus we have |E| = (p−1)2p
2 ∼ |V |

3
2

2 .
Finally we explain that G = (V,E) is C4-free. For any (a1, b1), (a2, b2) ∈ V , if there exist a vertex
(say (c, d)) which is their common neighbour, (c, d) satisfies the following condition:{

a1c = b1 + d

a2c = b2 + d.

There is no mutiple solution of this equation.

Theorem 3.19 (Kövári-Sós-Turán Theorem).

ex(n,Ks,t) ≤
1

2
(t− 1)

1
sn2− 1

s +
1

2
(s− 1)n

for all t, s ≥ 2.

Proof. Let G be an n-vertices Ks,t free graph with e(G) ≥ 1
2sn (otherwise we are done). We aim

to show e(G) ≤ 1
2(t − 1)

1
sn2− 1

s + 1
2(s − 1)n. We count the number T of s-stars K1,s as follows.

On one hand, T =
∑

w∈V (G)

(
d(w)
s

)
. On the other hand, T ≤ (t− 1)

(
n
s

)
.

We define

f(x) =


0 , if x < s,(
x

s

)
, if x ≥ s.

When x ≥ 0, f(x) is a convex function. Let d = 2e(G)
n , by Jensen’s inequality,

(t− 1)
(
n
s

)
n

≥ T

n
=

1

n

∑
w

f(d(w)) ≥ f(

∑
w d(w)

n
) = f(

2e(G)

n
) ≥ (d− s+ 1)s

s!
.

Thus

d ≤ ((t− 1)(n− 1)(n− 2) . . . (n− s+ 1))
1
s + (s− 1) ≤ (t− 1)

1
sn1− 1

s + (s− 1).

Then we have

e(G) =
nd

2
≤ 1

2
(t− 1)

1
sn2− 1

s +
1

2
(s− 1)n,

finishing the proof.
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3.5 Sperner’s Lemma

Let us consider the following application of Corollary 2.8. First we draw a triangle in the plane,
with 3 vertices A1A2A3. Then we divide this triangle △ = A1A2A3 into small triangles such that
no triangle can have a vertex inside an edge of any other small triangle. Then we assign 3 colors
(say 1,2,3) to all vertices of these triangles, under the following rules.

(1) The vertex Ai is assigned by color i for i ∈ [3].

(2) All vertices lying on the edge AiAj of the large triangle are assigned by the color i or j.

(3) All interior vertices are assigned by any color 1,2,3.

Lemma 3.20 (Sperner’s Lemma (a planar version)). For any assignment of colors described as
above, there always exists a small triangle whose three vertices are assigned by three colors 1, 2, 3.

Proof. Define an auxiliary graph G as follows.

• Its vertices are the faces of small triangles and the outer face. Let z be the vertex repre-
senting the outer face.

• Two vertices of G are adjacent, if the two corresponding faces are neighboring faces and the
two endpoints of their common edge are colored by 1 and 2.

We consider the degree of any vertex v ∈ V (G)\{z}.

(1) If the face of v has NO two endpoints with color 1 and 2, then dG(v) = 0.

(2) If the face of v has 2 endpoints with color 1 and 2, then let k be the color of the third
endpoint of this face. If k ∈ {1, 2}, then dG(v) = 2. Otherwise k = 3, then dG(v) = 1 and
the vertices of this triangle are assigned by three different colors 1,2,3.

Thus we have that dG(v) is odd if and only if dG(v) = 1, and then the face of v has colors
1,2,3. Now we consider dG(z) and claim that it must be odd. Indeed, the edge of G incident to z
obviously have to go across A1A2. Consider the sequence of the colors of the endpoints on A1A2,
from A1 to A2. Then dG(z) equals the number of alternations between 1 and 2 in this sequence.
It is easy to check that dG(z) must be odd. By Corollary 2.8, since the graph G has a vertex z
with odd degree, there must be another vertex v ∈ V (G)\{z} with odd degree. Then d(v) = 1
and the face of v has colors 1,2,3.

Before we introduce an interesting application of Sperner’s lemma, we introduce the following
theorem first.

Theorem 3.21 (One-dimensional fixed point theorem). For any continuous function f : [0, 1] →
[0, 1], there exists a point x ∈ [0, 1] such that f(x) = x.

Such an x is called a fixed point of the function f . The theorem can be proved by considering
the function g(x) = f(x)−x. This is a continuous function with g(0) ≥ 0 and g(1) ≤ 0. Intuitively
it is quite clear that the graph of such a continuous function can not jump across the x-axis and
therefore it has to intersect it, and hence g is 0 at some point of [0, 1]. Prove the existence of
such a point rigorously requires quite some work. In analysis, this result appears under heading
“Darboux theorem”.
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If we replace the 1-dimensional interval from the Theorem 3.21 by a triangle in the plane, or
by a tetrahedron in the 3-dimensional space, or by their analogs in higher dimensions, we will
have Brouwer’s fixed point theorem. Here we prove only the 2-dimensional version by Spener’s
lemma.

Let △ denote a triangle in the plane. For simplicity, let us take the triangle with vertices
A1 = (1, 0), A2 = (0, 1), and A3 = (0, 0):

A1 = (1, 0).

A2 = (0, 1)

A3 = (0, 0)

Theorem 3.22 (Brouwer’s Fixed Point theorem in 2-dimension). Every continuous function
f : △ → △ has a fixed point x, that is, f(x) = x.

Proof. Define three auxiliary functions βi : △ → R for i ∈ {1, 2, 3} as follows:
For any a = (x, y) ∈ △, 

β1(a) = x,
β2(a) = y,
β3(a) = 1− x− y.

For any continuous f : △ → △, define Mi = {a ∈ △ : βi(a) ⩾ βi(f(a))} for i ∈ {1, 2, 3}. Then
we have the following facts.

(1) Any point a ∈ △ belongs to at least one Mi.

(2) If a ∈ M1 ∩M2 ∩M3, then a is a fixed point.

Consider a sequence of refinements {△1,△2, ...} of △ such that the maximum diameter of small
triangles in △n is going to 0 as n → +∞. For example, we can consider the refining triangulations
of the triangle △ as follows:

· · ·

△ △1 △2

We want to define a coloring ϕ : △ → {1, 2, 3} such that

(a) Any a ∈ △ with ϕ(a) = i belongs to Mi.

(b) The coloring ϕ satisfies the conditions of Sperner’s Lemma for any subdivision △n of △.
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Next we show such ϕ exists. This is because

• For the point Ai (say i = 1), we have that A1 = (1, 0) ∈ M1, so we can let ϕ(Ai) = i;

• Consider a vertex a = (x, y) ∈ A1A2, i.e., x+y = 1. Since β1(f(a))+β2(f(a)) ≤ 1 = x+y =
β1(a)+β2(a), so we must have at least one of β1(f(a)) ≤ β1(a) and β2(f(a)) ≤ β2(a) holds,
which means that a ∈ M1 ∪M2.

Applying Sperner’s Lemma to each △n and the coloring ϕ, we get that there exists a small

triangle A
(n)
1 A

(n)
2 A

(n)
3 in △n which has three different colors 1,2,3.

Consider the sequence {A(n)
1 }n≥1. Since everything is bounded, there is a subsequence {A(nk)

1 }k≥1

such that lim
k→+∞

A
(nk)
1 = p ∈ △ exists. Since the diameter of A

(n)
1 A

(n)
2 A

(n)
3 is going to be 0 as

n → +∞, we see that lim
k→+∞

A
(nk)
2 = lim

k→+∞
A

(nk)
3 = p. Since βi(A

(nk)
i ) ⩾ βi(f(A

(nk)
i )) for i ∈ [3]

and f is continuous, we get βi(p) = lim
k→+∞

βi(A
(nk)
i ) ≥ lim

k→+∞
βi(f(A

(nk)
i )) = βi(f(p)) for i ∈ [3].

This implies that p ∈ M1 ∩M2 ∩M3, so p is a fixed point of f , that is, f(p) = p.
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