Tonic varieties from fans
Fist we formally define a fan in $N_{\mathbb{R}}=N \otimes \mathbb{Z}$
Def $A\left(\right.$ rational polyhedral) cone $\sigma \subset N_{\mathbb{R}}$ is generated by a finite subset of N over $\mathbb{R}>0$, that is

$$
\sigma=\left\{\sum_{i} \lambda_{i} n_{i} \mid \lambda_{i}>0\right\} \text { for } n_{i} \in N
$$

Note $\{0\}$ is considered a cone.
Say σ strongly convex if $G \cap(-\sigma)=\{0\}$
Now for $m \in M$ have

- hyperplane $H_{m}=\{n \mid(m, n)=0\} \subset N_{\mathbb{R}}$
- halfspace $H_{m}^{+}=\{$same with $\geqslant 0\}$

Ex

$$
N \cong \mathbb{Z}^{2}
$$

$$
\begin{aligned}
& \cdot \\
& \cdot \\
& \cdot \\
& N_{\mathbb{R}} \cong \mathbb{R}^{2}
\end{aligned}
$$

p not strongly convex

Say H_{m} supports σ \& $\sigma \subset H_{m}^{+}$
In this case, say $H_{m} \cap \sigma$ is a face of σ

Def A fan \sum is a finite set of such cones such that

- for $\sigma \in \Sigma$, each face of $\sigma \in \Sigma$
- for $\sigma, p \in \sum, ~ \sigma \cap p$ is a face of σ, p

Ex Have a for as follows in $N_{\mathbb{R}} \cong \mathbb{R}^{2}$ with

2-dim cones 6
1-dim cones P
Odin cone τ

Ex Have fan in $N_{\mathbb{R}} \cong \mathbb{R}$ with 3 cones
Ex . . This is a cone if and only if the slope of l is rational
Affine toric varieties
Recall that an affine variety X is determined by its ring of functions. R

Ex $\quad X=\mathbb{C}^{2}$. Choosing coordinates x, y, have $R=\mathbb{C}[x, y]$
Wite $X=\operatorname{Spec}(R)$, spectrum of a ring.
$E x \quad X=\mathbb{T}^{2} / \mathbb{Z}_{2}$ where $\mathbb{Z}_{2}=\{ \pm 1\}$. Ring of functions spanned by $f=x^{2}, g=x y, h=y^{2}$, with

$$
R \cong \mathbb{C}[f, g, h] / f h-g^{2}
$$

Now cones naturally give rings, as follows. To glue the corresponding affine varieties (alter, we use

Def (Anal cone) $\sigma^{\nu}=\{m \mid\langle m, n\rangle \geqslant 0 \forall n \in \sigma\} \subset M_{R}$
This gives a mood $M_{\sigma^{v}}:=\sigma^{\vee} \cap M$
Note a monoid has an associative addition with an identity element, but does not have inverses

Def ring $\mathbb{C}[\sigma]$ has generators (as a vector space) z^{m} for $m \in M_{\sigma^{v}}$ and multiplication $z^{m_{1}} \cdot z^{m_{2}}=z^{m_{1}+m_{2}}$

Rem Another way to say this is we associate monomials to elements of dual lattice M, as below

here we write $z^{(i, j)}=x^{i} y^{j}$, and get $\mathbb{C}[\sigma]=\mathbb{C}[x, y]$
$E x$

here we get $\mathbb{C}\left[\sigma^{0}\right]=\mathbb{C}\left[x, y, x^{2} y^{-1}\right]=\mathbb{C}[a, b, c] / a^{2}-b c$
Note For this example Spec $\mathbb{C}\left[\sigma^{v}\right] \cong \mathbb{C}^{2} / \mathbb{Z}_{2}$
Def The affine tor ic varety for cone σ is

$$
u_{6}:=\operatorname{spec} \mathbb{C}\left[\sigma^{0}\right]
$$

General tonic varieties
We now explain how the fan naturally gives a recipe to gre the u_{6} together

Note that

- Spec (-) is a contraviant functor, that is a morphism $R \rightarrow S$ gives a morphism Spec $S \rightarrow$ Spec R
- The duality $(-)^{v}$ is also contravariant an inclusion $\tau \hookrightarrow \sigma$ gives an inclusion $\sigma^{\prime} \hookrightarrow \tau^{2}$.

Combining these, we have that U_{σ} depends covariantly on σ in the following sense

If σ has face $\tau c 0$, have open embedding $u_{\tau} \hookrightarrow U_{6}$

The embedding here comes for a localization $\mathbb{C}\left[\sigma^{v}\right] \hookrightarrow \mathbb{C}\left[\tau^{v}\right]$
For details, see $[R$, Section 2.2]. We give examples
Ex $N_{\mathbb{R}} \cong \mathbb{R} \quad \frac{G_{-} \cdot{ }^{6+}}{\tau} \quad \dot{x}^{-2} \cdot x^{-1} \cdot x \cdot x^{2}$
As before, $\mathbb{C}\left[\sigma_{+}^{v}\right]=\mathbb{C}[x], \mathbb{C}\left[\sigma_{-}^{v}\right]=\mathbb{C}\left[x^{-1}\right]$
For their mutual face $\tau=\{0\} \subset N_{\mathbb{R}}$

$$
\tau^{v}=M_{\mathbb{R}} \cong \mathbb{R}
$$

So $\mathbb{C}\left[\tau^{2}\right]=\mathbb{C}\left[x, x^{-1}\right]$, with obvious inclusion of $\mathbb{C}\left[\sigma_{ \pm}^{v}\right]$

Now Spec $\mathbb{C}[x] \cong \mathbb{C}, \operatorname{Spec} \mathbb{C}\left[x, x^{-1}\right] \cong \mathbb{C}^{*}$ so we have embeddings as follows

Now we may glue the u_{6} using these embeddings
Def The torn variety X_{Σ} for a fan Σ is a union of U_{G} for all $\sigma \in \sum$, where if σ_{1} and σ_{2} share a face τ we glue $U_{6_{1}}$ and $U_{6_{2}}$ along u_{τ}
Ex Continuing the previous example, we get

$$
X_{\Sigma}=\mathbb{C} \mathcal{E}_{\mathbb{N}} \mathbb{C}=\mathbb{P}^{\prime}
$$

Note By construction have $\mathbb{C}^{* 2} \cong M_{\tau} c X_{\Sigma}$ for $\tau=\{0\}$, which allows us to show X_{Σ} is tonic variety according to our first defuition (with $\mathbb{C}^{* \alpha}$-action)
$E x \sum \xrightarrow{ } \quad X_{\Sigma} \cong \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$
Ex Σ

Σ^{\prime}

$$
x_{\Sigma}=\mathbb{C}^{2} / \mathbb{Z}_{2}
$$

$$
x_{2^{\prime}}=\widetilde{\mathbb{T}^{2} / \mathbb{x}_{2}}
$$

minimal resolution

$$
\cong \text { total space of }
$$

$$
O(-2) \text { on } P^{\prime}
$$

Ex $\quad \sum_{1}$

$X_{\Sigma}=\mathbb{C}^{2}$
$X_{\Sigma^{\prime}}=B L_{p} \mathbb{C}^{2} \cong$ total space of $O(-1)$ on p^{\prime}

Stmeture of tor ic var ieties
Recall that a toric variety X caries an action of a torus $T \cong \mathbb{C}^{* d}$. When X comes from a fan Σ, there is a correspondence
$\{$ cones of of $\Sigma\} \longleftrightarrow\left\{\right.$ T-orbits in $\left.X_{\Sigma}\right\}$
For details, see $[R, S 5]$ In outline.
A cone σ gives an orbit $G_{6} \subset U_{6}$. For the other direction, we take the minimal o such that some orbit O satisfies $O \subset U_{6}$
It is inclusion-reversing on closures, that is

$$
\sigma \supset \tau \Leftrightarrow \bar{G}_{\sigma} \subset \bar{G}_{\tau}
$$

and codim $O_{6}=\operatorname{dim} \sigma$ We give some examples.
$E x$

$$
\begin{aligned}
& N_{\mathbb{R}} \cong \mathbb{R} \\
& X_{\Sigma}=u_{\sigma-} u_{\tau} u_{\sigma+}=\mathbb{C} \cup_{\mathbb{C}^{*}} \mathbb{C}=\mathbb{P}^{\prime} \\
& O_{\sigma_{ \pm}}=\{0\} \bar{c} \mathbb{C}=u_{\sigma \pm} \\
& O_{\tau}=\mathbb{C}^{*} \bar{c} \mathbb{C}^{*}=u_{\tau}
\end{aligned}
$$

$$
\begin{aligned}
& E x N_{\mathbb{R}} \cong \mathbb{R}^{2} \\
& x_{\Sigma}=\mathbb{P}^{2}=\left\{\left(x_{0}: x_{1}: x_{2}\right)\right\} \\
& O_{6 i}=\{(0,0)\} \bar{c} \mathbb{C}^{2} \subset \mathbb{P}^{2} \text { when } \\
& \sigma_{\tau}=\left\{x_{j} \neq 0 \forall j\right\}=\mathbb{C}^{* 2} \subset \mathbb{P}^{2}
\end{aligned}
$$

$$
G_{G i}=\{(0,0)\} \subset \mathbb{C}^{2} \subset \mathbb{P}^{2} \text { where } \mathbb{C}^{2} \text { is }\left\{x_{i} \neq 0\right\}
$$

For p_{i} contained in σ_{j} and $\sigma_{k}, \sigma_{p i} \supset \sigma_{\sigma_{j}}, \sigma_{\sigma_{k}}$ so $G_{p i}=\mathbb{C}^{*} \subset \mathbb{P}^{\prime}$, the line joining $G_{\sigma j}$ and $G_{G k}$

We thus have a schematic picture \rightarrow

The O_{6} and u_{6} are beautifully related as follows

$$
\overline{\sigma_{\sigma}}=\bigcup_{\substack{\sigma \text { is } \alpha \\ \text { face of } \tau}} \sigma_{\tau} \quad U_{\sigma}=\bigcup_{\substack{\text { Ghas } a \\ \text { face } \tau}} O_{\tau}
$$

Note for this, we consider σ to be a face of σ.
Divisors
In particular 1-dimensional cones $\sigma \subset \sum(1)$ correspond to T-invariant divisors $D_{6}=\sigma_{6} \subset X_{\Sigma}$ Here we write $\Sigma(d)=\{d$-dimensional cones $\} \subset \Sigma$

Note By the above $D_{G_{1}}$ and $D_{\sigma_{2}}$ intersect of the σ_{i} are faces of some $\tau \in \sum$

Fact the canonical bundle wo corresponds to the divisor $-\sum_{6} D_{\sigma} \quad($ see $[c k, s 35])$ In other words, the anticanonical dwisor $-K_{x}$ is given by $\sum_{\sigma} D_{6}$

Ex $X=\mathbb{P}^{2}, \quad-K_{x}=\sum_{i=1}^{3} D_{\rho_{i}}$, corresponding to $O_{\mathbb{p}^{2}}(3)$.

