Toric varieties from fans EX First we formally define a far in $N_{R} = N \bigotimes R$ Def A (rational polyhedral) cone 6 ENR is generated by a finite subset of Nover R30, that is $G = \{ \sum_{i} \lambda_{i} n_{i} \mid \lambda_{i} \neq 0 \} \text{ for } n_{i} \in \mathbb{N} \}$ Note {0} is considered a cone. Say a strongly convex if $G \cap (-G) = \{0\}$ Now for mEM have - hyperplane Hm = {n/(m,n) = 0} C NR - halfspace Htm= {same with >0}

 $\mathbb{N} \cong \mathbb{Z}^2$ • • • • • • • • • $N_{R} \cong R^{2}$

Say Hm supports 6 46CHm In this case, say Hmn6 is a face of 6 Def A fan Zis a finite set of such cones such that $-for \in \mathbb{Z}$, each face of $\in \mathbb{Z}$ - for G, pEZ, GAP is a face of G, p Ex Have a for as follows in $N_{\mathbb{R}} \cong \mathbb{R}^2$ with 2-dun contes 6 G. G. 1-dim cones p ρ_3 ρ_2 ρ_2 O-din cone T

G- G+ Have far in N_R ≅ R with 3 cones: EX This is a cone if and only if · · / l Ex the slope of l is rational Affine toric varieties Recall that an affine variety X is determined by its ring of functions. K. $E_X X = \mathbb{C}^2$ Choosing coordinates x, y, have $R = \mathbb{C}[x, y]$ Write X = Spec(R), spectrum of a ring. $E_X X = C^2/Z_2$ where $Z_2 = \{\pm 1\}$. Ring of functions spanned by $f = x^2$, g = xy, $h = y^2$, with $R \cong \mathbb{C}[f,g,h] / fh - a^2$

Now cones naturally give rings, as follows. To glue the corresponding affine varieties later, we use Def (dual cone) & = {m/(m,n) > 0 free3 c MR This gives a monoid MGV := 6 M Note a monoid has an associative addition with an identity element, but does not have inverses Def ring C[6] has generators (as a vector space) z for meMer and multiplication z^m, z^mz = z^{m+m}z Rem Another way to say this is we associate monomials to elements of dual lattice M, as below

Def The affine toric variety for cone 6 is $\mathcal{N}_{6} \coloneqq \operatorname{Spec} \mathbb{C}[6^{\gamma}]$ General toric varieties

We now explain how the fan naturally gives a recipe to glue the NG together.

Note that

- Spec(-) is a contraviant functor, that is a morphism $R \rightarrow S$ gives a morphism $Spec S \rightarrow Spec R$.
- The duality (-) is also contravariant: an inclusion $T \hookrightarrow G$ gives an inclusion $G' \hookrightarrow T'$.
- Combining these, we have that No depends covariantly on o

in the following sense

If 6 has face TGG, have open embedding NTGN6

The embedding here comes for a localization ([6]) ([T]) For details, see [R, Section 22] We give examples $\underbrace{E_X}_{R} = R \qquad \underbrace{\begin{array}{ccc} G_{-} & G_{+} \\ \hline T \end{array}} \qquad \underbrace{\begin{array}{ccc} x^2 & x^2 \\ \vdots & \vdots & \vdots \end{array}}_{T}$ As before, $\mathbb{C}[6_{+}] = \mathbb{C}[\infty], \mathbb{C}[6_{-}] = \mathbb{C}[\infty]$ For their mutual face T = 203 C NIR $\tau^{\vee} = M_{R} \cong R$ So $\mathbb{C}[\tau] = \mathbb{C}[x, x^{-1}]$, with obvious inclusion of C[6+] Now Spec $\mathbb{C}[x] \cong \mathbb{C}$, Spec $\mathbb{C}[x, x^{-1}] \cong \mathbb{C}^{*}$ so we have embeddings as follows: $\begin{array}{c} \mathcal{M}_{6} \cong \mathbb{C} \\ \mathcal{M}_{6} \cong \mathbb{C} \\ \mathcal{M}_{7} \cong \mathbb{C}^{*} \\ \mathcal{M}_{7} \cong \mathbb{C}^{*} \\ \mathcal{M}_{6+} \cong \mathbb{C} \\ \mathcal$

Now we may glue the Mausing these embeddings Def The toric variety Xz for a fan Z is a mion of MG for all GEZ, where if G, and G2 share a face I we glue UG, and UG2 along UT Ex Continuing the previous example, we get $X_{5} = \mathbb{C} \cup \mathbb{C} = \mathbb{P}^{1}$

Note By construction have $\mathbb{C}^{\star d} \cong \mathcal{M}_{\mathcal{T}} \hookrightarrow \mathcal{X}_{\Sigma}$ for $\tau = \{0\}$, which allows us to show \mathcal{X}_{Σ} is toric variety according to our first definition (with $\mathbb{C}^{\star d}$ -action)

Structure of toric varieties

Recall that a toric variety X carries an action of a torus $T \cong \mathbb{C}^{*d}$. When X comes from a fan Z, there is a correspondence

 $\{\text{cones } \circ \text{of } \Sigma \} \iff \{\text{T-orbits in } X_{\Sigma} \}$

For details, see $[R, \S5]$. In outline: A cone 6 gives an orbit $G_G \subset M_G$. For the other direction, we take the minimal 6 such that some orbit G satisfies $G \subset M_G$.

It is inclusion-reversing on dosures, that is $6 \ \exists t \Leftrightarrow \overline{b_6} \ c \ \overline{b_t}$

and codim (06 = dim 6 We give some examples.

 $E \times N_{R} \cong \mathbb{R}$ G- G+ $X_{\Sigma} = \mathcal{N}_{e^{-}}\mathcal{N}_{e^{+}} = \mathbb{C}\mathcal{N}_{e^{+}} = \mathbb{C}\mathcal{N}_{e^{+$ $\bigcirc_{6\pm} = \{0\} \subseteq \mathbb{C} = \mathcal{N}_{6\pm}$ $\bigcirc^{\perp} = \mathbb{C}_{\star} \subseteq \mathbb{C}_{\star} = \mathcal{N}^{\perp}$ G. G. $E \times N_{R} \cong \mathbb{R}^{2}$ ρ_3 ρ_2 ρ_2 $X_5 = \mathbb{P}^2 = \{x_0 : x_1 : x_2\}$ $O_{6i} = \{(0,0)\} \in \mathbb{C}^2 \subset \mathbb{P}^2 \text{ where } \mathbb{C}^2 \text{ is } \{x_i \neq 0\}$ $(O_{\tau} = \{x_i \neq 0 \forall i\} = \mathbb{C}^{*2} \subset \mathbb{P}^2$ For pi contained in B; and Ek, Gpi D (DE;, OEk, so $G_{pi} = \mathbb{C}^* \subset \mathbb{R}'$, the line joining G_{G_j} and G_{G_k} .

Note for this, we consider 6 to be a face of 6.

DWISONS

In particular 1-dimensional cones $6 \in \Sigma(1)$ correspond to T-invariant divisors $D_6 = \overline{G}_6 \subset X_{\Sigma}$. Here we write $\Sigma(d) = [d-dimensional cones] \subset \Sigma$

Note By the above DG, and DG, intersect if the Gi are faces of some TEZ.

Fact The cononical bundle ω_x corresponds to the divisor $-\sum_{6} D_6$ (see [CK, §3.5]) In other words, the anticanonical divisor $-K_x$ is given by $\sum_{6} D_6$

 $E_X X = \mathbb{P}^2$, $-K_X = \sum_{i=1}^3 D_{p_i}$, corresponding to $O_{\mathbb{P}^2}(3)$.