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Abstract. Since Tate proposed the famous Hodge-Tate decomposition conjecture in the 1960s, p-
adic Hodge theory has undergone profound and continuous development over the subsequent sixty
years, with new ideas and tools constantly emerging. Among these, the theory of perfectoid rings
is one of the most striking breakthroughs and has gradually become a foundational language for
understanding modern p-adic geometry.

These lecture notes start from a historical perspective to explain the role and status of perfectoids
in p-adic geometry, and uses this as a main thread to introduce the basic framework and core ideas
of p-adic Hodge theory. We will present the deep and beautiful techniques of p-adic geometry to
graduate students and advanced undergraduates in a friendly and detailed manner.

More specifically, we begin with how Tate used local class field theory to compute Galois coho-
mology in the discretely valued case, then introduce the notion of perfectoids and prove several key
results, including the tilting correspondence, cohomological descent in the arc topology, and the
almost purity theorem. Using these tools, we compute the cohomology of the fundamental group
of smooth algebraic varieties, which has been a central topic of p-adic Hodge theory over the past
sixty years. Finally, we discuss the extension of these methods to general (non-discrete) valuation
rings and look ahead to the future development of p-adic Hodge theory.
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1. A Glance at p-adic Hodge Theory

1.a. Hodge decomposition. One of the most fundamental theorem in complex geometry concerning
about the singular cohomology of complex manifolds is the following so-called Hodge decomposition.

Theorem 1.1. Let X be a projective smooth variety over C. Then, there is a canonical decomposition

Hn
sing(X,C) ∼=

⊕
i+j=n

Hj(X,Ωi
X/C).(1.1.1)

The standard proof used essentially techniques in analysis: the n-th de Rham cohomology classes
are represented uniquely by n-th harmonic forms ([Voi02, 5.23]), and the latter can be decomposed
into direct sums of (i, j)-type harmonic forms ([Voi02, 6.10]), the space of which is canonically iso-
morphic to Hj(X,Ωi

X/C) ([Voi02, 6.18]).
Let’s take a view from the p-adic geometry.

1.b. C and Cp. If we complete the field of rational numbers Q with respect to the archimedean norm,
we obtain the field of real number R; if we complete Q with respect to a non-archimedean norm, we
obtain the field of p-adic numbers Qp. Recall that R and Qp are the only two types of completions
that Q has by a theorem of Ostrowski.

Recall that the non-archimedean norm on Qp corresponds to the discrete valuation ring

Zp = lim
n→∞

Z/pnZ(1.1.2)

where the valuation map is

vp : Zp −→ N ∪ {∞},(1.1.3)
pnu 7−→ n, ∀n ∈ N and u ∈ Z×

p ,

0 7−→ ∞.

The discrete valuation field Qp is the fraction field of Zp given by inverting p: Qp = Zp[1/p]. We
refer to [Bou06a] for basic theory on valuation rings.

Taking an algebraic closure of R, we obtain the field of complex numbers C which has degree 2
over R; taking an algebraic closure of Qp, we obtain an infinite Galois extension Qp. Notice that Qp

is still a valuation field (but not discrete) with respect to the valuation ring Zp, where the latter is the
integral closure of Zp in Qp (see [Bou06a, VI, §8.6, Proposition 6] and [Sta26, 04GH]). The extended
valuation map is

vp : Zp −→ Q≥0 ∪ {∞},(1.1.4)
x 7−→ vp(NQp(x)/Qp

(x))/[Qp(x) : Qp].

But Qp is not complete with respect to its valuation (i.e., Zp is not p-adically complete, Zp 6= Ẑp =

limn→∞ Zp/p
nZp as 1+p1+1/p+p2+1/p2

+ · · · ∈ Ẑp is transcendental over Qp). We put Cp = Ẑp[1/p],
which is a complete algebraically closed valuation field by Krasner’s lemma.

Notice that C and Cp have the same cardinalities as that of R. Hence, they have the same
transcendental degree a over Q and thus they are both algebraic closures of the purely transcendental
extension Q(Ti|i ∈ a) of Q (see [Sta26, 030D, 09GV]). In conclusion, there is a field isomorphism

C ∼= Cp.(1.1.5)

https://stacks.math.columbia.edu/tag/04GH
https://stacks.math.columbia.edu/tag/030D
https://stacks.math.columbia.edu/tag/09GV
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Although these two fields are isomorphic, the way they are defined actually endows them totally dif-
ferent topology. It is clear that the Euclidean topology on C is connected, while the non-archimedean
topology on Cp is totally disconnected.

1.c. Hodge-Tate decomposition. The same thing happens to a projective smooth variety X over
Cp. When fixing a field isomorphism C ∼= Cp, we have an isomorphism of schemes XC ∼= X. However,
the Euclidean topology on XC as a manifold is totally different from the étale or Zariski topology on
X as a scheme.

But a surprising fact that these two different topology actually give the same cohomological in-
variants (which thus reflects the geometric nature of X) as long as we fix C ∼= Cp:

Hn
sing(XC,C) ∼= Hn

ét(X,Cp),(1.1.6)

where the latter is defined as Cp ⊗Zp
(limr→∞ Hn

ét(X,Z/prZ)). This is Artin’s comparison theorem,
see [SGA 4III, XI.4.4].

Therefore, the terms involved in the Hodge decomposition (1.1.1) actually come from algebraic
geometry and Theorem 1.1 implies that

Hn
ét(X,Cp) ∼=

⊕
i+j=n

Hj(X,Ωi
X/C).(1.1.7)

A priori, this isomorphism depends on the arbitrary choice of the field isomorphism C ∼= Cp. But
both sides are algebraic, we naturally ask

Question 1.2. Is there a purely algebraic proof or a canonical construction of (1.1.7)? If so, how is
the valuation ring structure Qp ⊇ Zp involved here?

This question is the central theme of p-adic Hodge theory. It started by Tate [Tat67], where he
explained what does the “canonical construction” should mean and solve the question for abelian
varieties over a finite extension K of Qp with good reductions. Although it looks like a very special
case, his strategy is generalized greatly by Faltings [Fal88] to solve the question for proper smooth va-
rieties over K. Thus, the canonical decomposition (1.1.7) is also called the Hodge-Tate decomposition.
While Tate’s proof specializes only to abelian varieties, Faltings invented a bunch of new techniques
to realize Tate’s strategy over general smooth varieties, including almost purity theorem and Ga-
lois cohomology computation. Nowadays, Faltings’ techniques have been developed and subsumed
within perfectoid theory after Scholze [Sch12, Sch13a], which we are going to explain to graduate and
undergraduate students in a friendly and detailed manner in this lecture series.

It would be too technical and difficult if we start directly with these deep techniques. Instead, we
begin with Tate’s groundbreaking work [Tat67] to trace the origins of these modern techniques.

Question 1.2 essentially requires a good understanding of the p-adic cohomology. The key making
p-adic cohomology distinguished is the valuation ring structure Qp ⊇ Zp and the ramification above
it. Before we try to understand ramification above X following Faltings, let’s simply understand
ramification above the single point Qp following Tate.

1.d. Ramification of Qp over Qp.

Example 1.3. Consider a compatible system of primitive pn-th roots of unity (ζpn)n∈N, i.e., ζppn+1 =

ζpn and ζp 6= ζ1 = 1. Using basics in algebraic number theory, we can prove that Qp(ζpn) is
a totally ramified extension of Qp with valuation ring Zp[ζpn ] (see [Ser79] or [He25a, 5.4]). This
explicit expression of valuation rings (or integral closures) enables us to compute every invariant
about the ramification behavior. For instance, ζpn − 1 is a uniformizer of Qp(ζpn) with valuation
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vp(ζpn − 1) = 1
pn−1(p−1) , and the valuation of the different ideal DQp(ζpn )/Qp

is n− 1
p−1 for n ≥ 1.

Qp Zp
oo uniformizer π vp(π) vp(DQp(ζpn )/Qp

)

Qp(ζp∞)

OO

Zp[ζp∞ ]oo

OO

(non-discrete)

...

OO

...

OO

...
...

...

Qp(ζp2)

OO

Zp[ζp2 ]oo

OO

ζp2 − 1 1
p(p−1) 2− 1

p−1

Qp(ζp)

OO

Zp

EE

Zp[ζp]oo

OO

ζp − 1 1
p−1 1− 1

p−1

Qp

OO

Z×
p

CC

Zp
oo

OO

p 1 0

(1.3.1)

But how to understand ramification above Qp(ζp∞)? Tate answers this question by the following
theorem.

Theorem 1.4 ([Tat67, §3]). Let K be a complete discrete valuation field extension of Qp, K∞ a
totally ramified Zp-extension of K. Let Kn be the subfield of K∞ corresponding to the closed subgroup
pnZp of Gal(K∞/K) = Zp for any n ∈ N.

(1) (Regular ramification) There is a constant c and a bounded sequence (an)n∈N of integers such
that for any n ∈ N, the valuation of the different ideal

vp(DKn/K) = n+ c+ p−nan.(1.4.1)

(2) (Almost unramification) For any finite field extension L of K, if we denote by Ln the composite
of L with Kn for any n ∈ N ∪ {∞}. Then,

vp(DLn/Kn
)→ 0 when n→∞.(1.4.2)

In other words, DL∞/K∞ ([He25a, 4.1.2]) is equal to mL∞ or OL∞ (we call L∞ is almost
unramified over K∞).

Remark 1.5. (1) Tate’s proof to these results essentially used higher ramification groups and local
class field theory.

(2) Tate used these results to compute the p-adic cohomology for Qp, i.e., Hn
ét(Spec(Qp),Cp), see

[Tat67, §3.3].
(3) Faltings adopted the same strategy to understand the ramification above a smooth variety

X. Roughly speaking, for a small smooth algebra R over Cp, he constructed a “regularly
ramified” tower R → R∞ such that there is no more ramification beyond R∞ in the almost
sense. In fact, this R∞ is “pre-perfectoid” and we will show the almost purity theorem for
perfectoid rings and Galois cohomology computation for this specific tower R→ R∞.

2. Definition of Perfectoids

2.a. Review of deformation theory. We refer to [Ill71] and [Ill72] for a systematic development
of deformation theory and suggest to read Grothendieck’s definitions of smoothness [EGA IV4, §17]
or Illusie’s expository notes [Ill96, §1,2] at first before jumping into the most general theory.

Recall that a thickening of affine schemes is a closed immersion Spec(R0) → Spec(R) such that
R0 = R/I with I2 = 0. For example, each closed immersion in Spec(Fp) → Spec(Z/p2Z) →
Spec(Z/p3Z)→ · · · is a thickening.
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Question 2.1. Given a flat R0-algebra A0, is there a flat R-algebra A with A0 = A⊗R R0?

Spec(A)

��

Spec(A0)oo

��
Spec(R)

⌞
Spec(R0)oo

(2.1.1)

Example 2.2. Consider the baby case A0 = R0[T ]. Then, there is an obvious lifting A = R[T ].

R[T ] // R0[T ]

R //

OO

R0

OO
(2.2.1)

In fact, any flat lifting of R0[T ] is isomorphic to R[T ]: let A′ be a flat R-algebra with A′/IA′ = R0[T ].
Then, we consider the R-algebra homomorphism R[T ] → A′ sending T to T ′ ∈ A′ a lifting of
T ∈ R0[T ]. It is an isomorphism by the exact sequence 0 → IA′ → A′ → A′/IA′ → 0 and the
identity IA′ = I ⊗R A′ = I ⊗R0

A′/IA′. Moreover, the automorphism group of the flat lifting R[T ]
is isomorphic to IA = I ⊗R0

A0, where each a ∈ IA corresponds to the automorphism sending T to
T + a.

In general, there is a standard simplicial resolution of A0 by free algebras over R0 ([Ill71, I.1.5.5.6],
see also [Sta26, 08N8])

· · · ////// P1 = R0[R0[A0]]
//// P0 = R0[A0] // A0.(2.2.2)

The cotangent complex of A0 over R0 is the associated complex of A0-modules ([Ill71, II.1.2.3], see
also [Sta26, 08PL])

LA0/R0
= (· · · → Ω1

P1/R0
⊗P1 A0 → Ω1

P0/R0
⊗P0 A0).(2.2.3)

Theorem 2.3 ([Ill71, III.2.1.2.3]). For the lifting problem 2.1, we have:
(1) There is an element ω ∈ Ext2A0

(LA0/R0
, A0 ⊗R0

I), which vanishes if and only if there exists
a flat lifting A.

(2) When ω = 0, the set of isomorphism classes of all the flat liftings A is a torsor under
Ext1A0

(LA0/R0
, A0 ⊗R0

I).
(3) The automorphism group of a flat lifting A is canonical isomorphic to Ext0A0

(LA0/R0
, A0⊗R0

I).

In particular, when A0 = R0[T ], we see that LA0/R0
= Ω1

A0/R0

∼= A0 is a free A0-module of rank
1. Thus, we can deduce 2.2 from 2.3.

Question 2.4. Given a morphism of flat R0-algebras f0 : A0 → A′
0 together with fixed flat R-algebras

A and A′ with A0 = A⊗RR0 and A′
0 = A′⊗RR0, is there a morphism f : A→ A′ with f0 = f⊗RR0?

Spec(A)

��

f

� �

Spec(A′
0)oo

f0

��
Spec(A)

��

⌞
Spec(A0)oo

��
Spec(R) Spec(R0)oo

(2.4.1)

Theorem 2.5 ([Ill71, III.2.2.2]). For the lifting problem 2.4, we have:
(1) There is an element ω ∈ Ext1A0

(LA0/R0
, A′

0 ⊗R0 I), which vanishes if and only if there exists
a lifting f .

(2) When ω = 0, the set of isomorphism classes of all the liftings f is a torsor under Ext0A0
(LA0/R0

, A′
0⊗R0

I).

2.b. Universal p-deformation: Witt rings. We fix a perfect Fp-algebra R in this subsection, i.e.,
the Frobenius map Frob : R→ R sending x to xp is an isomorphism.

Lemma 2.6 ([GR03, 6.5.13.(i)]). The cotangent complex LR/Fp
= 0 in the derived category of R-

modules.

https://stacks.math.columbia.edu/tag/08N8
https://stacks.math.columbia.edu/tag/08PL
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Proof. The Frobenius induces an endomorphism of the standard resolution
· · · // P1

Frob

��

// P0

Frob

��

// R //

Frob

��

0

· · · // P1
// P0

// R // 0.

(2.6.1)

Since Frob : R
∼−→ R is an isomorphism, by the functoriality of cotangent complexes ([Ill71,

II.1.2.3.2]), we see that Frob : LR/Fp
→ LR/Fp

is an isomorphism of complexes (this morphism
does not coincides with (2.6.2) in the level of complexes). On the other hand, it coincides with the
following morphism in the derived category of R-modules ([Ill71, II.1.2.6.2])

· · · // Ω1
P1/Fp

⊗P1
R

Frob

��

// Ω1
P0/Fp

⊗P1
R

Frob

��
· · · // Ω1

P1/Fp
⊗P1

R // Ω1
P0/Fp

⊗P1
R.

(2.6.2)

Since Frob(dx) = dxp = pxp−1dx = 0 for any dx ∈ Ω1
Pn/Fp

and n ∈ N. We see that the isomorphism
Frob : LR/Fp

→ LR/Fp
is the zero map in the derived category of R-module and thus LR/Fp

= 0. □

Proposition 2.7. There exists a p-adically complete and flat Zp-algebra W with W/pW = R.
Moreover, it is unique up to a unique isomorphism.

Proof. By deformation theory (2.3 and 2.6), there is a unique flat Z/p2Z-algebra R2 with R2/pR2 = R.
Consider the derived tensor product of LR2/(Z/p2Z) with the exact sequence of R2-modules 0→ pR2 →
R2 → R → 0, we obtain a distinguished triangle (where we used the fact that R ⊗L

R2
LR2/(Z/p2Z) =

LR/Fp
by [Ill71, II.2.2.1])

pR2 ⊗L
R LR/Fp

−→ LR2/(Z/p2Z) −→ LR/Fp
−→(2.7.1)

which implies that LR2/(Z/p2Z) = 0 by 2.6. Repeating this argument, we obtain unique (up to a
unique isomorphism) flat liftings

· · · // // R3
// // R2

// // R1 = R

· · · // // Z/p3Z // //

OO

Z/p2Z // //

OO

Z/pZ = Fp

OO(2.7.2)

with LRn/(Z/pnZ) = 0 in the derived category.
Then, we take W = limn→∞ Rn. As Rn+1/p

nRn+1 = Rn by construction, we have W/pnW = Rn

for any n ≥ 1 ([Sta26, 09B8]) and thus W is p-adically complete.
Consider the injection Z/pn−1Z ·p−→ Z/pnZ. Tensoring with the flat Z/pnZ-module Rn, we obtain

an injection Rn−1
·p−→ Rn. Taking inverse limit over n ∈ N, we get an injection W

·p−→ W , in other
words, W is p-torsion free (hence flat over Zp).

The uniqueness of W follows from that of the diagram (2.7.2). □
Definition 2.8. We denote by W (R) the unique p-adically complete flat Zp-algebra with W (R)/pW (R) =
R. We call it the Witt ring of the perfect Fp-algebra R.

Remark 2.9. By deformation theory (2.5 and 2.6), any morphism of perfect Fp-algebras R → R′

lifts uniquely to a ring homomorphism W (R) → W (R′). In other words, there is an equivalence of
categories

{p-complete flat Zp-algebras A with A/pA perfect} ∼= {perfect Fp-algebras R}(2.9.1)
A 7→ A/pA

W (R)←[ R.

Lemma 2.10. There is a unique multiplicative section [ ] : R → W (R) of the canonical surjection
W (R)→ R.

Proof. For any x ∈ R and n ∈ N, we take a lifting yn ∈W (R) of x1/pn ∈ R. Since (yn + pz)p
n ≡ yp

n

n

mod pnW (R) for any z ∈W (R), we see that the image of ypn

n in W (R)/pnW (R) is a lifting of x ∈ R
independent of the choice of yn. We take

[x] = lim
n→∞

yp
n

n = (. . . , yp
2

2 , yp1 , y0) ∈W (R) = lim
n→∞

W (R)/pnW (R).(2.10.1)

https://stacks.math.columbia.edu/tag/09B8
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It is clear that [ ] : R → W (R) is a well-defined multiplicative section of W (R) → R. This verifies
the existence.

For the uniqueness, let [ ]′ : R→W (R) be another multiplicative section. For any x ∈ R, we have
[x]′ = [x] + py for some y ∈ W (R). Taking pn-th power, we get [xpn

]′ ≡ [xpn

] mod pnW (R). Since
R is perfect, any element of R is of the form xpn for some x ∈ R. Thus, [x]′ ≡ [x] mod pnW (R) for
any x ∈ R and n ∈ N. Taking inverse limit over n ∈ N, we get [x]′ = [x] in W (R). □

Proposition 2.11 (Teichmüler expansion). For any x ∈W (R), there is a unique sequence x0, x1, x2, . . .
in R such that

x = [x0] + p[x1] + p2[x2] + · · · .(2.11.1)

In particular, x ∈W (R)× if and only if x0 ∈ R×.

Proof. For any x ∈W (R), let x0 be its image in R. Then, x = [x0] + px′ for a unique x′ ∈W (R) by
the flatness of W (R) over Zp. Inductively repeating the construction, we obtain the existence and
uniqueness of the sequence x0, x1, x2, . . . .

If x ∈ W (R)×, then its image x0 ∈ R is also a unit. The converse is also true since W (R) is
p-adically complete. □

Remark 2.12. (1) (Frobenius) By 2.9, there is a unique ring isomorphism F : W (R) → W (R)
lifting the Frobenius on R. In particular, for any x = [x0] + p[x1] + p2[x2] + · · · ∈ W (R), we
have F (x) = [xp

0] + p[xp
1] + p2[xp

2] + · · · .
(2) (Verschiebung) There is a canonical additive map V = pF−1 : W (R) → W (R) sending

x = [x0] + p[x1] + p2[x2] + · · · ∈W (R) to V (x) = p[x
1/p
0 ] + p2[x

1/p
1 ] + p3[x

1/p
2 ] + · · · ∈W (R).

(3) (Witt vectors) There is a canonical bijection

W (R)
∼−→

∞∏
n=0

R(2.12.1)

∞∑
n=0

pn[xn] 7−→ (ap
n

n )n∈N.

The latter is the usual presentation of the elements in Witt rings, see [Bou06b, IX.§1] or
[Ser79, II.§6].

(4) (Addition and multiplication formulas in Teichmüler expansions) For any x, y ∈ W (R), we
put x = [x0]+p[x1]+p2[x2]+· · · and y = [y0]+p[y1]+p2[y2]+· · · . We hope to write explicitly
the Teichmüler expansions of x+ y and xy in terms of x0, x1, . . . , y0, y1, . . . . Unwinding the
construction 2.10 of Teichmüler liftings, we can compute out by hand that

(x+ y)0 = x0 + y0,(2.12.2)

(x+ y)1 = x1 + y1 +
(x

1/p
0 )p + (y

1/p
0 )p − (x

1/p
0 + y

1/p
0 )p

p
= x1 + y1 −

p−1∑
i=1

1

p

(
p

i

)
x

i
p

0 y
p−i
p

0 ,(2.12.3)

(xy)0 = x0y0,(2.12.4)
(xy)1 = x0y1 + x1y0,(2.12.5)

(xy)2 = x0y2 + x2y0 + x1y1 −
p−1∑
i=1

1

p

(
p

i

)
(x1y0)

i
p (x0y1)

p−i
p .(2.12.6)

In general, after passing to the form of Witt vectors in (3), then the explicit addition and
multiplication formulas are inductively computed out in [Bou06b, IX.§1.3, (12) and (13)] or
[Ser79, II.§6, Theorem 6], which can be translated back into the following theorem.

Theorem 2.13 ([Bou06b, IX.§1.3, (a) and (b)]). For any x, y ∈ W (R), we put x = [x0] + p[x1] +
p2[x2] + · · · and y = [y0] + p[y1] + p2[y2] + · · · .

(1) There is a homogeneous polynomial Sn ∈ Z[X1/pn

0 , X
1/pn−1

1 , . . . , Xn, Y
1/pn

0 , Y
1/pn−1

1 , . . . , Yn]
of degree 1 for any n ∈ N such that for any x, y ∈W (R),

x+ y = [S0(x, y)] + p[S1(x, y)] + p2[S2(x, y)] + · · · ∈W (R),(2.13.1)

where Sn(x, y) ∈ R is the value of the polynomial Sn at Xi = xi and Yi = yi for any 0 ≤ i ≤ n.
(2) There is a homogeneous polynomial Pn ∈ Z[X1/pn

0 , X
1/pn−1

1 , . . . , Xn, Y
1/pn

0 , Y
1/pn−1

1 , . . . , Yn]

of degree 2 that is homogeneous of degree 1 with respect to the variables (X1/pn

0 , X
1/pn−1

1 , . . . , Xn)
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and also homogeneous of degree 1 with respect to the variables (Y
1/pn

0 , Y
1/pn−1

1 , . . . , Yn) for
any n ∈ N such that for any x, y ∈W (R),

xy = [P0(x, y)] + p[P1(x, y)] + p2[P2(x, y)] + · · · ∈W (R),(2.13.2)
where Pn(x, y) ∈ R is the value of the polynomial Pn at Xi = xi and Yi = yi for any 0 ≤ i ≤ n.

2.c. Universal ξ-deformation: perfect prisms. Since W (R) is the “universal p-deformation” of
a perfect Fp-algebra R, in order to define the “mixed-characteristic analogue of perfect algebras”, we
would like to realize W (R) as a “universal ξ-deformation”. We firstly need to define what ξ is.
Definition 2.14. A perfect prism is a pair (A, I) consisting of a ring A and an ideal I of A such that

(1) A is a p-complete flat Zp-algebra with R = A/pA perfect (i.e., A = W (R)).
(2) I = (ξ) for some ξ = [ξ0]+p[ξ1]+p2[ξ2]+ · · · ∈W (R) such that R is ξ0-complete and ξ1 ∈ R×

(we call such an element of W (R) distinguished).
Remark 2.15. Since we want to realize A = W (R) as a “universal ξ-deformation”, it is natural to
require that it is ξ-complete and ξ-torsion free. We will see that they are guaranteed by the second
condition 2.14.(2) in the following lemmas.
Lemma 2.16. Let R be a perfect Fp-algebra, d ∈ R. Then, any element of R that is killed by a power
of d is also killed by a p-power root of d, i.e., R[d∞] = R[d1/p

∞
]. In particular, R is d-torsion-bounded.

Proof. If dx = 0, then (dx)1/p
n

= 0 by perfectness, i.e., d1/pn

x1/pn

= 0. Hence, d1/pn

x = d1/p
n

x1/pn ·
x1−1/pn

= 0. □
Lemma 2.17 (completeness). Any perfect prism (A, (ξ)) is (p, ξ)-complete.
Proof. Firstly, we take induction on n ≥ 1 to see that W (R)/pn is ξ-complete (where R = A/pA).
By Zp-flatness of W (R), there is an exact sequence 0 → W (R)/pn−1 ·p−→ W (R)/pn → W (R)/p =
R → 0. Since R is ξ-torsion bounded by 2.16, taking ξ-completion still produces an exact sequence
0 → (W (R)/pn−1)∧ → (W (R)/pn)∧ → R̂ = R → 0 ([He25a, 8.8]), where R is ξ-complete by
definition 2.14.(2). By induction, we see that (W (R)/pn)∧ = W (R)/pn.

Then, as W (R) is p-adically complete by definition, we have W (R) = limn→∞ W (R)/pn =
limn→∞ limm→∞ W (R)/(pn, ξm) = limr→∞ W (R)/(pr, ξr) = limr→∞ W (R)/(p, ξ)r, where the last
equality follows from (p2r, ξ2r) ⊆ (p, ξ)2r ⊆ (pr, ξr). In other words, W (R) is (p, ξ)-complete. □
Lemma 2.18. Let A be a p-complete Zp-flat algebra with A/pA perfect, ξ a distinguished element of
A, x ∈ A. Then, ξ · x is distinguished if and only if x ∈ A×.
Proof. We write A = W (R) and ξ = [ξ0] + pξ′, x = [x0] + px′ ∈W (R).

If x ∈ W (R)×, i.e., x0 ∈ R× by 2.11. Then, ξ · x = [ξ0x0] + p(ξ′[x0] + [ξ0]x
′ + pξ′x′). On the one

hand, R is ξ0x0-complete as it is ξ0-complete. On the other hand, since ξ′[x0] + [ξ0]x
′ + pξ′x′ ≡ ξ′x0

mod (p, ξ) is a unit, it is also a unit in W (R) by (p, ξ)-completeness (2.17). Therefore, ξ · x is
distinguished.

Conversely, if ξ · x is distinguished, then ξ′[x0] + [ξ0]x
′ + pξ′x′ is a unit in W (R). Modulo (p, ξ),

we see from the previous discussion that ξ′x0 is a unit in R/ξ0R. This implies that x0 ∈ R× (as R is
ξ0-complete) and thus x ∈W (R)×. □
Lemma 2.19 (nonzero divisor). Let (A, I) be a perfect prism. Then, any generator ξ of I is a
distinguished nonzero divisor of A.
Proof. By definition, there exists a distinguished generator ξ = [ξ0] + pξ′ of I, i.e., ξ′ ∈ W (R)× by
2.11. Then, any generator of I is still distinguished by 2.18.

To see any generator of I is a nonzero divisor, consider x = [x0] + p[x1] + p2[x2] + · · · ∈W (R) and
suppose that ξ · x = 0. Then, we have ([ξ0] + pξ′)x = 0. For any positive odd number n, we have
([ξ0]

n + pnξ′n)x = 0 and thus pnx ∈ [ξn0 ]W (R). By the uniqueness of the Teichmüler expansion, we
see that each xi ∈ ξn0R for any odd number n. But since R is ξ0-complete, we must have xi = 0, i.e.,
x = 0. □

Now we start to technically realize A as a “universal ξ-deformation” of A/ξA.
Lemma 2.20. Let R be a ring, I an ideal of R such that R/I is of characteristic p and that R is
I-adically complete. Then, the canonical map

lim←−
Frob

R −→ lim←−
Frob

R/IR(2.20.1)

is a bijection, where lim←−Frob
R := lim(· · · Frob−→ R

Frob−→ R) as a multiplicative monoid.
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Proof. For (· · · , x2, x1, x0) ∈ lim←−Frob
R/IR, we take liftings · · · , y2, y1, y0 of these coordinates in R.

Notice that for any n,m ∈ N and z ∈ I, (yn+m + z)p
n ≡ yp

n

n+m mod In+1R as p ∈ I. Thus,
yp

n

n+m ∈ R/In+1R does not depend on the choice of yn+m. Then, we see that limn→∞ yp
n

n+m is a
well-defined element in R = limn→∞ R/In+1R. We put

y = (· · · , lim
n→∞

yp
n

n+2, lim
n→∞

yp
n

n+1, lim
n→∞

yp
n

n ) ∈ lim←−
Frob

R.(2.20.2)

It is clearly that y is well-defined and the assignment x 7→ y gives an inverse to the canonical map
(2.20.1). □
Proposition 2.21. The following functor from the category of of perfect prisms to the category of
rings

{perfect prisms} −→ {rings}(2.21.1)
(A, I) 7−→ A/I,

is fully faithful.
Proof. Let S be a ring lying in the essential image of (2.21.1). We take a perfect prism (A, I) with
A/I ∼= S. Then, we have

A = W (R) // //

����

A/p = R

����
S ∼= A/I // // S/p ∼= R/ξ0.

(2.21.2)

Since R is a ξ0-complete perfect Fp-algebra, we deduce from 2.20 that
R

∼←− lim←−
Frob

R
∼−→ lim←−

Frob

R/ξ0R ∼= S[ := lim←−
Frob

S/pS,(2.21.3)

where the first isomorphism is the projection onto the first component. In particular, the canonical
map S[ → S/pS is surjective. By deformation theory (2.5 and 2.6), the canonical surjection S[ →
S/pS lifts uniquely to a morphism θ : W (S[) → S (which remains surjective by déviassage). By
deformation theory again, we see that the isomorphism A/I ∼= S lifts uniquely to an isomorphism
A ∼= W (S[). All in all, the functor from the essential image of (2.21.1) to the category of perfect
prisms sending S to (W (S[), ker(θ)) is well-defined and forms a quasi-inverse to (2.21.1). □
Definition 2.22. A perfectoid ring is a ring S such that S ∼= A/I for some perfect prism (A, I).

Our presentation of perfectoids is different from the original reference [BMS18] but follows closely
Bhatt’s latest lecture notes [Bha25] in the spirits of prismatic cohomology. We suggest the readers
to read [Sch12, §3-5], which is the very beginning resource of perfectoids (in the almost sense), then
move to the original reference for perfectoid rings [BMS18, §3] and some complements [CS24, §2],
and finally to change the perspective to prisms via [BS22, §2-3] together with some helpful lecture
notes [Bha18b, §2-4] and [Bha25, §3].
Remark 2.23. Note that possibly many perfectoid rings S could have the same perfect Fp-algebra
S[, since the choice of an distinguished principal ideal (ξ) on W (S[) could be many (even if we fix
ξ0 ∈ R = S[, it seems that different choices of ξ1 ∈ R× could lead to different ideals I = (ξ) ⊆W (R)).
But I don’t have an explicit example in hand.

However, this issue does not exists when we work over a fixed perfect prism, see the tilting corre-
spondence in the following.
2.d. Tilting correspondence of perfectoids. Our definition for perfectoids immediately implies
the tilting correspondence as long as we have the following rigidity lemma:
Lemma 2.24 (rigidity). Let (A, I)→ (B, J) be a morphism of perfect prisms. Then, J = IB.
Proof. We only need to show that for generator ξ of J , if ξ · x is distinguished then x ∈ B×. This is
proved in 2.18. □
Theorem 2.25. Given a perfect prism (A, I), we put

A = W (R) // //

����

A/p = R

����
S = A/ξ // // S/p = R/ξ0.

(2.25.1)



10 TONGMU HE

Then, the base change induces equivalences of categories

{perfect (A, I)-prisms (A′, IA′)} ∼
β

//

≀α

��

{ξ0-complete perfect R-algebras R′}

≀γ

��
{perfectoid S-algebras S′} ∼

δ
//
{

relatively perfect (S/p) = (R/ξ0)-algebras T with T = T [/ξ[0T
[
}

(2.25.2)

where ξ[0 = (· · · , ξ1/p
2

0 , ξ
1/p
0 , ξ0) ∈ (R/ξ0R)[ and an (R/ξ0)-algebra T is called relatively perfect if the

relative Frobenius T ⊗R/ξ0,Frob R/ξ0 → T is an isomorphism, i.e., T/ξ1/p0
∼−→ T .

Proof. By the rigidity lemma 2.24, the category of perfect (A, I)-prisms (A′, IA′) is the category of
perfect prisms (B, J) with a morphism (A, I) → (B, J). Hence, it is equivalent to the category of
perfectoid rings S′ with a morphism S = A/I → S′ by 2.21, i.e., α is an equivalence.

Unwinding the definition 2.14, the category of perfect (A, I)-prisms (A′, IA′) is the category of
p-complete Zp-algebras A′ with A′/pA′ perfect ξ0-complete and a morphism A → A′. Hence, it is
equivalent to the category of ξ0-complete perfect Fp-algebras R′ with a morphism R = A/pA → R′

by 2.9, i.e., β is an equivalence.
Recall that R

∼←− R[ ∼−→ (R/ξ0R)[ identifying ξ0 with ξ[0 by 2.20 and that the Frobenius induces
an isomorphism R/ξ

1/p
0

∼−→ R/ξ0. The same holds true for any ξ0-complete perfect R-algebra R′.
In particular, γ is a well-defined functor. To see that it is an equivalence, we only need to show
that for any relatively perfect (R/ξ0)-algebra T with T = T [/ξ[0T

[, T [ is a ξ0-complete perfect R-
algebra. As R = (R/ξ0)

[, we see T [ is naturally a perfect R-algebra. Moreover, T [ = lim(· · · Frob−→
T [/ξ0T

[ Frob−→ T [/ξ0T
[ Frob−→ T [/ξ0T

[) = lim(· · · → T [/ξp
2

0 T [ → T [/ξp0T
[ → T [/ξ0T

[), where we
applied the identification Frobn : T [/ξ0T

[ ∼−→ T [/ξp
n

0 T [. This shows that T [ is ξ0-complete. Hence,
γ is an equivalence.

The proof of 2.21 shows that δ is a well-defined functor making the diagram (2.25.2) commutative.
Hence, δ is an equivalence. □

Remark 2.26. We couldn’t simply apply deformation theory in the setting of 2.25 because the a
relatively perfect (S/p) = (R/ξ0)-algebra T may not be flat. To resolve this issue, one may consider
instead relatively perfect animated (S/p) = (R/ξ0)-algebra T , i.e., animated algebra T such that the
relative Frobenius T ⊗L

R/ξ0,Frob
R/ξ0 → T is an isomorphism, and then apply deformation theory for

animated algebras, see [Bha25, 3.2.6]. In another way, one can impose flatness assumptions in order
to use the classical deformation theory as follows.

Theorem 2.27. Given a perfect prism (A, I), we put

A = W (R) // //

����

A/p = R

����
S = A/ξ // // S/p = R/ξ0.

(2.27.1)

Then, the base change induces equivalences of categories

{(p, ξ)-completely flat perfect (A, I)-prisms (A′, IA′)} ∼
β

//

≀α

��

{ξ0-completely flat ξ0-complete perfect R-algebras R′}

≀γ

��
{p-completely flat perfectoid S-algebras S′} ∼

δ
// {flat relatively perfect (S/p) = (R/ξ0)-algebras T}

(2.27.2)

where “I-completely flat” means “flat after modulo In for any n ∈ N” here.

Proof. Let T be a flat relatively perfect (S/p) = (R/ξ0)-algebra. By deformation over R→ R/ξ0 and
LT/(R/ξ0) = 0 ([GR03, 6.5.13.(i)]), there exists a unique ξ0-completely flat ξ0-complete R-algebra R′

with R′/ξ0R
′ = T (see the proof of 2.7 and 2.9). To see that γ is an equivalence, it remains to check

that R′ is perfect. As T is relatively perfect, we have R′/ξ0R
′ ⊗R/ξ0R,Frobpn R/ξ0R = R′/ξ0R

′ for
any n ∈ N. Since Frobp

n

: R/ξ0R→ R/ξ0R factors as R/ξ0R
∼−→ R/ξp

n

0 R→ R/ξ0R, the uniqueness
of the liftings implies that the Frobenius induces isomorphism Frobp

n

: R′/ξ0R
′ ∼−→ R′/ξp

n

0 R′. Thus,
R′ = limn→∞ R′/ξp

n

0 R′ = lim←−Frob
R′/ξ0R

′ = R′[ is perfect.
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Similarly, by deformation over S → S/p and LT/(S/p) = 0, there exists a unique p-completely flat
p-complete S-algebra S′ with S′/pS′ = T . To see that δ is an equivalence, it remains to check that
S′ is perfectoid. It suffices to check that S′ lies in the essential image of α. As the diagram (2.27.2)
commutes, we only need to prove that β is an equivalence.

We claim that a perfect (A, I)-prism (A′, IA′) is (p, ξ)-completely flat if and only if A′/(p, ξ)A′ is
flat over A/(p, ξ)A. Since A′ is p-torsion-free, we have A′⊗L

AA/pA = A′/pA′. Thus, A′⊗L
AA/(p, ξ) =

A′/pA′ ⊗L
A/pA A/(p, ξ) = R′ ⊗L

R R/ξ0, where R′ = A′/pA′ is a perfect Fp-algebra. In particular,
TorA1 (A

′, A/(p, ξ)) = TorR1 (R
′, R/ξ0) = 0 by 2.28. Then, the claim follows directly from [Sta26,

051C].
The claim implies that the category of (p, ξ)-completely flat perfect (A, I)-prisms (A′, IA′) is

equivalent to the category of p-complete Zp-algebras A′ with A′/pA′ perfect ξ0-complete ξ0-completely
flat and a morphism A→ A′. Hence, it is equivalent to the category of ξ0-completely flat ξ0-complete
perfect Fp-algebras R′ with a morphism R = A/pA→ R′ by 2.9, i.e., β is an equivalence. □

Lemma 2.28. Let R → R′ be a morphism of perfect Fp-algebras, d ∈ R. Consider the following
conditions:

(1) R/dR→ R′/dR′ is flat.
(2) R/dnR→ R′/dnR′ is flat for any n ∈ N.
(3) R[d]⊗R R′ → R′[d] is an isomorphism.
(4) R[d]⊗R R′ → R′[d] is surjective.
(5) TorR1 (R

′, R/d) = 0.
(6) R/dR⊗L

R R′ → R′/dR′ is an isomorphism.
Then, we have (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6).

Proof. (1) ⇒ (2): As R and R′ are perfect, the Frobenius induces isomorphism between R/dR →
R′/dR′ with R/dp

n

R→ R′/dp
n

R′. Thus, the latter is also flat.
(2) ⇒ (3): Note that R[d] ∩ dR = 0 by 2.16. Thus, the sequence of R/d2R-modules 0 → R[d] →

R/dR
·d−→ R/d2R is exact. Tensoring with R′/d2R′, the flatness implies that R′[d] = R[d]⊗R R′.

(3) ⇒ (4): This is clear.
(4) ⇒ (5): Consider the exact sequence 0 → R[d] → R

·d−→ R → R/dR → 0. Then, R/dR ⊗L
R R′

is represented by the total complex of R[d] ⊗L
R R′ → R′ ·d−→ R′. In particular, TorR1 (R

′, R/d) =
H1(R/dR⊗L

R R′) = Coker(R[d]⊗R R′ → R′[d]) = 0.
(5) ⇒ (6): As R is perfect, R[d] = R[d1/p

∞
] by 2.16 so that R/R[d] is a perfect Fp-algebra.

Recall that R/R[d] ⊗L
R R′ = R/R[d] ⊗R R′ by [BS17, 11.6]. We deduce from the exact sequence

0 → R[d] → R → R/R[d] → 0 that R[d] ⊗L
R R′ = R[d] ⊗R R′. In particular, R/dR ⊗L

R R′ is
concentrated in degree [−1, 0] by previous discussion. Thus, condition (5) implies that R/dR⊗L

RR′ =
R/dR⊗R R′ = R′/dR′. □

2.e. Properties of perfectoids. We fix a perfectoid ring S in this section. Recall that it is associated
with a commutative diagram

A = W (R) // //

����

A/p = R

����
S = A/ξ // // S/p = R/ξ0.

(2.28.1)

where R = S[ by 2.21 and its proof. We put

(−)] : S[ [ ]−→W (S[)
θ−→ S.(2.28.2)

Definition 2.29. A strict pseudo-uniformizer of a perfectoid ring S is an element ϖ of S equipped
with a compatible system of p-power roots (ϖ1/pn

)n∈N such that there exists a distinguished generator
ξ of Ker(θ : W (S[)→ S) with ϖ1/pn

= θ([ξ
1/pn

0 ]) = (ξ
1/pn

0 )], where ξ0 is the image of ξ in S[.

Remark 2.30. If we write ξ0 = (· · · , x2, x1, x0) ∈ S[ = lim←−Frob
S/pS, then ξ

1/pn

0 = (· · · , xn+2, xn+1, xn) ∈
S[ so that ϖ1/pn

= θ([ξ
1/pn

0 ]) ≡ xn mod pS. In other words, ξ0 = (· · · , ϖ1/p2

, ϖ1/p, ϖ) ∈ S[ is de-
termined by the data of a strict pseudo-uniformizer ϖ. We denote it simply by ϖ[ ∈ S[.

Lemma 2.31. Any strict pseudo-uniformizer ϖ ∈ pS×.

Proof. We write ξ = [ξ0] + pξ′ ∈ W (R) with ξ′ ∈ W (R)×. Modulo ξ, we see that ϖ = −pξ′ in S so
that ϖ ∈ pS×. □

https://stacks.math.columbia.edu/tag/051C
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Lemma 2.32 (Frobenius isomorphism). The Frobenius induces an isomorphism S/ϖ1/pS
∼−→ S/ϖS.

Proof. Since R is perfect, the Frobenius on R/ξ0R is surjective with kernel generated by ξ
1/p
0 . Since

R/ξ0 = S/p identifying ξ
1/p
0 with ϖ1/p via the commutative diagram (2.28.1), the conclusion follows

immediately. □

Lemma 2.33 (almost torsion-free). S[ϖ∞] = S[ϖ1/p∞
] = R[ξ

1/p∞

0 ] = R[ξ∞0 ]. In particular, S is
p-torsion bounded.

Proof. Since p, ξ are both nonzero divisors on A by 2.19, there are canonical isomorphisms

(A/ξ)[p]
∼←− {(x, y) ∈ A2 | ξx = py}

{(pz, ξz) | z ∈ A}
∼−→ (A/p)[ξ](2.33.1)

y ←− [ (x, y) 7−→ x.

Thus, we have S[ϖ] = R[ξ0] as (S/p) = (R/ξ0)-modules. Then, for any n ≥ 1, we have S[ϖ1/pn

] =

(S[ϖ])[ϖ1/pn

] = (R[ξ0])[ξ
1/pn

0 ] = R[ξ
1/pn

0 ].
Since R is perfect, we have R[ξ

1/p∞

0 ] = R[ξ0] by 2.16. The above discussion implies that S[ϖ1/p∞
] =

S[ϖ]. This implies furthermore that S[ϖ1/p∞
] = S[ϖ∞]. □

Lemma 2.34 (completeness). S is p-complete.

Proof. As ξ is a nonzero divisor on A (2.19), there is an exact sequence 0 → A
·ξ−→ A → S → 0.

Since S is p-torsion bounded by 2.33, taking p-completion still produces an exact sequence 0→ A→
A→ Ŝ → 0 ([He25a, 8.8]), where Â = A by 2.17. Hence, we get Ŝ = S, i.e., S is p-complete. □

Proposition 2.35 (perfectoidness criterion). A p-torsion-free ring S is perfectoid if and only if the
following conditions hold:

(1) S is p-complete.
(2) There exists π ∈ S such that πp ∈ pS×.
(3) The Frobenius induces an isomorphism S/πS

∼−→ S/pS.

Proof. These conditions are necessary by 2.34, 2.31 and 2.32. To see they are also sufficient, consider
S[ = lim←−Frob

S/pS. The surjectivity part of condition (3) implies that the canonical projection S[ →
S/pS, (· · · , x2, x1, x0) 7→ x0 is surjective. Hence, we can take ξ0 = (· · · , π2, π1 = π, π0 = πp) ∈ S[.
Since S is p-torsion-free, the injectivity part of condition (3) implies that the kernel of S[ → S/pS is
generated by ξ0. By deformation theory and a dévissage argument (2.5 and 2.6, see also 2.9), the exact
sequence S[ ·ξ0−→ S[ → S/pS → 0 lifts uniquely to an exact sequence 0→W (S[)→W (S[)→ S → 0,
where we used the fact that S is p-complete and p-torsion-free. Let ξ be the image of 1 under the
map W (S[)→W (S[) and denote the surjection W (S[)→ S by θ.

To see that S is perfectoid, it remains to show that ξ is distinguished. By condition (2) we write
π0 = πp = pu. As θ([ξ

1/p
0 ]) ≡ π1 mod pS, we have θ([ξ0]) ≡ πp

1 ≡ pu mod p2S. This shows that
θ([ξ0]) = pv for some v ∈ S× as S is p-complete and p-torsion-free. Let w ∈ W (S[)× be a lifting of
v. Then, [ξ0] − pw ∈ ker(θ) = (ξ) and is distinguished by construction. This implies that ξ is also
distinguished by a similar argument of 2.18. □

Remark 2.36. See [Bha18b, §4, 2.10] for a general criterion removing the “p-torsion-free” assumption
on S.

2.f. Examples of perfectoids.

Lemma 2.37 (adding p∞-roots). Let S be a perfectoid ring. Then, the p-adic completion S〈X1/p∞〉
of S[X1/p∞

] is also perfectoid.

Proof. Since (S/pS)[X1/p∞
] is a flat relative perfect (S/pS)-algebra with the unique flat lifting

S〈X1/p∞〉. Thus, the proof of 2.27 shows that S〈X1/p∞〉 is perfectoid. □

Lemma 2.38 (perfect=perfectoid over Fp). Let S be an Fp-algebra. Then, S is perfectoid if and
only if S is perfect.

Proof. If S is perfect, then S = W (S)/pW (S) with perfect prism (W (S), (p)) (i.e., p is distinguished).
If S is perfectoid, then Fp → S is a morphism of perfectoid rings, which corresponds to a morphism

of perfect prisms (Zp, (p)) → (W (S[), I) by 2.21. Then, I = pW (S[) by the rigidity lemma 2.24.
Hence, S = W (S[)/I = S[ is perfect. □
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Lemma 2.39 (perfectoid valuation ring). Let V be a p-complete valuation ring extension of Zp.
Then, V is perfectoid if and only if the Frobenius is surjective on V/pV and V is not absolutely
unramified. In particular, if the fraction field of V is algebraically closed, then V is perfectoid.

Proof. We only need to prove the sufficiency. Firstly, we claim that there exists π ∈ V with πp ∈ pV ×.
As V is not absolutely unramified, we can write p = π1π2 for some elements π1, π2 ∈ mV . Then, the
surjectivity of the Frobenius on V/pV implies that πi = xp

i + pyi for some xi, yi ∈ V (where i = 1, 2).
Notice that xp

i = πi − pyi ∈ πiV
× by construction. We get xp

1x
p
2 ∈ pV ×.

Since V is integrally closed in V [1/p], the Frobenius induces an injection V/πV → V/pV (see
[He24a, 5.21]). Thus, the conclusion follows from the perfectoidness criterion 2.35. □
Lemma 2.40 (torsion-free quotient). Let S be a perfectoid ring. Then, its maximal p-torsion-free
quotient S = S/S[p∞] is also perfectoid.

Proof. Let ϖ be a strict pseudo-uniformizer of S. Then, S[p∞] = S[ϖ∞] = S[ϖ1/p∞
] by 2.33. In

particular, S[p∞]∩ϖ1/pn

S = 0 for any n ∈ N. The exact sequence 0→ S[p∞]→ S → S → 0 induces
exact sequences 0 → S[p∞] → S/ϖ1/pn

S → S/ϖ1/pn

S → 0. In particular, the Frobenius induces
an isomorphism S/ϖ1/pS

∼−→ S/ϖS by 2.32. Hence, the conclusion follows from the perfectoidness
criterion 2.35. □
Lemma 2.41 (integral closure). Let S be a perfectoid ring. Then, its integral closure S+ in S[1/p]
is also perfectoid.

Proof. After 2.40, we may assume that S is p-torsion-free. The injectivity of the Frobenius S/ϖ1/pS →
S/ϖS implies that S is p-integrally closed, i.e., for any x ∈ S[1/p] with xp ∈ S we have x ∈ S (see
[He24a, 5.21]). Then, S → S+ is an almost isomorphism, i.e., ϖ1/p∞

S+ ⊆ S (see [He24a, 5.25]).
We claim that the Frobenius induces an isomorphism S+/ϖ1/pS+ ∼−→ S+/ϖS+. It is injective

as S+ is p-integrally closed. For any z ∈ S+, the previous discussion allows us to write ϖ1/pz =

xp + ϖy for some x, y ∈ S. As z = (x/ϖ1/p2

)p + ϖ1−1/py, we see that x′ = x/ϖ1/p2 ∈ S+. We
continue to write z = x′p + ϖ1−1/py = x′p + ϖ1−1/p(y′p + ϖ1−1/pz′) for some y′, z′ ∈ S+. Thus,
z = (x′ + ϖ1/p−1/p2

y′)p + ϖz′′ for some z′′ ∈ S+. This shows the surjectivity of the Frobenius on
S+/ϖS+.

In conclusion, S+ is perfectoid by the perfectoidness criterion 2.35. □
Lemma 2.42 (direct product). Let {Si}i∈I be a family of perfectoid rings. Then, the product

∏
i∈I Si

is perfectoid.

Proof. Let ξi be a distinguished generator of Ker(W (S[
i ) → Si) for any i ∈ I. Then,

∏
i∈I S

[
i

is a ξ = (ξi)i∈I -complete perfect Fp-algebra. By universal p-deformation 2.7, it is easy to see that
W (

∏
i∈I S

[
i ) =

∏
i∈I W (S[

i ) and that ξ is a distinguished element. Thus,
∏

i∈I Si =
∏

i∈I(W (Si)/ξi) =

(
∏

i∈I W (Si))/ξ = W (
∏

i∈I S
[
i )/ξ is a perfectoid ring. □

Lemma 2.43 (tensor product). Let S2 ← S1 → S3 be morphisms of perfectoid rings. Then, the
p-completed tensor product S2⊗̂S1

S3 is perfectoid.

Proof. Let ξ = [ξ0] + pξ′ be a distinguished generator of Ker(W (S[
1) → S1) (and thus also a distin-

guished generator of for S2 and S3 by the rigidity lemma 2.24). The given morphisms S2 ← S1 → S3

induce morphisms of perfect Fp-algebras S[
2 ← S[

1 → S[
3. It is clear that the ξ0-completed tensor

product S[
2⊗̂S♭

1
S[
3 is still perfect.

Firstly, we claim that W (S[
2)⊗W (S♭

1)
W (S[

3)/p
n = W (S[

2 ⊗S♭
1
S[
3)/p

n for any n ∈ N. This holds for
n = 1. In general, it follows from taking induction and the following exact sequences

W (S[
2)⊗W (S♭

1)
W (S[

3)/p
n−1 ·p //

��

W (S[
2)⊗W (S♭

1)
W (S[

3)/p
n //

��

W (S[
2)⊗W (S♭

1)
W (S[

3)/p

≀
��

/ / 0

0 // W (S[
2 ⊗S♭

1
S[
3)/p

n−1 ·p // W (S[
2 ⊗S♭

1
S[
3)/p

n // S[
2 ⊗S♭

1
S[
3

// 0.

(2.43.1)

Therefore, we have W (S[
2)⊗̂

p

W (S♭
1)
W (S[

3) = W (S[
2⊗S♭

1
S[
3), where the completion is p-adic, and thus

there is an exact sequence 0 → W (S[
2)⊗̂

p

W (S♭
1)
W (S[

3)
·p−→ W (S[

2)⊗̂
p

W (S♭
1)
W (S[

3) → S[
2 ⊗S♭

1
S[
3 → 0.

Since S[
2 ⊗S♭

1
S[
3 is ξ-torsion-bounded by 2.16, taking ξ-completion still produces an exact sequence

0→W (S[
2)⊗̂W (S♭

1)
W (S[

3)
·p−→W (S[

2)⊗̂W (S♭
1)
W (S[

3)→ S[
2⊗̂S♭

1
S[
3 → 0.
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To show that W (S[
2)⊗̂W (S♭

1)
W (S[

3)/p
n = W (S[

2⊗̂S♭
1
S[
3)/p

n for any n ∈ N. We still take induction
on n. The case for n = 1 is proved above. In general, it follows from the following exact sequences

W (S[
2)⊗̂W (S♭

1)
W (S[

3)/p
n−1 ·p //

��

W (S[
2)⊗̂W (S♭

1)
W (S[

3)/p
n //

��

W (S[
2)⊗̂W (S♭

1)
W (S[

3)/p

≀
��

// 0

0 // W (S[
2⊗̂S♭

1
S[
3)/p

n−1 ·p // W (S[
2⊗̂S♭

1
S[
3)/p

n // S[
2⊗̂S♭

1
S[
3

// 0.

(2.43.2)

Therefore, we have W (S[
2)⊗̂W (S♭

1)
W (S[

3) = W (S[
2⊗̂S♭

1
S[
3). In particular, we have S2 ⊗S1

S3/p
n =

W (S[
2)⊗̂W (S♭

1)
W (S[

3)/(p
n, ξ) = W (S[

2⊗̂S♭
1
S[
3)/(p

n, ξ). Taking inverse limit on n ∈ N, we see that
S2⊗̂S1

S3 = W (S[
2⊗̂S♭

1
S[
3)/ξ is perfectoid. □

3. Cohomological Descent of Perfectoids

Recall that the descent of commutative algebras in Zariski topology can be stated as: for any affine
scheme X = Spec(A), we have

A = RΓZar(X,OX),(3.0.1)

i.e., A = H0(X,OX) and Hq(X,OX) = 0 for any nonzero number q. This is equivalent to the fact
that for any family of generators (f1, . . . , fn) of the unit ideal of A, the Čech complex

0→ A→
∏

1≤i≤n

Afi →
∏

1≤i,j≤n

Afifj →
∏

1≤i,j,k≤n

Afifjfk → · · ·(3.0.2)

is exact (see [Sta26, 01X8]). Moreover, Grothendieck [FGA] established the faithfully flat descent:
for any faithfully flat ring homomorphism A→ B, the Čech complex

0→ A→ B → B ⊗A B → B ⊗A B ⊗A B → · · ·(3.0.3)

is exact (see [Sta26, 023F]). Equivalently, we have

A = RΓfppf(X,O)(3.0.4)

where the cohomology is the cohomology of the category of X-schemes endowed with topology gen-
erated by locally finitely presented faithfully flat coverings (see [Sta26, 03P2]). This seems the best
result in general. But if A satisfies some extra condition (such as perfect or perfectoid), could we
obtain a better cohomological descent result?

3.a. h, v and arc topologies.

Definition 3.1. A valuation ring is a local domain V such that for any x, y ∈ V , either x divides y
or y divides x. An extension of valuation rings is an injective local (or equivalently, faithfully flat,
see [He24b, 3.1]) homomorphism V →W of valuation rings.

We refer to [Sta26, 00I8] for some basic properties of valuation rings, and to [Bou06a] for a
systematic development. We gather some basic properties here:

Proposition 3.2. Let V be a valuation ring with fraction field K.
(1) The quotient K×/V × is a totally ordered abelian group with respect to divisibility relation.
(2) The quotient map v : K× → K×/V × is a valuation map, i.e., v(1) = 0, v(xy) = v(x) + v(y),

v(x+ y) ≥ min(v(x), v(y)) for any x, y ∈ K×.
(3) All the ideals of V form a chain by inclusions.
(4) The dimension of V is ≤ 1 if and only if the value group K×/V × identifies with an ordered

subgroup of R.
(5) V is a discrete valuation ring if and only if the value group K×/V × is isomorphic to Z.

Proof. (1) is proved in [Bou06a, VI, §1.2, Théorème 1.(d)], see also [Sta26, 00ID].
(2) follows immediately from (1), see also [Sta26, 00IF].
(3) is proved in [Bou06a, VI, §1.2, Théorème 1.(e)].
(4) is proved in [Bou06a, VI, §4.5, Proposition 7].
(5) is proved in [Bou06a, VI, §3.6, Proposition 9]. □

Definition 3.3. A ring homomorphism A→ B is called

https://stacks.math.columbia.edu/tag/01X8
https://stacks.math.columbia.edu/tag/023F
https://stacks.math.columbia.edu/tag/03P2
https://stacks.math.columbia.edu/tag/00I8
https://stacks.math.columbia.edu/tag/00ID
https://stacks.math.columbia.edu/tag/00IF
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(1) a v-covering if for any valuation ring V with a homomorphism A → V , there exists an
extension of valuation rings V →W and a commutative diagram of rings (see [Sta26, 0ETN])

B // W

A

OO

// V

OO(3.3.1)

(2) an (resp. d-complete (where d ∈ A)) arc-covering if the same condition in (1) holds for every
(resp. d-complete) valuation ring V over A with dimension ≤ 1 (see [BM21, 1.2] or [CS24,
2.2.1]).

(3) an h-covering if it is a v-covering of finite presentation (see [Sta26, 0ETS]).

These different types of coverings endow the category of schemes Sch with h, v and arc topologies
(see [He24a, 3.3]). It follows directly from the definition that h-topology is coarser than v-topology,
and the latter is coarser than arc-topology. To get familiar with these topologies, we include the
following result about h-topology although we will not make use of it.

Proposition 3.4 ([Sta26, 0ETK, 0ETU]). The h-topology on Sch is generated by locally finitely
presented faithfully flat coverings and finitely presented proper surjective coverings.

Example 3.5 (Canonical v-covering). For any ring A, consider the set V = {V } of all the valuation
rings V ⊆ Frac(V ) = κ(x) of all the residue fields κ(x) of A (where x ∈ Spec(A)). Notice that
any homomorphism from A to a valuation ring W must factors through a unique V ∈ V such that
the induced morphism V → W is an extension of valuation rings (indeed let x be the image of
Spec(Frac(W )) → X then V = κ(x) ∩W , see [He24b, 3.1]). This shows that A →

∏
V V is a v-

covering. We remark that every connected component of
∏

V V (endowed with the reduced closed
subscheme structure) is the spectrum of a valuation ring by [BS17, 6.2].

Moreover, let V be an algebraic valuation extension of V with algebraically closed fraction field.
Then, A→

∏
V V is still a v-covering and every connected component of

∏
V V is the spectrum of a

valuation ring with algebraically closed fraction field.
Let V ≤1 be the subset of V consisting of valuation rings of dimension ≤ 1. Then, the same

argument as above implies that A →
∏

V ≤1 V is an arc covering. Fixing d ∈ A, let V̂ be the d-
completion of V . We see that V̂ = 0 if d ∈ V

× and V → V̂ is an extension of valuation rings otherwise
([Bou06a, VI, §5.3, Proposition 5]). In particular, A →

∏
V ≤1 V̂ is a d-complete arc covering (by

taking d-completion of an arc covering). Note that the fraction field of V̂ is still algebraically closed
([BGR84, §3.4.1, Proposition 3]). However, we don’t know if every connected component of

∏
V ≤1 V̂

is the spectrum of a valuation ring of dimension ≤ 1.

3.b. Cohomological descent of perfect Fp-algebras in arc topology. For any Fp-algebra A,
we denote by

Aperf = colim
Frob

A = colim(A
Frob−→ A

Frob−→ A
Frob−→ · · · )(3.5.1)

the initial perfect A-algebra (i.e., any homomorphism from A to a perfect Fp-algebra B factors
uniquely through the perfect algebra Aperf). We should distinguish it from the perfect algebra A[ =
lim←−Frob

A.

Theorem 3.6 (Gabber, see [BST17, 3.3]). For any h-covering of Fp-algebras A → B, the Čech
complex

0→ Aperf → Bperf → (B ⊗A B)perf → (B ⊗A B ⊗A B)perf → · · ·(3.6.1)

is exact. In particular, if A and B are both perfect, then the Čech complex

0→ A→ B → B ⊗A B → B ⊗A B ⊗A B → · · ·(3.6.2)

is exact.

Let’s firstly look at two essential examples on h-descent of perfect Fp-algebras.

Example 3.7 ([Sta26, 0EVK]). Let A be an Fp-algebra with f ∈ A and a finitely generated ideal
J ⊆ A such that frJ = 0 for some r ∈ N. Then, in the h-topology, the scheme X = Spec(A) is

https://stacks.math.columbia.edu/tag/0ETN
https://stacks.math.columbia.edu/tag/0ETS
https://stacks.math.columbia.edu/tag/0ETK
https://stacks.math.columbia.edu/tag/0ETU
https://stacks.math.columbia.edu/tag/0EVK
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covered by two closed subschemes Z = Spec(A/fA) and X ′ = Spec(A/J) whose scheme theoretic
intersection is E = Spec(A/fA+ J).

E = Spec(A/fA+ J) //

��

Spec(A/J) = X ′

��
Z = Spec(A/fA) // Spec(A) = X

(3.7.1)

Taking B = A/fA×A/J , we claim that the alternating Čech complex (cf. (3.6.1))

0 −→ Aperf
α−→ (A/fA)perf ⊕ (A/J)perf

β−→ (A/fA+ J)perf −→ 0(3.7.2)

is exact. Since filtered colimit preserves surjection, γ is surjective. It remains to show that α :
Aperf

∼−→ Ker(β). To be more precise, for any filtered colimit M = colimn∈N Mn of abelian groups,
we denote by ϕn : Mn → M the canonical map. We take ϕn(x, y) ∈ (A/fA)perf ⊕ (A/J)perf =
colimFrob A/fA × A/J , where x ∈ A/fA and y ∈ A/J . We take some liftings of x, y in A and
denote them still by x, y. The condition γ(ϕn(x, y)) = 0 means that Frobm(x)− Frobm(y) = fz + g
for some m ∈ N, z ∈ A and g ∈ J . We take a = Frobm(x) − fz = Frobm(y) + g. Then, we see
that ϕn(x, y) = ϕn+m(Frobm(x),Frobm(y)) = α(ϕn+m(a)), i.e., α : Aperf

∼−→ Ker(β) is surjective.
Moreover, if there is b ∈ A and l ∈ N such that α(ϕl(b)) = ϕn(x, y), then after applying Frobenius
to a and b, we may assume that a ≡ b ≡ Frobk(x) mod fA and a ≡ b ≡ Frobk(y) mod J for
some k ∈ N. Since frJ = 0, we have (a − b)r ∈ (fA ∩ J)r = 0 so that Frobr(a) = Frobr(b), i.e.,
α : Aperf

∼−→ Ker(β) is injective.

Example 3.8 ([Sta26, 0EVJ]). Let A be an Fp-algebra with f1, f2 ∈ A. Then, in the h-topology,
the scheme X = Spec(A) is covered by the closed subscheme Z = Spec(A/(f1, f2)) and the projective
A-scheme X ′ = Proj(A[T1, T2]/(T1f2 − T2f1)) whose fibred product is E = Proj(A/(f1, f2)[T1, T2]).

E = Proj(A/(f1, f2)[T1, T2])

��

// Proj(A[T1, T2]/(T1f2 − T2f1)) = X ′

��
Z = Spec(A/(f1, f2)) // Spec(A) = X

(3.8.1)

We claim that
(1) H0(E,OE) = RΓ(E,OE) and H0(X ′,OX′) = RΓ(X ′,OX′), that
(2) H0(Z,OZ)

∼−→ H0(E,OE) and H0(X,OX) → H0(X ′,OX′) is surjective with square-zero
kernel, and that

(3) the sequence

0 −→ Aperf −→ H0(Z,OZ)perf ⊕H0(X ′,OX′)perf −→ H0(E,OE)perf −→ 0(3.8.2)

is exact.
It is clear that (3) follows immediately from (2).

Since E = P1
Z , we get A/(f1, f2) = H0(Z,OZ) = H0(E,OE) = RΓ(E,OE) by the standard

calculation of cohomology of projective spaces ([Sta26, 01XT]).
Consider the universal case where A = Z[f1, f2] is a polynomial algebra over Z with variables f1

and f2. Then, T1f2 − T2f1 ∈ H0(P1
X ,OP1

X
(1)) = (A[T1, T2])1 is a degree-1 homogeneous nonzero

divisor of A[T1, T2]. Thus, we have an exact sequence

0 // OP1
X
(−1)

·(T1f2−T2f1) // OP1
X

// OX′ // 0.(3.8.3)

Combining the associated long exact sequence of cohomology groups with the standard calculation
of cohomology of projective spaces ([Sta26, 01XT]), we get A = H0(X,OX) = H0(X ′,OX′) =
RΓ(X ′,OX′).

For general A, consider the base change along Z[f1, f2]→ A. Then, the base change property for
the top-degree cohomology implies (1) and (2) except for the “square-zero” property of the kernel
(see [Sta26, 0EVJ] for a detailed proof). To complete the proof, it remains to show that the kernel of

A→ A[X]/(f2 − f1X)⊕A[Y ]/(f2Y − f1)(3.8.4)

is square-zero, since the two principal open subsets associated with A[X]
∼−→ A[T1, T2](T1), X 7→

T2/T1 and A[Y ]
∼−→ A[T1, T2](T2), Y 7→ T1/T2 cover P1

X . Let a and b be two elements of the kernel of

https://stacks.math.columbia.edu/tag/0EVJ
https://stacks.math.columbia.edu/tag/01XT
https://stacks.math.columbia.edu/tag/01XT
https://stacks.math.columbia.edu/tag/0EVJ
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(3.8.4). Then, we can write
a = (f2 − f1X)(a0 + a1X + · · ·+ anX

n)(3.8.5)
b = (f2Y − f1)(b0 + b1Y + · · ·+ bnY

n).(3.8.6)
We see that

a = f2a0, f1a0 = f2a1, · · · , f1an−1 = f2an, f1an = 0,(3.8.7)
b = f1b0, f2b0 = f1b1, · · · , f2bn−1 = f1bn, f2bn = 0,(3.8.8)

and thus
ab = f1f2a0b0 = f1f2a1b1 = · · · = f1f2an−1bn−1 = f1f2anbn = 0,(3.8.9)

which completes the proof.

Proof ideas of 3.6. In fact, by some abstract formalism (”decomposing h-coverings into almost blowups”),
we reduce to 3.7 and 3.8. See [Sta26, 0EWU] for a detailed proof. □

Corollary 3.9 ([BM21, 1.9]). For any arc-covering of Fp-algebras A→ B, the Čech complex
0→ Aperf → Bperf → (B ⊗A B)perf → (B ⊗A B ⊗A B)perf → · · ·(3.9.1)

is exact.

Proof ideas of 3.9. The h-descent of perfect algebras implies the v-descent by a limit argument (see
[BS17, 4.1]). Then, the arc-descent follows from by decomposing a valuation rings into arcs (see
[BM21, 1.7]). We also refer to [He24a, 4.10] for a detailed proof. □

Remark 3.10. LetO be the sheafification of the presheafOpre on Sch sending a scheme X to Γ(X,OX)
in the arc topology. Then, for any affine Fp-scheme X = Spec(R), we have

Rperf = RΓarc(X,O).(3.10.1)

Indeed, 3.9 implies that the presheaf Opre
perf = colimFrobOpre : X 7→ Γ(X,OX)perf is a sheaf in the arc-

topology over Sch/Fp
. Moreover, since perfect affine Fp-schemes form a topological base of (Sch/X)v

(and thus of (Sch/X)arc) by 3.5, we have O ∼−→ colimFrobO = Operf = Opre
perf over Fp. Then, by the

relation between Čech cohomology and cohomology, 3.9 implies that Hq
arc(X,O) = Hq

arc(X,Opre
perf) = 0

for any q 6= 0 ([Sta26, 03F9]).

3.c. Tilting correspondence of perfectoid valuation rings.

Lemma 3.11. Let S be a perfectoid ring with tilt S[ = lim←−Frob
S/pS. Then, S is a valuation ring if

and only if S[ is a valuation ring. In this case, there is a canonical isomorphism of their value groups

Frac(S[)×/(S[)×
∼−→ Frac(S)×/S×(3.11.1)

induced by the composition (−)] : S[ [ ]−→W (S[)
θ−→ S.

Proof. Suppose firstly that S is a valuation ring. Since S is p-complete (2.34), the canonical projection
lim←−Frob

S → lim←−Frob
S/pS is a multiplicative bijection by 2.20. In particular, we see that S[ is a domain

and for any x, y ∈ S[, either x divides y or y divides x. Indeed, if we denote by (· · · , x2, x1, x0) and
(· · · , y2, y1, y0) the corresponding elements of lim←−Frob

S, as S is a valuation ring, we may assume that
there are infinitely many i ∈ N such that xi divides yi. But the transition morphisms force that xi

divides yi for any i ∈ N and thus x divides y. The same argument shows that S[ is a domain.
On the other hand, let ϖ be a strict pseudo-uniformizer of S. Since S[ is ϖ[-complete and

S/ϖS = S[/ϖ[S[ is local (see 2.30), we see that S[ is also local. Therefore, S[ is a valuation ring by
definition 3.1.

Conversely, suppose that S[ is a valuation ring. let ϖ be a strict pseudo-uniformizer of S. Since
S is ϖ-complete and S/ϖS = S[/ϖ[S[ is local, we see that S is also local.

We claim that S is either ϖ-torsion-free or S = S[ (in the latter case, S is a valuation ring).
Indeed, if ϖ[ 6= 0 in the valuation ring S[, then S[ϖ∞] = S[[(ϖ[)∞] = 0 (2.33). Otherwise, if ϖ[ = 0
in S[, then ϖ = 0 as the image of [ϖ[] = 0 by definition 2.29. As ϖ ∈ pS×, we see that p = 0 in S
and thus S = S[ by 2.38.

Then, we assume that S is ϖ-torsion-free. For any nonzero element x ∈ S, we can write x = ϖn/p ·y
for some unique n ∈ N such that y ∈ S \ ϖ1/pS. Let y ∈ S/ϖS be the image of y ∈ S. Then,
y = θ([y]) +ϖ · z for some unique z ∈ S, where θ : W (S[) → S is the canonical surjection (see the

https://stacks.math.columbia.edu/tag/0EWU
https://stacks.math.columbia.edu/tag/03F9
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proof of 2.21). Since S[ is a valuation and y is nonzero in S[/ϖ[S[ (actually nonzero in S[/(ϖ[)1/pS[),
we see that y divides ϖ[ in S[. As ϖ = θ([ϖ[]) (see 2.30), we can write

x = ϖn/p · θ([y]) · w, where w = 1 + θ([ϖ[/y])z ∈ S×.(3.11.2)

This expression implies that S is a domain and for any x, x′ ∈ S, either x divides x′ or x′ divides x.
Indeed, if we write x′ = ϖm/p · θ([y′]) · w′ as above, then xx′ = 0 implies that θ([yy′]) = 0 as S is
ϖ-torsion-free. Then, yy′ ∈ ϖ[S[ which contradicts with the fact that y, y′ /∈ (ϖ[)1/pS[. Moreover,
since x = θ([(ϖ[)n/py]) ·w and x′ = θ([(ϖ[)m/py′]) ·w′, we see that x divides x′ or x′ divides x. This
also shows that S and S[ share the same value group. In conclusion, S is also a valuation ring. □

Remark 3.12. One can show further that Frac(S) is algebraically closed if and only if Frac(S[) is
algebraically closed (see [CS24, 2.1.9]).

Proposition 3.13. Let S be a perfectoid ring with tilt S[ = lim←−Frob
S/pS and strict pseudo-

uniformizer ϖ. Then, there is a canonical equivalence of categories

{perfectoid valuation ring over S} ∼−→ {ϖ[-complete perfect valuation ring over S[}(3.13.1)
V 7−→ V [.

Proof. It follows directly from 2.25 and 3.11. □

Corollary 3.14. Let R → S be a morphism of perfectoid rings, R[ → S[ the morphism of their
tilts, ϖ a strict pseudo-uniformizer of R. Then, R → S is a ϖ-complete arc covering if and only if
R[ → S[ is a ϖ[-complete arc covering.

Proof. Suppose firstly that R[ → S[ is a ϖ[-complete arc covering. Let R → V be a morphism
to a ϖ-complete valuation ring V of dimension ≤ 1. After replacing V by an algebraic valuation
extension, we may assume that the fraction field of V is algebraically closed .

If ϖ = 0 in V , then S → V factors through S/ϖ ∼= S[/ϖ[. Thus, there exists a valuation ring
extension V →W with a morphism S′/ϖ ∼= S′[/ϖ[ →W lifting S/ϖ ∼= S[/ϖ[ → V .

S′ // S′/ϖ //

∼
**

W S′[/ϖ[oo S′[oo

S //

OO

S/ϖ //

OO

∼
44V

OO

S[/ϖ[oo

OO

S[oo

OO(3.14.1)

If ϖ 6= 0 in V , then V is ϖ-torsion-free and ϖ-complete with algebraically closed fraction field.
Thus, V is perfectoid by 2.39 (note that ϖ1/p ∈ V ). Then, V [ is a ϖ[-complete perfectoid valuation
ring over S[ by 3.13. There exists a valuation ring extension V [ → W with a morphism S′[ → W
lifting S[ → V [ by assumption. By tilting correspondence 2.25 and 3.13 again, W ] is a perfectoid
valuation ring with a commutative diagrams

S′ // W ] W S′[oo

S //

OO

V

OO

V [

OO

S[.

OO

oo

(3.14.2)

Since the value group Frac(V )×/V × ∼= Frac(V [)×/(V [)× is canonically embedded into Frac(W ])×/(W ])× ∼=
Frac(W )×/W×. We see that V →W ] is an extension of valuation rings (see [Bou06a, VI, §3.5, Corol-
laire]).

The converse part follows from a similar argument. □

Remark 3.15. A ring homomorphism R → S is a ϖ-complete arc covering if and only if R →
S ×R[1/ϖ] is an arc covering. For the necessity, let R→ V be a morphism to a valuation ring V of
dimension ≤ 1. If V = V [1/ϖ], then R → V lifts to R[1/ϖ] → V . Otherwise, V → V̂ is faithfully
flat (i.e., an extension of valuation rings) so that R→ V lifts to S →W for some valuation extension
W of V̂ . For the sufficiency, let R→ V be a morphism to a nonzero ϖ-complete valuation ring V of
dimension ≤ 1 (so that the closed point of V does not lie over R[1/ϖ]). It lifts to S ×R[1/ϖ]→W
where W is a valuation ring extension of V . Then, the closed point of W does not lie over R[1/ϖ] so
that S ×R[1/ϖ]→W factors through S →W .
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3.d. Cohomological descent of perfectoids in p-complete arc topology.

Theorem 3.16 ([BS22, 8.10]). Let R → S be a p-complete arc covering of perfectoid rings. Then,
the p-completed Čech complex

0→ R→ S → S⊗̂RS → S⊗̂RS⊗̂RS → · · ·(3.16.1)
is exact.

Proof. Let ϖ be a strict pseudo-uniformizer of R. Then, R[ → S[ × R[[1/ϖ[] is an arc covering of
ϖ[-complete perfect Fp-algebras by 3.14 and 3.15. Thus, the Čech complex

0→ R[ → S[ ×R[[1/ϖ[]→ (S[ ×R[[1/ϖ[])⊗R♭ (S[ ×R[[1/ϖ[])→ · · ·(3.16.2)

is exact by 3.9. As each term is a perfect Fp-algebra (thus ϖ[-torsion-bounded (2.16)), its derived
ϖ[-completion coincides with the classical ϖ[-completion (see [Sta26, 0BKG]). Hence, taking derived
ϖ[-completion of the exact sequence (3.16.2), we obtain an exact sequence ([Sta26, 091V])

0→ R[ → S[ → S[⊗̂R♭S[ → S[⊗̂R♭S[⊗̂R♭S[ → · · · .(3.16.3)
By universal p-deformation and dévissage, we see that

0→W (R[)→W (S[)→W (S[⊗̂R♭S[)→W (S[⊗̂R♭S[⊗̂R♭S[)→ · · ·(3.16.4)
is still exact. Since a distinguished generator ξ is a nonzero divisor of each term in the above exact
sequence by 2.19, modulo ξ we still get an exact sequence (see 2.43)

0→ R→ S → S⊗̂RS → S⊗̂RS⊗̂RS → · · · .(3.16.5)
□

Definition 3.17 (Perfectoidization). Let O be the sheafification of the presheaf Opre on Sch sending
a scheme X to Γ(X,OX) in the p-complete arc topology. Then, for any ring S, we put

Sperfd = RΓp-arc(Spec(S),O) ∈ D(S)(3.17.1)
and call it the perfectoidization of S.

Lemma 3.18. If S is perfectoid, then S = Sperfd.

Proof. Theorem 3.16 implies that the presheaf Opre = colimFrobOpre : X 7→ Γ(X,OX) is a sheaf in
the arc-topology over the opposite category Perfdop

/S of perfectoid S-algebras (note that the fibred
product in Perfdop

/S is given by the p-completed tensor product of perfectoid rings by 2.43). Moreover,
since Perfdop

/S forms a topological base of (Sch/S)p-arc by 3.5, 2.39 and 2.42, we have O = Opre

over Perfdop
/S . Then, by the relation between Čech cohomology and cohomology, 3.16 implies that

Hq
p-arc(Spec(S),O) = 0 for any q 6= 0 ([Sta26, 03F9]). This shows that S = Sperfd. □

Lemma 3.19. Let R be a perfectoid ring, S an R-algebra. If Sperfd is concentrated in degree 0 (i.e.,
Hq(Sperfd) = 0 for any q 6= 0), then Sperfd = H0(Sperfd) is perfectoid.

Proof. We write S0 = H0(Sperfd). Let ϖ be a strict pseudo-uniformizer of R. Since Perfdop
/S forms

a topological base of (Sch/S)p-arc, 3.18 implies that

0 −→ O ·$1/pn

−→ O −→ O/ϖ1/pn

O −→ 0(3.19.1)

is exact and that the Frobenius induces an isomorphism O/ϖ1/pO ∼−→ O/ϖO. Taking cohomology at
S, the condition S0 = Sperfd = RΓp-arc(Spec(S),O) implies that S0/ϖ

1/pn

S0 = RΓp-arc(Spec(S),O/ϖ1/pnO)
and that the Frobenius induces an isomorphism S0/ϖ

1/pS0
∼−→ S0/ϖS0. We putO[ = R lim←−Frob

O/pO.
Then,

RΓp-arc(Spec(S),O[) = R lim←−
Frob

RΓp-arc(Spec(S),O/pO) = R lim←−
Frob

S0/ϖS0 = lim←−
Frob

S0/ϖS0 = S[
0

(3.19.2)

where the first equality follows from [Sta26, 0D6K] and the third equality follows from the surjectivity
of the Frobenius on S0/ϖS0 ([Sta26, 07KW]).

Consider the presheaf W (O[)pre : Perfdop
/R → Set sending a perfectoid R-algebra R′ to W (R′[).

By dévissage, we see that W (O[)pre is a sheaf with respect to the p-complete arc topology by 3.18
and moreover Hq(Spec(R′),W (O[)pre) = 0 for any q 6= 0. Let W (O[) be the sheafification of
W (O[)pre over Sch/R. Then, one can check that W (O[) = R limn→∞ W (O[)/pnW (O[) and that

https://stacks.math.columbia.edu/tag/0BKG
https://stacks.math.columbia.edu/tag/091V
https://stacks.math.columbia.edu/tag/03F9
https://stacks.math.columbia.edu/tag/0D6K
https://stacks.math.columbia.edu/tag/07KW
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0 → W (O[)/pn−1W (O[)
·p−→ W (O[)/pnW (O[) → O[ → 0 is exact by working over Perfdop

/R.
Therefore, by a similar argument as in the first paragraph, we have

RΓp-arc(Spec(S),W (O[)) = W (S[
0).(3.19.3)

Finally, let ξ be a distinguished generator of Ker(W (R[)→ R) and take cohomology of the exact
sequence

0 −→W (O[)
·ξ−→W (O[) −→ O −→ 0,(3.19.4)

which can be checked over Perfdop
/R. We obtain an exact sequence

0 −→W (S[
0)

·ξ−→W (S[
0) −→ S0 −→ 0,(3.19.5)

which shows that S0 is a perfectoid ring. □

Remark 3.20. For a general ring S, we don’t know if S = Sperfd could imply the perfectoidness of S
or not.

Remark 3.21. If we consider the category of p-adic formal schemes endowed with arc topology, then
Sperfd = RΓarc(Spf(S),O), which coincides with Bhatt-Scholze’s original definition [BS22, 8.11].

Lemma 3.22. Let R be a ring. If the category of perfectoid R-algebras admits an initial object S,
then Rperfd = S. In particular, if R is an Fp-algebra, then Rperfd = Rperf .

Proof. Firstly, we claim that the category of perfectoid ⊗n
RS-algebras admits an initial object S.

Indeed, the multiplication map m : S ⊗R · · · ⊗R S → S defines S as a perfectoid ⊗n
RS-algebra. On

the other hand, for any perfectoid ⊗n
RS-algebra S′, the universal property of S implies that there

exists a unique morphism f : S → S′ fitting into the following commutative diagram

S ⊗R · · · ⊗R S
α // S′

R

ιn

OO

ι1 // S.

f

OO(3.22.1)

Since the morphisms S → S⊗R · · ·⊗RS sending S to the i-th component with the rest coordinates to
be 1 also induces a morphism S → S′ (by composing with α) making the diagram commutative, the
uniqueness of f implies that α(x1 ⊗ · · ·xn) = f(x1) · · · f(xn) = f(m(x1 ⊗ · · ·xn)). Hence, α factors
uniquely through m : S ⊗R · · · ⊗R S → S, which verifies the claim.

Then, we claim that R → S is a p-complete arc covering. Indeed, for any morphism R → V to a
p-complete valuation ring of dimension ≤ 1, we may assume that the fraction field of V is algebraically
closed after extension. Thus, V is a perfectoid ring by 2.39 so that R→ V factors uniquely through
S by assumption.

Now we prove by induction that H0(Rperfd) = S and Hq(Rperfd) = 0 for any q > 0. Notice that
([Sta26, 03AZ])

Rperfd = Tot(Sperfd

d0 //
d1

// (S ⊗R S)perfd
////// · · · ).(3.22.2)

Since Sperfd = S is the initial object of the category of perfectoid R-algebras, we see that d0 = d1, i.e.,
H0(Rperfd) = S. Combining with our first claim, we get H0((S ⊗R · · · ⊗R S)perfd) = S. This implies
that H1(Rperfd) = H1(S → H0((S⊗RS)perfd)→ H0((S⊗RS⊗RS)perfd)) = H1(S

0−→ S
id−→ S) = 0.

Combining with our first claim again, we get H1((S ⊗R · · · ⊗R S)perfd) = 0. This implies that
H2(Rperfd) = H1(S → H0((S⊗RS)perfd)→ H0((S⊗RS⊗RS)perfd)→ H0((S⊗RS⊗RS⊗RS)perfd)) =

H2(S
0−→ S

id−→ S
0−→ S) = 0. Thus, we can get Rperfd = S by induction.

The “in particular” part follows from 2.38 (or directly from 3.10). □

https://stacks.math.columbia.edu/tag/03AZ
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4. Almost Purity Theorem

4.a. The ideas. Recall that Tate [Tat67] showed that for any finite field extension L of Qp(ζp∞), its
valuation ring OL is almost unramified over Zp[ζp∞ ] (see 1.4).

L OL
oo

Qp(ζp∞)

finite

OO

Zp[ζp∞ ]oo

almost unramified

OO

...

OO

...

OO

Qp(ζp)

OO

Zp[ζp]oo

OO

Qp

OO

Zp
oo

OO

(4.0.1)

Later, Faltings [Fal88, Fal02] extended Tate’s result to smooth varieties. More precisely, consider the
smooth Zp-algebra Zp[T1, . . . , Td]. After adding p-power roots of the local coordinates, we consider
a finite étale Qp[T

1/p∞

1 , . . . , T
1/p∞

d ]-algebra R[1/p]. Faltings proved that the integral closure R of
Zp[T

1/p∞

1 , . . . , T
1/p∞

d ] in R[1/p] is almost finite étale.

R[1/p] Roo

Qp[T
1/p∞

1 , . . . , T
1/p∞

d ]

finite étale

OO

Zp[T
1/p∞

1 , . . . , T
1/p∞

d ]oo

almost finite étale

OO

...

OO

...

OO

Qp[T
1/p
1 , . . . , T

1/p
d ]

OO

Zp[T
1/p
1 , . . . , T

1/p
d ]oo

OO

Qp[T1, . . . , Td]

OO

Zp[T1, . . . , Td]oo

OO

(4.0.2)

These results are known as almost purity theorem nowadays, following the perfectoidness of Zp[ζp∞ ]

and Zp[T
1/p∞

1 , . . . , T
1/p∞

d ], whose proofs in the literature are all very profound and technical. For
instance, Tate’s proof makes use of local class field theory and higher ramification groups, which are
specialized techniques tied to the discrete valuation structures; Faltings’ original proof is even more
intricate and I regret being unable to give a concise summary of it. One of the fundamental difficulty
is that we don’t know the precise structure of “integral closures”. Indeed, we are able to compute the
integral closures in some special cases, e.g. Zp[ζp∞ ] and Zp[T

1/p∞

1 , . . . , T
1/p∞

d ]. But almost purity
theorem requires a deeper understanding of integral closures in the general case. We will see how this
can be done through the proof.

A trivial but essential case where we are able to compute the integral closure is that the integral
closure of a p-torsion-free normal ring A in the A[1/p]-algebra

∏n
i=1 A[1/p] is simply

∏n
i=1 A, since

geometrically Spec(
∏n

i=1 A[1/p]) is just the disjoint union of n copies of Spec(A[1/p]).∏n
i=1 A[1/p]

∏n
i=1 A

oo

A[1/p]

finite étale

OO

Aoo

finite étale

OO
(4.0.3)
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In general, we would like to reduce to this trivial case but not every finite Galois A[1/p]-algebra splits.
The idea is that if there exists a faithfully flat covering of perfectoid rings A → B such that B is
absolutely integrally closed (i.e., any monic polynomial has a root), then we may use faithfully flat
descent to reduce to the trivial case. We are thus led to establish the following variant of André’s
flatness theorem.

Theorem 4.1. Let A be a perfectoid ring. Then, there exists a perfectoid A-algebra B such that
(1) B is absolutely integrally closed (i.e., any monic polynomial has a root) and
(2) A→ B is p-completely faithfully flat (i.e., A/pnA→ B/pnB is faithfully flat for any n ∈ N).

André’s flatness theorem was originally used to prove the direct summand conjecture [And18b,
And18a] (see [Bha18a, 1.5]). It turns out to be a crucial feature of perfectoids and there appear many
variants and many proofs. Especially, a conceptual proof is given in [BS22, 7.14] using prismatic
cohomology. But in this lecture series, we adopt a constructive proof given in [CS24, 2.3.4] and we
will see how the structures of integral closures are understood.

4.b. Construct a perfectoid covering by adding p-power roots. The key to André’s flatness
theorem is that we need to add roots of every monic polynomial while keeping perfectoidness and
flatness.

Let P ∈ A[T ] be a monic polynomial. To add a root of P , we need to consider A → A[T ]/(P ).
To get a perfectoid, we may consider A→ A[T ]/(P )→ A〈T 1/p∞〉/(P ) as in 2.37. However, although
A〈T 1/p∞〉 is perfectoid, its quotient A〈T 1/p∞〉/(P ) isn’t. To make the Frobenius surjective, we may
consider the subring A〈T 1/p∞〉[ P

p∞ ] of A〈T 1/p∞〉[1/p] generated by P, P
p ,

P
p2 , . . . and its quotient

A〈T 1/p∞〉[P, P
p ,

P
p2 , . . . ]

(P, P
p ,

P
p2 , . . . )

.(4.1.1)

Note that the p-adic completion of (4.1.1) coincides with that of A〈T 1/p∞〉[ P
p∞ ] (as the ideal (P, P

p ,
P
p2 , . . . )

is p-divisible) and that the canonical map

A〈T 1/p∞
〉/(p) −→ A〈T 1/p∞

〉[ P
p∞

]/(p)(4.1.2)

is surjective (which implies that the Frobenius is surjective on (4.1.1) modulo p).

Lemma 4.2 ([CS24, 2.1.8]). Let A be a ring such that there exists ϖ ∈ pA× with a compatible system
of p-power roots (ϖ1/pn

)n∈N (e.g., if A is perfectoid, see 2.29) and let A+ be the p-integral closure of
A in A[1/p] (cf. 2.41). Assume that Frob : A/pA→ A/pA is surjective. Then, the p-adic completion
Â+ is perfectoid.

Proof. After replacing A by its image in A[1/p], we may assume that A is p-torsion-free. We want to
eliminate the kernel of Frob : A/ϖ1/pA→ A/ϖA. As the Frobenius is surjective, for any a ∈ A with
ap ∈ ϖA, we take a sequence a = a1, a2, a3, . . . of elements of A such that apn+1 ≡ an mod ϖA for
any n ≥ 1. Then, apn

n ≡ ap ≡ 0 mod ϖA so that an/ϖ
1/pn ∈ A+. Consider the A-subalgebra of A+

generated by such sequences (an/ϖ
1/pn

)n≥1,

A1 = A[an/ϖ
1/pn

| a ∈ A with ap ∈ ϖA, n ≥ 1] ⊆ A+.(4.2.1)

Then, we see that a ∈ ϖ1/pA1 and Frob : A1/pA1 → A1/pA1 is still surjective. Repeating this
construction, we get A ⊆ A1 ⊆ A2 ⊆ · · · ⊆ A+ and let A∞ =

⋃
n≥1 An so that the Frobenius

induces a bijection Frob : A∞/ϖ1/pA∞
∼−→ A∞/ϖA∞. This shows that A∞ is p-integrally closed

(see [He24a, 5.21]) so that A+ = A∞ and moreover Â+ is perfectoid by 2.35. □

Back to the construction of perfectoid cover by adding a root of P , we should consider

A −→
A〈T 1/p∞〉[P, P

p ,
P
p2 , . . . ]

+

(P, P
p ,

P
p2 , . . . )

,(4.2.2)

where (−)+ means taking the p-integral closure in (−)[1/p]. The p-adic completion of the latter
coincides with that of A〈T 1/p∞〉[P, P

p ,
P
p2 , . . . ]

+, which is perfectoid by (4.1.2) and 4.2. Then, it
remains to show that (4.2.2) is p-completely faithfully flat. For this, we need a refined analysis on
the structure of A〈T 1/p∞〉[ P

p∞ ]+ rather than the inductive construction in 4.2.
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4.c. Structure of A〈T 1/p∞〉[ P
pm ]+.

Lemma 4.3. Let A be a ring with a nonzero divisor ϖ and let Q ∈ A〈T 1/p∞〉 = A[T 1/p∞
]∧ (where

the completion is ϖ-adic) be an element that is monic and non-constant in (A/ϖA)[T 1/p∞
], m ∈ N>0.

Then,

A〈T 1/p∞
〉[ Q

ϖm
] ∼= A〈T 1/p∞

〉[X]/(ϖmX −Q)(4.3.1)

is ϖ-completely faithfully flat over A.

Proof. Note that ϖm, Q form a regular sequence in A〈T 1/p∞〉, i.e., ϖm is a nonzero divisor in
A〈T 1/p∞〉 and Q is a non-invertible nonzero divisor in (A/ϖmA)[T 1/p∞

] (as Q is monic and non-
constant). Thus, the isomorphism (4.3.1) follows from [Sta26, 0BIQ].

To see A/ϖnA→ (A/pnA)[T 1/p∞
][X]/(ϖmX−Q) is faithfully flat, we take a lifting qn ∈ A[T 1/p∞

]
of Q. In particular, qn is monic and non-constant in (A/ϖA)[T 1/p∞

] so that ϖmX − qn forms an
A-regular sequence in A[T 1/p∞

][X], i.e., for any residue field κ of A, ϖmX − qn is a non-invertible
nonzero divisor in κ[T 1/p∞

][X]. This implies that A[T 1/p∞
][X]/(ϖmX − qn) is faithfully flat over A

by [Sta26, 046Z] and a colimit argument. Modulo ϖn, we see that (A/ϖnA)[T 1/p∞
][X]/(ϖmX −Q)

is faithfully flat over A/ϖnA. □

Lemma 4.4. Let A be a p-torsion-free perfectoid ring with a strict pseudo-uniformizer ϖ and let
Q ∈ A〈T 1/p∞〉 be an element that is monic and non-constant in (A/ϖA)[T 1/p∞

], m ∈ N>0. If Q
admits a compatible system of p-power roots (Q1/pn

)n∈N in A〈T 1/p∞〉, then

A〈T 1/p∞
〉[ Q
pm

]+ = A〈T 1/p∞
〉[ Q

1/p∞

ϖm/p∞ ](4.4.1)

is p-completely faithfully flat over A whose p-adic completion is perfectoid.

Proof. Applying 4.3 (which holds for p-power roots of Q), we see that

A〈T 1/p∞
〉[ Q

1/pn

ϖm/pn ] ∼= A〈T 1/p∞
〉[X1/pn

]/(ϖm/pn

X1/pn

−Q1/pn

)(4.4.2)

is p-completely faithfully flat over A. After taking filtered colimit over n ∈ N, consider the exact
sequences

0 // (ϖm/p∞
X1/p∞ −Q1/p∞

)/ϖ1/p //

Frob

��

A〈T 1/p∞〉[X1/p∞
]/ϖ1/p //

Frob

��

A〈T 1/p∞〉[ Q1/p∞

$m/p∞ ]/ϖ1/p //

Frob

��

0

0 // (ϖm/p∞
X1/p∞ −Q1/p∞

)/ϖ // A〈T 1/p∞〉[X1/p∞
]/ϖ // A〈T 1/p∞〉[ Q1/p∞

$m/p∞ ]/ϖ / / 0.

(4.4.3)

It is clear that the left vertical arrow is surjective and the middle vertical arrow is bijective (2.32).
Thus, the right vertical arrow is bijective by snake lemma. In particular, A〈T 1/p∞〉[ Q1/p∞

$m/p∞ ] is p-
integrally closed and thus equal to A〈T 1/p∞〉[ Q

pm ]+ (see [He24a, 5.21]), whose p-adic completion is
perfectoid by 2.35. □

4.d. Approximation lemma. To reduce to the special case 4.4, we need the following technical
lemma, which captures a crucial feature of perfectoids: any element “approximately admits” a com-
patible system of p-power roots in view of valuation rings. Such an approximation lemma appears in
Scholze’s tilting correspondence of étale/analytic sites of perfectoid spaces, which might explain the
underlying geometric intuition, see [Sch12, 6.7].

Proposition 4.5 (Approximation lemma, [CS24, 2.3.1]). Let A be a perfectoid ring with a strict
pseudo-uniformizer ϖ. For any a ∈ A and m ∈ N, there exists b ∈ A[ with b] ∈ A (which admits a
compatible system of p-power roots, see (2.28.2)) such that for any valuation ring V over A extension
of Zp, we have

|a− b]|V ≤ |p|V ·max(|b]|V , |pm|V ),(4.5.1)

where | |V is an associated absolute value on V .

Corollary 4.6. With the notation in 4.5, we have A[ a
pm ]+ = A[ b♯

pm ]+ (p-integral closures).

https://stacks.math.columbia.edu/tag/0BIQ
https://stacks.math.columbia.edu/tag/046Z
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Proof. From | a
pm − b♯

pm |V < max(| b
♯

pm |V , 1), we see that | a
pm |V ≤ 1 if and only if | b♯pm |V ≤ 1. Therefore,

for any valuation ring V over A[ a
pm ] (or equivalently over A[ b♯

pm ]) extension of Zp, we have | a
pm− b♯

pm |V <

1. This shows that a
pm − b♯

pm is topologically nilpotent with respect to the p-adic topology (see [CS24,
2.3.2] for a detailed proof). In particular, ( a

pm − b♯

pm )p
r ∈ pA[ a

pm ] ∩ pA[ b♯

pm ], which implies that
a
pm ∈ A[ b♯

pm ]+ and b♯

pm ∈ A[ a
pm ]+. □

Proof of 4.5. After replacing V by an algebraic extension together with a p-adic completion, we may
assume that V is perfectoid. Then, V [ is a valuation ring with an absolute value given by b 7→ |b]|V
(see 3.11). It induces a norm on W (A[) by associating each x = [x0] + p[x1] + · · · with

|x|sup = sup
i≥0
|xi|V ♭ = sup

i≥0
|x]

i |V .(4.6.1)

Indeed, one can use the arithmetic of Witt rings 2.13 to check that |x|sup = 0 if and only if x = 0,
that |x+y|sup ≤ max(|x|sup, |y|sup) and that |xy|sup ≤ |x|sup|y|sup. In the following, we denote x = x0

and x′ = [x1] + p[x2] + · · · . Note that

|θ(x− [x])|V = |px]
1 + p2x]

2 + · · · |V ≤ sup
i≥1
|pi|V · |x]

i |V ≤ |p|V · |x− [x]|sup.(4.6.2)

We need to find a lifting x ∈W (A[) of a ∈ A with x ∈ A[ satisfying

|a− x]|V = |θ(x− [x])|V ≤ |p|V ·max(|x]|V , |pm|V ).(4.6.3)

At first, we fix a lifting x0 = [x0] + px′
0 ∈W (A[) of a ∈ A and a distinguished element ξ = [ξ] + pξ′ ∈

Ker(θ : W (A[) → A) (where ξ′ ∈ W (A[)×). Then, we construct inductively another liftings for
n ∈ N,

xn+1 : = xn − ξξ′−1x′
n(4.6.4)

= [xn] + px′
n − ([ξ]ξ′−1 + p)x′

n

= [xn]− [ξ]ξ′−1x′
n.

Note that

|xn+1 − [xn]|sup ≤ |[ξ]|sup · |ξ′−1|sup · |x′
n|sup ≤ |ϖ|V · 1 · |xn|sup = |p|V · |xn|sup.(4.6.5)

Now, we take 0 ≤ N ≤ ∞ the least element such that |[xN ]|sup > |pN+1|V . Then, repeatedly using
(4.6.5), we get

|p|V ≥ |[x0]|sup ≤ |x0|sup ≤ |1|V ,(4.6.6)
|p2|V ≥ |[x1]|sup ≤ |x1|sup ≤ |p|V ,
|p3|V ≥ |[x2]|sup ≤ |x2|sup ≤ |p2|V ,

· · ·
|pN |V ≥ |[xN−1]|sup ≤ |xN−1|sup ≤ |pN−1|V ,
|pN+1|V < |[xN ]|sup ≤ |xN |sup ≤ |pN |V .

Applying (4.6.5) once more, we get |xN+1|sup = |[xN ]|sup ∈ (|pN+1|V , |pN |V ]. Moreover, as |xN+1 −
xN |V ♭ = |xN+1 − [xN ]|V ♭ ≤ |xN+1 − [xN ]|sup ≤ |p|V · |xN |sup ≤ |pN+1|V , we also get |[xN+1]|sup =
|[xN ]|sup ∈ (|pN+1|V , |pN |V ]. Thus,

|pN+1|V < |[xN+1]|sup = |xN+1|sup ≤ |pN |V .(4.6.7)

Repeating this argument, we get

|pN+1|V < |[xN+2]|sup = |xN+2|sup ≤ |pN |V ,(4.6.8)
|pN+1|V < |[xN+3]|sup = |xN+3|sup ≤ |pN |V ,

· · · .

In conclusion, if m ≤ N , then we have |xm − [xm]|sup ≤ |pm|V ; and if m > N , then we have
|xm − [xm]|sup ≤ |[xm]|sup = |xm

]|V . Thus,

|θ(xm − [xm])|V ≤ |p|V · |xm − [xm]|sup ≤ |p|V ·max(|xm
]|V , |pm|V ).(4.6.9)

□
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Corollary 4.7. Let A be a p-torsion-free perfectoid ring, P ∈ A[T ] a monic polynomial of positive
degree, m ∈ N. Then, A〈T 1/p∞〉[ P

pm ]+ is p-completely faithfully flat over A whose p-adic completion
is perfectoid. In particular,

A〈T 1/p∞〉[ P
p∞ ]+

( P
p∞ )

=
A〈T 1/p∞〉[P, P

p ,
P
p2 , . . . ]

+

(P, P
p ,

P
p2 , . . . )

(4.7.1)

is p-completely faithfully flat over A whose p-adic completion is perfectoid.

Proof. By approximation lemma 4.5 and its corollary 4.6, there exists Q ∈ A〈T 1/p∞〉 admitting a
compatible system of p-power roots such that A〈T 1/p∞〉[ P

pm ]+ = A〈T 1/p∞〉[ Q
pm ]+. Moreover, the

proof of 4.6 also shows that (P −Q)p
r ∈ pA〈T 1/p∞〉 (taking m = 0) so that P −Q ∈ ϖ1/pr

A〈T 1/p∞〉
by perfectoidness. In particular, Q is monic and non-constant. Thus, the first assertion follows from
4.4. The “in particular” part follows from taking filtered colimit over m ∈ N and the p-divisibility of
the ideal ( P

p∞ ). □

4.e. André’s flatness theorem.

Proof of 4.1. Firstly, since every perfectoid ring is a quotient of a p-torsion-free perfectoid ring ([CS24,
2.1.12]), we may assume that A is p-torsion-free. Then, we put

A1 =
⊗̂

P∈A[T ] monic

A〈T 1/p∞〉[ P
p∞ ]+

( P
p∞ )

,(4.7.2)

which is a perfectoid ring p-completely faithfully flat over A (and thus p-torsion-free) by 4.7 and the
arguments of 2.43. Notice that every monic A-polynomial has a root in A1.

Then, we proceed a transfinite recursion: for any ordinal a < ℵ1 = ωω, if it is a limit ordinal, i.e.,
a =

⋃
b<a b, then we put Aa = (colimb<a Ab)

∧; if it has a predecessor, i.e., a = b + 1, then we put
Aa = (Ab)1 as in (4.7.2). By construction, Aa is a perfectoid ring p-completely faithfully flat over A
and every monic Ab-polynomial splits for any ordinal b < a.

Finally, we take B = colima<ℵ1
Aa. Then, every monic B-polynomial splits over B and A → B

is still p-completely faithfully flat. Since the well-ordered set of ordinals {a < ℵ1} is ℵ1-filtered (see
[Lur09, 5.3.1.7]), the filtered colimit over it commutes with ℵ1-small limits ([Lur09, 5.3.3.3]). In
particular, B is still p-adically complete and thus perfectoid by 2.35. □
4.f. Almost purity theorem.

Theorem 4.8 (Almost purity, [Sch12, 7.9]). Let R be a perfectoid ring, S an integral R-algebra such
that

(1) S[1/p] is finite étale over R[1/p] and
(2) S is integrally closed in S[1/p].

Then, S is a perfectoid ring almost finite étale over R.

Proof ideas of 4.8. Step 1: Apply André’s flatness theorem. By 4.1, there exists an absolutely
integrally closed and p-completely faithfully flat perfectoid R-algebra R′. As R′[1/p] is also absolutely
integrally closed, the finite étale R′[1/p]-algebra R′[1/p]⊗R[1/p]S[1/p] is isomorphic to a finite product
of copies of R′[1/p] Zariski locally on Spec(R′[1/p]) (see [Sta26, 0DCS, 04GG]). For simplicity, we
focus on the special case where (for the general case, we refer to [BS22, 10.9])

R′[1/p]⊗R[1/p] S[1/p] ∼=
r∏

i=1

R′[1/p].(4.8.1)

Note that R′⊗R S is integral over R′. Its integral closure S′ in R′[1/p]⊗R[1/p] S[1/p] ∼=
∏r

i=1 R
′[1/p]

is isomorphic to the integral closure of
∏r

i=1 R
′ in

∏r
i=1 R

′[1/p]. Since
∏r

i=1 R
′ is perfectoid, we see

that S′ is perfectoid and
∏r

i=1 R
′ → S′ is an almost isomorphism by 2.41 and its proof.

Step 2: Show that perfectoidization is discrete and almost finite étale over R′. As
R′ ⊗R S → S′ × (R′ ⊗R S/p) is an arc-covering, there is a distinguished triangle in the derived
category (see [Sta26, 0EVY, 0EVD])

(R′ ⊗R S)perfd −→ S′
perfd ⊕ (R′ ⊗R S/p)perfd −→ (S′/p)perfd −→ (R′ ⊗R S)perfd[1].(4.8.2)

Note that (R′⊗RS/p)perfd = (R′⊗RS/p)perf and (S′/p)perfd = (S′/p)perf as the underlying rings are in
characteristic p (see 3.22). Moreover, as S′ is perfectoid, S′

perfd = S′ (3.18) and (S′/p)perf = S′/ϖ1/p∞

(2.32) where ϖ is a strict pseudo-uniformizer of R. In particular, we see that
(R′ ⊗R S)perfd = Ker(S′ ⊕ (R′ ⊗R S/p)perf → S′/ϖ1/p∞

),(4.8.3)

https://stacks.math.columbia.edu/tag/0DCS
https://stacks.math.columbia.edu/tag/04GG
https://stacks.math.columbia.edu/tag/0EVY
https://stacks.math.columbia.edu/tag/0EVD
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which is almost isomorphic to S′, as (R′ ⊗R S/p)perf and S′/ϖ1/p∞ are both almost zero (i.e., killed
by ϖ1/p∞). This shows that (R′ ⊗R S)perfd is concentrated in degree 0 and thus is a perfectoid ring
by 3.19. Moreover, it is almost isomorphic to

∏r
i=1 R

′ and thus almost finite étale over R′ of rank r.
Step 3: Base change of perfectoidization. Recall that a simplicial covering S• of S by

perfectoid S-algebras induces
Sperfd = (S0 → S1 → S2 → · · · ).(4.8.4)

Applying derived base change along R→ R′ and derived p-completion, we obtain
(R′ ⊗L

R Sperfd)
∧ = ((R′ ⊗L

R S0)
∧ → (R′ ⊗L

R S1)
∧ → (R′ ⊗L

R S2)
∧ → · · · ).(4.8.5)

Notice that
(R′ ⊗L

R Si)
∧ = R lim

n→∞
(R′ ⊗L

R Si)⊗L
Z Z/pn(4.8.6)

= R lim
n→∞

R′/pn ⊗L
R/pn Si/p

n (as R′, R, Si have bounded p∞-torsion )

= R lim
n→∞

R′/pn ⊗R/pn Si/p
n (as R→ R′ is p-completely flat)

= R′⊗̂RSi (the classical p-completion)
= (R′ ⊗R Si)perfd (by 2.43).

Hence, we see that (one can also argue by [BS22, 8.13])

(R′ ⊗L
R Sperfd)

∧ = ((R′ ⊗R S0)perfd → (R′ ⊗R S1)perfd → (R′ ⊗R S2)perfd → · · · )(4.8.7)
= (R′ ⊗R S)perfd.

Step 4: Descend the properties of perfectoidization. We claim that Sperfd is a perfectoid
ring almost finite étale over R of rank r. Since we have shown that (R′ ⊗R S)perfd is a perfectoid
ring, denoted by S′′, we see that

(Sperfd ⊗L
R R/pn)⊗R/pn R′/pn = (R′ ⊗L

R Sperfd)⊗L
R′ R′/pn = S′′ ⊗L

R′ R′/pn(4.8.8)

is connective (i.e., concentrated in non-positive degrees). Moreover, as R/pn → R′/pn is faithfully
flat, we see that Sperfd ⊗L

R R/pn is connective and H0(Sperfd ⊗L
R R/pn)⊗R/pn R′/pn = S′′/pn so that

there exists a p-complete R-module M such that H0(Sperfd ⊗L
R R/pn) = M/pnM ([Sta26, 09B8]).

Therefore, the coconnective complex Sperfd = R limn→∞ Sperfd⊗L
RR/pn is also connective (see [Sta26,

07KW]) so that it is concentrated in degree 0 and thus a perfectoid ring by 3.19. Moreover, we see
that Sperfd/p

n = H0(Sperfd ⊗L
R R/pn) is almost finite étale over R/pnR of rank r by faithfully flat

descent, as S′′/pn is almost finite étale over R′/pnR′ of rank r. Thus, the p-complete ring Sperfd is
also almost finite étale over R of rank r by deformation ([GR03, 5.3.27]).

Step 5: Show that perfectoidization coincides with integral closure by valuative de-
tection. Finally, we need to show that S = Sperfd. It suffices to see that S[1/p] = Sperfd[1/p] and
Sperfd is integral over S (and then the conclusion follows from that S is integrally closed). For the
first, notice that Sperfd[1/p] and S[1/p] are both finite étale over R[1/p] of rank r. Thus, Sperfd[1/p]
is finite étale over S[1/p] of rank 1 and thus S[1/p] = Sperfd[1/p]. For the latter, we need the almost
purity theorem for valuation rings ([GR03, 6.6.16]). This implies that for any residue field L of S[1/p]
(which is a finite extension of a residue field K of R[1/p]), any valuation ring W of L extension of Zp

(which is an extension of the valuation ring V = K ∩W , where the latter is pre-perfectoid as R is so,
see [He24b, 10.19]) is pre-perfectoid (i.e., its p-adic completion Ŵ is perfectoid and thus over Sperfd).
In other words, for any p-complete valuation ring U extension of Zp, any Zp-homomorphism S → U
factors through Sperfd. This shows that Sperfd is integral over S ([Hub93, 3.3.(i)], see also the proof
of [Sta26, 090P]): indeed, suppose that x ∈ Sperfd ⊆ S[1/p] is not integral over S, then x /∈ S[1/x]
in S[1/px]. This shows that 1/x is not a unit in S[1/x] and thus there exists a maximal ideal m of
S[1/x] containing 1/x. Then, we take a p-torsion-free p-complete valuation ring U dominating the
p-torsion-free local ring S[1/x]m ([EGA II, 7.1.4]). We see that 1/x lies in the maximal ideal of U so
that x ∈ Sperfd does not lies in U , which is a contradiction. □

5. Galois Cohomology over Smooth Varieties

Recall that for any ring R, we defined the perfectoidization of R as the cohomology in the p-
complete arc topology Rperfd = RΓp-arc(Spec(R),O). Notably, if R is perfectoid, then R = Rperfd

(3.18). Thus, the cohomology groups of Rperfd can be generally regarded as the distance from R to
perfectoids. In this section, we will discuss how we compute it when R is smooth following Faltings
[Fal88].

https://stacks.math.columbia.edu/tag/09B8
https://stacks.math.columbia.edu/tag/07KW
https://stacks.math.columbia.edu/tag/090P
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5.a. Perfectoidization and Galois cohomology. Firstly, we show that perfectoidization can be
computed by Galois cohomology if R admits a good perfectoid tower.

Example 5.1. Consider R = Zp[T
±1] and

R∞ = Z[T±1/p∞
] ∼=

⊕
l/pn∈Z[1/p]

Zp · T l/pn ∼=
⊕

0≤l/pn<1

R · T l/pn

(5.1.1)

which is a faithfully flat cover of R. Moreover, it is easy to see that R∞[1/p] is ind-finite étale over
R[1/p] and R∞ (ind-smooth over R) is the integral closure of R in R∞[1/p] (so that we understand
the explicit structure of this special integral closure completely).

R∞[1/p] R∞oo

R[1/p]

ind-finite étale

OO

Roo

integral closure

OO(5.1.2)

Note that the Frobenius induces an isomorphism R∞/p1/pR∞
∼−→ R∞/pR∞ and thus the p-adic

completion R̂∞ is perfectoid (2.35).
The perfectoidization of R can be computed by the following Čech complex associated to the arc

covering R→ R∞ (see [Sta26, 03AZ]),

Rperfd = ((R∞)perfd → (R∞ ⊗R R∞)perfd → · · · ) .(5.1.3)

Thus, we have computed out the first term (R∞)perfd = R̂∞. To compute the second term, we firstly
introduce some notation:

K∞ = Qp(T
±1/p∞

) Qp[T
±1/p∞

] = A∞ = R∞[1/p]oo R∞oo

Kn = Qp(T
±1/pn

)

OO

Qp[T
±1/pn

] = An = Rn[1/p]oo

OO

Rn
oo

OO

K = Qp(T
±1)

OO

Qp[T
±1] = A = R[1/p]oo

finite Galois

OO

Roo

integral closure

OO

(5.1.4)

Note that Kn is a finite Galois extension of K of Galois group Z/pnZ, whose generator σ sends T 1/pn

to ζpnT 1/pn for some primitive pn-th root of unity ζpn . By Galois theory, we have

Kn ⊗K Kn
∼−→

∏
Z/pnZ

Kn(5.1.5)

f ⊗ g 7−→ (fg, fσ(g), . . . , fσpn−1(g)).

As étale base change preserves normality ([Sta26, 03GV]), we have∏
Z/pnZ Kn

∏
Z/pnZ An

oo ∏
Z/pnZ Rn

oo

Kn ⊗K Kn An ⊗A An
oo Rn ⊗R Rn

oo

OO

Kn

OO

An
oo

OO

Rn
oo

OO

K

OO

Aoo

finite Galois

OO

Roo

integral closure

OO

(5.1.6)

and taking filtered colimit over n ∈ N we obtain

colimn∈N
∏

Z/pnZ K∞ colimn∈N
∏

Z/pnZ A∞oo colimn∈N
∏

Z/pnZ R∞oo

K∞ ⊗K K∞ A∞ ⊗A A∞oo R∞ ⊗R R∞.oo

integral closure

OO
(5.1.7)

https://stacks.math.columbia.edu/tag/03AZ
https://stacks.math.columbia.edu/tag/03GV
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Similar as the Step 2 in the proof of 4.8, there is a canonical almost isomorphism
(R∞ ⊗R R∞)perfd −→ (colim

n∈N

∏
Z/pnZ

R∞)perfd.(5.1.8)

Notice that the Frobenius induces an isomorphism colimn∈N
∏

Z/pnZ R∞/p1/p
∼−→ colimn∈N

∏
Z/pnZ R∞/p.

Thus, the latter perfectoidization coincides with
(colim

n∈N

∏
Z/pnZ

R∞)∧ = lim
r→∞

colim
n∈N

∏
Z/pnZ

R∞/prR∞(5.1.9)

= lim
r→∞

colim
n∈N

Map(Z/pnZ, R∞/prR∞)

= lim
r→∞

Cont(Zp, R∞/prR∞)

= Cont(Zp, R̂∞),

where Cont denotes the set of continuous maps and we endow R∞/prR∞ (resp. R̂∞) with the discrete
(resp. p-adic) topology.

In general, one can check by hand that (5.1.3) is almost isomorphic to

C•
cont(Zp, R̂∞) = (R̂∞ → Cont(Zp, R̂∞)→ Cont(Z2

p, R̂∞)→ . . . )(5.1.10)

the complex of continuous non-homogeneous cochains of the profinite group Zp with values in R̂∞

([AGT16, II.3.8]), where d : R̂∞ → Cont(Zp, R̂∞) sends x to dx : σ 7→ σx−x and d : Cont(Zp, R̂∞)→
Cont(Z2

p, R̂∞) sends f to df : (σ, τ) 7→ σf(τ) − f(στ) + f(σ) and so on. Therefore, we obtain an
isomorphism between perfectoidization and the Galois cohomology complex in the derived category
of almost modules

Rperfd
∼−→ RΓ(Zp, R̂∞) ∈ Dal(R).(5.1.11)

The same arguments prove the following proposition.
Proposition 5.2 (Faltings, [Fal88]). Let R be an étale Zp[T

±1
1 , . . . , T±1

d ]-algebra and we define R∞
to be the tensor product fitting into the following pushout square

Zp[T
±1/p∞

1 , . . . , T
±1/p∞

d ] // R∞

Zp[T
±1
1 , . . . , T±1

d ] //

OO

R.

OO(5.2.1)

Then, there is an isomorphism in the derived category of almost R-modules
Rperfd

∼−→ RΓ(Zd
p, R̂∞) ∈ Dal(R),(5.2.2)

where we identify Zd
p with the Galois group of the ind-étale homomorphism R[1/p]→ R∞[1/p].

5.b. Galois cohomology computation. In fact, the basic theory of group cohomology enables us
to explicitly compute RΓ(Zd

p, R̂∞). For simplicity, we only present the case where d = 1.
Proposition 5.3 ([AGT16, II.3.25]). Let M be a p-complete abelian group endowed with a continuous
action of the profinite group Zp. Then, RΓ(Zp,M) ∼= (M

σ−1−→M), where σ is a topological generator
of Zp.
Example 5.4. Consider R = Zp[T

±1] and

R∞ = Z[T±1/p∞
] ∼=

⊕
0≤l/pn<1

R · T l/pn

= R⊕
⊕

0<l/pn<1

R · T l/pn

= R⊕D.(5.4.1)

Then, from 5.3 we obtain

RΓ(Zp, R̂∞) ∼= (R̂⊕ D̂
σ−1−→ R̂⊕ D̂).(5.4.2)

Notice that σ− 1 acts as multiplication by ζlpn − 1 on R ·T l/pn . Thus, σ− 1 : R̂→ R̂ is the zero map
and σ − 1 : D̂ → D̂ is injective with cokernel killed by ζp − 1. This shows that

H0(Zp, R̂∞) ∼= R̂, H1(Zp, R̂∞) ∼= R̂⊕ D̂/(σ − 1)D̂.(5.4.3)
To obtain a cleaner result, we invert p on everything:

H0(Zp, R̂∞[1/p]) ∼= R̂[1/p], H1(Zp, R̂∞[1/p]) ∼= R̂[1/p].(5.4.4)
The same arguments prove the following corollary.
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Corollary 5.5. With the notation in 5.2, for any q ∈ N, we have

Hq(Zd
p, R̂∞[1/p]) ∼=

∧q

R̂[1/p]
R̂[1/p]⊕d.(5.5.1)

Notice that both sides actually admit interpretation independent on the chosen chart (5.2.1). For
simplicity, we focus on the case where Spec(R) is connected. Then, for the left we may consider
the “universal ind-étale covering” R[1/p] of R[1/p], that is, the integral closure in the maximal field
extension of the fraction field of R such that the integral closure is ind-étale over R[1/p]. Thus, the
Galois group GR of R[1/p] of R[1/p] is actually the fundamental group of Spec(R[1/p]). Let R be
the integral closure of R in R[1/p]. Then, the left hand side is isomorphic to Hq(GR, R̂[1/p]) by
the same proof of 5.1. On the other hand, we have Ω1

R[1/p]/Qp

∼= R[1/p]⊕d and thus the right hand

side is isomorphic to the p-completion of the module of q-th differentials Ω̂q

R[1/p]/Qp

. Then, a natural
question arises as in 1.2,

Question 5.6. Is there a canonical isomorphism Hq(GR, R̂[1/p])
∼−→ Ω̂q

R[1/p]/Qp

(independent of the
chart (5.2.1)) fitting into the following commutative diagram?

Hq(Zd
p, R̂∞[1/p])

∼ // ∧q

R̂[1/p]
R̂[1/p]⊕d

Hq(GR, R̂[1/p])

≀

OO

∼ // Ω̂q

R[1/p]/Qp

≀

OO
(5.6.1)

5.c. Faltings extension and canonical comparison. The question 5.6 has an affirmative answer:
for degree q = 1, the canonical isomorphism is given by the following theorem; and for general degree,
it is given by the q-th wedge product of the canonical isomorphism in degree 1.

Theorem 5.7 (Faltings, see [Sch13a, 6.19], [AGT16, II.10.3.5, II.10.15] or [He25a, 8.9]). Let R be
a connected smooth Zp-algebra which admits an étale homomorphism f : Zp[T

±1
1 , . . . , T±1

d ] → R.
Then, there exists a canonical GR-equivariant exact sequence (independent of f), called the Faltings
extension of R,

0 −→ R̂[1/p] −→ F −→ R̂[1/p]⊗R Ω1
R/Zp

(−1) −→ 0(5.7.1)

such that the long exact sequence associated by taking GR-invariants gives

0 −→ R̂[1/p]
∼−→ FGR

0−→ R̂[1/p]⊗R Ω1
R/Zp

(−1) ∼−→ H1(GR, R̂[1/p]).(5.7.2)

Proof ideas of 5.7. We follow the construction in [He25b, 9.36]. For simplicity, we assume that R is
a smooth Zp-algebra admitting an étale homomorphism f : Zp[T

±1
1 , . . . , T±1

d ] → R (in general, it
descends to a smooth algebra over a finite extension of Zp and the following arguments still work
after slight modifications) and we consider its base change to Zp and Qp:

RQp
Roo

RQp

OO

RZp

oo

OO

Roo

Qp

OO

Zp
oo

OO

Zp
oo

OO

(5.7.3)

We claim that f induces a morphism of exact sequences

0 // 0⊕R
⊕d //

��

(R[1/p]/R)⊕R[1/p]⊕d //

��

(R[1/p]/R)⊕ (R[1/p]/R)⊕d //

��

0

R⊗R Ω1
R/Zp

// Ω1
R/Zp

// Ω1
R/R

// 0

(5.7.4)

where the vertical homomorphisms are almost isomorphisms induced by sending the i-th standard
base p−n · ei to d log ζpn if i = 0 and d log T

1/pn

i if 1 ≤ i ≤ d.
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In fact, the first vertical arrow induced by f is an isomorphism since f is étale.
For the middle vertical arrow, we decompose Zp → R into the tower Zp → Zp → R. Then, we can

compute Ω1
Zp/Zp

by the tower Zp → Zp[ζp∞ ] → Zp (note that Zp is almost unramified over Zp[ζp∞ ]

by almost purity). This shall induce the part (R[1/p]/R). Similarly, we can also compute Ω1
R/Zp

by
the tower Zp → (R∞)Zp

→ R (note that R is almost unramified over (R∞)Zp
by almost purity). This

shall induce the part R[1/p]⊕d.
Finally, we get the third vertical arrow by taking quotients. We refer to [He25b, 9.32] for a detailed

proof.
The claim implies the second row in (5.7.4) is almost exact. Applying RHom(Z/pnZ,−) (note that

Z/pnZ admits a projective resolution 0→ Z ·pn

−→ Z→ Z/pnZ→ 0), we get an almost exact sequence
0 = R⊗ Ω1

R/Zp
[pn]→ Ω1

R/Zp
[pn]→ Ω1

R/R
[pn]→ R⊗ Ω1

R/Zp
/pn → Ω1

R/Zp
/pn = 0.(5.7.5)

Taking inverse limit over n ∈ N, we obtain an almost exact sequence

0 −→ lim
n→∞

Ω1
R/Zp

[pn] −→ lim
n→∞

Ω1
R/R

[pn] −→ R̂⊗R Ω1
R/Zp

−→ 0.(5.7.6)

Note that there is a canonical almost isomorphism R̂(1) := R̂ · (d log ζpn)n∈Z −→ limn→∞ Ω1
R/Zp

[pn]

by (5.7.4). Thus, inverting p and twist by R̂(−1), we get a canonical exact sequence

0 −→ R̂[1/p] −→ F −→ R̂[1/p]⊗R Ω1
R/Zp

(−1) −→ 0,(5.7.7)

where F = (limn→∞ Ω1
R/R

[pn])[1/p](−1). Since we have an explicit coordinate-form (5.7.4) for this
construction, it is easy to check that the coboundary map associated to the GR-invariant part of this
exact sequence is an isomorphism (see the proof of [He25a, 8.7]). □

5.d. Hodge-Tate decomposition. Now, we can summarize Faltings’ computation of the perfec-
toidization of smooth algebras, which ultimately leads us to an affirmative answer of our initial
question (1.1.7), i.e., the Hodge-Tate decomposition for proper smooth p-adic varieties.

Theorem 5.8 (Faltings’ computation of Galois cohomology). For any smooth Zp-algebra R and any
q ∈ Z, there is a canonical isomorphism

Ω̂q

R[1/p]/Qp

(−q) ∼−→ Hq(Rperfd)[1/p] = Hq
p-arc(Spec(R),O)[1/p].(5.8.1)

Proof. Note that R locally admits an étale homomorphism from Zp[T
±1
1 , . . . , T±1

d ] and that each term
in (5.8.1) satisfies the Zariski descent (as Ω̂q

R[1/p]/Qp

= R̂[1/p]⊗RΩq

R/Zp
). Thus, the conclusion follows

from the local case discussed in the previous two subsections. □

Theorem 5.9 (Faltings’ main comparison theorem, see [Sch13a, 5.1]). For any proper smooth Zp-
scheme X and any q ∈ Z, there is a canonical isomorphism

Hq
ét(XQp

,Cp)
∼−→ Hq

p-arc(X,O)[1/p].(5.9.1)

Proof ideas of 5.9. Step 1: transfer the étale cohomology to p-complete arc cohomology.
In fact, for any Zp-scheme X, we have Hq

ét(XQp
,Z/pnZ) ∼−→ Hq

p-arc(X,Z/pnZ). This can be checked
by reducing X to valuation ring with algebraically closed fraction field (see [He24a, 3.27]).

Step 2: almost finiteness of étale cohomology when X is proper. Using the local Galois co-
homology computation, one can prove that Hq

p-arc(X,O/p) is almost finitely generated over OCp
= Ẑp

(see [Sch13a, 5.8]). Using some almost algebra lemma [Sch13a, 2.12], one can show that Hq
p-arc(X,O[)

is almost isomorphic to (O[
Cp
)⊕r (see [Sch13a, page 34]). In particular, Hq

p-arc(X,O[[1/p[]) = (C[
p)

⊕r

and Hq
p-arc(X,O/p) = Hq

p-arc(X,O[/p[) is almost isomorphic to (OCp/p)
⊕r = (O[

Cp
/p[)⊕r.

Step 3: apply Artin-Schreier sequence 0 → Fp → O[[1/p[]
Xp−X−→ O[[1/p[] → 0 in charac-

teristic p. We get Hq
p-arc(X,Fp) = Hq

p-arc(X,O[[1/p[])Frob=1 = ((C[
p)

⊕r)Frob=1 = F⊕r
p . Therefore,

Hq
p-arc(X,OCp/p) = (OCp/p)

⊕r is canonically almost isomorphic to Hq
p-arc(X,O/p). The conclusion

follows from dévissage and inverting p. □

Theorem 5.10 (Hodge-Tate decomposition). For any proper smooth Zp-scheme X and any n ∈ Z,
there is a canonical Gal(Qp/Qp)-equivariant decomposition

Hn
ét(XCp

,Cp) ∼=
⊕

i+j=n

Hi(XCp
,Ωj

XCp/Cp
)(−j).(5.10.1)
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Proof ideas of 5.10. Consider the morphism of ringed sites ν : (Sch/X)p-arc → (Sch/X)Zar. By 5.8,
we have Rjν∗O[1/p] ∼= Ω̂j

X/Zp
[1/p](−j). The Cartan-Leray spectral sequence induces a convergent

Gal(Qp/Qp)-equivariant spectral sequence ([Sta26, 015N])

Hi
Zar(X, Ω̂j

X/Zp
[1/p](−j))⇒ Hi+j

p-arc(X,O[1/p]) = Hi+j
ét (XCp ,Cp),(5.10.2)

where the last equality follows from 5.9. As X is proper and Ωj

X/Zp
is coherent, the comparison

between formal geometry and algebraic geometry gives Hi
Zar(X, Ω̂j

X/Zp
) = Hi(X,Ωj

X/Zp
)⊗Zp

OCp
(see

[Abb10, 2.12.2]). Thus, we obtain a canonical Gal(Qp/Qp)-equivariant convergent spectral sequence

Hi(XCp
,Ωj

XCp/Cp
)(−j)⇒ Hi+j

ét (XCp
,Cp).(5.10.3)

By Tate’s computation [Tat67, §3.3] of Galois cohomology of Cp and its twists (see also 1.4 and 5.8),
one can check that the differential maps in the second page of the spectral sequence are zero and that
the filtration associated to the spectral sequence splits uniquely. □

Remark 5.11. Since Tate [Tat67] proposed the conjecture on Hodge-Tate decomposition for p-adic
varieties, there have been tremendous brilliant work on this project. This conjecture was settled by
Faltings [Fal88, Fal02], Nizioł [Niz98, Niz08] and Tsuji [Tsu99, Tsu02] through different approaches.
Later, Faltings’ approach was generalized to perfectoid method by Scholze [Sch12] who thus extended
Hodge-Tate decomposition to proper smooth rigid analytic varieties [Sch13a, Sch13b]. Over the
decade since Scholze’s revolutionary theory, there appeared many different variants of Hodge-Tate
decompositions in different contexts, including integral versions [BMS18] (leading to prismatic coho-
mology), relative versions [AG24], non-smooth versions [Guo23]... Although the readers may find the
existing literature on Hodge-Tate decomposition quite different from our presentation, the essences
of how we play with perfectoids share the same.

6. Galois Cohomology over Valuation Rings

In the last section, we discuss how to understand the ramification over p-adic smooth varieties. In
this section, we move to the ramification over general (non-discrete) valuation rings. The difficulty
for this extension already lies in the construction of a good perfectoid cover. In the smooth case, one
can construct R∞ = R[T

±1/p∞

1 , . . . , T
±1/p∞

d ] for a system of local coordinates of R. However, for a
general valuation ring, it’s a question that which coordinates we should pick and what the structure
of the integral closure is after adding the p-power roots of those coordinates. To understand better
the case of valuation rings, we first extend basic ramification theory for discrete valuation rings to
the most general case.

6.a. Different ideals and differentials. We fix a finite separable extension L/K of non-discrete
Henselian valuation fields of rank 1 (i.e., dimOL = dimOK = 1). Although we can treat discrete
and non-discrete case together as in [He25a], we focus on the latter to simplify the notation. A key
feature in the non-discrete case is that the maximal ideals of the valuation rings satisfy

m2
K = mK , mL = mKOL.(6.0.1)

As L is finite free over K, we can still consider the trace morphism
TrL/K : L −→ K(6.0.2)

which sends x to the trace of the K-linear homomorphism given by multiplication by x. By Galois
theory (as L/K is separable), TrL/K(x) =

∑
σ:L↪→K σ(x), where σ runs through all the field embed-

dings of L into an algebraic closure of K. Moreover, the trace morphism induces a perfect pairing
L× L→ K sending (x, y) to TrL/K(xy) ([GR03, 4.1.14]), namely it induces an isomorphism

L
∼−→ HomK(L,K), x 7→ (y 7→ TrL/K(xy)).(6.0.3)

We define the codifferent ideal of L/K to be the OL-submodule of L,
O∗

L = {x ∈ L | TrL/K(xy) ∈ OK , ∀y ∈ OL}.(6.0.4)

Under the above isomorphism (6.0.3), we see that O∗
L is identified with {f ∈ HomK(L,K) | f(OL) ⊆

OK}. It is clear that OL ⊆ O∗
L ⊆ L. We define the different ideal of L/K to be the “inverse” of the

codifferent ideal
DL/K = {x ∈ L | xO∗

L ⊆ OL} ⊆ OL.(6.0.5)

https://stacks.math.columbia.edu/tag/015N
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This is actually the “inverse” in the almost sense as we have
mL ⊆ O∗

L ·DL/K ⊆ OL.(6.0.6)

Proposition 6.1 (Relation with trace, [He25a, 4.3], cf. the discrete case [Ser79, III.§3, Proposition
7]). For any nonzero fractional ideals a of OK and b of OL, we have

TrL/K(mLb) ⊆ a⇐⇒ mLbDL/K ⊆ aOL.(6.1.1)

Proof. We put a−1 = {x ∈ K | xa ⊆ OK}. Then, one can easily check from the definitions the
following equivalences

TrL/K(mLb) ⊆ a⇔ TrL/K(mLa
−1b) ⊆ OK ⇔ mLb ⊆ aO∗

L ⇔ mLbDL/K ⊆ aOL(6.1.2)

using the fact that m2
K = mK , mL = mKOL, mK ⊆ a · a−1 ⊆ OK and mL ⊆ O∗

L ·DL/K ⊆ OL. □

Corollary 6.2 ([He25a, 4.5]). For any x ∈ L, there is an inequality of absolute values
|TrL/K(x)| ≤ |DL/K | · |x|.(6.2.1)

Proof. Since the valuations on K and L are non-discrete, the absolute values of the test fractional
ideals a and b are dense in R. Thus, the conclusion follows directly from 6.1. □

Corollary 6.3. We have
|[L : K]| ≤ |DL/K | ≤ 1.(6.3.1)

Proof. Take x = 1 in 6.2. □

Theorem 6.4 (Relation with differentials, [GR03, 6.3.8, 6.3.23]). The OK-module OL is almost finite
projective and the module of differentials Ω1

OL/OK
is uniformly almost finitely generated. Moreover,

DL/K is almost isomorphic to
∏∞

q=1 AnnOL
(Ωq

OL/OK
). In particular, we have

mL ·DL/K ⊆ AnnOL
(Ω1

OL/OK
).(6.4.1)

The idea of its proof is to understand the structure of OL when [L : K] is prime, see [GR03, 6.3.13].
Moreover, using the same idea, Gabber-Ramero computed the cotangent complex:

Theorem 6.5 ([GR03, 6.3.32, 6.5.20]). We have

LOL/OK
= Ω1

OL/OK
.(6.5.1)

Moreover, if K is algebraically closed, then Ω1
OL/OK

is torsion-free.

This suggests that a general valuation ring extension OK → OL behaves like a smooth morphism.
Using this idea, we can explore further the structure of OK and its extensions in the following.

6.b. Structure of Ω1
OK/Zp

and control of DK∞/K . We fix a Henselian valuation field K of rank 1

extension of Qp. After 6.5, we know that Ω1
OK/Zp

is a torsion-free OK-submodule of Ω1
OK/Zp

[1/p] =

Ω1
K/Qp

, where the latter is a K-module whose dimension is the transcendental degree trdeg(K/Qp)

of K/Qp. We identify additional properties of Ω1
OK/Zp

that make OK behave more like a smooth
algebra over Zp.

Theorem 6.6 (Structure of torsion-free modules, [He25a, 3.16, 3.20]). Let M be a torsion-free OK-
module with n = dimK M [1/p] <∞. Then, there is an exact sequence

0 −→ K̂⊕r −→ OK̂ ⊗OK
M −→ M̂ −→ 0.(6.6.1)

Moreover, the p-adic completion M̂ is uniformly almost finite free over OK̂ (i.e., for any ϵ ∈ mK

there exists a finite free OK-submodule Mε of rank n− r of M with cokernel M/Mε killed by ϵ).

Corollary 6.7 ([He25a, 7.1]). Assume that trdeg(K/Qp) <∞. Then, the canonical morphism

OK̂ ⊗OK
Ω1

OK/Zp
−→ Ω̂1

OK/Zp
(6.7.1)

is surjective. Moreover, there exists a number d ≤ trdeg(K/Qp) such that for any ϵ ∈ mK there exists
t1, . . . , td ∈ O×

K (depending on ϵ) such that

ϵ · Ω̂1
OK/Zp

⊆ OK̂ · dt1 ⊕ · · ·OK̂ · dtd ⊆ Ω̂1
OK/Zp

.(6.7.2)
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For simplicity, we assume that d = 1 in the following so that for any ϵ ∈ mK \ pOK there exists
t ∈ O×

K (depending on ϵ) such that

ϵ · Ω̂1
OK/Zp

⊆ OK̂ · dt ⊆ Ω̂1
OK/Zp

.(6.7.3)

We want to understand the ramification of Kn = K(t1/p
n

) over K. Our expectation is that OKn

should be close to OK [t1/p
n

].

Lemma 6.8 ([He25a, 6.2]). For dt1/p
n ∈ Ω1

OKn/OK
, we have

|pn| ≤ |AnnOKn
(dt1/p

n

)| ≤ |pn/ϵ|.(6.8.1)

Proof. One the one hand, as pnt
pn−1
pn dt

1
pn = dt, we have pn ∈ AnnOKn

(dt1/p
n

) (as t is a unit). On
the other hand, consider the exact sequence

0 = H1(LOKn/OK
) −→ OKn ⊗OK

Ω1
OK/Zp

f−→ Ω1
OKn/Zp

−→ Ω1
OKn/OK

−→ 0.(6.8.2)

Suppose that there exists a nonzero element ϵ′ ∈ OK with |ϵ′| < |ϵ| such that pn/ϵ′ ∈ AnnOKn
(dt1/p

n

).
Then, pn/ϵ′ ·dt1/pn

= f(ω) for some ω ∈ OKn
⊗OK

Ω1
OK/Zp

. This implies that f(dt) = pnt
pn−1
pn dt

1
pn =

ϵ′t
pn−1
pn f(ω) = f(ϵ′t

pn−1
pn ω). Since f is injective, we get dt ∈ ϵ′ · OKn ⊗OK

Ω1
OK/Zp

and thus dt ∈
ϵ′ ·Ω1

OK/Zp
as Ω1

OK/Zp
is flat over OK . This contradicts with (6.7.3). Therefore, |AnnOKn

(dt1/p
n

)| ≤
|pn/ϵ|. □
Proposition 6.9 ([He25a, 6.3]). We have

|pn| ≤ |DKn/K | ≤ |p
n/ϵ|.(6.9.1)

Proof. It follows from 6.4 and 6.8 that mKn
DKn/K ⊆ AnnOKn

(Ω1
OKn/OK

) ⊆ AnnOKn
(dt1/p

n

) ⊆ pn/ϵ·
OKn

, which implies that |DKn/K | ≤ |pn/ϵ|. The other inequality follows from 6.3 as [Kn : K] = pn

(see [He25a, 6.1]). □
Corollary 6.10 ([He25a, 6.6]). For any x ∈ Kn, we have

|p−nTrKn/K(x)| ≤ |x/ϵ|.(6.10.1)

Proof. It follows directly from 6.2 and 6.9. □
6.c. Structure of OK∞ . As Qu-Yu pointed out, we can already control the structure of OKn

.

Proposition 6.11 ([He25a, §6], see [QY25, 7.6]). We have
ϵ · OKn

⊆ OK [t1/p
n

] ⊆ OKn
.(6.11.1)

Proof. For any x ∈ ϵ · OKn , we write x = a0 + a1t
1

pn + · · · apn−1t
pn−1
pn for some unique ai ∈ K where

0 ≤ i ≤ pn − 1 (as Kn = K(t1/p
n

) is of degree pn over K). Notice that for any a ∈ K,

TrKn/K(a · t
i

pn ) = a ·
pn−1∑
j=0

(ζjpnt
1

pn )i = at
i

pn ·
pn−1∑
j=0

(ζipn)j =

{
pna, if i = 0,
0, if i 6= 0.

(6.11.2)

Thus, we have
|ai| = |p−nTrKn/K(x · t−

i
pn )| (by (6.11.2))(6.11.3)

≤ |x · t−
i

pn /ϵ| (by 6.10)
= |x/ϵ| ≤ 1,

i.e., ai ∈ OK . □
In general, for d not necessarily equal to 1, one can still prove the following theorem using the

same arguments.

Theorem 6.12 ([He25a, §7], see [QY25, 7.6]). For any Henselian valuation field K of rank 1 extension
of Qp with trdeg(K/Qp) < ∞, there exists a number d ≤ trdeg(K/Qp) such that for any ϵ ∈ mK ,
there exist t1, . . . , td ∈ O×

K with

ϵ · OK∞ ⊆ OK [t
1/p∞

1 , . . . , t
1/p∞

d ] ⊆ OK∞ ,(6.12.1)

where K∞ = K(t
1/p∞

1 , . . . , t
1/p∞

d ) is a Galois extension of K with Galois group canonically isomorphic
to Zd

p and valuation ring OK∞ pre-perfectoid.
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Then, one can use the same arguments as in 5.5 to compute the Galois cohomology.

Corollary 6.13. For any q ∈ N, we have

Hq(Zd
p, K̂∞) ∼=

∧q

K̂
K̂⊕d.(6.13.1)

6.d. Faltings extension and canonical comparison.

Theorem 6.14 ([He25a, 8.6, 8.9]). Let K be a Henselian valuation field of rank 1 extension of Qp

with trdeg(K/Qp) < ∞, K an algebraic closure of K with Galois group GK . Then, there exists a
canonical GK-equivariant exact sequence, called the Faltings extension of K,

0 −→ K̂ −→ FK −→ K̂ ⊗K Ω1
K/Qp

(−1) −→ 0(6.14.1)

such that the long exact sequence associated by taking GK-invariants gives

0 // K̂ // FGK

K
// K̂ ⊗K Ω1

K/Qp
(−1)

(6.7.1)

'' ''OO
OOO

OOO
OOO

δ // H1(GK , K̂).

Ω̂1
K/Qp

(−1)

∼
88rrrrrrrrrrrr

(6.14.2)

6.e. Perfectoidness criterion. In p-adic arithmetic geometry, we frequently encounter the following
question: given an Zp-algebra R and a specific ind-finite étale R[1/p]-algebra R̃[1/p], is there a simple
condition of R̃[1/p] that forces the integral closure of R in R̃[1/p] pre-perfectoid?

R̃[1/p] R̃oo

R[1/p]

ind-finite étale

OO

Roo

integral closure

OO

Qp

OO

Zp
oo

OO

(6.14.3)

We haven’t found a satisfying criterion for this question, since we know little about the structure
of the integral closure R̃ in general. Instead, my recent work [He26] adopted a valuative point of
view which finally leads to a satisfactory answer. More precisely, we want a suitable condition on
R̃[1/p] such that R̃ is pointwise perfectoid, namely for any residue field K of R̃[1/p], any valuation
ring OK of K containing R̃ is pre-perfectoid. To see its possibility, a trivial case is that when R̃[1/p]
is absolutely integrally closed, every residue field K is algebraically closed so that the Frobenius
induces an isomorphism OK/p1/pOK

∼−→ OK/pOK , i.e., OK̂ is perfectoid. Although this example is
too simple, at least we see that some algebraic properties of R̃[1/p] or K are able to guarantee the
perfectoidness of any valuation structure OK . This was my original faith, which kept me going until
I arrived at the following perfectoid criterion.

Corollary 6.15 ([He26, 4.23], see also [He25a, 9.7]). With the notation in 6.14, if dimK̂ F
GK

K =

1 + trdeg(K/Qp), then OK̂ is perfectoid.

Proof. As dimK Ω1
K/Qp

= trdeg(K/Qp), the assumption implies that the coboundary map δ = 0 in

6.14. Thus, Ω̂1
K/Qp

= 0. This implies that Ω̂1
OK/Zp

= 0 as it is almost finite free by 6.7. Therefore,
OK̂ is perfectoid by [GR03, 6.6.6]: indeed, consider the morphism of exact sequences (see 6.5)

0 // OK ⊗OK
Ω1

OK/Zp

//

·pn

��

Ω1
OK/Zp

//

·pn

��

Ω1
OK/OK

//

·pn

��

0

0 // OK ⊗OK
Ω1

OK/Zp

// Ω1
OK/Zp

// Ω1
OK/OK

// 0.

(6.15.1)

As Ω1
OK/Zp

is torsion-free (6.5) and Ω̂1
OK/Zp

= 0, the first vertical arrow is an isomorphism. Similarly,
the second vertical arrow is also an isomorphism. Thus, so is the third vertical arrow. In particular,
Ω1

OK/OK
=

⋃
n≥1 Ω

1
OK/OK

[pn] = 0. Hence, for any finite field extension L of K, we still have
Ω1

OL/OK
= 0 (6.5). This implies that the different ideal DL/K is almost trivial by 6.4. Hence, the
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almost finite projective OK-algebra OL is also almost finite étale by [GR03, 4.1.27]. As the Frobenius
induces a surjection on OK/pOK , by almost faithfully flat descent we see that the Frobenius also
induces an almost surjection on OK/pOK [GR03, 3.5.13.(ii)]. One can easily check that it actually
implies further that the Frobenius on OK/pOK is surjective. Hence, OK̂ is perfectoid. □
6.f. Application to Shimura varieties: Calegari-Emerton conjecture. We fix a Shimura da-
tum (G,X) ([Del79, 2.1.1], see also [Mil05, 5.5]) and let E ⊆ C be its reflex field (which is a finite
extension of Q, [Del79, 2.2.1], see also [Mil05, 12.2]). We denote by Af (resp. Ap

f ) the ring of (resp.
prime-to-p) finite adèles of Q. For any neat compact open subgroup K ⊆ G(Af ) ([Pin90, 0.6]), we
denote by ShK the canonical model of the Shimura variety associated to (G,X) of level K (see [Mil05,
page 128]). It is a quasi-projective smooth E-scheme, whose C-points are canonically identified with

ShK(C) = G(Q)\(X ×G(Af ))/K.(6.15.2)
Moreover, these canonical models form a directed inverse system of E-schemes (ShK)K⊆G(Af ) (note
that open subgroups of K are also neat) with finite étale transition morphisms (see [Del79, 2.1.2]).

We fix a compact open subgroup Kp ⊆ G(Ap
f ). Consider the directed inverse system of E-schemes

(ShKpKp)Kp⊆G(Qp), where Kp runs through all the neat compact open subgroups of G(Qp) ([HJ23,
2.12]). Its limit

ShKp = lim
Kp⊆G(Qp)

ShKpKp
(6.15.3)

is called the Shimura variety at infinite level Kp. Motivated by the p-adic Langlands program,
Calegari-Emerton [CE12] predict the vanishing of the étale cohomology in higher degrees:
Conjecture 6.16 (Calegari-Emerton [CE12, 1.5], cf. [HJ23, 1.3]). For any integer q > dimShKp ,
we have

Hq
ét(ShKp,C,Zp) = 0.(6.16.1)

Scholze [Sch15] made the first fundamental progress on this conjecture. Indeed, for Shimura
varieties of Hodge type, he proved that they are perfectoid as p-adic analytic spaces at infinite level
at p. This established a profound connection between the étale cohomology of Shimura varieties with
the analytic cohomology of certain coherent sheaves, leading to resolutions of numerous conjectures
including the higher vanishing of the compactly supported completed cohomology for (G,X) of Hodge
type (a variant of Conjecture 6.16). A natural question arises:
Question 6.17. Does ShKp define a perfectoid space in general?

Using our perfectoidness criterion derived from p-adic Hodge theory for valuation rings 6.15, we
can provide an affirmative answer from the valuative point of view:
Theorem 6.18 ([He26, 11.4]). In general, ShKp is pointwise perfectoid. More precisely, for any
residue field K of ShKp,Qp

, any valuation ring OK of K extension of Zp is pre-perfectoid.

It turns out that pointwise perfectoidness is sufficient to relate étale cohomology and analytic
cohomology. Finally, we can prove that
Corollary 6.19 ([He26, 11.3]). The conjecture 6.16 is true.

Epilogue

Looking back at these six lectures, we began our journey by understanding ramification over Qp

and introducing the theory of perfectoid rings. Using deformation theory and reducing problems to
characteristic p, we established various properties of these rings, viewing them as the “affine objects”
of the p-adic world. This provided us with the necessary tools to understand ramification on smooth
algebraic varieties.

Simultaneously, we adopted the perspective of general valuation rings to examine cohomological
descent and almost purity for perfectoid rings, and even the ramification of valuation rings themselves.

Although this course was brief, it touched on the major themes of p-adic Hodge theory from the
last sixty years. However, precisely because of this broad scope, you may find that many proofs in
the lecture notes are condensed or lack absolute rigor.

Nevertheless, our hope is that this brief overview has given you a sense of the cutting-edge ideas
and techniques in the field. We hope this helps you avoid detours and see the big picture clearly
when you dive into your own research later on.
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But most importantly, there is a spirit I want to pass on to you, the younger generation: No matter
how “cutting-edge” the field is, or how obscure and difficult the proofs in the literature may seem, do
not be intimidated. As long as you have the courage and patience to break the details down, blow
them up, and dig deep, piece by piece, step by step, you can understand anything, no matter how
hard it seems at first.

It is not a matter of innate brilliance, but of whether you can settle down and commit to under-
standing every detail with courage, patience, and honesty.

I wish you all the best in your future studies. Keep working hard and keep moving forward!
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