PERFECTOIDS AND GALOIS COHOMOLOGY: A PEDAGOGICAL
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ABSTRACT. Since Tate proposed the famous Hodge-Tate decomposition conjecture in the 1960s, p-
adic Hodge theory has undergone profound and continuous development over the subsequent sixty
years, with new ideas and tools constantly emerging. Among these, the theory of perfectoid rings
is one of the most striking breakthroughs and has gradually become a foundational language for
understanding modern p-adic geometry.

These lecture notes start from a historical perspective to explain the role and status of perfectoids
in p-adic geometry, and uses this as a main thread to introduce the basic framework and core ideas
of p-adic Hodge theory. We will present the deep and beautiful techniques of p-adic geometry to
graduate students and advanced undergraduates in a friendly and detailed manner.

More specifically, we begin with how Tate used local class field theory to compute Galois coho-
mology in the discretely valued case, then introduce the notion of perfectoids and prove several key
results, including the tilting correspondence, cohomological descent in the arc topology, and the
almost purity theorem. Using these tools, we compute the cohomology of the fundamental group
of smooth algebraic varieties, which has been a central topic of p-adic Hodge theory over the past
sixty years. Finally, we discuss the extension of these methods to general (non-discrete) valuation
rings and look ahead to the future development of p-adic Hodge theory.
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1. A GLANCE AT p-ADIC HODGE THEORY

l.a. Hodge decomposition. One of the most fundamental theorem in complex geometry concerning
about the singular cohomology of complex manifolds is the following so-called Hodge decomposition.

Theorem 1.1. Let X be a projective smooth variety over C. Then, there is a canonical decomposition

(L.1.1) Te(X,0) = P HI(X,Qx/0).
i+j=n
The standard proof used essentially techniques in analysis: the n-th de Rham cohomology classes
are represented uniquely by n-th harmonic forms ([Voi02, 5.23]), and the latter can be decomposed
into direct sums of (i, j)-type harmonic forms ([Voi02, 6.10]), the space of which is canonically iso-
morphic to H’ (X, Qé{/«:) ([Voi02, 6.18]).
Let’s take a view from the p-adic geometry.

1.b. Cand C,. If we complete the field of rational numbers Q with respect to the archimedean norm,
we obtain the field of real number R; if we complete Q with respect to a non-archimedean norm, we
obtain the field of p-adic numbers @Q,. Recall that R and Q,, are the only two types of completions
that Q has by a theorem of Ostrowski.

Recall that the non-archimedean norm on Q, corresponds to the discrete valuation ring

(1.1.2) Zp= lim Z/p"Z
n—oo
where the valuation map is

(1.1.3) vp : Zp — NU {00},

X

p'ur—n, Vn € Nand u € Z,

0 — oo.
The discrete valuation field Q) is the fraction field of Z, given by inverting p: Q, = Zp[1/p]. We
refer to [BouO6a] for basic theory on valuation rings.

Taking an algebraic closure of R, we obtain the field of complex numbers C which has degree 2
over R; taking an algebraic closure of Q,, we obtain an infinite Galois extension Q,. Notice that Q,
is still a valuation field (but not discrete) with respect to the valuation ring Zp, where the latter is the
integral closure of Z, in Q, (see [Bou06a, VI, §3.6, Proposition 6] and [Sta26, 04GH]). The extended
valuation map is
(1.1.4) vy Ly — Qs U {00},

z +— vp(Ng, (2)/0, (£))/[Qp(z) : Q).
Z, =
(1/p],

But @p is not complete with respect to its valuation (i.e., Zp is not p-adically complete, Zp #*
lim,, o0 Zy/p"Zy as 1+pt+1/P +p2Hl/P 4 e Z, is transcendental over Q,). We put C, = Z,
which is a complete algebraically closed valuation field by Krasner’s lemma.

Notice that C and C, have the same cardinalities as that of R. Hence, they have the same
transcendental degree a over Q and thus they are both algebraic closures of the purely transcendental

extension Q(T;]i € a) of Q (see [Sta26, 030D, 09GV]). In conclusion, there is a field isomorphism
(1.1.5) C = C,.


https://stacks.math.columbia.edu/tag/04GH
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Although these two fields are isomorphic, the way they are defined actually endows them totally dif-
ferent topology. It is clear that the Euclidean topology on C is connected, while the non-archimedean
topology on C,, is totally disconnected.

1.c. Hodge-Tate decomposition. The same thing happens to a projective smooth variety X over
C,. When fixing a field isomorphism C = C,,, we have an isomorphism of schemes X¢ = X. However,
the Euclidean topology on X¢ as a manifold is totally different from the étale or Zariski topology on
X as a scheme.

But a surprising fact that these two different topology actually give the same cohomological in-
variants (which thus reflects the geometric nature of X) as long as we fix C = C,:

(1.1.6) ing(Xc, C) = HG (X, Cp),

sing

where the latter is defined as C, ®z, (lim, o HE (X,Z/p"Z)). This is Artin’s comparison theorem,
see [SGA 4111, XI44]

Therefore, the terms involved in the Hodge decomposition (1.1.1) actually come from algebraic
geometry and Theorem 1.1 implies that

(1.1.7) HE(X,Cp) = P HI(X,Q%)0)-
i+j=n

A priori, this isomorphism depends on the arbitrary choice of the field isomorphism C = C,. But
both sides are algebraic, we naturally ask

Question 1.2. s there a purely algebraic proof or a canonical construction of (1.1.7)% If so, how is
the valuation ring structure Qp, D Z,, involved here?

This question is the central theme of p-adic Hodge theory. It started by Tate [Tat67], where he
explained what does the “canonical construction” should mean and solve the question for abelian
varieties over a finite extension K of @, with good reductions. Although it looks like a very special
case, his strategy is generalized greatly by Faltings [Fal88] to solve the question for proper smooth va-
rieties over K. Thus, the canonical decomposition (1.1.7) is also called the Hodge-Tate decomposition.
While Tate’s proof specializes only to abelian varieties, Faltings invented a bunch of new techniques
to realize Tate’s strategy over general smooth varieties, including almost purity theorem and Ga-
lois cohomology computation. Nowadays, Faltings’ techniques have been developed and subsumed
within perfectoid theory after Scholze [Sch12, Sch13a], which we are going to explain to graduate and
undergraduate students in a friendly and detailed manner in this lecture series.

It would be too technical and difficult if we start directly with these deep techniques. Instead, we
begin with Tate’s groundbreaking work [Tat67] to trace the origins of these modern techniques.

Question 1.2 essentially requires a good understanding of the p-adic cohomology. The key making
p-adic cohomology distinguished is the valuation ring structure Q, 2 Z, and the ramification above
it. Before we try to understand ramification above X following Faltings, let’s simply understand
ramification above the single point Q,, following Tate.

1.d. Ramification of @p over Q.

Example 1.3. Consider a compatible system of primitive p™-th roots of unity ({y» )nen, i-e., Cﬁwl =
G and ¢, # (1 = 1. Using basics in algebraic number theory, we can prove that Qp((p) is
a totally ramified extension of Q, with valuation ring Z,[(,n] (see [Ser79] or [He25a, 5.4]). This
explicit expression of valuation rings (or integral closures) enables us to compute every invariant
about the ramification behavior. For instance, (,» — 1 is a uniformizer of Q,((y») with valuation
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vp(Cpn — 1) = m, and the valuation of the different ideal Zg,(¢,n)/qQ, 18 7 — p%l for n > 1.

(1.3.1)
Q, Z, uniformizer 7 vy (1) vp(Za, (¢yn)/Q,)
Qp(Cpe) <—— Zyp[Cp] (non-discrete)
Z; *f Qp(Cp2) =—— Zp[p?] Cp2 — 1 T 2- 5
| Qp(Cp) =——Zp[¢)] Gp—1 =1 -5
\Qp Zy, p 1 0

But how to understand ramification above Q,({,)? Tate answers this question by the following
theorem.

Theorem 1.4 ([Tat67, §3]). Let K be a complete discrete valuation field extension of Qp, K a
totally ramified Zy-extension of K. Let K, be the subfield of K, corresponding to the closed subgroup
p"Zy of Gal(Koo/K) = Zy, for any n € N.
(1) (Regular ramification) There is a constant ¢ and a bounded sequence (an)nen of integers such
that for any n € N, the valuation of the different ideal

(1.4.1) 0p(Zr, k) =n+c+p "an.

(2) (Almost unramification) For any finite field extension L of K, if we denote by L,, the composite
of L with K, for any n € NU {oo}. Then,

(1.4.2) (2L, /K,) — 0 when n — oo.

In other words, 91, k.. ([He25a, 4.1.2]) is equal to mp or Or_ (we call Lo is almost
unramified over Ko ).

Remark 1.5. (1) Tate’s proof to these results essentially used higher ramification groups and local

class field theory.

(2) Tate used these results to compute the p-adic cohomology for Qp, i.e., HZ;(Spec(Qy), Cp), see
[Tat67, §3.3].

(3) Faltings adopted the same strategy to understand the ramification above a smooth variety
X. Roughly speaking, for a small smooth algebra R over C,, he constructed a “regularly
ramified” tower R — R, such that there is no more ramification beyond R, in the almost
sense. In fact, this Ry is “pre-perfectoid” and we will show the almost purity theorem for
perfectoid rings and Galois cohomology computation for this specific tower R — R..

2. DEFINITION OF PERFECTOIDS

2.a. Review of deformation theory. We refer to [[1I71] and [IlI72] for a systematic development
of deformation theory and suggest to read Grothendieck’s definitions of smoothness [EGA TV, §17]
or Illusie’s expository notes [I1196, §1,2] at first before jumping into the most general theory.

Recall that a thickening of affine schemes is a closed immersion Spec(Rg) — Spec(R) such that
Ry = R/I with I? = 0. For example, each closed immersion in Spec(F,) — Spec(Z/p*Z) —
Spec(Z/p*Z) — - - - is a thickening.
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Question 2.1. Given a flat Ry-algebra Ay, is there a flat R-algebra A with Ay = A®g Ry ?
(2.1.1) Spec(A) < Spec(Ap)

;o

Spec(R) <—— Spec(Rp)

Example 2.2. Consider the baby case Ay = Ry[T]. Then, there is an obvious lifting A = R[T].

(2.2.1) R[T] — Ry|[T]
1]
R Ro

In fact, any flat lifting of Ry[7] is isomorphic to R[T]: let A’ be a flat R-algebra with A’/IA" = Ry[T.
Then, we consider the R-algebra homomorphism R[T] — A’ sending T to 77 € A’ a lifting of
T € Ry[T]. It is an isomorphism by the exact sequence 0 — ITA" — A" — A’/TA" — 0 and the
identity TA' =TI ®@r A’ =1 ®p, A’/TA’. Moreover, the automorphism group of the flat lifting R[T]
is isomorphic to A = I ®p, Ao, where each a € I A corresponds to the automorphism sending 7" to
T+ a.

In general, there is a standard simplicial resolution of Ay by free algebras over Ry ([IlI71, 1.1.5.5.6],
see also [Sta26, 08N8])

(222) == P = RO[RO[AO]] —= Py = Ro[AO} — Ay.

The cotangent complex of Ay over Ry is the associated complex of Ag-modules ([II171, 11.1.2.3], see
also [Sta26, 08PL)])

(223) H“AO/RO = ( = Q}Dl/RO ®p, Ao — Q};O/RO X Py Ao)

Theorem 2.3 ([IlI71, I11.2.1.2.3]). For the lifting problem 2.1, we have:
(1) There is an element w € Ext?% (Lay/Ro» Ao ®Rr, I), which vanishes if and only if there exists
a flat lifting A.
(2) When w = 0, the set of isomorphism classes of all the flat liftings A is a torsor under
Ethlélo(]LAo/Rov AO QRo I)
(3) The automorphism group of a flat lifting A is canonical isomorphic to Ext%o (Lag/Ro> Ao @R,
I).

In particular, when Ay = Ro[T], we see that L4, /g, = 91140/1%0 =~ Ay is a free Ap-module of rank
1. Thus, we can deduce 2.2 from 2.3.

Question 2.4. Given a morphism of flat Ro-algebras fo : Ag — A together with fized flat R-algebras
A and A" with Ag = AQr Ry and Ay = A'®pr Ry, is there a morphism f: A — A" with fo = fQrRo?

(2.4.1) Spec(A) <—— Spec(Aj)
yas
/ fi L lfo

Y
| Spec(A) =<—— Spec(Ap)

N

Spec(R) =<—— Spec(Ry)

Theorem 2.5 ([I71, I11.2.2.2]). For the lifting problem 2.4, we have:

(1) There is an element w € Ext}% (Lay/Ro» Ab @R, I), which vanishes if and only if there exists

a lifting f.
(2) I/;/hen w = 0, the set of isomorphism classes of all the liftings f is a torsor under Ext?% (Lay/Ro» AV R,
I).

2.b. Universal p-deformation: Witt rings. We fix a perfect F)-algebra R in this subsection, i.e.,
the Frobenius map Frob : R — R sending z to 2P is an isomorphism.

Lemma 2.6 ([GRO03, 6.5.13.(i)]). The cotangent complex Lr/r, = 0 in the derived category of R-
modules.
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Proof. The Frobenius induces an endomorphism of the standard resolution

(2.6.1) P Py R 0
i Frob \L Frob i Frob
P P, R 0.

Since Frob : R -+ R is an isomorphism, by the functoriality of cotangent complexes ([III71,
11.1.2.3.2]), we see that Frob : Lr/r, — Lpg/r, is an isomorphism of complexes (this morphism
does not coincides with (2.6.2) in the level of complexes). On the other hand, it coincides with the
following morphism in the derived category of R-modules ([Ill71, 11.1.2.6.2])

(2.6.2) v —=Qp g ®p R——>Qp 5 ®p R

lFrob lFrob

AT — N )

Since Frob(dx) = da? = paP~ldz = 0 for any dx € Q}Jn/Fp and n € N. We see that the isomorphism
Frob : Lg/r, — Lg/r, is the zero map in the derived category of R-module and thus Lg/r, =0. [

Proposition 2.7. There exists a p-adically complete and flat Z,-algebra W with W/pW = R.
Moreover, it is unique up to a unique isomorphism.

Proof. By deformation theory (2.3 and 2.6), there is a unique flat Z/p®Z-algebra Ry with Ry /pRy = R.
Consider the derived tensor product of L, /(z/p2z) With the exact sequence of Re-modules 0 — pRy —
Ry — R — 0, we obtain a distinguished triangle (where we used the fact that R ®Ié2 Lr,/z/p2z) =
Lgr, by [II7L, 11.2.2.1])

(2.7.1) pRy ®% Lg/r, — Lp,/z/p2z) — L, —

which implies that Lg,/z/p2z) = 0 by 2.6. Repeating this argument, we obtain unique (up to a
unique isomorphism) flat liftings

(2.7.2) Rs Ry Ry =R

I

< ——=7/p3% —L|p*Z —7/pZ =T,

with Lg /z/pnz) = 0 in the derived category.

Then, we take W = lim,, o0 Rp. AS Ryt1/p"Rpy1 = Ry, by construction, we have W/p"W = R,
for any n > 1 ([Sta26, 09B8]) and thus W is p-adically complete.

Consider the injection Z/p"~'Z 25 Z/p™Z. Tensoring with the flat Z/p"Z-module R,,, we obtain
an injection R, 25 R,.. Taking inverse limit over n € N, we get an injection W —25 W, in other
words, W is p-torsion free (hence flat over Z,,).

The uniqueness of W follows from that of the diagram (2.7.2). O

Definition 2.8. We denote by W (R) the unique p-adically complete flat Z,-algebra with W(R)/pW (R) =
R. We call it the Witt ring of the perfect F-algebra R.

Remark 2.9. By deformation theory (2.5 and 2.6), any morphism of perfect Fp-algebras R — R’
lifts uniquely to a ring homomorphism W (R) — W(R'). In other words, there is an equivalence of
categories

(2.9.1) {p-complete flat Z,-algebras A with A/pA perfect} = {perfect F,-algebras R}
A A/pA
W(R) <~ R.
Lemma 2.10. There is a unique multiplicative section [ ] : R — W (R) of the canonical surjection
W(R) — R.

Proof. For any x € R and n € N, we take a lifting y,, € W(R) of '/?" € R. Since (y, +pz)?" = o2
mod p"W(R) for any z € W(R), we see that the image of y2" in W(R)/p"W (R) is a lifting of z € R
independent of the choice of y,. We take

n 2 . n
(2.10.1) (o) = lim g2 = (.98 9 w0) € W(R) = lim W(R)/p"W(R).

n—oo


https://stacks.math.columbia.edu/tag/09B8
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It is clear that [ ] : R — W/(R) is a well-defined multiplicative section of W(R) — R. This verifies
the existence.

For the uniqueness, let [|' : R — W(R) be another multiplicative section. For any x € R, we have
[z]" = [x] + py for some y € W(R). Taking p"-th power, we get [#P"]' = [#”"] mod p"W (R). Since
R is perfect, any element of R is of the form zP" for some 2 € R. Thus, [z]' = [¢] mod p"W (R) for
any € R and n € N. Taking inverse limit over n € N, we get [z]' = [z] in W(R). O

Proposition 2.11 (Teichmiiler expansion). For anyxz € W(R), there is a unique sequence g, T1, T2, . - .
in R such that

In particular, x € W(R)* if and only if xg € R*.

Proof. For any € W(R), let o be its image in R. Then, z = [xo] + p2’ for a unique 2’ € W(R) by
the flatness of W(R) over Z,. Inductively repeating the construction, we obtain the existence and
uniqueness of the sequence xg, 1, Ta, .. ..

If € W(R)*, then its image z9 € R is also a unit. The converse is also true since W(R) is
p-adically complete. O

Remark 2.12. (1) (Frobenius) By 2.9, there is a unique ring isomorphism F' : W(R) — W(R)
lifting the Frobenius on R. In particular, for any = = [xo] + plz1] + p*[z2] + -+ € W(R), we
have F(x) = [zg] + plo1] + p*[a5] + - -

(2) (Verschiebung) There is a canonical additive map V = pF~! : W(R) — W(R) sending
& = o] 4 ploa] + p[ea] + - € W(R) t0 V() = plag”) + 0 ") + 9% ") - € W(R).
(3) (Witt vectors) There is a canonical bijection

(2.12.1) W(R) — ﬁ R
n=0

e
> 0" en] = (@ nen.
n=0

The latter is the usual presentation of the elements in Witt rings, see [BouO6b, I1X.§1] or
[SerT9, 11.§6].

(4) (Addition and multiplication formulas in Teichmiiler expansions) For any z,y € W(R), we
put z = [xo] +p[z1]+p3[r2]+- - and y = [yo] +ply1] +p*[y2]+ - -. We hope to write explicitly
the Teichmiiler expansions of x + y and zy in terms of zg,z1,...,%0,91,.... Unwinding the
construction 2.10 of Teichmiiler liftings, we can compute out by hand that

(2.12.2)  (z+y)o = o + vo,

1/p p 1/p P _ 1/p 1/p p p—1 i p—i
T + x'" + 1 L
(212.3) (24 y)1 = a1+ + L0 W0 )p T T A —Z(Z;)xgyo” :
i=1
(2.12.4) (zy)o = zoyo,
(2.12.5) (xy)1 = zoy1 + T1Y0,
p—1 1/p )
i p—i
2.12.6 = - — P I
( ) (y)2 = 2oY2 + Tayo + T1Y1 Z » (z) (x1y0) 7 (zoy1)

i=1
In general, after passing to the form of Witt vectors in (3), then the explicit addition and

multiplication formulas are inductively computed out in [Bou06b, IX.§1.3, (12) and (13)] or
[Ser79, I1.§6, Theorem 6], which can be translated back into the following theorem.

Theorem 2.13 ([Bou0O6b, 1X.§1.3, (a) and (b)]). For any xz,y € W(R), we put x = [zo] + p[z1] +
p*[w2] + -+ and y = [yo] + plyr] + p?[y2] + -

n—1

Y X, Y Ty

(1) There is a homogeneous polynomial S, € Z[Xé/pn,X1 yeen
of degree 1 for any n € N such that for any x,y € W(R),

(2.13.1) z+y = [So(z, )] + p[S1(z,y)] + p*[Sa(z,y)] + - € W(R),
where S, (x,y) € R is the value of the polynomial S,, at X; = x; andY; = y; for any0 < i < n.
n n—1 n n—1
(2) There is a homogeneous polynomial P, € Z[Xé/p ,Xll/p ,...,Xn,Yol/zJ ,Yll/p yeees Yo

n n—1
of degree 2 that is homogeneous of degree 1 with respect to the variables (Xé/p ,Xll/p ooy Xn)
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n n—1
and also homogeneous of degree 1 with respect to the variables (Yol/p ,Yll/p yee, Yy for
any n € N such that for any z,y € W(R),

(2.13.2) zy = [Po(x,y)] + p[Pi(2,9)] + p*[Pa(z,y)] + - -- € W(R),
where P, (x,y) € R is the value of the polynomial P, at X; = x; and Y; = y; for any 0 <i < n.

2.c. Universal ¢{-deformation: perfect prisms. Since W(R) is the “universal p-deformation” of
a perfect Fp-algebra R, in order to define the “mixed-characteristic analogue of perfect algebras”, we
would like to realize W(R) as a “universal {-deformation”. We firstly need to define what ¢ is.

Definition 2.14. A perfect prism is a pair (A, I) consisting of a ring A and an ideal I of A such that
(1) Ais a p-complete flat Z,-algebra with R = A/pA perfect (i.e., A = W(R)).
(2) I = (&) for some & = [&o] +p[&1] +p?[€2] +- - - € W(R) such that R is £y-complete and & € R*
(we call such an element of W(R) distinguished).

Remark 2.15. Since we want to realize A = W(R) as a “universal ¢-deformation”; it is natural to
require that it is £-complete and &-torsion free. We will see that they are guaranteed by the second
condition 2.14.(2) in the following lemmas.

Lemma 2.16. Let R be a perfect F,-algebra, d € R. Then, any element of R that is killed by a power
of d is also killed by a p-power root of d, i.c., R[d>®] = R[d"/?"]. In particular, R is d-torsion-bounded.

Proof. If dz = 0, then (dz)'/?" = 0 by perfectness, i.e., d'/?"z'/?" = 0. Hence, d'/?"x = d'/P"z'/?" .
VP = 0. O

Lemma 2.17 (completeness). Any perfect prism (A, (§)) is (p,§)-complete.

(P,

Proof. Firstly, we take induction on n > 1 to see that W(R)/p™ is £&-complete (where R = A/pA).
By Z,-flatness of W (R), there is an exact sequence 0 — W(R)/p"~* -X W(R)/p"* — W(R)/p =
R — 0. Since R is &-torsion bounded by 2.16, taking £-completion still produces an exact sequence
0 — (W(R)/p"H" = (W(R)/p")» - R = R — 0 ([He25a, 8.8]), where R is ¢{-complete by
definition 2.14.(2). By induction, we see that (W (R)/p™)" = W(R)/p™.

Then, as W(R) is p-adically complete by definition, we have W(R) = lim,_,oc W(R)/p" =
limy, s o0 limyy 00 W(R)/(p™, ™) = limy oo W(R)/(p",&") = lim,_yoo W(R)/(p,€)", where the last
equality follows from (p?”,£%") C (p,£)?" C (p",£€7). In other words, W (R) is (p, £)-complete. O

Lemma 2.18. Let A be a p-complete Z,-flat algebra with A/pA perfect, & a distinguished element of
A, x € A. Then, & - x is distinguished if and only if v € A*.

Proof. We write A = W(R) and & = [§] + p¢’, © = [xo] + pz’ € W(R).

If z € W(R)*, i.e., zp € R* by 2.11. Then, &z = [§oxo] + p(§'[x0] + [(o]2’ + p&'z"). On the one
hand, R is {yxzo-complete as it is {y-complete. On the other hand, since &'[xg] + [{o]a’ + p&'a’ = &'z
mod (p,§) is a unit, it is also a unit in W(R) by (p,&)-completeness (2.17). Therefore, £ - x is
distinguished.

Conversely, if £ - z is distinguished, then &'[zo] + [(o]z” + p&’2’ is a unit in W(R). Modulo (p,§),
we see from the previous discussion that 'xg is a unit in R/§yR. This implies that o € R* (as R is
&o-complete) and thus © € W(R)*. O

Lemma 2.19 (nonzero divisor). Let (A,I) be a perfect prism. Then, any generator & of I is a
distinguished nonzero divisor of A.

Proof. By definition, there exists a distinguished generator £ = [{] + p&’ of I, i.e., & € W(R)* by
2.11. Then, any generator of [ is still distinguished by 2.18.

To see any generator of I is a nonzero divisor, consider = = [x¢] + p[z1] + p*[z2] +--- € W(R) and
suppose that & -z = 0. Then, we have ([{y] + p&’)z = 0. For any positive odd number n, we have
([€o]™ + p"€™)x = 0 and thus p"z € [€J]W(R). By the uniqueness of the Teichmiiler expansion, we
see that each z; € (IR for any odd number n. But since R is {y-complete, we must have z; = 0, i.e.,
z=0. g

Now we start to technically realize A as a “universal {-deformation” of A/A.

Lemma 2.20. Let R be a ring, I an ideal of R such that R/I is of characteristic p and that R is
I-adically complete. Then, the canonical map
(2.20.1) Im R — @R/IR

Frob Frob

is a bijection, where @Frob R :=lim(-- ok pp b R) as a multiplicative monoid.
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Proof. For (--- ,x9,21,20) € @Frob R/IR, we take liftings - - - , 92, y1,yo of these coordinates in R.

Notice that for any n,m € N and z € I, (Yypim + 2)?" = nym mod "R as p € I. Thus,

y,’;+m € R/I"R does not depend on the choice of y,1m,. Then, we see that lim, . y,’;:m is a
well-defined element in R = lim,, o, R/I"T'R. We put

(2:20.2) y=(-, lim yho, lim gy, lim y2") € lim R.
Frob

It is clearly that y is well-defined and the assignment = — y gives an inverse to the canonical map
(2.20.1). O
Proposition 2.21. The following functor from the category of of perfect prisms to the category of
rings
(2.21.1) {perfect prisms} — {rings}

(A, 1) — A/I,
is fully faithful.

Proof. Let S be a ring lying in the essential image of (2.21.1). We take a perfect prism (A4, I) with
A/I = S. Then, we have

(2.21.2) A=W(R) Alp=R

i !

S= A/l ——S/p= R/&.

Since R is a &y-complete perfect Fj-algebra, we deduce from 2.20 that

(2.21.3) R« lim R > lim R/¢R = S’ := lim S/pS,
Frob Frob Frob

where the first isomorphism is the projection onto the first component. In particular, the canonical
map S — S/pS is surjective. By deformation theory (2.5 and 2.6), the canonical surjection S* —
S/pS lifts uniquely to a morphism 6 : W(S”) — S (which remains surjective by déviassage). By
deformation theory again, we see that the isomorphism A/I = S lifts uniquely to an isomorphism
A = W(S"). All in all, the functor from the essential image of (2.21.1) to the category of perfect
prisms sending S to (W (S”), ker(f)) is well-defined and forms a quasi-inverse to (2.21.1). O

Definition 2.22. A perfectoid ring is a ring S such that S = A/I for some perfect prism (A, I).

Our presentation of perfectoids is different from the original reference [BMS18] but follows closely
Bhatt’s latest lecture notes [Bha25] in the spirits of prismatic cohomology. We suggest the readers
to read [Sch12, §3-5], which is the very beginning resource of perfectoids (in the almost sense), then
move to the original reference for perfectoid rings [BMS18, §3] and some complements [CS24, §2],
and finally to change the perspective to prisms via [BS22, §2-3] together with some helpful lecture
notes [Bhal8b, §2-4] and [Bha25, §3].

Remark 2.23. Note that possibly many perfectoid rings S could have the same perfect F,-algebra
S° since the choice of an distinguished principal ideal (£) on W (S”) could be many (even if we fix
& € R = S, it seems that different choices of & € R* could lead to different ideals I = (£) C W(R)).
But I don’t have an explicit example in hand.

However, this issue does not exists when we work over a fixed perfect prism, see the tilting corre-
spondence in the following.

2.d. Tilting correspondence of perfectoids. Our definition for perfectoids immediately implies
the tilting correspondence as long as we have the following rigidity lemma:

Lemma 2.24 (rigidity). Let (A,I) — (B, J) be a morphism of perfect prisms. Then, J = IB.

Proof. We only need to show that for generator £ of J, if £ - x is distinguished then z € B*. This is
proved in 2.18. g

Theorem 2.25. Given a perfect prism (A,I), we put
(2.25.1) A=W(R) A/p=R

| |

S =A/§ ——5/p=R/%.
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Then, the base change induces equivalences of categories

(2.25.2)

{perfect (A, I)-prisms (A, TA")} {&-complete perfect R-algebras R'}
alz ’Y\LZ

{perfectoid S-algebras S’} —— { relatively perfect (S/p) = (R/&)-algebras T with T = T° /&T°}

)

where & = -+, é/pQ, é/p,ﬁo) € (R/&R)® and an (R/&y)-algebra T is called relatively perfect if the
relative Frobenius T ®pg /¢, rrob /S0 — T is an isomorphism, i.e., T/Eé/p =T

Proof. By the rigidity lemma 2.24, the category of perfect (A, I)-prisms (A’,TA’) is the category of
perfect prisms (B, J) with a morphism (A,I) — (B,J). Hence, it is equivalent to the category of
perfectoid rings S” with a morphism S = A/I — S’ by 2.21, i.e., « is an equivalence.

Unwinding the definition 2.14, the category of perfect (A, I)-prisms (A’,IA’) is the category of
p-complete Z,-algebras A’ with A’/pA’ perfect §y-complete and a morphism A — A’. Hence, it is
equivalent to the category of £-complete perfect Fp-algebras R’ with a morphism R = A/pA — R’
by 2.9, i.e., 8 is an equivalence.

Recall that R <~ R* = (R/&R)" identifying & with &) by 2.20 and that the Frobenius induces

~

an isomorphism R/§é/ " =5 R/&. The same holds true for any &y-complete perfect R-algebra R'.
In particular, v is a well-defined functor. To see that it is an equivalence, we only need to show

that for any relatively perfect (R/&)-algebra T with T = T°/&T°, T is a &y-complete perfect R-

algebra. As R = (R/&)", we see T” is naturally a perfect R-algebra. Moreover, T7° = lim(- - - Hrob

TP /6T % T /goT? X TP /60T%) = lim(--+ — TP/ TP — T°JEET> — T°J&T"), where we

applied the identification Frob™ : T” /&, T" Tb/fgn T°. This shows that T° is &-complete. Hence,
v is an equivalence.

The proof of 2.21 shows that ¢ is a well-defined functor making the diagram (2.25.2) commutative.
Hence, § is an equivalence. d

Remark 2.26. We couldn’t simply apply deformation theory in the setting of 2.25 because the a
relatively perfect (S/p) = (R/&y)-algebra T may not be flat. To resolve this issue, one may consider
instead relatively perfect animated (S/p) = (R/&p)-algebra T, i.e., animated algebra T such that the
relative Frobenius T ®%§ /€0, Frob R/& — T is an isomorphism, and then apply deformation theory for

animated algebras, see [Bha25, 3.2.6]. In another way, one can impose flatness assumptions in order
to use the classical deformation theory as follows.

Theorem 2.27. Given a perfect prism (A,I), we put
(2.27.1) A=W(R)—— A/p=R

! i

S=A/§ ——S/p=R/&.
Then, the base change induces equivalences of categories

(2.27.2)
{(p, &)-completely flat perfect (A, I)-prisms (A’,TA")} —;> {&o-completely flat &y-complete perfect R-algebras R'}

~

{p-completely flat perfectoid S-algebras S’} — {flat relatively perfect (S/p) = (R/&o)-algebras T}

where “I-completely flat” means “flat after modulo I™ for any n € N” here.

Proof. Let T be a flat relatively perfect (S/p) = (R/&y)-algebra. By deformation over R — R/ and
L7/(r/e) = 0 (J[GRO3, 6.5.13.(i)]), there exists a unique {y-completely flat {o-complete R-algebra R’
with R’ /§oR' =T (see the proof of 2.7 and 2.9). To see that v is an equivalence, it remains to check
that R is perfect. As T is relatively perfect, we have R’/ R’ ®p /¢, p probrm B/§0R = R'/§ R’ for

any n € N. Since Frob?” : R/& R — R/&R factors as R/&R > R/{gnR — R/& R, the uniqueness

of the liftings implies that the Frobenius induces isomorphism Frob?” : R/ R —» R’/ gg" R'. Thus,
R =lim, oo R'/E" R =1lim  R'/§R = R” is perfect.
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Similarly, by deformation over S — S/p and LLy,(g/,y = 0, there exists a unique p-completely flat
p-complete S-algebra S’ with S'/pS’ = T. To see that ¢ is an equivalence, it remains to check that
S’ is perfectoid. It suffices to check that S’ lies in the essential image of . As the diagram (2.27.2)
commutes, we only need to prove that g is an equivalence.

We claim that a perfect (A, I)-prism (A’ IA") is (p, £)-completely flat if and only if A’/(p,£)A’ is
flat over A/(p,£)A. Since A’ is p-torsion-free, we have A’®@% A/pA = A'/pA’. Thus, A’ @Y% A/(p,&) =
A’ [pA’ ®h/pA A/(p, &) = R @% R/&, where R = A’/pA’ is a perfect F,-algebra. In particular,
Tor{ (A', A/(p,€)) = Tor®(R',R/&) = 0 by 2.28. Then, the claim follows directly from [Sta26,
051C].

The claim implies that the category of (p,&)-completely flat perfect (A, I)-prisms (A, TA") is
equivalent to the category of p-complete Z,-algebras A’ with A’/pA’ perfect £-complete £y-completely
flat and a morphism A — A’. Hence, it is equivalent to the category of £y-completely flat £y-complete
perfect Fp-algebras R’ with a morphism R = A/pA — R’ by 2.9, i.e., 8 is an equivalence. O

Lemma 2.28. Let R — R’ be a morphism of perfect F,-algebras, d € R. Consider the following
conditions:

(1) R/dR — R'/dR' is flat.

(2) R/d"R — R'/d™R' is flat for any n € N.

(3) R[d) ®g R’ — R'|d] is an isomorphism.

(4) R[d ] ®pr R — R'[d] is surjective.

(5) Torf(R',R/d) = 0.

(6) R/dR®% R — R'/dR' is an isomorphism.
Then, we have (1) = (2) = (3) = (4) = (5) = (6).

Proof. (1) = (2): As R and R’ are perfect, the Frobenius induces isomorphism between R/dR —
R'/dR' with R/d*" R — R'/dP" R'. Thus, the latter is also flat.

(2) = (3): Note that R[d] N dR = 0 by 2.16. Thus, the sequence of R/d?R-modules 0 — R[d] —
R/dR —4, R/d?R is exact. Tensoring with R'/d?R’, the flatness implies that R'[d] = R[d] ®r R'.

(3) = (4): This is clear.

(4) = (5): Consider the exact sequence 0 — R[d] — R 4 R R/dR — 0. Then, R/dR ®@% R’
is represented by the total complex of R[d] ®% R — R’ ~% R'. In particular, Torf(R', R/d) =
Hy(R/dR ®% R') = Coker(R[d) @ R' — R'[d]) = 0.

(5) = (6): As R is perfect, R[d] = R[d/P"] by 2.16 so that R/R[d] is a perfect F,-algebra.
Recall that R/R[d] ®% R’ = R/R[d] ®g R’ by [BS17, 11.6]. We deduce from the exact sequence
0 — R[d - R — R/R[d] — 0 that R[d] ®% R’ = R[d] ®z R'. In particular, R/dR ®% R’ is
concentrated in degree [—1,0] by previous discussion. Thus, condition (5) implies that R/dR®% R =
R/dR®r R' = R'/dR'. O

2.e. Properties of perfectoids. We fix a perfectoid ring S in this section. Recall that it is associated
with a commutative diagram

(2.28.1) A=W(R) A/p=R
S=A/¢ S/p = R/&.

where R = S” by 2.21 and its proof. We put

(2.28.2) ()¢ s L w(sh) % s.

Definition 2.29. A strict pseudo-uniformizer of a perfectoid ring S is an element w of S equipped
with a compatible system of p-power roots (wl/ »" Jnen such that there exists a distinguished generator

¢ of Ker(0 : W(S°) — S) with w!/?" = 9([53/’)"]) = ( é/pn)ﬁ, where & is the image of ¢ in S”.
Remark 2.30. If we write & = (- , 2,21, 70) € S* = I'&HFmb S/pS, then fé/p" = (-, Tngo, Tnil, Tn) €
S” so that w!/?" = 9([§é/pn]) =2, mod pS. In other words, & = (--- ,@w!/?",@!/?, @) € 5 is de-
termined by the data of a strict pseudo-uniformizer w. We denote it simply by w” € S°.

Lemma 2.31. Any strict pseudo-uniformizer w € pS*>.

Proof. We write & = [§] + p€’ € W(R) with £ € W(R)*. Modulo &, we see that w = —p&’ in S so
that w € pS*. O
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Lemma 2.32 (Frobenius isomorphism). The Frobenius induces an isomorphism S/w/?S " S/wS.

Proof. Since R is perfect, the Frobenius on R/&yR is surjective with kernel generated by 55/ P Since

R/& = S/p identifying fé/p with @'/ via the commutative diagram (2.28.1), the conclusion follows
immediately. O

Lemma 2.33 (almost torsion-free). S[w™®] = S[w!/P”] = R[fé/poo] = R[¢5°]. In particular, S is
p-torsion bounded.

Proof. Since p, £ are both nonzero divisors on A by 2.19, there are canonical isomorphisms

~ {(z,y) e A? | éx=py} ~
(2.33.1) (A/&)[p] +— (&) lzcay (A/p)[€]

y«— (z,y) — x.

Thus, we have S[w] = R[&)] as (S/p) = (R/&)-modules. Then, for any n > 1, we have S[w!/?"] =
(Sl=)[=7"] = (Rl&o)lg™"] = Rl&™).

Since R is perfect, we have R| 3/’) ] = R[&] by 2.16. The above discussion implies that S[c!/?™]
S[w]. This implies furthermore that S[ew!/?™| = S[w™].

o

Lemma 2.34 (completeness). S is p-complete.

Proof. As ¢ is a nonzero divisor on A (2.19), there is an exact sequence 0 — A A S o
Since S is p-torsion bounded by 2.33, taking p-completion still produces an exact sequence 0 — A —
A — S — 0 ([He25ba, 8.8]), where A = A by 2.17. Hence, we get S = S, i.e., S is p-complete. O

Proposition 2.35 (perfectoidness criterion). A p-torsion-free ring S is perfectoid if and only if the
following conditions hold:

(1) S is p-complete.

(2) There exists m € S such that 7P € pS*.

(3) The Frobenius induces an isomorphism S/mS — S/pS.

Proof. These conditions are necessary by 2.34, 2.31 and 2.32. To see they are also sufficient, consider
Sh = @Frob S/pS. The surjectivity part of condition (3) implies that the canonical projection S* —
S/pS, (- ,xo,21,x0) — w0 is surjective. Hence, we can take & = (--- ,mg, m = m,m9 = 7P) € S.
Since S is p-torsion-free, the injectivity part of condition (3) implies that the kernel of S* — S/pS is
generated by &y. By deformation theory and a dévissage argument (2.5 and 2.6, see also 2.9), the exact

sequence S” SN LN S/pS — 0 lifts uniquely to an exact sequence 0 — W(S*) — W (S°) — S — 0,
where we used the fact that S is p-complete and p-torsion-free. Let & be the image of 1 under the
map W (S”) — W (S?) and denote the surjection W(S”) — S by 6.

To see that S is perfectoid, it remains to show that £ is distinguished. By condition (2) we write
mg = 7 = pu. As 0([53/1)]) = m; mod pS, we have 0([¢]) = 7} = pu mod p2S. This shows that
0([¢0]) = pv for some v € S as S is p-complete and p-torsion-free. Let w € W (S”)* be a lifting of
v. Then, [§] — pw € ker(0) = (£) and is distinguished by construction. This implies that & is also
distinguished by a similar argument of 2.18. g

Remark 2.36. See [Bhal8b, §4, 2.10] for a general criterion removing the “p-torsion-free” assumption
on S.

2.f. Examples of perfectoids.

Lemma 2.37 (adding p™®-roots). Let S be a perfectoid ring. Then, the p-adic completion S(X/P7)
of S|X'/P™] is also perfectoid.

Proof. Since (S/pS)[X'/?™] is a flat relative perfect (S/pS)-algebra with the unique flat lifting
S(X1/P7). Thus, the proof of 2.27 shows that S(X'/?™) is perfectoid. O

Lemma 2.38 (perfect=perfectoid over F,). Let S be an Fy-algebra. Then, S is perfectoid if and
only if S is perfect.

Proof. If S is perfect, then S = W(.S)/pW (S) with perfect prism (W(S), (p)) (i-e., p is distinguished).

If S'is perfectoid, then I, — S'is a morphism of perfectoid rings, which corresponds to a morphism
of perfect prisms (Z,, (p)) — (W(S?),I) by 2.21. Then, I = pW(S®) by the rigidity lemma 2.24.
Hence, S = W(S?)/I = S” is perfect. O
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Lemma 2.39 (perfectoid valuation ring). Let V' be a p-complete valuation ring extension of Z,.
Then, V is perfectoid if and only if the Frobenius is surjective on V/pV and V is not absolutely
unramified. In particular, if the fraction field of V is algebraically closed, then V is perfectoid.

Proof. We only need to prove the sufficiency. Firstly, we claim that there exists 7 € V with #P € pV/ *.
As V is not absolutely unramified, we can write p = 77y for some elements 71, w9 € my . Then, the
surjectivity of the Frobenius on V/pV implies that m; = ¥ + py; for some x;,y; € V (where i = 1,2).
Notice that z¥ = m; — py; € m; V> by construction. We get 225 € pV*.

Since V is integrally closed in V[1/p], the Frobenius induces an injection V/xV — V/pV (see
[He24a, 5.21]). Thus, the conclusion follows from the perfectoidness criterion 2.35. O

Lemma 2.40 (torsion-free quotient). Let S be a perfectoid ring. Then, its mazimal p-torsion-free
quotient S = S/S[p>] is also perfectoid.

Proof. Let @ be a strict pseudo-uniformizer of S. Then, S[p™] = S[@w™] = S[w'/?™] by 2.33. In
particular, S[p>]Nw!/?" S = 0 for any n € N. The exact sequence 0 — S[p>®] — S — S — 0 induces
exact sequences 0 — S[p>] — S/w!/P"S — S/w!'/P"'§ — 0. In particular, the Frobenius induces
an isomorphism S/w!/?S 5 §/wS by 2.32. Hence, the conclusion follows from the perfectoidness
criterion 2.35. O

Lemma 2.41 (integral closure). Let S be a perfectoid ring. Then, its integral closure ST in S[1/p)
is also perfectoid.

Proof. After 2.40, we may assume that S is p-torsion-free. The injectivity of the Frobenius S/w!/PS —
S/wS implies that S is p-integrally closed, i.e., for any = € S[1/p] with 2P € S we have z € S (see
[He24a, 5.21]). Then, S — S+ is an almost isomorphism, i.e., @w'/?” ST C S (see [He24a, 5.25)).

We claim that the Frobenius induces an isomorphism ST /w!/PS* 5 S+ /wS*. It is injective
as ST is p-integrally closed. For any z € S*, the previous discussion allows us to write w!/?z =
2P + wy for some z,y € S. As z = (z/@ /PP + @w!"/Py, we see that ' = z/w'/?’ € ST. We
continue to write z = 2/ + w!~VPy = 2P 4 @w! =P (yP 4 w!=1/P’) for some 3,2 € St. Thus,
z= (2 + wl/p_l/pzy’)p + w2z for some 2" € S*. This shows the surjectivity of the Frobenius on
St /wST.

In conclusion, ST is perfectoid by the perfectoidness criterion 2.35. g

Lemma 2.42 (direct product). Let {S;}icr be a family of perfectoid rings. Then, the product [ ], Ss
1s perfectoid.
SP

Proof. Let & be a distinguished generator of Ker(W(S?) — S;) for any i € I. Then, [Lic: S
is a & = (&)icr-complete perfect Fp-algebra. By universal p-deformation 2.7, it is easy to see that
W([Licr S2) = ITic; W(S?) and that £ is a distinguished element. Thus, [[,c; Si = [T;c;(W(Si)/&) =
(ILics W(S)) /6 =W Ter S2) /¢ is a perfectoid ring. O

Lemma 2.43 (tensor product). Let S < S; — S be morphisms of perfectoid rings. Then, the
p-completed tensor product Sa®g, Ss is perfectoid.

Proof. Let & = [&] + p¢’ be a distinguished generator of Ker(W(S}) — S;) (and thus also a distin-
guished generator of for Sy and S3 by the rigidity lemma 2.24). The given morphisms Sy < S7 — S3
induce morphisms of perfect I,-algebras Sg — Sﬁ — Sg. It is clear that the &p-completed tensor
product Sg@sg S5 is still perfect.

Firstly, we claim that W (S3) @y gy W (S3)/p™ = W (S5 @45 53)/p" for any n € N. This holds for
n = 1. In general, it follows from taking induction and the following exact sequences
(2.43.1)

W(S3) Ow (s?) W(S5)/p"~t —= W(S3) Ow (s2) W (S3)/p" —— W(S3) O (s?) W(S3)/p —=0

| | i

0 WS @gy S3)/p W(S} @05y )" —————= Sy gy S ————=0.

Therefore, we have W(Sg)@gv(sn{)W(Sg) =W (S} g S?%), where the completion is p-adic, and thus
there is an exact sequence 0 — W(Sg)@%(SQ)W(Sg) AN W(Sg)@iv(si)W(Sg) — S5 ®gp S5 — 0.
Since Sg ®gr Sg is &-torsion-bounded by 2.16, taking &-completion still produces an exact sequence
0 — W (S5) By (50 W (S3) = W(S5) &y (s1) W (53) = S58:.5% — 0.
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To show that W(Sg)@w(ﬁ)W(S’g)/p” = W(Sg@@sg S2)/p" for any n € N. We still take induction
on n. The case for n = 1 is proved above. In general, it follows from the following exact sequences

(2.43.2)
W(Sg)®W(sg)W(Sg)/Pn_l — W(SS)QA@W(SQW(S%)/P" — W(SS)QA@W(sg)W(Sg)/P —0

| | }

0 W(S3893) /p" W(S384,83)/p" —————= S50, 5§ ———— 0.

Therefore, we have W(SE)@)W(S;)W(S&) = W(Sg@S?Sg). In particular, we have Sy ®g, S3/p" =
W(Sg)@w(sg)W(Sg)/(p",f) = W(Sg@sng)/(p",g). Taking inverse limit on n € N, we see that
S>®s, 53 = W(SSQBS? S5) /¢ is perfectoid. 0

3. COHOMOLOGICAL DESCENT OF PERFECTOIDS

Recall that the descent of commutative algebras in Zariski topology can be stated as: for any affine
scheme X = Spec(A), we have

(3.0.1) A = RI'zar (X, Ox),

ie, A= H°X,Ox) and H1(X,Ox) = 0 for any nonzero number g. This is equivalent to the fact
that for any family of generators (fi,..., f,) of the unit ideal of A, the Cech complex

(302) 0> A— H Afi—> H Afifj — H Afifjfk—>"'

1<i<n 1<i,j<n 1<i,j,k<n
is exact (see [Sta26, 01X8]). Moreover, Grothendieck [FGA] established the faithfully flat descent:
for any faithfully flat ring homomorphism A — B, the Cech complex

(3.0.3) 0+A—+B—+B®4B—+B®,sB®4B—---

is exact (see [Sta26, 023F]). Equivalently, we have
(3.0.4) A =RI'gppe(X, O)

where the cohomology is the cohomology of the category of X-schemes endowed with topology gen-
erated by locally finitely presented faithfully flat coverings (see [Sta26, 03P2]). This seems the best
result in general. But if A satisfies some extra condition (such as perfect or perfectoid), could we
obtain a better cohomological descent result?

3.a. h, v and arc topologies.

Definition 3.1. A wvaluation ring is a local domain V' such that for any x,y € V, either x divides y
or y divides x. An extension of valuation rings is an injective local (or equivalently, faithfully flat,
see [He24b, 3.1]) homomorphism V' — W of valuation rings.

We refer to [Sta26, 00I8] for some basic properties of valuation rings, and to [Bou06a] for a
systematic development. We gather some basic properties here:

Proposition 3.2. Let V' be a valuation ring with fraction field K.

(1) The quotient K*/V* is a totally ordered abelian group with respect to divisibility relation.

(2) The quotient map v: K> — K*/V* is a valuation map, i.e., v(1) =0, v(zy) = v(z) +v(y),
v(z +y) > min(v(z),v(y)) for any x,y € K*.

(3) All the ideals of V' form a chain by inclusions.

(4) The dimension of V is < 1 if and only if the value group K* /V* identifies with an ordered
subgroup of R.

(5) V is a discrete valuation ring if and only if the value group K> /V* is isomorphic to Z.

Proof. (1) is proved in [Bou0O6a, VI, §1.2, Théoréme 1.(d)], see also [Sta26, 00ID].
(2) follows immediately from (1), see also [Sta26, 00IF].
(3) is proved in [Bou06a, VI, §1.2, Théoréme 1.(e)].
(4) is proved in [Bou06a, VI, §4.5, Proposition 7].
(5) is proved in [Bou0O6a, VI, §3.6, Proposition 9]. O

Definition 3.3. A ring homomorphism A — B is called
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(1) a wv-covering if for any valuation ring V with a homomorphism A — V| there exists an
extension of valuation rings V' — W and a commutative diagram of rings (see [Sta26, 0ETN])

(3.3.1) B——>W

]

A——=V

(2) an (resp. d-complete (where d € A)) arc-covering if the same condition in (1) holds for every
(resp. d-complete) valuation ring V' over A with dimension < 1 (see [BM21, 1.2] or [CS24,
2.2.1)).

(3) an h-covering if it is a v-covering of finite presentation (see [Sta26, OETS]).

These different types of coverings endow the category of schemes Sch with h, v and arc topologies
(see [He24a, 3.3]). It follows directly from the definition that h-topology is coarser than v-topology,
and the latter is coarser than arc-topology. To get familiar with these topologies, we include the
following result about h-topology although we will not make use of it.

Proposition 3.4 ([Sta26, OETK, OETU]). The h-topology on Sch is generated by locally finitely
presented faithfully flat coverings and finitely presented proper surjective coverings.

Example 3.5 (Canonical v-covering). For any ring A, consider the set ¥ = {V} of all the valuation
rings V' C Frac(V) = k(x) of all the residue fields k(z) of A (where x € Spec(A4)). Notice that
any homomorphism from A to a valuation ring W must factors through a unique V' € ¥ such that
the induced morphism V' — W is an extension of valuation rings (indeed let x be the image of
Spec(Frac(W)) — X then V = k(z) N W, see [He24b, 3.1]). This shows that A — [[, V is a v-
covering. We remark that every connected component of [[, V' (endowed with the reduced closed
subscheme structure) is the spectrum of a valuation ring by [BS17, 6.2].

Moreover, let V be an algebraic valuation extension of V' with algebraically closed fraction field.
Then, A — [], V is still a v-covering and every connected component of |§ % V is the spectrum of a
valuation ring with algebraically closed fraction field.

Let #<! be the subset of ¥ consisting of valuation rings of dimension < 1. Ther/l\, the same

argument as above implies that A — [[, <1 V is an arc covering. Fixing d € A, let V be the d-
completion of V. Weseethat V =0ifd € V™ and V — V is an extension of valuation rings otherwise
([BouO6a, VI, §5.3, Proposition 5]). In particular, A — [], <. V is a d-complete arc covering (by
taking d-completion of an arc covering). Note that the fraction field of V is still algebraically closed
([BGR84, §3.4.1, Proposition 3]). However, we don’t know if every connected component of [, <, V
is the spectrum of a valuation ring of dimension < 1.

3.b. Cohomological descent of perfect [F,-algebras in arc topology. For any F,-algebra A,
we denote by

(3.5.1) Apert = C(F)thnA = colim(A frob 4 Frob 4 Frob . )

the initial perfect A-algebra (i.e., any homomorphism from A to a perfect Fp-algebra B factors
uniquely through the perfect algebra Aperr). We should distinguish it from the perfect algebra AP =

1.&nFrob A

Theorem 3.6 (Gabber, see [BST17, 3.3]). For any h-covering of Fp-algebras A — B, the Cech
complex

(3.6.1) 0 — Apert — Bpert — (B ®4 B)pert — (B ®a B®4 B)pert — - -
is exact. In particular, if A and B are both perfect, then the Cech complex
(3.6.2) 0>A—-B—>B®,B—>B,B®s4B—---
s exact.
Let’s firstly look at two essential examples on h-descent of perfect F,-algebras.

Example 3.7 ([Sta26, 0EVK]). Let A be an Fp-algebra with f € A and a finitely generated ideal
J C A such that f"J = 0 for some r € N. Then, in the h-topology, the scheme X = Spec(A4) is
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covered by two closed subschemes Z = Spec(A/fA) and X’ = Spec(A/J) whose scheme theoretic
intersection is E = Spec(A/fA+ J).

(3.7.1) E =Spec(A/fA+ J) —— Spec(A/J) = X'

| |

Z = Spec(A/fA) ———— Spec(A) = X
Taking B = A/fA x A/J, we claim that the alternating Cech complex (cf. (3.6.1))

(3.7.2) 0 — Apert 5 (A/F Dpert © (A gt > (A/FA+ ) pess — 0

is exact. Since filtered colimit preserves surjection, 7y is surjective. It remains to show that « :
Apert — Ker(B). To be more precise, for any filtered colimit M = colim, ey M, of abelian groups,
we denote by ¢, : M, — M the canonical map. We take ¢,(x,y) € (A/fA)pert ® (A/J)pert =
colimpyon, A/fA x A/J, where z € A/fA and y € A/J. We take some liftings of z,y in A and
denote them still by z,y. The condition v(¢,(x,y)) = 0 means that Frob™(x) — Frob™(y) = fz+g¢
for some m € N, z € A and g € J. We take a = Frob™(z) — fz = Frob™(y) + g. Then, we see
that ¢, (z,y) = dnim(Frob™(z), Frob™(y)) = a(dnim(a)), ie., a 1 Aperr — Ker(B3) is surjective.
Moreover, if there is b € A and [ € N such that a(¢;(b)) = én(z,y), then after applying Frobenius
to a and b, we may assume that a = b = Frob"(z) mod fA and a = b = Frob*(y) mod J for
some k € N. Since f"J = 0, we have (a —b)" € (fANJ)" = 0 so that Frob"(a) = Frob"(b), i.e.,
ot Aperf 5 Ker(f3) is injective.

Example 3.8 ([Sta26, 0EVJ]). Let A be an Fj-algebra with fi, f € A. Then, in the h-topology,

the scheme X = Spec(A) is covered by the closed subscheme Z = Spec(A/(f1, f2)) and the projective
A-scheme X' = Proj(A[T1,T2]/(T1 fo — To f1)) whose fibred product is E = Proj(A/(f1, f2)[T1, T2]).

(381) E = PI‘Oj(A/(fl, fg)[Tl,TQ]) —— PI‘Oj(A[Tl,TQ]/(T1f2 — T2f1)) = X/
Z = Spec(A/(f1. f)) Spec(A) = X

We claim that
(1) HO(E, OE) = RF(E7OE) and HO(XI,OX/) = RF(X/7OX/), that
(2) H%(Z,0z) — H°(E,Og) and H°(X,0x) — H°(X',Ox) is surjective with square-zero
kernel, and that
(3) the sequence

(3.8.2) 0 — Apert — HY(Z,02)pert @ H* (X', Ox)pert — HY(E,Op)pert — 0

is exact.

It is clear that (3) follows immediately from (2).

Since E = PL, we get A/(f1,f2) = HY(Z,0z) = H°(E,Op) = RI'(E,Og) by the standard
calculation of cohomology of projective spaces ([Sta26, 01XT]).

Consider the universal case where A = Z[f1, f2] is a polynomial algebra over Z with variables f;
and fa. Then, T1fo —Tofi1 € HO(IP%(,OP&(U) = (A[T1,T3]):1 is a degree-1 homogeneous nonzero
divisor of A[T1,T5]. Thus, we have an exact sequence

(3.8.3) 0 —— Opy (—1) ~LBI 0, Ox: 0.

Combining the associated long exact sequence of cohomology groups with the standard calculation
of cohomology of projective spaces ([Sta26, 01XT]), we get A = H°(X,0x) = H(X',O0x/) =
RI(X', Ox/).

For general A, consider the base change along Z[f1, f2] — A. Then, the base change property for
the top-degree cohomology implies (1) and (2) except for the “square-zero” property of the kernel
(see [Sta26, OEV]] for a detailed proof). To complete the proof, it remains to show that the kernel of

(3.84) A — AIX]/(f2 = hX) & AY]/(f2Y = f1)

is square-zero, since the two principal open subsets associated with A[X] — A[T’ 1 Toryy, X —
T5/Ty and A[Y] = A[T1, To)(1y), Y + T1/T5 cover Pk. Let a and b be two elements of the kernel of
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(3.8.4). Then, we can write

(3.8.5) a=(fa— fiX)(ao+a1 X +---+a, X")

(3.8.6) b= (foY — fi)(bo + 1Y +-- -+ b,Y").

We see that

(3-&7) a = faag, fiag = faa1, -+, fian_1 = foan, fia, =0,
(3.8.8) b= fibo, fobo = fib1, -+, fobp—1 = fibn, fob, =0,

and thus

(3.8.9) ab = fifraobo = f1faa1by = -+ = fifoan_1bp—1 = f1f2anbn =0,

which completes the proof.

Proof ideas of 3.6. In fact, by some abstract formalism (”decomposing h-coverings into almost blowups”),

we reduce to 3.7 and 3.8. See [Sta26, 0OEWU] for a detailed proof. O
Corollary 3.9 ([BM21, 1.9]). For any arc-covering of F,-algebras A — B, the Cech complex
(3.9.1) 0— Aperf — Bperf — (B XA B)perf — (B QR4 B®a B)perf —

15 exact.

Proof ideas of 3.9. The h-descent of perfect algebras implies the v-descent by a limit argument (see
[BS17, 4.1]). Then, the arc-descent follows from by decomposing a valuation rings into arcs (see
[BM21, 1.7]). We also refer to [He24a, 4.10] for a detailed proof. O

Remark 3.10. Let O be the sheafification of the presheaf OP™ on Sch sending a scheme X to I'( X, Ox)
in the arc topology. Then, for any affine F)-scheme X = Spec(R), we have

(3.10.1) Rpert = RTare (X, O).
Indeed, 3.9 implies that the presheaf Oggff = colimpyop OP™ : X — I'(X, Ox)pert is a sheaf in the arc-

topology over Sch g,. Moreover, since perfect affine F)-schemes form a topological base of (Sch,x ).
(and thus of (Sch,x )arc) by 3.5, we have O — colimprob O = Opert = ngff over F),. Then, by the
relation between Cech cohomology and cohomology, 3.9 implies that HZ (X, 0) = HZ (X, Opeee) =0
for any ¢ # 0 ([Sta26, 03F9]).

3.c. Tilting correspondence of perfectoid valuation rings.

Lemma 3.11. Let S be a perfectoid ring with tilt S° = @Frob S/pS. Then, S is a valuation ring if

and only if S° is a valuation ring. In this case, there is a canonical isomorphism of their value groups

(3.11.1) Frac(S”)* /(S°)* = Frac(S)*/S>

induced by the composition (=)' : S° 1, W(S) s

Proof. Suppose firstly that S is a valuation ring. Since S is p-complete (2.34), the canonical projection
I'&HFrob S — @Fmb S/pS is a multiplicative bijection by 2.20. In particular, we see that S” is a domain

and for any z,y € S°, either = divides y or y divides x. Indeed, if we denote by (--- ,z2,x1, %) and
(-++ ,y2,Y1,Y0) the corresponding elements of l'mFrolO S, as S is a valuation ring, we may assume that
there are infinitely many 7 € N such that z; divides y;. But the transition morphisms force that z;
divides y; for any 7 € N and thus z divides y. The same argument shows that S° is a domain.

On the other hand, let w be a strict pseudo-uniformizer of S. Since S” is w’-complete and
S/wS = 5°/w”S? is local (see 2.30), we see that S” is also local. Therefore, S° is a valuation ring by
definition 3.1.

Conversely, suppose that S° is a valuation ring. let @ be a strict pseudo-uniformizer of S. Since
S is w-complete and S/wS = S°/w”S” is local, we see that S is also local.

We claim that S is either w-torsion-free or S = S” (in the latter case, S is a valuation ring).
Indeed, if @” # 0 in the valuation ring S, then S[w™] = S°[(w”)>°] = 0 (2.33). Otherwise, if @’ = 0
in S°, then w = 0 as the image of [@’] = 0 by definition 2.29. As @ € pS*, we see that p = 0 in S
and thus S = S” by 2.38.

Then, we assume that S is w-torsion-free. For any nonzero element = € S, we can write z = w™/P.y
for some unique n € N such that y € S\ @!'/PS. Let 5 € S/wS be the image of y € S. Then,
y = 0([7]) + @ - z for some unique z € S, where 6 : W(S”) — S is the canonical surjection (see the
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proof of 2.21). Since S” is a valuation and 7 is nonzero in S /w”S” (actually nonzero in S° /(w”)/?S?),
we see that g divides @’ in S°. As w = 0([x’]) (see 2.30), we can write

(3.11.2) z=w"?.0([g]) - w, where w =1+ 0([’/7])z € S*.

This expression implies that S is a domain and for any z,z’ € S, either x divides z’ or x’ divides z.
Indeed, if we write 2’ = @™/ - §([y']) - w’ as above, then zz’ = 0 implies that 0([yy’]) = 0 as S is
w-torsion-free. Then, yy’ € w”S” which contradicts with the fact that 7,3y’ ¢ (w”)'/?S?. Moreover,
since = O([(=*)"/?7]) - w and ' = O([(”)™/Py’]) - w', we see that = divides 2’ or 2’ divides 2. This
also shows that S and S share the same value group. In conclusion, S is also a valuation ring. [

Remark 3.12. One can show further that Frac(S) is algebraically closed if and only if Frac(S”) is
algebraically closed (see [CS24, 2.1.9]).

Proposition 3.13. Let S be a perfectoid ring with tilt S° = @Frob S/pS and strict pseudo-
uniformizer w. Then, there is a canonical equivalence of categories

(3.13.1) {perfectoid valuation ring over S} {wb—complete perfect valuation ring over Sb}
ViV
Proof. 1t follows directly from 2.25 and 3.11. O

Corollary 3.14. Let R — S be a morphism of perfectoid rings, R® — S° the morphism of their
tilts, w a strict pseudo-uniformizer of R. Then, R — S is a w-complete arc covering if and only if
R® — S° is a w’-complete arc covering.

Proof. Suppose firstly that R” — S” is a w’-complete arc covering. Let R — V be a morphism

to a w-complete valuation ring V of dimension < 1. After replacing V by an algebraic valuation
extension, we may assume that the fraction field of V is algebraically closed .

If w=0inV, then S — V factors through S/w = S°/w”. Thus, there exists a valuation ring
extension V' — W with a morphism S’/w = S /w® — W lifting S/w = $°/w” — V.

~

T
(3.14.1) s’ S Jw 1474 S” ) <— S”
S S/w 1% St ) SP

\\_,._/

~

If w # 0 in V, then V is w-torsion-free and w-complete with algebraically closed fraction field.
Thus, V is perfectoid by 2.39 (note that w!/? e V). Then, V? is a w’-complete perfectoid valuation
ring over S* by 3.13. There exists a valuation ring extension V° — W with a morphism S” — W
lifting S® — V” by assumption. By tilting correspondence 2.25 and 3.13 again, W is a perfectoid
valuation ring with a commutative diagrams

(3.14.2) S — Wt W<—8"
S—V Vi S

Since the value group Frac(V)* /V* 2 Frac(V")* /(V")* is canonically embedded into Frac(W#)* /(W#)* =
Frac(W)* /W *. We see that V — W¥ is an extension of valuation rings (see [Bou06a, VI, §3.5, Corol-
laire]).

The converse part follows from a similar argument. O

Remark 3.15. A ring homomorphism R — S is a w-complete arc covering if and only if R —
S x R[1/w] is an arc covering. For the necessity, let R — V' be a morphism to a valuation ring V' of
dimension < 1. If V = V[1/w], then R — V lifts to R[1/w] — V. Otherwise, V — V is faithfully
flat (i.e., an extension of valuation rings) so that R — V lifts to S — W for some valuation extension
W of V. For the sufficiency, let R — V be a morphism to a nonzero w-complete valuation ring V of
dimension < 1 (so that the closed point of V' does not lie over R[1/w]). It lifts to S x R[1/w] = W
where W is a valuation ring extension of V. Then, the closed point of W does not lie over R[1/w] so
that S x R[l/w] — W factors through S — W.
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3.d. Cohomological descent of perfectoids in p-complete arc topology.

Theorem 3.16 ([BS22, 8.10]). Let R — S be a p-complete arc covering of perfectoid rings. Then,
the p-completed Cech complex

(3.16.1) 0—+R—S— SRS — SBRSBRS — - --

is exact.

Proof. Let w be a strict pseudo-uniformizer of R. Then, R” — S” x R’[1/w’] is an arc covering of
w’-complete perfect F,-algebras by 3.14 and 3.15. Thus, the Cech complex

(3.16.2) 0= R — S8 x R1/x"] = (8" x R’[1/°]) @p» (S* x R°[1/@”]) — - -

is exact by 3.9. As each term is a perfect F,-algebra (thus w’-torsion-bounded (2.16)), its derived
w’-completion coincides with the classical w’-completion (see [Sta26, 0BKG]). Hence, taking derived
w’-completion of the exact sequence (3.16.2), we obtain an exact sequence ([Sta26, 091V])

(3.16.3) 0o R =5 =50 = 0SS — - .
By universal p-deformation and dévissage, we see that
(3.16.4) 0— W(R) = W(S") = W(S@pS") = W(S’®ps S’ @pp S°) — -+
is still exact. Since a distinguished generator £ is a nonzero divisor of each term in the above exact
sequence by 2.19, modulo £ we still get an exact sequence (see 2.43)
(3.16.5) 0—+R—S— SRS — SRRSVRS — - .
d

Definition 3.17 (Perfectoidization). Let O be the sheafification of the presheaf OP™ on Sch sending
a scheme X to I'(X, Ox) in the p-complete arc topology. Then, for any ring S, we put

(3.17.1) Sperfd = RTp_arc(Spec(S), O) € D(S)
and call it the perfectoidization of S.
Lemma 3.18. If S is perfectoid, then S = Spertd-

Proof. Theorem 3.16 implies that the presheaf OP™ = colimpop OP*® : X — I'(X, Ox) is a sheaf in
the arc-topology over the opposite category Perfd‘;g of perfectoid S-algebras (note that the fibred
product in Perfd(/)g is given by the p-completed tensor product of perfectoid rings by 2.43). Moreover,
since Perfd'/)g forms a topological base of (Schg)p-arc by 3.5, 2.39 and 2.42, we have O = OP*°
over Perfd(/’g. Then, by the relation between Cech cohomology and cohomology, 3.16 implies that
HZ . .(Spec(S),0) = 0 for any ¢ # 0 ([Sta26, 03F9]). This shows that S = Sperfa- O

Lemma 3.19. Let R be a perfectoid ring, S an R-algebra. If Sperta is concentrated in degree 0 (i.e.,
H9(Sperta) = 0 for any q #0), then Sperta = H°(Sperta) is perfectoid.

Proof. We write Sy = H0<Sperfd). Let @ be a strict pseudo-uniformizer of R. Since Perfd?g forms
a topological base of (Schg)p-arc, 3.18 implies that

(3.19.1) 0—0"8 0 O/w?" O —0

is exact and that the Frobenius induces an isomorphism O/w!'/?O 5 O /w®. Taking cohomology at

S, the condition Sy = Sperta = RTp_arc(Spec(S), ©) implies that Sp/w'/P" Sy = RT'p_arc(Spec(S), O /= /P" O)
and that the Frobenius induces an isomorphism Sy /@w'/? Sy — Sy /wSy. We put O° = R]'LmFmb O/p0.
Then,

(3.19.2)
REparc(Spec(), 0°) = R lim R are (Spec(S), O/pO) = R lim So /@S, = lim So/wSy = S
Frob Frob Frob
where the first equality follows from [Sta26, 0D6K] and the third equality follows from the surjectivity
of the Frobenius on Sy/w@Sy ([Sta26, 07TKW]).

Consider the presheaf W (0O")Pre : Perfdc/)ll)_,L — Set sending a perfectoid R-algebra R’ to W (R").

By dévissage, we see that W (O")P™ is a sheaf with respect to the p-complete arc topology by 3.18
and moreover H9(Spec(R'), W(O°)P*) = 0 for any ¢ # 0. Let W(O°) be the sheafification of
W (O")Pre gver Sch,r. Then, one can check that W(O") = Rlim,_,0 W(O")/p"W (") and that
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0 — W(O")/p"'W(0") L W(O")/p"W(O") — O — 0 is exact by working over Perfd(;%.
Therefore, by a similar argument as in the first paragraph, we have

(3.19.3) RTp-are(Spec(S), W(O%)) = W(Sp).

Finally, let ¢ be a distinguished generator of Ker(W (R’) — R) and take cohomology of the exact
sequence

(3.19.4) 0 — W(O") -5 W) — 0 — 0,

which can be checked over Perfd‘;%. We obtain an exact sequence

(3.19.5) 0 — W(S5) -5 W(S5) — So — 0,

which shows that Sy is a perfectoid ring. O

Remark 3.20. For a general ring S, we don’t know if S = Sperqa could imply the perfectoidness of S
or not.

Remark 3.21. If we consider the category of p-adic formal schemes endowed with arc topology, then
Sperfd = Rl arc (Spf(S), ©), which coincides with Bhatt-Scholze’s original definition [BS22, 8.11].

Lemma 3.22. Let R be a ring. If the category of perfectoid R-algebras admits an initial object S,
then Rperea = S. In particular, if R is an Fp-algebra, then Rpertd = Rperf-

Proof. Firstly, we claim that the category of perfectoid ®'%S-algebras admits an initial object S.
Indeed, the multiplication map m : S ®pg --- ®r S — S defines S as a perfectoid ®%S-algebra. On
the other hand, for any perfectoid ®%S-algebra S’, the universal property of S implies that there
exists a unique morphism f : S — S’ fitting into the following commutative diagram

(3.22.1) S@p--@pS —=9
L?LT Tf
R—"—=5&.

Since the morphisms S — S®pg---®r S sending S to the i-th component with the rest coordinates to
be 1 also induces a morphism S — S’ (by composing with &) making the diagram commutative, the
uniqueness of f implies that a(z1 ® - z,,) = f(x1) - f(2n) = f(m(x1 ® ---2,)). Hence, a factors
uniquely through m : S ®g -+ ®r S — S, which verifies the claim.

Then, we claim that R — S is a p-complete arc covering. Indeed, for any morphism R — V to a
p-complete valuation ring of dimension < 1, we may assume that the fraction field of V is algebraically
closed after extension. Thus, V is a perfectoid ring by 2.39 so that R — V factors uniquely through
S by assumption.

Now we prove by induction that H?(Rpera) = S and HY(Rpera) = 0 for any ¢ > 0. Notice that
([Sta26, 03AZ])

do
(3'22'2) Rperta = TOt(Sperfd ? (S ®R S)perfd =1 )

Since Sperta = S is the initial object of the category of perfectoid R-algebras, we see that dy = dy, i.e.,
H°Rperta) = S. Combining with our first claim, we get HO((S ®g -+ ®g S)perta) = S. This implies
that H'(Rperta) = H'(S = HY((S®RS)perta) = HO((S@rS®RS)perta)) = H' (S BN IELR S)=0.
Combining with our first claim again, we get H'((S ®g -+ ®r S)perta) = 0. This implies that
H2(Rperfd) = Hl(S — HO((S®RS)perfd) — HO((S®RS®RS)perfd) — HO((S®RS®RS®RS)perfd)) =
H?(S Oy g g 0, S) = 0. Thus, we can get Rpertq = S by induction.

The “in particular” part follows from 2.38 (or directly from 3.10). O


https://stacks.math.columbia.edu/tag/03AZ
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4. ALMOST PURITY THEOREM

4.a. The ideas. Recall that Tate [Tat67] showed that for any finite field extension L of Q,({p), its
valuation ring Oy, is almost unramified over Zy[(p] (see 1.4).

(4.0.1) ) P —C

finite almost unramified

QP(CP”) -~ Zp[Cp‘”]

Qp(Cp) =— Zp[Gp)

Qp Z

p
Later, Faltings [Falé@, Fal02] extended Tate’s result to smooth varieties. More precisely, consider the
smooth Zy-algebra Z,[T1,...,Ty]. After adding p-power roots of the local coordinates, we consider

a finite étale @p [Tll/pm, e 7le/pm]—algebra R[1/p]. Faltings proved that the integral closure R of
Zp[Tll/pw,. . ,T;/pw] in R[1/p] is almost finite étale.

(4.0.2) R[1/p] R

finite étale almost finite étale

ey 1/p>° 1/p> 72 1/p>° 1/p>
Q" . T T T

-~ 1 1 = 1 1
Q7. Ty ~——TZ, [T} 7,... TP

Qp[Tla"'aTd] %ZP[TM""TCI]

These results are known as almost purity theorem nowadays, following the perfectoidness of Z,[(pe- ]

and ZP[Tl1 /» W,...,T; /p oo], whose proofs in the literature are all very profound and technical. For
instance, Tate’s proof makes use of local class field theory and higher ramification groups, which are
specialized techniques tied to the discrete valuation structures; Faltings’ original proof is even more
intricate and I regret being unable to give a concise summary of it. One of the fundamental difficulty
is that we don’t know the precise structure of “integral closures”. Indeed, we are able to compute the
integral closures in some special cases, e.g. Zy[¢p] and Zy[T} LN ,T;/ b oc]. But almost purity
theorem requires a deeper understanding of integral closures in the general case. We will see how this
can be done through the proof.

A trivial but essential case where we are able to compute the integral closure is that the integral
closure of a p-torsion-free normal ring A in the A[1/p]-algebra []}_; A[1/p] is simply [];_, A, since
geometrically Spec([];—, A[1/p]) is just the disjoint union of n copies of Spec(A[1/p]).

(4.0.3) [To, Alt/p) =—1T-, A
finite étaIeT Tﬁnite étale

AlL/pl A
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In general, we would like to reduce to this trivial case but not every finite Galois A[1/p]-algebra splits.
The idea is that if there exists a faithfully flat covering of perfectoid rings A — B such that B is
absolutely integrally closed (i.e., any monic polynomial has a root), then we may use faithfully flat
descent to reduce to the trivial case. We are thus led to establish the following variant of André’s
flatness theorem.

Theorem 4.1. Let A be a perfectoid ring. Then, there exists a perfectoid A-algebra B such that

(1) B is absolutely integrally closed (i.e., any monic polynomial has a root) and
(2) A — B is p-completely faithfully flat (i.e., A/p™A — B/p™B is faithfully flat for any n € N).

André’s flatness theorem was originally used to prove the direct summand conjecture [And18b,
And18a] (see [Bhal8a, 1.5]). It turns out to be a crucial feature of perfectoids and there appear many
variants and many proofs. Especially, a conceptual proof is given in [BS22, 7.14] using prismatic
cohomology. But in this lecture series, we adopt a constructive proof given in [CS24, 2.3.4] and we
will see how the structures of integral closures are understood.

4.b. Construct a perfectoid covering by adding p-power roots. The key to André’s flatness
theorem is that we need to add roots of every monic polynomial while keeping perfectoidness and
flatness.

Let P € A[T] be a monic polynomial. To add a root of P, we need to consider A — A[T]/(P).
To get a perfectoid, we may consider A — A[T]/(P) — A(T'/?”)/(P) as in 2.37. However, although
A(TY/P™Y is perfectoid, its quotient A(T/P™)/(P) isn’t. To make the Frobenius surjective, we may
consider the subring A(Tl/pm>[p%] of A(T'/P™)[1/p] generated by P, %, B ... and its quotient

p
A(TYPYP L B
(4.1.1) L
(P 5.)
7p7p23"'

Note that the p-adic completion of (4.1.1) coincides with that of A(T/P™) [p%] (as the ideal (P, %, pﬁ, e

is p-divisible) and that the canonical map

o o P
(4.1.2) A(TYP™) ) (p) — A(TYP =1/p)
is surjective (which implies that the Frobenius is surjective on (4.1.1) modulo p).

Lemma 4.2 ([CS24, 2.1.8]). Let A be a ring such that there exists w € pA* with a compatible system
of p-power roots (w'/P" ) en (e.g., if A is perfectoid, see 2.29) and let At be the p-integral closure of
A in A[1/p] (cf. 2.41). Assume that Frob : A/pA — A/pA is surjective. Then, the p-adic completion

At s perfectoid.

Proof. After replacing A by its image in A[1/p], we may assume that A is p-torsion-free. We want to
eliminate the kernel of Frob : A/w!'/?PA — A/wA. As the Frobenius is surjective, for any a € A with
aP € wA, we take a sequence a = a1, as,as,... of elements of A such that afH_l = a,, mod wA for
any n > 1. Then, a?” = a? =0 mod wA so that a, /w'/?" € A*. Consider the A-subalgebra of A+
generated by such sequences (a,/@/P"),>1,

(4.2.1) Ay = Ala,/@'/?" | a € A with a? € wA, n>1] C AT,
Then, we see that a € @w!/PA; and Frob : A;/pA; — A;/pA; is still surjective. Repeating this
construction, we get A C Ay C Ay C --- C AT and let A, = Un21 A,, so that the Frobenius

induces a bijection Frob : Aoo/wl/pAOO s Ay /wAs. This shows that A, is p-integrally closed
(see [He24a, 5.21]) so that AT = A, and moreover A% is perfectoid by 2.35. O

Back to the construction of perfectoid cover by adding a root of P, we should consider

ATV [P E L
p’p
(P2, L) ’

T p’p

(4.2.2)

where (—)T means taking the p-integral closure in (—)[1/p]. The p-adic completion of the latter
coincides with that of A(TY?P™)[P, 2 L ' |+ which is perfectoid by (4.1.2) and 4.2. Then, it

;7 F’
remains to show that (4.2.2) is p-completely faithfully flat. For this, we need a refined analysis on

the structure of A<T1/p°°>[p%]+ rather than the inductive construction in 4.2.
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4.c. Structure of A(T"/P7)[Z]*.

m

Lemma 4.3. Let A be a ring with a nonzero divisor @ and let Q € A(TY/P™) = A[T'/P™ |\ (where
the completion is w-adic) be an element that is monic and non-constant in (A/wwA)[TY/?™], m € Nxy.
Then,

(4.3.1) ATYPT)[ ] 2 ATYPT) X/ (@™ X - Q)

wm

is w-completely faithfully flat over A.

Proof. Note that @™, @ form a regular sequence in A(T'/P”) ie., @™ is a nonzero divisor in
A(TY?™) and Q is a non-invertible nonzero divisor in (A/w™A)[T*/?™] (as Q is monic and non-
constant). Thus, the isomorphism (4.3.1) follows from [Sta26, 0BIQ).

Tosee Ajw™A — (A/p" A)[TY?7][X]/(@™X —Q) is faithfully flat, we take a lifting ¢, € A[TY/?™]
of Q. In particular, g, is monic and non-constant in (A/wA)[T'/?”] so that @w™X — g, forms an
A-regular sequence in A[T'/P7][X], i.e., for any residue field x of A, @™X — g, is a non-invertible
nonzero divisor in x[T*/P7][X]. This implies that A[T'/?”|[X]/(@™X — q,) is faithfully flat over A
by [Sta26, 046Z] and a colimit argument. Modulo w", we see that (A/w™A)[TY/?7][X]/(z™X — Q)
is faithfully flat over A/w™A. O

Lemma 4.4. Let A be a p-torsion-free perfectoid ring with a strict pseudo-uniformizer w and let
Q € A(TY?™) be an element that is monic and non-constant in (A/wA)[TY?P™], m € Nsg. If Q
admits a compatible system of p-power roots (QY/P"),en in A(TYP™), then

Q Ql/p"" ]

(4.4.1) AT =A@
is p-completely faithfully flat over A whose p-adic completion is perfectoid.

pm om/p>

Proof. Applying 4.3 (which holds for p-power roots of @), we see that
Ql/p"

wom/p"

(4.4.2) A<T1/p°c>[ = A<T1/p°°>[Xl/p"]/(wm/p"Xl/p" — Ql/p")

is p-completely faithfully flat over A. After taking filtered colimit over n € N, consider the exact
sequences

(4.4.3)
oo oo oo oo oo oo 1/p™°
0 — (w™/P™ X1/P™ — QUPT) /P — s A(TVPT)[XPT) Jit /P —— A(T/P >[£m/poo]/w1/”
l Frob Frob \L Frob
Ql/pOo

0 —— (@™P"XVPT — QP jw —— ATV )XV foo ——— AT ) [ ] [

It is clear that the left vertical arrow is surjective and the middle vertical arrow is bijective (2.32).
o /P>
Thus, the right vertical arrow is bijective by snake lemma. In particular, A(T'/? )[g; /I;oo] is p-

integrally closed and thus equal to A(T"/ px>[p%}+ (see [He24a, 5.21]), whose p-adic completion is
perfectoid by 2.35. O

4.d. Approximation lemma. To reduce to the special case 4.4, we need the following technical
lemma, which captures a crucial feature of perfectoids: any element “approximately admits” a com-
patible system of p-power roots in view of valuation rings. Such an approximation lemma appears in
Scholze’s tilting correspondence of étale/analytic sites of perfectoid spaces, which might explain the
underlying geometric intuition, see [Sch12, 6.7].

Proposition 4.5 (Approximation lemma, [CS24, 2.3.1]). Let A be a perfectoid ring with a strict
pseudo-uniformizer w. For any a € A and m € N, there exists b € A® with b* € A (which admits a
compatible system of p-power roots, see (2.28.2)) such that for any valuation ring V' over A extension
of Zyp, we have

(4.5.1) la = by < |plv - max(|b*|v, [p™"|v),
where | |y is an associated absolute value on V.

Corollary 4.6. With the notation in 4.5, we have Al:p?n]+ = z‘l[;’,nn]+ (p-integral closures).



https://stacks.math.columbia.edu/tag/0BIQ
https://stacks.math.columbia.edu/tag/046Z
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Proof. From |57 — ;’—,i|v < max(|£’—,i|v, 1), we see that |5z |y < 1 if and only if ‘%W < 1. Therefore,
a b
ﬁ prn p’"’L
1. This shows that pim — ;—m is topologically nilpotent with respect to the p-adic topology (see [CS24,
2.3.2] for a detailed proof). In particular, (57 — sz” »oe PA[E]IN pA[;—iL], which implies that

L€ A[Z)T and B € A[4]F) O

for any valuation ring V over A[%:] (or equivalently over A[}f’—i]) extension of Z,,, we have | Iy <

Proof of 4.5. After replacing V' by an algebraic extension together with a p-adic completion, we may
assume that V is perfectoid. Then, V” is a valuation ring with an absolute value given by b — b |y
(see 3.11). Tt induces a norm on W (A®) by associating each =[] + p[z1] + - -+ with

(461) ‘(E|sup = sup |:L'i|V" = sup |"E§‘V
i>0 i>0

Indeed, one can use the arithmetic of Witt rings 2.13 to check that |z|syp = 0 if and only if z = 0,
that |2 +ylsup < max(|2|sup, [Ylsup) and that |zy|sup < []sup|Y|sup- In the following, we denote T = xg
and &’ = [x1] + p[r2] + - --. Note that

(462) 10 = @)l = [pal +p*ah 4o lv <suplp'ly - [ailv < [plv - o = [@lloup.

We need to find a lifting = € W(A”) of a € A with T € A® satisfying
(4.6.3) la — |y = [0(z — [)|v < [plv - max([F#|v, [p"|v).

At first, we fix a lifting zo = [To] + prh € W(A®) of a € A and a distinguished element & = [£] +p€’ €
Ker( : W(A®) — A) (where ¢ € W(A")*). Then, we construct inductively another liftings for
n €N,

(4.6.4) Tpy1 =2y — &),
= [T +pay, — (€€ +p)as,
= [Tn] — €] e,
Note that
(4.6.5) |Znt1 = [Tallsup < 1E]lsup + 1€ sup - 120 lsup < @y - 1+ [Znlsup = [Plv - |Znlsup-

Now, we take 0 < N < oo the least element such that |[[Tx]|sup > [PV F!|y. Then, repeatedly using
(4.6.5), we get

(4.6.6) lplv = [[Zo]lsup < [Tolsup < [1]v,
|p2|V Z |[T1]|sup § |x1|sup < |p|Va

|p3|V 2 |[x72]|sup S |x2|sup S |p2|V7

‘pN|V 2 HxN—l]'sup S |xN—1|sup S |pN_1‘V7

Py < |ZN]lsup < |28 lsup < [0V v
Applying (4.6.5) once more, we get |Zn+1|sup = |[ZN]|sup € (IPV v, [PV |v]. Moreover, as |[Tni1 —
leb - ‘xNJrl - [ﬁ“vb S |xN+1 - [ﬁ”sup é |p|V : |xN|Sup S |pN+1|Va we also get HmN+1]|sup -
[N ]lsup € (IPV* v, [pY]v]. Thus,

(4.6.7) Py < |EnTallsup = [onsalsap < PV v

Repeating this argument, we get

(4.6.8) Py < Evsallsu = lzvelsu < PV v,

Py < |ENsllsup = v sslsup < PV,

In conclusion, if m < N, then we have |z,, — [T]lsup < [p™|v; and if m > N, then we have
‘xm - [ﬁ”sup < Hmﬂsup = |ﬁﬁ|v Thus,

(4.6.9) 0(zm — @a)lv < v - [2m — Fallsup < ply - max((zf|v, [p™|v)-
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Corollary 4.7. Let A be a p-torsion-free perfectoid ring, P € A[T] a monic polynomial of positive
degree, m € N. Then, A(Tl/pmﬂ]%fr is p-completely faithfully flat over A whose p-adic completion
is perfectoid. In particular,
- ATVPNETE AP E BT
-l P = P P
(p?) (P’vaﬁa"')

is p-completely faithfully flat over A whose p-adic completion is perfectoid.

Proof. By approximation lemma 4.5 and its corollary 4.6, there exists Q € A(T'/P”) admitting a
compatible system of p-power roots such that A(Tl/pwﬂ]%]*‘ = A(Tl/pmﬂ%]"’. Moreover, the
proof of 4.6 also shows that (P — Q)P" € pA(T/P™) (taking m = 0) so that P — Q € w'/?" A(T'/?™)
by perfectoidness. In particular, ) is monic and non-constant. Thus, the first assertion follows from

4.4. The “in particular” part follows from taking filtered colimit over m € N and the p-divisibility of
the ideal (p%). O

4.e. André’s flatness theorem.

Proof of 4.1. Firstly, since every perfectoid ring is a quotient of a p-torsion-free perfectoid ring ([CS24,
2.1.12]), we may assume that A is p-torsion-free. Then, we put

— A<T1/p°°>[%]+
_ p
(472) Al - ®P€A[T] monic (p%) ’

which is a perfectoid ring p-completely faithfully flat over A (and thus p-torsion-free) by 4.7 and the
arguments of 2.43. Notice that every monic A-polynomial has a root in A;.

Then, we proceed a transfinite recursion: for any ordinal a < Ny = w®, if it is a limit ordinal, i.e.,
a = Upeq b, then we put A, = (colimp<q Ap)”"; if it has a predecessor, i.e., a = b 4 1, then we put
Aq = (Ap)1 as in (4.7.2). By construction, A, is a perfectoid ring p-completely faithfully flat over A
and every monic Ap-polynomial splits for any ordinal b < a.

Finally, we take B = colimq<x, Aq. Then, every monic B-polynomial splits over B and A — B
is still p-completely faithfully flat. Since the well-ordered set of ordinals {a < W} is R;-filtered (see
[Lur09, 5.3.1.7]), the filtered colimit over it commutes with Nj-small limits ([Lur09, 5.3.3.3]). In
particular, B is still p-adically complete and thus perfectoid by 2.35. O

4.f. Almost purity theorem.

Theorem 4.8 (Almost purity, [Sch12, 7.9]). Let R be a perfectoid ring, S an integral R-algebra such
that

(1) S[1/p] is finite étale over R[1/p] and

(2) S is integrally closed in S[1/p].
Then, S is a perfectoid ring almost finite étale over R.

Proof ideas of 4.8. Step 1: Apply André’s flatness theorem. By 4.1, there exists an absolutely
integrally closed and p-completely faithfully flat perfectoid R-algebra R’. As R'[1/p] is also absolutely
integrally closed, the finite étale R'[1/p]-algebra R'[1/p]®pg1 /) S[1/p] is isomorphic to a finite product
of copies of R'[1/p] Zariski locally on Spec(R'[1/p]) (see [Sta26, 0DCS, 04GG]). For simplicity, we
focus on the special case where (for the general case, we refer to [BS22, 10.9])

(4.8.1) R(1/p) @ S /p) = [ R(1/2]

Note that R’ ®p S is integral over R'. Its integral closure S” in R'[1/p] @1/ S[1/p) = [1;—; R'[1/p]
is isomorphic to the integral closure of [[;_, R" in [[;_, R'[1/p]. Since [],_, R’ is perfectoid, we see
that S is perfectoid and [];_, R’ — S’ is an almost isomorphism by 2.41 and its proof.

Step 2: Show that perfectoidization is discrete and almost finite étale over R’. As
R ®r S — 5" x (R ®r S/p) is an arc-covering, there is a distinguished triangle in the derived
category (see [Sta26, 0OEVY, 0EVD])

(482) (R/ ®R S)perfd — S;)erfd S5 (R/ QR S/p)perfd — (S,/p)perfd — (R, QR S)perfd[]-]-

Note that (R'®@rS/p)pertd = (R’ @rS/D)pert and (S”/p)perta = (S”/P)pert as the underlying rings are in
characteristic p (see 3.22). Moreover, as S’ is perfectoid, S, 1y = S (3.18) and (S"/p)pert = S /P
(2.32) where w is a strict pseudo-uniformizer of R. In particular, we see that

(4.8.3) (R' @R S)perta = Ker(S' & (R ®r S/p)pers = ' /w77,


https://stacks.math.columbia.edu/tag/0DCS
https://stacks.math.columbia.edu/tag/04GG
https://stacks.math.columbia.edu/tag/0EVY
https://stacks.math.columbia.edu/tag/0EVD
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which is almost isomorphic to S’, as (R’ ®g S/p)perr and S’ Jw'/P™ are both almost zero (i.e., killed
by @!/P™). This shows that (R’ @& S)perta is concentrated in degree 0 and thus is a perfectoid ring
by 3.19. Moreover, it is almost isomorphic to []/_, R’ and thus almost finite étale over R’ of rank r.

Step 3: Base change of perfectoidization. Recall that a simplicial covering S, of S by
perfectoid S-algebras induces

(484) Sperfd = (SO — 81— 82— - )
Applying derived base change along R — R’ and derived p-completion, we obtain
(48.5) (R ©} Sperta)” = (R © 50)" = (R ©% $1)" = (R @ 52)" = ---).
Notice that
(4.86) (R @f S)" = R lim (R’ % S;) ®% Z/p"
=R 1Lm R /p" ®I;3/pn S;/p"  (as R', R, S; have bounded p™-torsion )
=R 1Lm R'/p" @ppn Si/p"  (as R — R’ is p-completely flat)
= R'®gS; (the classical p-completion)
= (R/ Xr Sz')perfd (by 2.43).
Hence, we see that (one can also argue by [BS22, 8.13])
(487) (R/ ®% Sperfd)/\ - ((RI ®R SO)perfd — (RI ®R Sl)perfd — (Rl ®R S2)perfd — )
= (R' ®g S)perfa-

Step 4: Descend the properties of perfectoidization. We claim that Spertq is a perfectoid
ring almost finite étale over R of rank r. Since we have shown that (R’ ®g S)pera is a perfectoid
ring, denoted by S”, we see that

(4.8.8) (Speria @ R/P") ©@pjpn R /p" = (R' ®F Sperra) @ R /p" = 5" @} R [p"

is connective (i.e., concentrated in non-positive degrees). Moreover, as R/p" — R’/p™ is faithfully
flat, we see that Sperta @5 R/p™ is connective and HO(Sperta @% R/p™) ®p/pn R'/p" = S” /p™ so that
there exists a p-complete R-module M such that H°(Sperta @% R/p™) = M/p™M ([Sta26, 09B8]).
Therefore, the coconnective complex Spertq = R 1imy, o0 Spertd ®I§ R/p™ is also connective (see [Sta26,
07KW]) so that it is concentrated in degree 0 and thus a perfectoid ring by 3.19. Moreover, we see
that Sperta/p™ = H°(Sperta ®% R/p™) is almost finite étale over R/p™ R of rank r by faithfully flat
descent, as S”/p™ is almost finite étale over R'/p™ R’ of rank r. Thus, the p-complete ring Sperfq is
also almost finite étale over R of rank r by deformation ([GR03, 5.3.27]).

Step 5: Show that perfectoidization coincides with integral closure by valuative de-
tection. Finally, we need to show that S = Sperrq. It suffices to see that S[1/p] = Sperta[l/p] and
Sperfa is integral over S (and then the conclusion follows from that S is integrally closed). For the
first, notice that Sperfa[1/p] and S[1/p] are both finite étale over R[1/p] of rank r. Thus, Sperta[1/p]
is finite étale over S[1/p] of rank 1 and thus S[1/p] = Sperta[1/p]. For the latter, we need the almost
purity theorem for valuation rings ([GR03, 6.6.16]). This implies that for any residue field L of S[1/p]
(which is a finite extension of a residue field K of R[1/p]), any valuation ring W of L extension of Z,
(which is an extension of the valuation ring V' = K N W, where the latter is pre-perfectoid as R is so,
see [He24b, 10.19]) is pre-perfectoid (i.e., its p-adic completion W is perfectoid and thus over Sperfd)-
In other words, for any p-complete valuation ring U extension of Z,,, any Z,-homomorphism S — U
factors through Spera. This shows that Speria is integral over S ([Hub93, 3.3.(i)], see also the proof
of [Sta26, 090P]): indeed, suppose that @ € Sperta € S[1/p] is not integral over S, then z ¢ S[1/z]
in S[1/pz]. This shows that 1/x is not a unit in S[1/x] and thus there exists a maximal ideal m of
S[1/x] containing 1/2. Then, we take a p-torsion-free p-complete valuation ring U dominating the
p-torsion-free local ring S[1/x]w ([EGA II, 7.1.4]). We see that 1/z lies in the maximal ideal of U so
that x € Spereg does not lies in U, which is a contradiction. O

5. GALoIS COHOMOLOGY OVER SMOOTH VARIETIES

Recall that for any ring R, we defined the perfectoidization of R as the cohomology in the p-
complete arc topology Rpertda = RIp-arc(Spec(R), O). Notably, if R is perfectoid, then R = Rperid
(3.18). Thus, the cohomology groups of Rperfa can be generally regarded as the distance from R to
perfectoids. In this section, we will discuss how we compute it when R is smooth following Faltings
[Fal88].
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5.a. Perfectoidization and Galois cohomology. Firstly, we show that perfectoidization can be
computed by Galois cohomology if R admits a good perfectoid tower.

Example 5.1. Consider R = Z,[T*!] and
(5.1.1) Ry =Z[T*"" = P Z, 1= §H Rr-17V
l/pm€Z[1/p] 0<i/pn<1

which is a faithfully flat cover of R. Moreover, it is easy to see that R..[1/p] is ind-finite étale over
R[1/p] and R (ind-smooth over R) is the integral closure of R in R[1/p] (so that we understand
the explicit structure of this special integral closure completely).

(5.1.2) Roo[1/p] < Ros
ind-finite étaleT Tintegral closure
R[l/p)<——R

Note that the Frobenius induces an isomorphism R, /pl/ PRy —+ Roo/pPRo and thus the p-adic
completion Ry is perfectoid (2.35).

The perfectoidization of R can be computed by the following Cech complex associated to the arc
covering R — R (see [Sta26, 03AZ)),

(513) Rperfd - ((Roo)perfd — (Roo XRr Roo)perfd — ) .

—

Thus, we have computed out the first term (Roo)perfd = Roo- To compute the second term, we firstly
introduce some notation:

(5.1.4) Koo = Q(TH/P™) <—Q,[T*'/77] = Asc = Roo[1/p] <— R

| | |

K, = Q,(T*/7") <——Q,[T*"/?"] = A, = Ry [1/p] R,
T finite GaloisT 1integral closure
K= @p(Tﬂ) @p[Til] = A= R[1/p] R

Note that K, is a finite Galois extension of K of Galois group Z/p"Z, whose generator o sends T/?P"
to CpnTl/ P" for some primitive p”-th root of unity (pn. By Galois theory, we have

(5.1.5) K, ok K, = ] K
Z/pZ

f@ge (fg,f0(9),.-.. fo”" (g))
As étale base change preserves normality ([Sta26, 03GV]), we have

(516) HZ/p"Z K’n, <~ HZ/})”Z An HZ/an Rn

| !

T finite GaloisT integral closure
K A R

and taking filtered colimit over n € N we obtain

(5.1.7) colimy, ey HZ/p"Z Ko <—— colimy,ey HZ/an Ao <— colimy,ey HZ/p"Z Ry

Tintegral closure

Roo ®r Roo.


https://stacks.math.columbia.edu/tag/03AZ
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Similar as the Step 2 in the proof of 4.8, there is a canonical almost isomorphism

(518) (Roo QR Roo)perfd — (COlim H Roo)perfd~
neN
Z/p"Z
Notice that the Frobenius induces an isomorphism colimpen []7/,n7 Roo /P 5 colim,, ey [12)pnz Roo/p-
Thus, the latter perfectoidization coincides with

. A 1s . T
(5.1.9) (cglelén H Ro)" = Tlggo cglelén R /P " Roo
Z/an Z/an

= lim col'g}n Map(Z/p"Z, R /D" Roo)

r—00 ne

= lim Cont(Z,, Rs/p"Rs)
r—00
= Cont(Z,, }/%;),
where Cont denotes the set of continuous maps and we endow Ro. /p" Roo (resp. ]/%—o\o ) with the discrete

(resp. p-adic) topology.
In general, one can check by hand that (5.1.3) is almost isomorphic to

(5.1.10) C8ont(Zp, Roo) = (Roo — Cont(Z,, Reo) — Cont(Z2, Rog) — ...)

cont

the complex of continuous non-homogeneous cochains of the profinite group Z, with values in ﬁo\o
([AGT16, 11.3.8]), where d : Roo — Cont(Z,, R ) sends z todz : 0 +— ox—z and d : Cont(Z,, Roo) —

Cont(Z2, Rso) sends f to df : (0,7) = of(r) — f(o7) 4+ f(0) and so on. Therefore, we obtain an
isomorphism between perfectoidization and the Galois cohomology complex in the derived category
of almost modules

(5.1.11) Rperta — RI(Zy, Ro) € D (R).
The same arguments prove the following proposition.

Proposition 5.2 (Faltings, [Fal8g8]). Let R be an étale Z,[TE", ..., TF]-algebra and we define Ra
to be the tensor product fitting into the following pushout square

(5.2.1) T TEVP™ . TEPT ] — R’F
LT, .. T ———R.

Then, there is an isomorphism in the derived category of almost R-modules
(522) Rperfd = RF(ng EO\O) € Dal(R)7
where we identify Zg with the Galois group of the ind-étale homomorphism R[1/p] = Rso[1/p].
5.b. Galois cohomology computation. In fact, the basic theory of group cohomology enables us
to explicitly compute RF(Z;DI7 R). For simplicity, we only present the case where d = 1.
Proposition 5.3 ([AGT16, I1.3.25]). Let M be a p-complete abelian group endowed with a continuous
action of the profinite group Z,. Then, RT(Z,, M) = (M 71 M), where o is a topological generator
of Zp.
Example 5.4. Consider R = Z,[T*!] and
(5.4.1) R =Z[T*/"" = @ R-T"""=Re @ R-T""" =RoD.

0<l/pm<1 0<l/pm<1

Then, from 5.3 we obtain
(5.4.2) RI(Z,, Roo) = (R® D 7=} R® D).

Notice that ¢ — 1 acts as multiplication by Cll,n —lon R-TY?P". Thus, o —1: R — R is the zero map
and o —1:D — D is injective with cokernel killed by ¢, — 1. This shows that

(5.4.3) H(Z,,Reo) 2R, HY(Z,,R) = Ra® D/(c —1)D.
To obtain a cleaner result, we invert p on everything:
(5.4.4) H(Zy, Reo[1/p)) = R[1/p], H'(Zy, Rec[1/p)) = R[1/p).

The same arguments prove the following corollary.
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Corollary 5.5. With the notation in 5.2, for any ¢ € N, we have
a7d p_ ~ A n ®d
(5.5.1) HY(Zi,, Ro[1/p]) = /\ﬁwp] R[1/p]>7.
Notice that both sides actually admit interpretation independent on the chosen chart (5.2.1). For
simplicity, we focus on the case where Spec(R) is connected. Then, for the left we may consider
the “universal ind-étale covering” R[1/p] of R[1/p], that is, the integral closure in the maximal field
extension of the fraction field of R such that the integral closure is ind-étale over R[1/p]. Thus, the
Galois group Gr of R[1/p] of R[1/p] is actually the fundamental group of Spec(R[1/p]). Let R be

the integral closure of R in R[1/p]. Then, the left hand side is isomorphic to H%(Gg, R[1/p]) by

the same proof of 5.1. On the other hand, we have Q}%[l/p]/@ =~ R[1/p]®? and thus the right hand
P

side is isomorphic to the p-completion of the module of g-th differentials Q¢

RIL/5/T," Then, a natural

question arises as in 1.2,

Question 5.6. Is there a canonical isomorphism HY(Gg, R[1/p]) — ﬁ;]m/p]/@ (independent of the
P

chart (5.2.1)) fitting into the following commutative diagram?
d o ~ q o) ®d
JT T,

HUGr R /p)) ——= Q4

5.c. Faltings extension and canonical comparison. The question 5.6 has an affirmative answer:
for degree ¢ = 1, the canonical isomorphism is given by the following theorem; and for general degree,
it is given by the g-th wedge product of the canonical isomorphism in degree 1.

Theorem 5.7 (Faltings, see [Sch13a, 6.19], [AGT16, I1.10.3.5, 11.10.15] or [He25a, 8.9]). Let R be
a connected smooth Z,-algebra which admits an étale homomorphism f : Z,[TE!, . .. ,Tfl] — R.
Then, there exists a canonical G r-equivariant exact sequence (independent of f), called the Faltings
extension of R,

(5.7.1) 0 — R[l/p] — F — R[1/p] ®@r Q}%/zp(—l) —0
such that the long exact sequence associated by taking G g-invariants gives

~ o 0 = - =~
(5.7.2) 0 — R[1/p] = F¢" — R[1/p] ®@r Q7 (1) = H'(Gr, R[1/p)).

Proof ideas of 5.7. We follow the construction in [He25b, 9.36]. For simplicity, we assume that R is
a smooth Z,-algebra admitting an étale homomorphism f : Z,[T; fl, e ,Tdﬂ} — R (in general, it
descends to a smooth algebra over a finite extension of Z, and the following arguments still work
after slight modifications) and we consider its base change to Z, and @p:

(5.7.3) Ry bz
R@p RZp R
Q, Z, Zy
We claim that f induces a morphism of exact sequences
(5.7.4)
0 06 R —— (R[1/pl/R) & R[1/p|* — (R1/pl/R) & (R[1/p)/R)>! —0

| |

n 1 1 1
R&rQpy, —————> ), Q% r 0

where the vertical homomorphisms are almost isomorphisms induced by sending the i-th standard
base p~" - e; to dlog (yn if i = 0 and dlog T;/*" if 1 < < d.
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In fact, the first vertical arrow induced by f is an isomorphism since f is étale.
For the middle vertical arrow, we decompose Z;, — R into the tower Ly — Z — R. Then, we can
by the tower Z, — Z,[(p] — Z, (note that Z, is almost unramlﬁed over Zy[Cpoe]

by
R/Z,
the tower Z, — (Roo)zp — R (note that R is almost unramified over (ROO)ZP by almost purity). This
shall induce the part R[1/p]®.
Finally, we get the third vertical arrow by taking quotients. We refer to [He25b, 9.32] for a detailed
proof.
The claim implies the second row in (5.7.4) is almost exact. Applying RHom(Z/p"Z, —) (note that

compute QZ -z

by almost purity). This shall induce the part (R[1/p]/R). Similarly, we can also compute QL

Z/p™Z admits a projective resolution 0 — Z 27— Z/p"Z — 0), we get an almost exact sequence

(5.7.5) 0=R®0%, [p ]HQE/Z "] = QO 5P"] = R Qg /p" — O 7/2,/P" = 0-

Taking inverse limit over n € N, we obtain an almost exact sequence

1 7
(5.7.6) 0— nh—>HoloQR/Z [p"] — nh_}rr;oQR/R[ "]

— Ron Rz, — 0.

Note that there is a canonical almost isomorphism R(l) = ﬁ (dlog (pn)nez — limy o0 2 R/Z [p™]
by (5.7.4). Thus, inverting p and twist by ﬁ(—l), we get a canonical exact sequence

(5.7.7) 0 — R[1/p] — F — R[1/p| ©r gz (—1) — 0,

where F = (limy, 00 Q%/R[p"])[l/p](—l). Since we have an explicit coordinate-form (5.7.4) for this

construction, it is easy to check that the coboundary map associated to the G g-invariant part of this
exact sequence is an isomorphism (see the proof of [He25a, 8.7]). O

5.d. Hodge-Tate decomposition. Now, we can summarize Faltings’ computation of the perfec-
toidization of smooth algebras, which ultimately leads us to an affirmative answer of our initial
question (1.1.7), i.e., the Hodge-Tate decomposition for proper smooth p-adic varieties.

Theorem 5.8 (Faltings’ computation of Galois cohomology). For any smooth Z,-algebra R and any
q € 7, there is a canonical isomorphism

~4 I
(581) QR[I/p]/@p( q) — H (Rperfd>[1/p] p arc(SpeC( ) )[1/])]

Proof. Note that R locally admits an étale homomorphism from Zp [Tlﬂ, . ,Tdﬂ] and that each term
n (5.8.1) satisfies the Zariski descent (as Q RIL//T, R[1/p|®r Q‘;%/Z ). Thus, the conclusion follows
from the local case discussed in the previous two subsections. O

Theorem 5.9 (Faltings’ main comparison theorem, see [Sch13a, 5.1]). For any proper smooth Z,-

scheme X and any q € Z, there is a canonical isomorphism

(591) Hgt(X@ ,(C ) —> Hg arc(X7 O)[l/p]

Proof ideas of 5.9. Step 1: transfer the étale cohomology to p-complete arc cohomology.

In fact, for any Z,-scheme X, we have H{ (X5 . Z/p"Z) s H4,.(X,Z/p"Z). This can be checked
P

p-arc
by reducing X to valuation ring with algebraically closed fraction field (see [He24a, 3.27]).
Step 2: almost finiteness of étale cohomology when X is proper. Using the local Galois co-

homology computation, one can prove that HZ (X, O/p) is almost finitely generated over Oc, = Zy

p-arc

(see [Sch13a, 5.8]). Using some almost algebra lemma [Sch13a, 2.12], one can show that HZ, (X, 0")

p-arc

is almost isomorphic to (O% )®" (see [Sch13a, page 34]). In particular, H,..(X, O°[1/p’]) = (C})®"

p-arc

and HY, . .(X,0/p) = HL,..(X,0"/p’) is almost isomorphic to (O, /p)@’” = (O(bc /p’)®r.
Step 3: apply Artin-Schreier sequence 0 — F, — C’)b[l/p | " — Ob[l/p] — 0 in charac-
teristic p. We get H, . (X,F,) = HL, (X, O°[1/p’ ])Fmb U= ((Ch)®r)freb=1 = FPr. Therefore,

HZ,..(X,0c,/p) = (Oc,/p)®" is canonically almost isomorphic to HZ, .(X,O/p). The conclusion

p-arc p-arc
follows from devmsage and inverting p. O

Theorem 5.10 (Hodge-Tate decomposition). For any proper smooth Zp-scheme X and anyn € Z,
there is a canonical Gal(Qp/Qp)-equz’variant decomposition

(5.10.1) HE(Xe,.Cp) = P H'(Xe,, Dy, e, )(=i).
1+j=n
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Proof ideas of 5.10. Consider the morphism of ringed sites v : (Sch/x)p.arc — (Sch,x)zar- By 5.8,

we have R7v,O[1/p] = N pl(—j). The Cartan-Leray spectral sequence induces a convergent
X/Z.

Gal(Q,/Q,)-equivariant spectral sequence ([Sta26, 015N])

(5.10.2) (X, 8, 2 [1/p)(—)) = HE2(X, O1/p]) = HE (X, C,),

J

where the last equality follows from 5.9. As X is proper and 2 X/Z is coherent, the comparison
P

between formal geometry and algebraic geometry gives H, (X, ﬁi{ 1z )= H(X, QJX 1z )®Zp Oc, (see
[Abb10, 2.12.2]). Thus, we obtain a canonical Gal(Q,/Qp)-equivariant convergent spectral sequence
(5.10.3) H'(Xc,, Qg‘(% Je,)(=0) = Hif (Xc,, Cy).

By Tate’s computation [Tat67, §3.3] of Galois cohomology of C,, and its twists (see also 1.4 and 5.8),
one can check that the differential maps in the second page of the spectral sequence are zero and that
the filtration associated to the spectral sequence splits uniquely. O

Remark 5.11. Since Tate [Tat67] proposed the conjecture on Hodge-Tate decomposition for p-adic
varieties, there have been tremendous brilliant work on this project. This conjecture was settled by
Faltings [Fal88, Fal02], Niziol [Niz98, Niz08] and Tsuji [Tsu99, Tsu02] through different approaches.
Later, Faltings’ approach was generalized to perfectoid method by Scholze [Sch12] who thus extended
Hodge-Tate decomposition to proper smooth rigid analytic varieties [Sch13a, Sch13b]. Over the
decade since Scholze’s revolutionary theory, there appeared many different variants of Hodge-Tate
decompositions in different contexts, including integral versions [BMS18] (leading to prismatic coho-
mology), relative versions [AG24], non-smooth versions [Guo23]... Although the readers may find the
existing literature on Hodge-Tate decomposition quite different from our presentation, the essences
of how we play with perfectoids share the same.

6. GALOIS COHOMOLOGY OVER VALUATION RINGS

In the last section, we discuss how to understand the ramification over p-adic smooth varieties. In
this section, we move to the ramification over general (non-discrete) valuation rings. The difficulty
for this extension already lies in the construction of a good perfectoid cover. In the smooth case, one
can construct R, = R[Tlil/poo 7T;ﬂ/]gm] for a system of local coordinates of R. However, for a
general valuation ring, it’s a question that which coordinates we should pick and what the structure
of the integral closure is after adding the p-power roots of those coordinates. To understand better
the case of valuation rings, we first extend basic ramification theory for discrete valuation rings to
the most general case.

g

6.a. Different ideals and differentials. We fix a finite separable extension L/K of non-discrete
Henselian valuation fields of rank 1 (i.e., dim O = dim Og = 1). Although we can treat discrete
and non-discrete case together as in [He25a], we focus on the latter to simplify the notation. A key
feature in the non-discrete case is that the maximal ideals of the valuation rings satisfy

(6.0.1) m%{ =mg, mp :mK(’)L.
As L is finite free over K, we can still consider the trace morphism

which sends x to the trace of the K-linear homomorphism given by multiplication by x. By Galois
theory (as L/K is separable), Trp, /i (z) = > ,.,., % 0(z), where o runs through all the field embed-
dings of L into an algebraic closure of K. Moreover, the trace morphism induces a perfect pairing
L x L = K sending (z,y) to Try,x (zy) ([GRO3, 4.1.14]), namely it induces an isomorphism

(6.0.3) L = Homg(L,K), +— (y — Trp x(zy)).
We define the codifferent ideal of L/K to be the Op-submodule of L,
(6.0.4) Op ={r e L | Try k(zy) € Ok, Yy € Or}.

Under the above isomorphism (6.0.3), we see that OF is identified with {f € Homg (L, K) | f(Or) C
Ok}. Tt is clear that O, C O3 C L. We define the different ideal of L/K to be the “inverse” of the
codifferent ideal

(6.0.5) .@L/KZ{xEL | 207 C O} C Oy
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This is actually the “inverse” in the almost sense as we have
(606) ng(’JZQL/K Q(’)L
Proposition 6.1 (Relation with trace, [He25a, 4.3], cf. the discrete case [Ser79, II1.§3, Proposition

7]). For any nonzero fractional ideals a of Ok and b of O, we have

(6.1.1) Trp/g(mpb) Ca<= mpb%;,x C aOr.

Proof. We put a=! = {z € K | za € Og}. Then, one can easily check from the definitions the
following equivalences

(6.1.2) Trr/g(mpb) Ca s TrL/K(mLa_lb) COg ©mpb C a0 & mpb?;/x C a0y

using the fact that m3 =mg, m; =mgOp, mxg Ca-a ' C Ok and my, C O} - Dk C Op. O
Corollary 6.2 ([He25a, 4.5]). For any x € L, there is an inequality of absolute values

(6.2.1) ITrr k(@) <D0kl - |2

Proof. Since the valuations on K and L are non-discrete, the absolute values of the test fractional
ideals a and b are dense in R. Thus, the conclusion follows directly from 6.1. O

Corollary 6.3. We have
(6.3.1) I[L: K]| <|Z1/k| < 1.
Proof. Take x =1 in 6.2. d

Theorem 6.4 (Relation with differentials, [GR03, 6.3.8, 6.3.23]). The O -module Oy, is almost finite
projective and the module of differentials Q%QL/OK 1s uniformly almost finitely generated. Moreover,

D1 Kk 18 almost isomorphic to H;O:1 Anngp, (Q‘(IQL/OK), In particular, we have
(6.4.1) myp - -@L/K - AIIIIOL (Q%’)L/OK).

The idea of its proof is to understand the structure of O, when [L : K] is prime, see [GR03, 6.3.13].
Moreover, using the same idea, Gabber-Ramero computed the cotangent complex:

Theorem 6.5 ([GR03, 6.3.32, 6.5.20]). We have
(6.5.1) Lo, /0x = o, /05

Moreover, if K is algebraically closed, then Q}OL/OK is torsion-free.

This suggests that a general valuation ring extension Ok — Of, behaves like a smooth morphism.
Using this idea, we can explore further the structure of O and its extensions in the following.
6.b. Structure of Qé /Z and control of Zy__,x. We fix a Henselian valuation field K of rank 1
K /%&p

extension of @p. After 6.5, we know that Q}Q — is a torsion-free Ok-submodule of QL _ [1/p] =

K /Zp Ok /Zp o
Q% o where the latter is a K-module whose dimension is the transcendental degree trdeg(/K/Q,)
of K /@p. We identify additional properties of Q}DK /Z that make Ok behave more like a smooth
algebra over Zp.

Theorem 6.6 (Structure of torsion-free modules, [He25a, 3.16, 3.20]). Let M be a torsion-free O -
module with n = dimg M[1/p] < co. Then, there is an exact sequence

(6.6.1) 0— K% — 0p ®0, M — M — 0.

Moreover, the p-adic completion M is uniformly almost finite free over O (i.c., for any € € mg
there exists a finite free O -submodule M, of rank n — r of M with cokernel M /M, killed by €).

Corollary 6.7 ([He25a, 7.1]). Assume that trdeg(K/Q,) < co. Then, the canonical morphism

1 Ol
(671) OI? ROk QOK/ZP — QOK/ZP
is surjective. Moreover, there exists a number d < trdeg(K/@p) such that for any € € mg there exists
t1,...,ta € OF (depending on €) such that

(6.7.2) e~§}9K pQOf{-dtl@~~Of<~dtd§§1

/Z, Ok [y’
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For simplicity, we assume that d = 1 in the following so that for any € € mg \ pOk there exists
t € OF (depending on €) such that

Ol ol
(6.7.3) ¢ Q7 COg-dtCQ, -

We want to understand the ramification of K, = K(t'/?") over K. Our expectation is that O,
should be close to O [t1/P"].

Lemma 6.8 ([He25a, 6.2]). For dt'/?" ¢ Q}DKTL/OK’ we have
(6.8.1) 1P| < [Anno,, (A7) < |p /el

Proof. One the one hand, as p”tpzo’Tl dt?™ = dt, we have p" € Annp, (dt'/?") (as t is a unit). On
the other hand, consider the exact sequence

!

(6.8.2) 0=Hi(Loy, /0x) — Ok, @0, Q Ok, [ Ly

1 1
Ox /7, — QOKH/OK — 0.
Suppose that there exists a nonzero element €’ € O with |¢/| < |e| such that p" /€’ € Annp,. (dt}/P").

™

n .. . = S
Then, p" /¢ -dt'/?" = f(w) for some w € Ok, R0, Qé}dzp. This implies that f(dt) = p"t »™ dt?™ =

E/tgpﬁlf(w) = f(e’t%;lw). Since f is injective, we get dt € € - Ok, Qo QéK/i and thus dt €
P

e - QEQK/ZP as Q%DK/ZP is flat over Ok. This contradicts with (6.7.3). Therefore, |[Anne,. (dt'/?")| <

"/l .

Proposition 6.9 ([He25a, 6.3]). We have

(6.9.1) Ip"| < 1Dk, /x| < |p" /el

Proof. Tt follows from 6.4 and 6.8 that mx, Pk, /x C Anno,. (Qp, o) € Amo, (/") C p e
Ok, , which implies that |2k, /x| < [p"/€|. The other inequality follows from 6.3 as [K,, : K] = p"

(see [He25a, 6.1]). O
Corollary 6.10 ([He25a, 6.6]). For any x € K,,, we have

(6.10.1) lp™"Try, )i (2)] < |z /el

Proof. Tt follows directly from 6.2 and 6.9. O

6.c. Structure of Ox_ . As Qu-Yu pointed out, we can already control the structure of Ok, .
Proposition 6.11 ([He25a, §6], see [QY25, 7.6]). We have
(6.11.1) €Ok, COg[tY?"] C Ok, .

n_q

Proof. For any = € €- Ok, , we write z = ag + altz%" + .- apn_ltpp" for some unique a; € K where
0<i<p®—1 (as K,, = K(t'/7") is of degree p™ over K). Notice that for any a € K,

p'—1 p"—1 n e
£ i NG £ 7 ;o pa, lf’L:Oa
(6.11.2) Trg, /k(a-t7") =a- Eo(q,ntp )t =ate - EO( o) —{ 0, i 0.
j= j=

Thus, we have

(6.11.3) la;| = [p " Trg, jxc(x-t777)|  (by (6.11.2))
<|z-t7# /e| (by 6.10)
=lz/e[ <1,
ie., a; € Ok. O

In general, for d not necessarily equal to 1, one can still prove the following theorem using the
same arguments.

Theorem 6.12 ([He25a, §7], see [QY25, 7.6]). For any Henselian valuation field K of rank 1 extension
of Q, with trdeg(K/Q,) < oo, there exists a number d < trdeg(K/Q,) such that for any € € mg,
there exist t1,...,tq € O with

(6.12.1) €O COkty"”™ .. tY/"7]1C Ok,

where Ko, = K(t}/poo, . ,ttl/poo) is a Galois extension of K with Galois group canonically isomorphic
to Zg and valuation ring Ok pre-perfectoid.
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Then, one can use the same arguments as in 5.5 to compute the Galois cohomology.
Corollary 6.13. For any q € N, we have
— q ~
(6.13.1) HYZ!, Koo ) =2 /\f{ K%,
6.d. Faltings extension and canonical comparison.

Theorem 6.14 ([He25a, 8.6, 8.9]). Let K be a Henselian valuation field of rank 1 extension of Q,
with trdeg(K/@p) < 00, K an algebraic closure of K with Galois group G . Then, there exists a
canonical G -equivariant exact sequence, called the Faltings extension of K,

(6.14.1) 0— K — Fg — K®x Q5 (1) —0

such that the long exact sequence associated by taking G -invariants gives

(6.142) 0 K Féx Kok QL _ (-1) d

=
X3, HY Gk, K).

(6.7.1) /

= B
QK/@p( 1)

6.e. Perfectoidness criterion. In p-adic arithmetic geometry, we frequently encounter the following
question: given an Z,-algebra R and a specific ind-finite étale R[1/p]-algebra R[1/p], is there a simple
condition of R[1/p] that forces the integral closure of R in R[1/p] pre-perfectoid?

(6.14.3) R[l/p)<—R
ind-finite étaleT Tintegral closure

R[1/p)]=—R

]

Qp ~Zy

We haven’t found a satisfying criterion for this question, since we know little about the structure
of the integral closure R in general. Instead, my recent work [He26] adopted a valuative point of
view which finally leads to a satisfactory answer. More precisely, we want a suitable condition on
ﬁ[l /p] such that R is pointwise perfectoid, namely for any residue field K of E[l /p], any valuation
ring Ok of K containing R is pre-perfectoid. To see its possibility, a trivial case is that when ﬁ[l /D]
is absolutely integrally closed, every residue field K is algebraically closed so that the Frobenius
induces an isomorphism O /p"/?Ox =+ Ok /pOk, i.e., Oy is perfectoid. Although this example is
too simple, at least we see that some algebraic properties of ﬁ[l /p] or K are able to guarantee the
perfectoidness of any valuation structure Og. This was my original faith, which kept me going until
I arrived at the following perfectoid criterion.

Corollary 6.15 ([He26, 4.23], see also [He25a, 9.7]). With the notation in 6.14, if dimp For =
1+ trdeg(K/Q,,), then O is perfectoid.

Proof. As dimg Q}( Q= trdeg(K /@p), the assumption implies that the coboundary map § = 0 in
6.14. Thus, Q}(/@ = 0. This implies that QEK/Z = 0 as it is almost finite free by 6.7. Therefore,
Op is perfectoid by [GRO03, 6.6.6]: indeed, consider the morphism of exact sequences (see 6.5)

__ 1 1 1
(6.15.1) 0= 0 ®ox Lo, 1z, — Yogz, = Log/on —0

__ 1 1 1

0 —— O Q0 QOK/Z;: HQO?/ZP HQOf/OK — 0.
As QéK 7z is torsion-free (6.5) and ﬁéK 7z, = 0, the first vertical arrow is an isomorphism. Similarly,
P P
the second vertical arrow is also an isomorphism. Thus, so is the third vertical arrow. In particular,
Qé?/OK = Un>1 Qé?/OK [p"] = 0. Hence, for any finite field extension L of K, we still have
oF = 0 (6.5). This implies that the different ideal 2}k is almost trivial by 6.4. Hence, the
OL/Ok /
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almost finite projective Og-algebra Oy, is also almost finite étale by [GR03, 4.1.27]. As the Frobenius
induces a surjection on O /pO, by almost faithfully flat descent we see that the Frobenius also
induces an almost surjection on Ok /pOk [GR03, 3.5.13.(ii)]. One can easily check that it actually
implies further that the Frobenius on Ok /pOf is surjective. Hence, O is perfectoid. g

6.f. Application to Shimura varieties: Calegari-Emerton conjecture. We fix a Shimura da-
tum (G, X) ([Del79, 2.1.1], see also [Mil05, 5.5]) and let E C C be its reflex field (which is a finite
extension of Q, [Del79, 2.2.1], see also [Mil05, 12.2]). We denote by Ay (resp. A%) the ring of (resp.
prime-to-p) finite adeles of Q. For any neat compact open subgroup K C G(Ay) ([Pin90, 0.6]), we
denote by Shg the canonical model of the Shimura variety associated to (G, X) of level K (see [Mil05,
page 128]). It is a quasi-projective smooth E-scheme, whose C-points are canonically identified with

(6.15.2) Shy(C) = GQ\(X x G(A))/K.

Moreover, these canonical models form a directed inverse system of E-schemes (Shy)xca(a,) (note
that open subgroups of K are also neat) with finite étale transition morphisms (see [Del79, 2.1.2]).

We fix a compact open subgroup K? C G (A‘;). Consider the directed inverse system of E-schemes
(Shkrk,)K,ca,), Where K, runs through all the neat compact open subgroups of G(Q,) ([HJ23,
2.12]). Tts limit

(6.15.3) Sth == lim SthKp
KpCG(Qp)

is called the Shimura wvariety at infinite level KP. Motivated by the p-adic Langlands program,
Calegari-Emerton [CE12] predict the vanishing of the étale cohomology in higher degrees:

Conjecture 6.16 (Calegari-Emerton [CE12, 1.5], cf. [HJ23, 1.3]). For any integer ¢ > dim Shg»,
we have

(6.16.1) H (Shgo ¢, Zp) = 0.

Scholze [Sch15] made the first fundamental progress on this conjecture. Indeed, for Shimura
varieties of Hodge type, he proved that they are perfectoid as p-adic analytic spaces at infinite level
at p. This established a profound connection between the étale cohomology of Shimura varieties with
the analytic cohomology of certain coherent sheaves, leading to resolutions of numerous conjectures
including the higher vanishing of the compactly supported completed cohomology for (G, X) of Hodge
type (a variant of Conjecture 6.16). A natural question arises:

Question 6.17. Does Shg» define a perfectoid space in general?

Using our perfectoidness criterion derived from p-adic Hodge theory for valuation rings 6.15, we
can provide an affirmative answer from the valuative point of view:

Theorem 6.18 ([He26, 11.4]). In general, Shir is pointwise perfectoid. More precisely, for any
residue field K of Shy, g, any valuation ring Ok of K extension of Zy is pre-perfectoid.

It turns out that pointwise perfectoidness is sufficient to relate étale cohomology and analytic
cohomology. Finally, we can prove that

Corollary 6.19 ([He26, 11.3]). The conjecture 6.16 is true.

EPILOGUE

Looking back at these six lectures, we began our journey by understanding ramification over Q,
and introducing the theory of perfectoid rings. Using deformation theory and reducing problems to
characteristic p, we established various properties of these rings, viewing them as the “affine objects”
of the p-adic world. This provided us with the necessary tools to understand ramification on smooth
algebraic varieties.

Simultaneously, we adopted the perspective of general valuation rings to examine cohomological
descent and almost purity for perfectoid rings, and even the ramification of valuation rings themselves.

Although this course was brief, it touched on the major themes of p-adic Hodge theory from the
last sixty years. However, precisely because of this broad scope, you may find that many proofs in
the lecture notes are condensed or lack absolute rigor.

Nevertheless, our hope is that this brief overview has given you a sense of the cutting-edge ideas
and techniques in the field. We hope this helps you avoid detours and see the big picture clearly
when you dive into your own research later on.
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But most importantly, there is a spirit I want to pass on to you, the younger generation: No matter
how “cutting-edge” the field is, or how obscure and difficult the proofs in the literature may seem, do
not be intimidated. As long as you have the courage and patience to break the details down, blow

them up,

and dig deep, piece by piece, step by step, you can understand anything, no matter how

hard it seems at first.

It is not a matter of innate brilliance, but of whether you can settle down and commit to under-
standing every detail with courage, patience, and honesty.

I wish you all the best in your future studies. Keep working hard and keep moving forward!
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