J-holomorphic discs
Take $D=$ closed disc $\subset \mathbb{C}$ with distinct $q_{0}, q_{1} \in \partial D$
Using the orientation of \mathbb{C}, further wite $\partial D-\left\{q_{i}\right\}=$
 $\partial_{0} D \Perp \partial_{1} D$ as shown

We want to define a moduli space of J-holomorphic maps $v: D \rightarrow M$ such that
(1) $v\left(q_{0}\right)=p_{i}, v\left(q_{i}\right)=p_{j}$,
(2) $v\left(\partial_{k} D\right) \subset L_{k}$ for $k=0,1$

As before we want it to be compact, and have good properties. By analogy with GW theory, we choose $\beta \in H_{2}\left(M, L_{0} \cup L_{1}, \mathbb{2}\right)$, the "relative" homology group, and require
(3) $v_{*}([D])-\beta$

Finally, we allow v to be a stable map from a possibly singular \bar{D}, given by a union of discs D and $\mathbb{P}_{\mathbb{C}}$, joined at interior or boundary points.

Rem For details, see the work of Fukaya-Ono and Fukaya-Oh-Ohta-Onv

Notation Writ $M(p i, p, B)$ for the resulting moduli space.

If M is Calabi-Yan, and the L_{i} are "graded", then $M(p, p, B)$ behaves like a d-dimensional manifold for the purpose of "counting" invariants where $d=\mu(p i)-\mu(p j)-1$ for $\mu(p i)$ the "Maslor index" of pi, defined using the data of the Lagrangians. (This should be seen as an analogue of the Morse index.)

If $d=0$, we may hope to define a "counting" invariant. We furthermore require, as before, that the moduli M has an orientation (this can be constructed from orientations and spin stmetures on the Li)

Notation Write $N_{y}(\beta) \in \mathbb{Z}$ for the counting invariant associated to the model space $M(p, p, \beta)$ above, in the case that $\mu\left(p_{i}\right)=\mu\left(p_{j}\right)+1$

Lagrangian floer homology (simplified)
Assume, for simplicity, that
(1) J is generic, and
(2) there are no non-truial hotomorphic discs in M with boundary L_{0} or L, that is
J-holomorphic $v D \rightarrow M$ with $v(\partial D) \subset$ Li some i
Rem The condition (2) may be known as a "no bubbling" condition

Then we find

$$
\partial M\left(p, p_{j}, B\right)=\frac{11}{\beta=\beta+\beta_{2}} \frac{11}{k} M\left(p_{u}, p_{k}, \beta_{1}\right) \times M_{\left(p k, p_{1}, B_{2}\right)}
$$

Now let $C_{k}=\left\langle p_{i} \mid M\left(p_{i}\right)=k\right\rangle \mathbb{C}$, and define $\partial_{k} C_{k} \rightarrow C_{k-1}$ by

$$
\partial p_{i}=\sum_{\substack{j, \beta, M\left(p_{j}\right)=k-1}} N_{i j}(\beta) e^{-2 \pi[\omega] \cdot \beta} p_{j}
$$

Take * for $\mu\left(p_{i}\right)=\mu\left(p_{j}\right)+2$ we may deduce that (the coefficient of $e^{-2 \pi[\omega] . \beta) ~} \sim \partial_{k} \partial_{k+1}$ is zero, and thereby make the following

Definition The Lagrangian Floer homology group $H F_{k}\left(L_{0}, L_{1}\right)=\operatorname{ker} \partial_{k} / \operatorname{Im} \partial k+1$

Rem If conditions (1) and (2) are not satisfied, the right-hand side of $*$ is more complicated, and we say that $H F_{*}$ is "obstructed", as in general $\partial_{k} \partial_{k+1} \neq 0$

Rem The factor $e^{-2 \pi[\omega] . \beta}$ should be thought of as keeping track of the contributions for different β. It may course the sum to diverge in that case we view [w] as a formal variable

