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1. Lecture 1

1.1. Statement of Satake isomorphism for split groups. Fix a prime number p. Let F be a
nonarchimedian local field with ring of integers O, and with finite residue field Fq of characteristic
p. Let ϖ ∈ F× denote a fixed uniformizer. Fix a separable closure F̄ of F . Let G ⊃ B ⊃ T be a
connected reductive group over F endowed with a choice of Borel subgroup B = TU and maximal
torus, both defined and split over F . Let W0 be the finite Weyl group for (G,T ). We can assume
G ⊃ B ⊃ T are all defined over O. Set K = G(O), a maximal compact subgroup of G(F ). Choose
any prime ℓ ̸= p and consider the K-spherical Hecke algebra HK(G) = Cc(K\G(F )/K, Q̄ℓ), which
is an associative Q̄ℓ-algebra with convolution ∗ defined using the Haar measure dg on G(F ) giving
K volume 1.

Theorem 1.1.1 (Satake isomorphism for split groups). There is an isomorphism of Q̄ℓ-algebras

HK(G)
∼→ Q̄ℓ[X∗(T )]

W0 .

In particular, HK(G) is a commutative finite-type Q̄ℓ-algebra.

The homomorphism from left to right is given by an explicit rule. Let | · |F : F× → qZ be the

normalized absolute value, and choose a square root q1/2 ∈ Q̄ℓ once and for all. Then | · |1/2F :

F× → Q̄×
ℓ is defined, and for t ∈ T (F ) we define δ

1/2
B (t) = |det(Ad(t) |Lie(T (F ))|1/2F , determining

an unramified character δ
1/2
B : T (F )→ Q̄×

ℓ . Let du be the left Haar measure on U(F ) giving U(O)
measure 1. Then there is an algebra homomorphism HK(G)→ HT (O)(T ) ∼= Q̄ℓ[X∗(T )], f 7→ S(f),
where

S(f)(t) = δ
1/2
B (t)

∫
U(F )

f(tu) du

which lands in the W0-invariants and gives the isomorphism above. The identification X∗(T ) =
T (F )/T (O) here is given by sending a cocharacter µ ∈ X∗(T ) to the image of µ(ϖ) ∈ T (F ) in
T (F )/T (O).
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1.2. Statement for general groups. We need some Bruhat-Tits theory and the Kottwitz ho-
momorphism in order to state the isomorphism in general. Suppose G is an arbitrary connected
reductive group over F . In [Ko97], Kottwitz defined (functorially in G) a surjective group homo-
morphisms

κG : G(F̆ )→ π1(G)I

where F̆ is the completion of maximal unramified extension of F in F̄ , and π1(G) is the Borovoi
fundamental group of G [Bo98], and finally I ⊂ Γ := Gal(F̄ /F ) is the inertia subgroup. For example,

if G = GLn, then π1(G) = Z and κG = valF̆ ◦ det where valF̆ : F̆× → Z is the normalized valuation

on F̆ .
Let σ ∈ Γ be any Frobenius element, i.e, any lift of the Frobenius automorphism x 7→ xq of F̄q.

Kottwitz also showed that this map remains surjective on taking σ-fixed points, so that

κG : G(F )→ π1(G)
σ
I

is still surjective. Define the Kottwitz kernels G(F̆ )1 := ker(κG) and G(F )1 := G(F̆ )1 ∩G(F ).
Fix a maximal F -split torus A ⊂ G, and let M = CG(A) denotes its centralizer in G; then M

is a minimal F -Levi subgroup, and is the Levi factor of an F -parabolic subgroup P = MN with
unipotent radical N . We have the relative Weyl group W0 =W (G,A) := NGA(F )/M(F ).

Let K ⊂ G(F ) be a special maximal parahoric subgroup, corresponding to a special vertex
in the apartment corresponding to A in the Bruhat-Tits building B(G,F ). Since M is a minimal
F -Levi it turns out that M(F )1 = K ∩M , both coinciding with the unique parahoric subgroup
of M(F ). Let ΛM := M(F )/M(F )1, which is a finitely generated abelian group which can be
explicitly described and which carries an obvious action of W0. The following result shows that the
K-spherical Hecke algebra HK(G) is still commutative and finite-type in this case.

Theorem 1.2.1. [HaRo10] There is an isomorphism of Q̄ℓ-algebras

HK(G)
∼→ Q̄ℓ[ΛM ]W0 ,

given by f 7→ S(f), where for m ∈M(F ),

S(f)(m) = δ
1/2
P (m)

∫
N(F )

f(mn) dn.

For example, if D is central division algebra over F with [D : F ] = n2 and G = D×, then

G(F̆ ) = GLn(F̆ ) and M = G, A = Z(G) ∼= Gm, W0 = 1, K = G(F )1 = O×
D, and ΛG = Z. Thus

HO×
D
(D×) ∼= Q̄ℓ[Z].

Remark 1.2.2. In his Corvallis article [Ca79], Cartier proved a similar result for the Hecke algebra

HK̃(G), where K̃ ⊇ K is a special maximal compact subgroup. Then on the right hand side

ΛM = M(F )/M(F )1 gets replaced by Λ̃M = M(F )/M(F )1, where M(F )1 is the unique maximal
compact subgroup of M(F ). The proof of Theorem 1.2.1 yields a proof of the result of Cartier, but
not vice-versa.

1.3. Statement in the quasi-split case. Now assume G is quasi-split over F , and again let K be
any special maximal parahoric subgroup of G(F ). In this case, we have M = T (a maximal torus),

P = B = TU , and ΛM = X∗(T )
σ
I . Now the relative Weyl group is W0 = NGT (F )/T (F ). Let T̂ be

the dual torus over Q̄ℓ, i.e. the unique one such that X∗(T̂ ) = X∗(T ) as Γ-modules. The theorem
above specializes to the following.

Theorem 1.3.1. There is a canonical isomorphism

HK(G)
∼→ Q̄ℓ[X

∗(T̂ I)σ]W0 ,

given by a similar formula for f 7→ S(f).

The appearance of the diagonalizable group T̂ I appearing here suggests that, ignoring σ, the

right hand side is the representation ring of a (possibly disconnected) reductive Q̄ℓ-group Ĝ
I ⊃ T̂ I .

We shall see that this is indeed the right point of view.

Remark 1.3.2. Cartier’s result translates in this case to an isomorphismHK̃(G) ∼= Q̄ℓ[X
∗(T̂ I,◦)σ]W0 ,

involving the connected component T̂ I,◦ of T̂ I , a maximal torus in ĜI,◦.
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1.4. Transition to dual groups. Now we change notation slightly. Let k be any algebraically
closed field, and let F = k((t)) and O = k[[t]]. Let G be any connected reductive group over F . By
Steinberg’s theorem G is quasi-split over F . Fix a maximal F -split torus A ⊂ G. Write T := CG(A),
a maximal torus defined over F , and fix a Borel pair G ⊃ B ⊃ T over F and Levi decomposition
B = TU . Let (X∗(T ) ⊃ Φ, X∗(T ) ⊃ Φ,∆) be the based absolute root system enodowed with its

Galois action. Consider the dual based root system (X∗(T̂ ) ⊃ Φ∨, X∗(T̂ ) ⊃ Φ,∆∨); this comes from

a dual Borel pair B̂ ⊃ T̂ .
The group I acts naturally on both systems, preserving a splitting in both. As k is algebraically

closed, Frobenius is no longer in the picture. Let Ĝ be the dual group of (G,B, T ), endowed with its
Galois action of I fixing a splitting [Ko84]. As G is quasi-split over F , we may choose an embedding

T̂ ↪→ Ĝ such that the I-action on T̂ derived from X∗(T ) = X∗(T̂ ) is inherited from the I-action on

Ĝ [Hai17]. For any possibly non-reduced root system R, let Rred denote the reduced root system
we get from R by discarding all roots of the form 2a when {a, 2a} ⊂ R. If R carries an I-action, let
R⋄ denote the set of I-averages of the I-orbits in R (in some ambient real vector space).

Let ĜI,◦ be the connected component of ĜI .

Theorem 1.4.1. The Q̄ℓ-group ĜI,◦ is reductive with maximal torus T̂ I,◦, and its root system
identifies with (Φ∨)⋄red.

Proof. See [Hai15, Prop. 4.1] and [Hai18, Prop. 5.2].
□

Thus we may consider the Tannakian category (Rep(ĜI),⊗).

1.5. Statement of Main Theorem. Let G be the Bruhat-Tits parahoric group scheme over O
with generic fiber G corresponding to a fixed special maximal parahoric subgroup of G(F ). We shall
define an ind-projective ind-scheme GrG over k with a left-action of the k-group scheme L+G and
with a corresponding category of equivariant perverse Q̄ℓ-sheaves.

Theorem 1.5.1 (Main Theorem). Choose any prime ℓ not equal to the characteristic of k. The
abelian category PL+G(GrG , Q̄ℓ) is endowed with a convolution product ⋆, making it into a neutral
Tannakian category with fiber functor given by total ℓ-adic cohomology groups

F 7→ R∗Γ(GrG ,F) := ⊕i∈ZR
iΓ(GrG,F),

and there is a canonical equivalence of Tannakian categories

(Rep(ĜI),⊗) ∼= (PL+G(GrG , Q̄ℓ), ⋆).

The first result of this nature was the celebrated work of Mirković-Vilonen [MV07]. They worked
with affine Grassmannians over C coming from groups defined over C (and thus their groups over
C((t)) are split). See also the exposition of Baumann-Riche [BR18]. Theorem 1.5.1 includes affine
Grassmannians over positive characteristic fields, ℓ-adic cohomology, and also non-split groups,
which was not adequately covered by [MV07].

Theorem 1.5.1 was proved by Xinwen Zhu [Zhu15] under a tame ramification hypothesis, and
in general by Timo Richarz [Ri16b]. Earlier Timo Richarz [Ri14] had proved the split case of this
theorem, using a novel approach to identifying the dual group of the Tannakian category, namely
by deducing it from a characterization (due to Kazhdan-Larsen-Varshavsky [KLV]) of a Tannakian
category in terms of its Grothendieck semiring. Our goal in this course is to show how one can get
the general theorem directly, by following the method of Richarz.

The geometric Satake correspondence for ramified groups is essential for arithemetic applications,
and we shall mention some, such as the classification of smooth Schubert varieties in affine Grass-
mannians [HR20a], which plays a role in the He-Pappas-Rapoport classification of pararhoric level
Shimura varieties with have good or semistable reduction [HPR20].

1.6. Group theoretic preliminaries. Our reference for most of what follows is [HR08].

Definition 1.6.1. The Iwahori-Weyl group of (G,A) over F is defined to be W = NGT (F )/T (F )1,
and maps naturally to the relative Weyl group W0 = NGT (F )/T (F ) with kernel T (F )/T (F )1.
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Using the Kottwitz homomorphism κT : T (F )→ X∗(T )I , we have an exact sequence

0→ X∗(T )I →W →W0 → 0

Let K = G(O); we have W0 = (NGT (F ) ∩K)/T (F )1, hence the above sequence splits and we have
an isomorphism

W = X∗(T )I ⋊W0.

Let V = X∗(T ) ⊗Z R. The group W acts on V I as follows: W0 identifies with the group of linear
automorphisms generated by the simple reflections through the hyperplanes Hα corresponding to
the relative roots α for (G,A); moreover an element λ ∈ X∗(T )I acts on V by translation by −λ.

Bruhat-Tits theory provides us with a set of affine-linear functionals Φaff on V I called the affine
roots associated to (G,A). The zero sets are called the affine hyperplanes. The action of W on V I

induces an action on Φaff ; thus the action of W on V I permutes the affine hyperplanes and the
alcoves in the resulting Coxeter complex in V I .

Fixing the choice of base alcove a whose closure contains our fixed special vertex, denote by Ga
the corresponding Bruhat-Tits Iwahori group scheme. Let Ωa ⊂ W denote the stabilizer subgroup
of a. Let (Waff , Saff) denote the Coxeter system corresponding to the simple affine reflections Saff

(those through the walls of a). The group Waff acts simply transitively on the set of all alcoves in
the apartment. Thus having chosen a we have a canonical isomorphism

W =Waff ⋊ Ωa.

The Coxeter group Waff has a length function ℓ :Waff → Z≥0 and a Bruhat order ≤. We extend
both of these to W in the obvious way by (1) declaring Ωa to consist of the elements of length 0 in
W , and (2) declaring that w1ω1 ≤ w2ω2 in W if and only if w1 ≤ w2 in Waff and ω1 = ω2 in Ωa.
The group (W,Saff) thus inherits what is called a quasi-Coxeter structure.

Proposition 1.6.2. There is a unique reduced root system Σ such that the affine hyperplanes

Hβ+r = {v ∈ V I | ⟨β, v⟩+ r = 0}

for β + r ∈ Φaff consist of the affine hyperplanes Hα+n attached to functions on V I of the form
v 7→ ⟨α, v⟩+n for α ∈ Σ and n ∈ Z. (This set Σ is known as the échelonnage root system for (G,A)
over F .) Thus Waff = Waff(Σ), the affine Weyl group associated to the set of affine roots α + n as
above.

Proposition 1.6.3. The following statements about the root system Σ hold.

(a) The root system Σ can be described in terms of the absolute roots Φ as follows. Let N ′
I∆ be

the set of modified norms of elements in ∆, that is, for α ∈ ∆ in an I-orbit O,

N ′
Iα =

{∑
β∈O β, if O consists of pairwise orthogonal roots

2
∑

β∈O β, otherwise.

Then the set of simple positive roots in Σ can be identified with N ′
I∆.

(b) We have an identification of the (based) dual root system Σ∨ = (Φ∨)⋄red, in other words, the

root system Σ is dual to that of (ĜI , T̂ I).

Proof. See [Hai18, Prop. 5.1, Thm. 6.1]. □

We define the dominant Weyl chamber C ⊂ V I by C = {v ∈ V I | ⟨α, v⟩ ≥ 0 , ∀α ∈ ∆}. We require
that a ⊂ C. We define X∗(T )

+
I = X∗(T )I ∩ C.

1.7. Appendix: lifting dominant translations. We would like to show that the map X∗(T )→
X∗(T )I , µ 7→ µ̄, induces a surjective map on dominant elements

X∗(T )
+ → X∗(T )

+
I .

Here dominance in X∗(T ) is defined using the absolute roots of G, and in X∗(T )
+
I using the relative

roots for (G,A) (equivalently, the échelonnage roots). The fact that dominant elements go to
dominant elements is a consequence, for example, of [Hai18]. Indeed, suppose µ ∈ X∗(T )

+ and let
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∆ denote the simple absolute roots. Then for α ∈ ∆ we have the modified norm N ′
Iα. The elements

N ′
Iα give the simple échelonnage roots acting on X∗(T )I . We have

⟨N ′
Iα, µ̄⟩ = ⟨N ′

Iα, µ⟩ ≥ 0,

which shows that µ̄ is dominant.
The more interesting direction is the converse. We can prove this at least when the center

Z of G is connected. We assume λ ∈ X∗(T )
+
I . We want to show that there is a lift µ ∈ X∗(T )

+

of λ.
Assume first that G is adjoint, so that the fundamental coweights ω∨

α , α ∈ ∆, form a Z-basis for
X∗(T ). Let O denote an I-orbit in ∆. Choose arbitrarily α ∈ O for each orbit O. Then the set
{ω̄∨

α}O is a Z-basis for X∗(T )I . We may write λ =
∑

O nO ω̄
∨
α for some nO ∈ Z≥0. Clearly a lift of

this is µ =
∑

O nOω
∨
α , which is obviously dominant.

Next, we assume Z is connected. Then we have a commutative diagram with exact rows and
surjective vertical arrow

0 // X∗(Z) //

��

X∗(T ) //

��

X∗(Tad) //

��

0

0 // X∗(Z)I // X∗(T )I // X∗(Tad)I // 0.

The lower row is exact on the left because H1(I,X∗(Tad)) = 0 as X∗(Tad) is I-induced. Given
λ ∈ X∗(T )

+
I , its image λad ∈ X∗(Tad)I is dominant. By the first case above, we may lift λad to a

dominant µad ∈ X∗(Tad)
+. Let µ ∈ X∗(T )

+ be any lift of µad (it is automatically dominant). Then
µ̄− λ ∈ X∗(Z)I ; lift this to an arbitrary δ ∈ X∗(Z). Then µ− δ ∈ X∗(T )

+ and µ− δ = λ. □

We next discuss three fundamental decompositions of the group G(F ). Of course all such results
can be found in some form or other in [BT84].

1.8. Bruhat-Tits decomposition. Let Ka = Ga(O), an Iwahori subgroup of G(F ).

Proposition 1.8.1. For each w ∈W , choose any lift ẇ ∈ NGT (F ). Then there is a decomposition

G(F ) =
∐

w∈W

KaẇKa.

Remark 1.8.2. For G = Gln this can be proved “by hand” using row and column operations. For
split groups, it is derived from the BN-pair relations, for example in Brown’s book Buildings. In
general, it is proved in the works of Bruhat-Tits; see for example [HR08]. We shall assume this
result without proof.

1.9. Cartan decomposition. Recall K = G(O), a special maximal parahoric subgroup of G(F ).
For any λ ∈ X∗(T )I , let t

λ ∈ T (F ) be any fixed lift, so that κT (t
λ) = λ.

Proposition 1.9.1. We have a decomposition

G(F ) =
∐

λ∈X∗(T )+I

KtλK.

Remark 1.9.2. This is a formal consequence of Proposition 1.8.1. See also [HR08].

1.10. Iwasawa decomposition. Recall that B = TU with T = CG(A), and a is the apartment of
the building corresponding to A. With these restrictions, we have the following result.

Proposition 1.10.1. There is a decomposition

G(F ) =
∐

λ∈X∗(T )I

U(F )tλK.

Moreover, given λ ∈ X∗(T )I and µ ∈ X∗(T )
+
I , we have U(F )tλK ∩KtµK ̸= ∅ only if µ − λ is a

sum of of positive coroots in Σ∨.

Proof. See [HaRo10, Cor. 9.1.2] for the decomposition. The second part can be deduced from
[HaRo10, Lem. 10.2.1] together with [Ra05, Proof of Lem. 3.8].

□
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2. Lecture 2

2.1. Preliminaries on ind-schemes. Let k be any field. Let Affk denote the category of k-
algebras. We will endow Affk with some standard Grothendieck topology C, such as Zariski, étale,
or fpqc.

2.1.1. Presheaves and sheaves.

Definition 2.1.1. A presheaf F on Affk is a covariant functor F : Affk → (Sets) (or to (Groups),
or (Rings), etc.). A presheaf F is a sheaf for the C-topology if for every cover Spec(R′)→ Spec(R)
in C,

F (R) // F (R′) //// F (R′ ⊗R R
′)

is an equalizer diagram in the target category.

2.1.2. Colimits and ind-schemes.

Definition 2.1.2. Let I be a partially ordered and directed set (any two elements have an upper
bound in I) and let Fi, i ∈ I be a diagram of preheaves on I. Let colim

i
Fi be the filtered colimit in

the category of presheaves, i.e.,

(colim
i

Fi)(R) = colim
i

Fi(R)

the colimit on the right taken in the target category.

Theorem 2.1.3. Filtered colimits commute with finite limits, such as equalizers.

Corollary 2.1.4. If each Fi is a sheaf, then the presheaf colimit colim
i

Fi is a sheaf and is the colimit

taken in the category of sheaves: if F ′ is a sheaf and we have commutative diagrams of presheaves
for all i < j in I

Fi
//

��

F ′

Fj

??

then this induces a unique compatible presheaf morphism colim
i

Fi → F ′, and this is also a morphism

of sheaves.

Corollary 2.1.5. If the Fi as above are sheaves for the C-topology, so is the presheaf colimit colim
i

Fi.

Here is our main example.

Definition 2.1.6. A (strict) ind-scheme is a sheaf for, say, the étale topology isomorphic to one
of the form colim

i
Fi where each Fi is represented by a scheme Xi (such that Xi → Xj is a closed

immersion, whenever i ≤ j in I).

Since Xi begin a scheme implies that it is actually a sheaf for the finer fpqc topology, then the
above corollary shows that the ind-scheme is also a sheaf for the fpqc topology.

2.1.3. Sheafification. Suppose F : Affk → (Sets) is a presheaf, and C is a Grothendieck topology as
above. Then there exists a sheafification F++ of F with respect to C and a canonical morphism of
presheaves F → F++ with the following universal property: for each C-sheaf F ′,

HomPresheaf(F, F
′) = HomSheaf(F

++, F ′).

2.2. Loop groups and positive loop groups. Given G and G as above, we define the following
presheaves on Affk with values in (Groups):

LG : R 7→ G(R((t)))

L+G : R 7→ G(R[[t]]).
Exercise. Prove that

(1) LG is represented by an ind-affine group ind-scheme over k
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(2) L+G is represented by an affine group scheme (of infinite type over k when G is non-trivial).

Definition 2.2.1. We define the affine Grassmannian GrG as the étale-sheafification of the (Set)-
valued presheaf

R 7→ LG(R)/L+G(R).
Remark 2.2.2. Warning: it is NOT always that case that GrG(R) = LG(R)/L+G(R). When G is
split over F , this does hold for every local ring R.

The next task to prove that GrG is represented by an ind-projective ind-scheme over k. We shall
start with the case G = GLn,O.

2.3. Representability for G = GLn,O. We write G for GLn and G for the group scheme GLn,O.
The starting point is the fact that LG(R) = GLn(R((t))) acts on the set of R[[t]]-lattices in R((t))n.

Definition 2.3.1. Let R be any ring, and set Λ = R[[t]]n. An R[[t]]-lattice is an R[[t]]-submodule
L ⊂ R((t))n such that ∃N ∈ N such that

• tNΛ ⊂ L ⊂ t−NΛ
• L is R[[t]]-projective.

Now consider only R ∈ Affk. We will show that the functor R 7→ Lattn,N (R) os lattices as above
is representatble by a projective k-scheme each N . Then it will turn out that

GrG(R) = colim
N

Lattn,N (R) =
(
colim

N
Lattn,N

)
(R).

The following discussion is key. will provide some details and corrections for [Goe08, Lem. 2.11] and
[Zhu17, Lem. 1.1.5].

Proposition 2.3.2. Let R be any ring. Let Λ = R[[t]]n. The following two conditions on R[[t]]-
submodules L ⊂ R((t))n which satisfy tNΛ ⊆ L ⊆ Λ for some N ≥ 1 are equivalent:

(1) L is R[[t]]-projective.

(2) Λ/L (and hence L/tNΛ) are R-projective.

Before starting the proof, let us state a well-known lemma.

Lemma 2.3.3. Let R be any ring, and let M be an R-module of finite presentation. Then M is
projective if and only if it is flat. In particular, if R is Noetherian, for finite R-modules flatness and
projectivity are equivalent.

Proof. This is the Corollary to Theorem 7.12 in Matsumura’s Commutative Ring Theory. □

Suppose we are given an R[[t]]-module L which is projective and which satisfies tNΛ ⊂ L ⊂ Λ.
We wish to prove that Λ/L and L/tNΛ are projective as R-modules. Let us first establish that L is
finitely generated as an R[[t]]-module. Being finitely generated is a local property, so it is enough to
prove that Lp is finitely generated over R[[t]]p, for any p ∈ Spec(R[[t]]). From tNΛp ⊂ Lp ⊂ Λp and
flatness of R[[t]]→ R((t)), we see that

Lp ⊗R[[t]]p R((t))p = R((t))np .

On the other hand, we know Lp, being projective, is free over R[[t]]p (by Kaplansky’s theorem), so
the above shows it actually has rank n.

Next we claim that t−mL/L is R-projective for all m ∈ Z≥0: write L as a direct summand of a
free R[[t]]-module and observe that then t−1L/L is a direct summand of a free R = R[[t]]/t-module,
hence is projective. Since t−mL/L is filtered by modules isomorphic to t−1L/L, we see it splits as
a direct sum of them as an R-module, hence is projective. Now we have

R((t))n/L = lim−→
m

t−mL/L

and since colimits commute with tensor products, this implies R((t))n/L is a flat R-module. The
same holds for R((t))n/tNΛ. Now using the characterization of flatness by Tor-vanishing, the exact
sequence

0→ L/tNΛ→ R((t))n/tNΛ→ R((t))n/L → 0
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shows that L/tNΛ is a flat R-module. By the same argument, the exact sequence

0→ Λ/L → R((t))n/L → R((t))n/Λ→ 0

shows that Λ/L is flat. Now the exact sequence

0→ L/tNΛ→ Λ/tNΛ→ Λ/L → 0

shows that Λ/L is finitely presented (note that the middle term is R-free, and the left term is
R-finite, and use [StaPro, Tag 0519, Lem. 10.5.3(4)]). We conclude by Lemma 2.3.3 that Λ/L is
R-projective. Then the splitting of the above sequence shows that L/tNΛ is too. Note that this
argument shows that L/tNΛ is not just projective, but is automatically a direct factor of Λ/tNΛ.

Conversely, we need to show that if L is an R[[t]]-module with tNΛ ⊂ L ⊂ Λ and Λ/L is R-
projective, then L is R[[t]]-projective. Following [Zhu15, p.8-10], we may assume R is Noetherian.
Indeed, write R = lim−→i

Ri where the Ri are finitely generated k-algebras. Let GrN be the presheaf

such that GrN (R) is the set of all projective R[[t]]-submodules L of R((t))n satisfying tNΛ ⊂ L ⊂ Λ.

Let GrfN (R) be the set of all R[[t]]-submodules L ⊂ R((t))n such that tNΛ ⊂ L ⊂ Λ, such that Λ/L
is R-projective. The above shows that there is an injective map of presheaves GrN → GrfN . We

need to show that it is bijective for every R. Since GrfN is represented by a finite-type (projective)

k-scheme, we have GrfN (R) = lim−→i
GrfN (Ri), and hence it is enough to assume R is Noetherian.

Now this means R[[t]] is Noetherian and L is a finite R[[t]]-module. Since L is a finite R[[t]]-module,
to show projectivity we need to show L is flat as an R[[t]]-module, see Lemma 2.3.3.

Let Λ0 = R[t]n and consider the R[t]-submodule tNΛ0 ⊂ L0 ⊂ Λ0 corresponding to L under
the isomorphism Λ/tNΛ ∼= Λ0/t

NΛ0. As L is the t-adic completion of L0 (this uses flatness of
R[t] → R[[t]]), it is enough to show that L0 is R[t]-projective. Since it is R[t]-finite, again by the
above reasoning, it is equivalent to show L0 is R[t]-flat.

It is enough to prove that L0,q is a free R[t]q-module, for every maximal ideal q ⊂ R[t]. Note
that q lies over a prime ideal p ⊂ R which is not necessarily maximal.

Lemma 2.3.4. There is an element a ∈ R− p such that Ra/pa is a field and Ra[t]qa = R[t]q.

Proof. We have an inclusion R/p ↪→ R[t]/q, where the former is a domain and the latter is a field.
The ring R[t]/q is a field generated as a ring by R/p and the image of t. If t ∈ q, then the inclusion
in an equality and we may take a = 1. If t /∈ q, then t−1 exists in R[t]/q and t is algebraic over
R/p. Therefore there exists a ∈ R− p such that the image of t is integral over Ra/pa. Now the field
Ra[t]/qa = R[t]/q is an integral extension of the domain Ra/pa, hence the latter is a field. □

Since Ra/pa ⊂ Ra[t]/qa, we see that qa lies over pa. We may therefore replace R by Ra and
thereby assume that p is maximal in R. Let us relabel by writing m = p from now on, and denote
the residue field by k = R/m. To prove L0,q is a free R[t]q-module, we will apply Theorem 2.3.5
below to Rm → R[t]q and M = L0,q. We need to justify the hypotheses (a) and (b).

To check (b), we need to check that L0,q is Rm-flat; note this is reasonable, since A1
R → Spec(R)

is flat, and so for example R[t]q is flat over Rm. Observe that R[t]q = S−1R[t]m for a certain
multiplicative subset S. Hence, L0,q = L0,m ⊗R[t]m R[t]q. Because L0 is R-flat (since Λ0/L0 and Λ0

are R-projective), we have L0,m is Rm-flat. We want to show that L0,m ⊗R[t]m R[t]q is Rm-flat. Let
N ↪→ P be an injective Rm-module map. Then

L0,m ⊗Rm
N ↪→ L0,m ⊗Rm

P,

and as this is clearly R[t]m-linear and R[t]q is R[t]m-flat, we get

(R[t]q ⊗R[t]m L0,m)⊗Rm
N ↪→ (R[t]q ⊗R[t]m L0,m)⊗Rm

P,

as desired.

Finally, we need to prove the hypothesis (a), which is the statement that L0,q/mL0,q =
(
L0/mL0

)
q

is a free R[t]q/mR[t]q =
(
R[t]/mR[t]

)
q
-module. It is enough to prove that L0/mL0 is R[t]/mR[t] =

k[t]-free. This follows because by R-projectivity of Λ0/L0, the sequence

0→ L0 ⊗R R/m→ Λ0 ⊗R R/m→ (Λ0/L0)⊗R R/m→ 0
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is exact and therefore L0/mL0 has no t-torsion. The conclusion of Theorem 2.3.5 is that L0,q is free
over R[t]q, and this completes the proof. □

The following is [StaPro, Tag 00MH]:

Theorem 2.3.5. Let R → S be a local homomorphism of Noetherian local rings. Let m be the
maximal ideal of R. Let M be a finite S-module. Suppose that

(a) M/mM is a free S/mS-module, and
(b) M is flat over R.

Then M is free over S and S is flat over R.

Remark 2.3.6. Fixing n, let GrfN (R) (resp.GrN (R)) be the set of R[[t]]-modules L ⊂ R((t))n such
that tNΛ ⊂ L ⊂ t−NΛ and finally such that t−NΛ/L is R-projective (resp. and finally such that

L is R[[t]]-projective). It is clear that GrfN is represented by a closed subscheme of a union of
Grassmannian varieties in rank 2nN (being stable under the operator t is a closed condition).

In the proof above we used X(colim
i

Ri) = colim
i

X(Ri) for X = GrfN . This holds because X is

finite-type over k. In fact, the following appears in EGA IV, 8.14.12 (see also [StaPro, Tag 01ZC]).

Lemma 2.3.7. A morphism of schemes X → S is locally of finite presentation if and only if for
every directed set I and inverse system {Ti} of affine schemes over S, we have

HomS(lim←−
i

Ti, X) = lim−→
i

HomS(Ti, X).

Exercise: Prove more directly that GrfN (R) = lim−→i
GrfN (Ri) if R = lim−→i

Ri. [MAYBE I will give a

hint here....]

Finally, we have the following.

Lemma 2.3.8. If L ∈ GrN (R) then there exists a Zariski cover Spec(R′) → Spec(R) such that
L ⊗R[[t]] R

′[[t]] is R′[[t]]-free.

Proof. Write Rt := R[[t]]. We proved above that L is finite over Rt. There exists g1, . . . , gr ∈ Rt

with (g1, . . . , gr)Rt
= 1 and such that Lgi is (Rt)gi-free, for all i.

Then fi := gi(0) satisfy (f1, . . . , fr)R = 1, and gi ∈ (Rfi [[t]])
× if fi ̸= 0. Furthermore

L ⊗Rt Rfi [[t]] = L ⊗Rt Rt,gi ⊗Rt,gi
Rfi [[t]]

is free over Rfi [[t]]. □

Define Lattn := colim
N

GrfN , an ind-projective ind-scheme over k, hence an fpqc sheaf on Affk.

Note LG(R)/L+G(R) identifies with the subset of R[[t]]-free objects in Lattn.
We have a diagram

LG/L+G a //

b

��

Lattn

(
LG/L+G)++

c

88

where a is a presheaf monomomrphism, Zariski-locally an epimorphism, b is the sheafification mor-
phism, and c is a sheaf monomorphism, locally an epimorphism, hence an epimorphism. We con-
clude: c is an isomorphism of fpqc sheaves, proving the desired representability statement.

We used:

Lemma 2.3.9. The following hold:

• F 7→ F++ preserves finite limits
• In any category with fiber products, F → F ′ is a monomorphism if and only if

F
diag // F ×F ′ F //// F

is an equalizer.
• Thus, the functor ++ preserves monomorphisms.
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• Morphism of sheaves is an isomorphism if and only if it is a monomorphism and an epi-
morphism.

To summarize this section, we state:

Corollary 2.3.10. There is an isomorphism of étale sheaves GrGLn,O
∼= Lattn, and thus GrGLn,O

is represented by an ind-projective ind-scheme over k.

3. Lecture 3

3.1. Torsor description of GrG. Let G→ X be any group scheme over a scheme X. Let C be a
Grothendieck topology on AffX .

Definition 3.1.1. A (right) C-torsor E → X is a C-sheaf on AffX with a right G action E×XG→ E
such that for every Spec(R) → X, G(R) acts simply-transitively on E(R), and such that C-locally
on Spec(R), we have E(R) ̸= ∅.

Let k be any field. For R ∈ Affk, set DR := SpecR[[t]], and D∗
R := SpecR((t)). Now assume

G → Dk is an affine group scheme of finite type.

Definition 3.1.2. Let GrtorG : Affk → (Sets) be the functor sending to R to the set of isomorphism
classes of pairs (E , α) where

• E → DR is a right étale G ×Dk
DR-torsor (call these “G-torsors”)

• α ∈ E(D∗
R), ie., an isomorphism of G-torsors α : E|D∗

R

∼→ E0|D∗
R
, where E0 is the trivial torsor.

We declare (E , α) ∼= (E ′, α′) if there is a morphism (necessarily an isomorphism) of G-torsors
π : E → E ′ such that α = α′ ◦ π.

Lemma 3.1.3. The following properties hold:

(0) By effectivity of étale descent of affine schemes, E is represented by an affine scheme.
(1) GrtorG has a natural base point (E0, id).
(2) LG acts on the left on GrtorG by g ∈ LG(R) = G(R((t))) sending (E , α) to (E , g ◦ α).
(3) G 7→ GrtorG is functorial: if ρ : G → H is a morphism, then let ρ∗E be the push-out torsor

E ×G H and ρ∗α = (α, 1) ∈ (E ×G H)(D∗
R). Then get functorial map GrtorG → GrtorH by

(E , α) 7→ (ρ∗E , ρ∗α).
(4) For G = GLn,O we have GrtorG = GrG.

Proof. We will only sketch (4). Any GLn-torsor E gives rise to a vector bundle VE := E ×GLn On.
Any vector bundle V of rank n gives a GLn-torsor Isom(On,V). Note (E , α) gives an isomorphism

E [t−1]
∼→ R[[t]][1/t]n = R((t))n, identifying (E , α) with the lattice and its inclusion

Λ(E,α) := image(E) ⊂ R((t))n.

Therefore we get an isomorphism GrGLn
∼= GrtorGLn

. □

Theorem 3.1.4. Let G be a smooth affine group group scheme over k[[t]].

(I) GrG → Spec(k) is represented by a separated ind-scheme of ind-finite type; in particular, it
is an fpqc sheaf.

(II) If G is reductive, GrG is ind-projective.

The key ingredient is the following proposition.

Proposition 3.1.5. Let G ↪→ H be a closed immersion of affine group schemes of finite type over
Dk, such that the fppf quotient H/G is represented by a quasi-affine (resp., affine) scheme. Then
GrtorG → GrtorH is represented by a quasi-compact immersion (resp. closed immersion).

Proof. We follow the proof in [Zhu17, Prop. 1.2.6]. To simplify notation, we write GrG instead
of GrtorG (later we will show these two functors agree; we are not using that fact at the moment
however).

Take any morphism (E , α) : Spec(R)→ GrH. We need to check that the morphism

F := Spec(R)×GrH GrG → Spec(R)
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is represented by a locally closed immersion.
First, note that π : E → DR and its section α over D∗

R, induce a morphism of étale sheaves
π̃ : E/G → DR and a section α̃ of π̃ over D∗

R. By étale descent of (quasi-)affine morphisms [StaPro,
Tags 0244, 0246], there exists a scheme W affine and finitely presented over DR equipped with a
quasi-compact open embedding E/G ↪→W over DR. Further F identifies with the presheaf

(3.1.1) F(Spec(R′)→ Spec(R)) = {sections β of π̃ over DR′ such that β|D∗
R′ = α̃|D∗

R′}.

This is proved via the correspondence between sections of π̃ over DR and isomorphism classes of
pairs (EG , φ), where EG is a G-torsor over DR and φ is an isomorphism of H-torsors EG ×G H ∼→ E .
(Recall the definition of the fiber category over DR of the quotient stack [E/G]. We give further
details for this identification below, in subsection 3.2.)

To prove (3.1.1) is represented by a locally-closed subset of Spec(R), the main input is the
following.

Lemma 3.1.6. If V
p→ DR is an affine scheme of finite presentation, and s is a section of p over

D∗
R, then the presheaf

(R→ R′) 7→ {section s′ of p over DR′ such that s′|DR′ = s|D∗
R′}

is represented by a closed subscheme of Spec(R).

Proof. For some integer N , there is a closed embedding V ↪→ AN
DR

over DR. In coordinates,

s = (s1(t), . . . , sN (t)), si(t) =
∑
j

sijt
j ∈ R((t)).

The presheaf is represented by Spec(A) ⊂ Spec(R) where

A = R/⟨sij = 0,∀i,∀j < 0⟩.

That is, s extends to a section s′ over R′ if and only if all sij = 0 in R′ for j < 0. (As R[[t]] ⊂ R((t)),
(s′1(t), . . . , s

′
N (t)) satisfies the equations s does.)

Now apply the lemma to V = W and s = α̃. We get a closed subset Spec(A) ↪→ Spec(R) and a
universal section sA : DA →WDA

such that

sA|D∗
A
= α̃|D∗

A
.

Base change along Spec(A) → DA given by t 7→ 0 gives s0 : Spec(A) → WA = W ×DA
Spec(A).

Then F = s−1
0 (E/G ×DR

Spec(A)), an open subset in Spec(A). □

Lemma 3.1.7. Suppose G is a flat affine group scheme over Dk of finite type. Then:

(a) There exists a closed immersion of group schemes over Dk

G ↪→ GLn ×GL1

such that (GLn ×GL1)/G is quasi-affine.
(b) If G is reductive, then (GLn ×GL1)/G is affine.

Proof. Part (a) is proved in [PR08, Prop. 1.3]. For (b), use [Al14, Cor. 9.7.7]. □

Corollary 3.1.8. For any flat affine group scheme of finite type G → Dk, the presheaf GrtorG is

represented by a separated ind-scheme of ind-finite type over k. If G is reductive, then GrtorG is
ind-projective.

Proof. Use Lemma 3.1.7, Proposition 3.1.5, Lemma 3.1.3, and Corollary 2.3.10. □

Now that we know GrtorG is an fpqc sheaf, following [Zhu17, Prop. 1.3.6], we have the following.

Lemma 3.1.9. Suppose G → Dk is smooth and affine. Then the natural map GrG → GrtorG is an
isomorphism.
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Proof. The map LG(R)/L+G(R)→ GrtorG (R) sends g to (E0,R, g), where E0,R is the trivial torsor. We

need to show that the induced map of sheaves LG/L+G → GrtorG is étale locally an epimorphism.

That is, such (E , α) ∈ GrtorG (R), we must find an étale cover R → R′ such that (ER′
t
, αR′

t
) has

ER′
t

∼= E0,R′
t
. Now E ×DR

Spec(R) is a GR := GDR
×DR

Spec(R)-torsor which has a section over some
étale cover R → R′ (because GR is smooth over Spec(R)). Then by the infinitesimal criterion for
smoothness, we get a section Spf(R′[[t]]) → ER′

t
and thus a section Spec(R′[[t]]) → ER′

t
(since E is

affine). □

Putting all the above ingredients together, we have proved Theorem 3.1.4. □

Remark 3.1.10. The above discussion applies to G split. It does not prove ind-projectivity in
the case where G is a parahoric subgroup for a non-split group G over F . In the final version
of these notes, we shall prove that when G is any parahoric subgroup for any group G
over F , the ind-scheme GrG is ind-proper, and hence automatically ind-projective. We
shall summarize the method that even applies to BD-affine Grassmannians, as explained in [HR20b,
Thm. 4.16].

3.2. Further details about the reduction of torsors. In this section we give more explanations
about the identification in (3.1.1). Let G be a group scheme over S which is faithfully flat and
quasi-compact over S. Let Y be any S-scheme carrying a right G-action over S. Recall that the
quotient stack [Y/G] is the fibered category whose fiber over an S-scheme X is the category whose
objects are diagrams

P

��

// Y

X

where P → X is a right G-torsor, and P → Y is a G-equivariant morphism. The morphisms in the
category are commutative diagrams

P ′ //

��

P

��

// Y

X ′ // X

such that the composition P ′ → P → Y is the given map P ′ → Y (all G-equivariant). Note that
the square is automatically Cartesian. This is because the universal property gives a canonical
morphism P ′ → X ′ ×X P , which is a morphism of G-torsors over X ′ and thus an isomorphism.

The discussion which follows in some sense explains why the above is the correct way to formulate
the definition of quotient stack.

Let S by any scheme, and let X → S be any S-scheme. Let G ⊂ H be a closed immersion of affine
faithfully flat quasicompact group schemes over X. We fix throughout a scheme E → X with an
G-action, such that the quotient E/G exists as a scheme over X and E → E/G is faithfully
flat and quasi-compact. Then E → E/G is an G-torsor (it becomes trivial after base-changing along
E → E/G). The structure morphism E → X induces the structure morphism E/G→ X.

Lemma 3.2.1. (a) The sections X → E/G correspond bijectively to the isomorphism classes
of G-torsors EG → X endowed with G-equivariant morphisms EG → E, such that the
following diagram is Cartesian (equivalently, commutative)

EG
//

��

E

��
X // E/G.

Here if E → X is itself an H-torsor, then EG → X gives a reduction to G structure on
E → X, as the induced map EG ×G H → E is an isomorphism of H-torsors over X.

(b) Suppose α : X → E is a section lifting the section X → E/G. Then it induces a unique
section X → EG such that X → EG → E is the given section α.
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Proof. Part (a): Given X → E/G, let EG := X ×E/G E, with the obvious G-equivariant projection
morphism to E. The first projection gives a G-torsor EG → X. Conversely, suppose given a G-torsor
EG → X and a G-equivariant map EG → E. We get a commutative diagram

EG
//

��

E

��
EG/G // E/G.

The canonical isomorphism E/G
∼→ X identifies the lower arrow as a section of E/G → X. As

EG → X is a G-torsor, this diagram is Cartesian, so its isomorphism class is determined by the
section X → E/G.

Part (b): This follows, using the universal property of the fiber product X ×E/G E, from Part
(a). □

Now, to justify (3.1.1) we apply Part (a) toX = DR′ and part (b) toX = D∗
R′ with E = E(= E|DR′

in the earlier notation), α = α|D∗
R′ and β = β|DR′ , and moreover G := GDR′ and H := HDR′ (in the

earlier notation). Namely, we need to compare the Cartesian diagrams

F∗
G

//

��

E∗

��
X∗

α

<<

α̃ // E∗/G

with

EG //

��

E

��
X

β // E/G

where the starred objects are over X∗ := D∗
R′ and the unstarred objects are over X := DR′ , and

E∗ := E|X∗ . The data of the section β gives us the reduction EG and its diagram, by Lemma
3.2.1(a). The assumption that β|D∗

R′ = α̃ means that EG|D∗
R′
∼= F∗

G, and then the existence of the

section α extending α̃ means, as in Lemma 3.2.1(b), that there is a section of EG → DR′ over
D∗

R′ which is compatible with the section α via EG|D∗
R′ → ED∗

R′ . From this data we get the map

Spec(R′)→ F = Spec(R)×GrH GrG . □

3.3. Definition of (Middle) Perverse sheaves.
Perverse sheaves are neither perverse nor sheaves – Robert MacPherson.

3.3.1. Derived categories. Assume k is an algebraically closed or finite field. Let X/k be a scheme
of finite type over k, usually endowed with some stratification. Choose a prime number ℓ which lies
in k×. Let Λ be an ℓ-torsion sheaf on X (e.g Λ = Z/ℓNZ).

We have the bounded constructible derived category Db
c(X,Λ) := Db

c,et(X,Λ). Thus we can
define the 2-categories

Db
c(X,Zℓ) := lim←−

n

Db
c(X,Z/ℓnZ) , Db

c(X,Qℓ) := Db
c(X,Zℓ)⊗Q.

Similarly we can replace Qℓ and Zℓ with finite integral extensions E/Qℓ and OE/Zℓ. We set

Db
c(X, Q̄ℓ) := lim−→

E/Qℓ<∞
Db

c(X,E).

Remark 3.3.1. In the final version of these notes, I will discuss the version of Bhatt-Scholze
here....
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3.3.2. Six functors and Verdier duality. Let f : X → Y be a separated morphism of finite-type
k-schemes. We have the functors

Rf∗ : Db
c(X, Q̄ℓ)→ Db

c(Y, Q̄ℓ)

f∗ : Db
c(Y, Q̄ℓ)→ Db

c(X, Q̄ℓ).

As f is compactifiable (i.e. there is a quasi-compact open immersion j : X ↪→ X̄ and a factorization

f : X
j // X̄

f̄ // Y

with f̄ proper), we may define

Rf! := Rf̄∗ ◦ j! : Db
c(X, Q̄ℓ)→ Db

c(Y, Q̄ℓ).

We have relative Hom sheaf functors RHom(−,−) and derived tensor product functors − ⊗L −.
Further f! has a right adjoint f ! with respect to these:

Hom(M,f !N)
∼→ Hom(Rf!M,N)

Rf∗RHom(M,f !N)
∼→ RHom(Rf!M,N)

RHom(M ⊗L N,P )
∼→ RHom(M,RHom(N,P )).

Definition 3.3.2 (Verdier duality). Let f : X → Spec(k) = S be the structure morphism. Define
the dualizing sheaf

KX := f !(Q̄ℓ,S)

For F ∈ Db
c(X, Q̄ℓ), set DX(F) := RHom(C,KX), which lies in Db

c(X, Q̄ℓ).

We use our earlier choice of q1/2 ∈ Q̄×
ℓ to define the notion of Tate twist of C

(
d
2

)
for any d ∈ Z.

Example If X is smooth and irreducible of dimension d, then KX = Q̄ℓ[2d](d).

Theorem 3.3.3. We have the following properties of the Verdier duality operators D (interpret all
below on the appropriate space):

(a) D ◦D = D
(b) D ◦ f! = Rf∗ ◦D
(c) D ◦ f∗ = f ! ◦D
(d) Rf!(M ⊗L f∗N) = Rf!M ⊗L N
(e) D(F [d](e)) = D(F)[−d](−e).

3.3.3. Definition of (Middle) perverse t-structure.

Definition 3.3.4. For X as above, define the (middle) perverse t-structure on Db
c(X, Q̄ℓ) by setting

pD≤0(X, Q̄ℓ) = {B ∈ Db
c(X, Q̄ℓ) |dim supp(HiB) ≤ −i, ∀i ∈ Z}

pD≥0(X, Q̄ℓ) = {DX(B) |B ∈ pD≤0(X, Q̄ℓ)}.

Theorem 3.3.5. The category P (X) = P (X, Q̄ℓ) := pD≤0(X, Q̄ℓ) ∩ pD≥0(X, Q̄ℓ) is an abelian
category, all of whose objects have finite length.

Example: If X is smooth and irreducible of dimension d, then Q̄ℓ,X [d] is perverse and simple. The
perversity holds even if X is a local complete intersection of dimension d (see [KW, Lemma II.6.5]).

3.3.4. Middle extension functor and simple perverse sheaves. Let j : U ↪→ X be an open immer-
sion with dense image, U smooth and irreducible of dimension d. Let i : Y ↪→ X be the closed
complement.

Definition 3.3.6. Let B ∈ P (U) ⊂ Db
c(U, Q̄ℓ). There exists a unique extension B ∈ P (X) such

that B has neight subobjects nor quotients of the form i∗(A) for A ∈ P (Y ). Equivalently j∗B = B,
and pH0(i∗B) = 0 = pH0(i!B).

We denote j!∗(B) := B.



LECTURES ON THE GEOMETRIC SATAKE CORRESPONDENCE 15

The fact that such extensions exist and are unique is proved in [BBD82, Cor. 1.4.25]. In fact
j!∗ : P (U) → P (X) is a functor: see [KW, III.5.2]. Since Dj!∗B extends DB and satisfies the
defining properties of j!∗(DB), we see that

D ◦ j!∗ = j!∗ ◦D.
Definition 3.3.7. If L is a locally constant Q̄ℓ-sheaf on U (sometimes called a lisse Q̄ℓ-sheaf), we
define IC(U,L) as the unique prolongation of L[d] to a perverse sheaf on X with neither subobjects
nor quotients of the form i∗A, where A ∈ P (Y ). We denote

IC(U,L) = j!∗(L[d]).
Theorem 3.3.8. A perverse sheaf F on X is simple if and only if it is of the form iŪ,∗IC(U,L) for
L an irreducible lisse Q̄ℓ-sheaf on an irreducible smooth locally closed subvariety U with closure
Ū .

Here the definitions are with respect to the embeddings U ↪→ Ū
iŪ→ X.

3.3.5. A characterization of middle extension functor on self-dual perverse sheaves. The next propo-
sition follows from the proof of [BBD82, Prop. 2.1.17] (which is stated slightly differently).

Proposition 3.3.9. If U
j
↪→ X is an open immersion of a union of strata, and if A is a self-dual

perverse sheaf on U , then j!∗A is the unique self-dual prolongation P in Db
c(X, Q̄ℓ) of A such that,

if iS : S ↪→ X is a stratum in X − U , then Hii∗SP = 0 when i ≥ −dim S.

3.3.6. Descent along smooth morphisms. The following is [BBD82, Prop. 4.2.5].

Proposition 3.3.10. Suppose f : X → Y is a smooth morphism of relative dimension d whose
geometric fibers are connected and non-empty. Then the functor f∗[d] is t-exact and induces a fully
faithful functor P (Y )→ P (X).

The following gives a situation where this is essentially surjective, and hence an equivalence of
categories. It is proved in [HN02, Lemma 21].

Lemma 3.3.11. Suppose f : X → Y is a smooth surjective morphism of finite-type schemes over
a field k, and suppose GY is a smooth connected Y -group scheme which acts trivially on Y and on
X such that f is GY -equivarient and the action on each geometric fiber of f is transitive. Assume
further that the stabilizer in GY of any geometric point of X is a connected essentially smooth
subgroup. Then a GY -equivariant perverse sheaf F on X descends along f .

3.4. Properties of (Middle) Perverse sheaves. We want to give another description of the full
subcategory P (X) ⊂ Db

c(X, Q̄ℓ), for a finite type scheme X over a field k with (ℓ, char(k)) = 1.
Consider the special case of a stratified scheme X =

∐
β Xβ , where each Xβ is nonsingular and the

boundary of any stratum is a union of other strata (N.B.: the former definition does not refer to
any particular stratification of X). The following is an equivalent formulation.

Then we say S ∈ Db
c(X, Q̄ℓ) is perverse if

HiS|Xβ = 0, if i > −dim Xβ

HiDS|Xβ = 0, if i > −dim Xβ .

3.5. (Semi-)Small Morphisms.

3.5.1. Locally trivial morphisms. Let X = ∪βXβ and Y = ∪αYα be stratifications of algebraic
varieties over a field k by locally closed subvarieties, having the property that the boundary of any
stratum is a union of other strata.

Suppose we have a (surjective) morphism f : X → Y . We suppose that f is proper and that each
f(Xβ) is a union of strata Yα. We say f is locally trivial in the stratified sense, if for every
y ∈ Yα there is a Zariski-open subset V ⊂ Yα with y ∈ V , and a stratified variety F , such that there
is an isomorphism of stratified varieties

(3.5.1) f−1(V ) ∼= F × V
which commutes with the projections to V . In particular, for y ∈ Yα ⊂ f(Xβ),

dim(f−1(y) ∩Xβ) + dim Yα = dim(f−1(Yα) ∩Xβ).
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3.5.2. Semi-small and small morphisms. We say f : X → Y as above is semi-small if whenever
f(Xβ) ⊇ Yα, we have

dim(f−1(Yα) ∩Xβ) ≤
1

2

(
dim Xβ + dim Yα

)
, or, equivalently

dim(f−1(y) ∩Xβ) ≤
1

2

(
dim Xβ − dim Yα

)
, for y ∈ Yα.

We say f is small if is semi-small, and

• if X◦ and Y ◦ are the open dense strata, then X◦ ⊇ f−1(Y ◦) and f−1(Y ◦)
f→ Y ◦ is generi-

cally finite and étale; and
• whenever Yα is not dense in f(Xβ), we have

dim(f−1(y) ∩Xβ) <
1

2

(
dim Xβ − dim Yα

)
.

Example: A finite surjective stratified map f : X → Y is small.

Proposition 3.5.1. Let S be a perverse sheaf on X. If f is semi-small, then f∗S is perverse on Y .

Proof. By definition, we know

HiS|Xβ = 0, if i > −dim Xβ

HiDS|Xβ = 0, if i > −dim Xβ .

We need to show

(Hif∗S)|Yα = 0, if i > −dim Yα(i)

(HiDf∗S)|Yα = 0, if i > −dim Yα.(ii)

Let y ∈ Yα and consider the spectral sequenceHp(f−1(y), HqS)⇒ Hp+q(f−1(y), S). IfHi(f−1(y), S) =
Hi

yf∗S ̸= 0, then ∃ p+ q = i and Xβ such that Hp
c (f

−1(y) ∩Xβ , H
qS) ̸= 0.

So HqS|Xβ ̸= 0, hence q ≤ −dim Xβ , and

p ≤ 2(dim(f−1(y) ∩Xβ)) ≤ dim Xβ − dim Yα ≤ −q − dim Yα

for any y ∈ Yα ⊂ f(Xβ) (the second ≤ coming from f semi-small).
Thus i = p+ q ≤ −dim Yα if Hi

yf∗S ̸= 0 for some y ∈ Yα. This means (i) holds.
For (ii), note that f! = f∗ (as f is proper), so that Df∗S = f∗DS. So (ii) follows as (i), using

DS in place of S. □

Proposition 3.5.2. Assume f is small and that X◦ and Y ◦ are nonsingular open dense strata.
Let n = dim X = dim Y . Let L be a local system on X◦ such that L[n] is Verdier self-dual. Let
L′ = (f |X◦)∗L be the resulting local system on Y ◦. Let

IC(X,L) = jX◦,!∗L[n]
IC(Y,L′) = jY ◦,!∗L′[n],

where jX◦ is the open immersion X◦ ↪→ X. Then

f∗IC(X,L) = IC(Y,L′).

Proof. We verify the conditions of Proposition 3.3.9.

• f∗IC(X,L) is a prolongation of (f |X◦)∗L[n]: Since j∗Y ◦ = j!Y ◦ , base change says

j∗Y0
f∗IC(X,L) = (f |X◦)∗j

∗
X◦IC(X,L)

= (f |X◦)∗L[n]

• f∗IC(X,L) is self-dual: since f! = f∗, this follows since IC(X,L) is self-dual.
• Suppose Yα ⊂ Y − Y ◦ and i ≥ −dim Yα. We need to show that

Hif∗IC(X,L)|Yα = 0.

First assume Hif∗IC(X,L)|Yα ̸= 0; we shall prove i < −dim Yα. Let y ∈ Yα be such that
Hi

yf∗IC(X,L) = Hi(f−1(y), IC(X,L)) ̸= 0.
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By considering spectral sequences as before, ∃ p+ q = i and Xβ such that

Hp
c (f

−1(y) ∩Xβ , H
qIC(X,L)) ̸= 0.

Note that f(Xβ) ⊃ Yα.
Case 1: Yα is dense in f(Xβ).

Since Yα ⊂ Y − Y ◦, Xβ is not X◦: if Xβ = X◦, then Yα would be dense in f(X0) ⊃ Y0
and hence in Y , a contradiction.

Since HqIC(X,L)|Xβ = 0 if q > −dim Xβ , or if q ≥ −dim Xβ and Xβ ̸= X◦, we see
from Hq(IC(X,L))|Xβ ̸= 0 and Xβ ̸= X◦ that q < −dim Xβ . Also

p ≤ 2
(
dim(f−1(y) ∩Xβ)

)
≤ dim Xβ − dim Yα < −q − dim Yα.

(The middle ≤ is because f is semi-small.) Thus i = p+ q < −dim Yα, as desired.
Case 2: Yα is not dense in f(Xβ).

Again Hp
c (f

−1(y) ∩ Xβ , H
qIC(X,L)) ̸= 0 implies that HqIC(X,L)|Xβ ̸= 0 and hence

q ≤ −dim Xβ . It follows that

p ≤ 2 dim(f−1(y) ∩Xβ) < dim Xβ − dim Yα ≤ −q − dim Yα.

(The < is because f is small.) So again i = p+ q < −dim Yα.

□

4. Lecture 4

4.1. Equivariant perverse sheaves. Let X be a finite-type separated k-scheme, for k a field as
above. Abbreviate D(X) = Db

c(X, Q̄ℓ) and P (X) = P (X, Q̄ℓ). Let G be a smooth and connected
affine k-group scheme acting on X on the left. We have the following morphisms

m : G×G→ G

a : G×X → X

e : X → G×X
pr2 : G×X → X.

Definition 4.1.1 (Equivariant perverse sheaf). We say K ∈ P (X) is G-equivariant if there is an

isomorphism φ : a∗K
∼→ pr∗2K in D(G×X).

Remark 4.1.2. We can define the notion of a G-equivariant object in D(X), but that definition
involves a certain ridigity and a cocycle condition. More precisely, we would require e∗φ = idK , and
(m × idX)∗φ = pr∗23φ ◦ (idG × a)∗φ. The point here is that for perverse sheaves equivariant with
respect to a smooth connected affine group scheme over k, these rigidity and cocycle conditions are
automatic (really, the ridigity can be arranged and then the cocycle condition is automatic). This all
follows from Lemma 3.3.10 applied to the morphism pr3 : G×G×X → X. See [KW, pp. 187-188].

Exercise: Suppose G is a smooth connected k-group scheme. Let K ∈ PG(X). Let Q be any
subquotient of K taken in the category P (X). Show that Q ∈ PG(X).

4.1.1. Perverse sheaves on orbit spaces. Let G be a connected smooth group scheme over k of
dimension d, and let H ⊂ G be a smooth connected closed subgroup over k. Let X = G/H, a
quotient which we assume exists in the category of separated k-schemes. Let PG(X) denote the
category of G-equivariant perverse sheaves.

Proposition 4.1.3. Any K ∈ PG(X) is of the form K ∼= Q̄r
ℓ [dimX] for some integer r ≥ 0.

Proof. Applying Lemma 3.3.10 to the morphism G → G/H which has smooth and geometrically
connected fibers, we see we may as well assumeH = e andX = G. Now we have a = m : G×G→ G.
Let s : G→ Spec(k) be the structure morphism, and write e : Spec(k)→ G for the zero section.

We need to show that K ∈ PG(G) implies that K ∼= Q̄r
ℓ [d] for some r ≥ 0. Consider

i : G
∼→ G× e ↪→ G×G,
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defined by i(g) = (g, e). Using equivariance and pr2 ◦ i = e ◦ s, we have

K = id∗GK = i∗a∗K ∼= i∗pr∗2K
∼= s∗(K0),

where K0 is the stalk of K at e, a complex of Q̄ℓ-vector spaces. This shows that K is a constant
complex of Q̄ℓ-vector spaces. On the other hand, there exists an essentially smooth irreducible open

U
j
↪→ G such that j∗K = L[d], for L a local system on U . We conclude that K = Q̄r

ℓ [d]. □

Remark 4.1.4. Add remark about what happens when H is not connected, but H/H◦

is étale.

4.1.2. L+G-actions on Schubert varieties. For µ ∈ X∗(T )
+
I , we have the Schubert variety GrG,≤µ.

Recall that GrG carries a left L+G-action, given by g · (E , α) = (E , g ◦ α). Let e0 = (E0, id) be the
base point in GrG .

Definition 4.1.5. We define GrG,≤µ to be the scheme-theoretic image of the morphism

L+G → GrG , g 7→ gtλe0.

We define GrG,µ to be the orbit of the L+G-action through the point tµe0.

Notation: When G is understood, we sometimes abbreviate by writing GrG,µ = Grµ = Oµ, and

GrG,≤µ = Gr≤µ = Oµ.

Lemma 4.1.6. The following facts hold:

(a) We have GrG,≤µ =
∐

λ⪯µ GrG,λ a stratification by reduced finite-type locally closed sub-

schemes, where λ ∈ X∗(T )
+
I and λ ⪯ µ means that µ − λ is a sum of positive coroots in

Σ∨.
(a) The scheme GrG,≤µ is an irreducible projective reduced subscheme of GrG of dimension
⟨2ρ, µ⟩, for 2ρ the sum of the B-positive roots in Φ.

(b) The Cartan decomposition gives an exhaustive family of underlying reduced spaces

GrG,red = colim
µ

GrG,≤µ.

[REFS: LATER.]
For the next part of the discussion, we need some notation. Temporarily for this section

when we talk about the big open cell below we assume G is split, for simplicity. In the
final version, this assumption will be removed.
Notation:

L≥0G := L+G
L>0G := ker[L≥0G → G] , t 7→ 0

L≥λG := tλ L+G t−λ.

Proposition 4.1.7. The action of L+G on GrG,λ is transitive, and the stabilizer of tλe0 is a
connected smooth group isomorphic to Pλ ⋉

(
L>0G ∩ L≥λG

)
, where Pλ is the parabolic subgroup

corresponding to λ.

Proof. Proof will appear in the final version of the notes. Now we just remark that the stabilizer
group was only recently proved to be smooth and connected, in work of Richarz-Scholbach on motivic
geometric Satake (we have to adapt their proof from the split case). □

Corollary 4.1.8. The only simple L+G-equivariant lisse Q̄ℓ-sheaves on GrG,λ are of the form Q̄ℓ.
Therefore the only simple L+G-equivariant perverse sheaves on GrG are of the form

ICµ := iµ∗ j
µ
!∗Q̄ℓ[⟨2ρ, µ⟩]

where µ ∈ X∗(T )
+
I , j

µ : GrG,µ ↪→ GrG,≤µ is the open embedding, and iµ : GrG,≤µ ↪→ GrG is the
closed embedding.
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4.2. Semisimplicity of the category. Our goal is to prove:

Theorem 4.2.1. The category PL+G(GrG) is semisimple, with simple objects the intersection com-
plexes ICµ.

We continue to abbreviate: D(X) := Db
c(X, Q̄ℓ), and P (X) := P (X, Q̄ℓ).

It is enough to show the following: given λ, µ ∈ X∗(T )
+
I , we have

(4.2.1) HomD(GrG)(ICλ, ICµ[1]) = 0.

Indeed, if we have an exact sequence in P (GrG)

(4.2.2) 0→ ICµ → F → ICλ → 0

this gives a distinguished triangle in D(GrG) and hence an exact sequence

HomD(GrG)(ICλ, ICµ)→ HomD(GrG)(ICλ,F)→ HomD(GrG)(ICλ, ICλ)→ HomD(GrG)(ICλ, ICµ[1])→ · · ·

and the vanishing in (4.2.1) would prove that the element id ∈ HomD(GrG)(ICλ, ICλ) lifts and
therefore the sequence (4.2.2) splits. Then one proves in a similar way that every object is semisimple,
by induction on the length.

Before starting the proof, let us state a technical lemma.

Lemma 4.2.2. If i : Oλ ↪→ Oµ is the closed embedding of Schubert varieties in GrG corresponding
to λ, µ ∈ X∗(T )

+
I with λ ≺ µ, then i∗ICµ lies in perverse degrees p ≤ −2.

We shall assume this for now, and use it to prove the vanishing (4.2.1). We shall give the proof
of Lemma 4.2.2 in section 4.3.

4.2.1. Proof of (4.2.1) assuming Lemma 4.2.2.
Case 1: λ = µ. Consider the open embedding j : Oµ ↪→ Oµ and its complementary closed

embedding i : Oµ\Oµ ↪→ Oµ. The distinguished triangle i!i
! → id → j∗j

∗ +→ yields the exact
sequence

Hom(ICµ, i!i
!ICµ[1])→ Hom(ICµ, ICµ[1])→ Hom(ICµ, j∗j

∗ICµ[1]).

We need to prove the outer terms vanish.
Claim A: The right term vanishes. Recall j∗ICµ = Q̄ℓ[dµ] where dµ = ⟨2ρ, µ⟩. Then using
adjunctions the right term identifies with

HomD(Oµ)(j
∗ICµ, j

∗ICµ[1]) = HomD(Oµ)(Q̄ℓ, Q̄ℓ[1]) = Ext1Sh(Oµ)(Q̄ℓ, Q̄ℓ) = H1
et(Oµ, Q̄ℓ).

Here we used the fact that the usual category of Q̄ℓ-sheaves Sh(Oµ) is the heart of the usual t-
structure on D(Oµ). Further, for the final equality, we used that both sides result from forming
the right derived functors of the same functor from the category of Q̄ℓ-sheaves to the category of
abelian groups:

HomSh(Oµ)(Q̄ℓ,−) = Γ(Oµ,−) : Sh(Oµ)→ (Ab).

So it suffices to show that H1(Oµ, Q̄ℓ) = 0. But from our earlier discuss of stabilizers (Note:
currently limited to the split case) we have a locally trivial fibration

Oµ → L≥0G/(L>0G ⋊ Pµ,k) = Gk/Pµ,k

with target the classical Grassmanian variety over k and with typical fiber isomorphic to

L>0G/(L>0G ∩ L≥µG).

As the fiber is paved by affine spaces, it has vanishing higher cohomology groups, and we have

H1(Oµ, Q̄ℓ) = H1(Gk/Pµ,k, Q̄ℓ).

HERE we use a combination of the Leray spectral sequence, and the local triviality to
have access to Künneth theorem as in [StaPro, Lem. 59.97.9]. Details in the final version
of the notes. On the other hand the group H1(Gk/Pµ,k, Q̄ℓ) vanishes, like all odd cohomology
groups of any Schubert variety such as Gk/Pµ,k, as we shall see later (see Remark 4.3.2).
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Claim B: The left term vanishes. It is a standard fact that i∗ICµ lives in perverse degree p ≤ −1
(see [KW, III.5.1]). Applying Verdier duality, we deduce that i!ICµ lives in perverse degress p ≥ 1.
Then we have

Hom(ICµ, i!i
!ICµ[1]) = Hom(i∗ICµ, i

!ICµ[1]) = 0.

This finishes Case 1.

Case 2: λ ̸= µ and λ ≺ µ or µ ≺ λ.
If λ ≺ µ, consider i : Oλ ↪→ Oµ. We have

Hom(i∗ICλ, ICµ[1]) = Hom(ICλ, i
!ICµ[1]) = 0,

where for the last equality we use that ICλ lives in perverse degrees p ≤ 0, and (thanks to Lemma
4.2.2 and Verdier duality) i!ICµ[1] lives in perverse degrees p ≥ 1.

If µ ≺ λ, consider i : Oµ ↪→ Oλ. Then

Hom(ICλ, i∗ICµ[1]) = Hom(i∗ICλ, ICµ[1]) = 0

using that i∗ICλ lives in p ≤ −2 (Lemma 4.2.2) and that ICµ[1] lives in p ≥ −1. This finishes Case
2.

Case 3: λ ̸⪯ µ and µ ̸⪯ λ.
Without loss of generality we may assume λ and µ are such that GrG,≤µ and GrG,≤λ lie in the

same connected component in GrG . This means that µ − λ ∈ Z[Σ∨]: PROBABLY cite [PR08,
Thm. 0.1]. This means we can choose ν ∈ X∗(T )

+
I with λ ≺ ν and µ ≺ ν. Consider the Cartesian

diagram of closed immersions

Oλ ×Oν
Oµ

ι1 //

ι2

��

Oµ

i2
��

Oλ
i1 // Oν .

We have

Hom(i1,∗ICλ, i2,∗ICµ[1]) = Hom(i∗2i1,∗ICλ, ICµ[1])

= Hom(ι1,∗ι
∗
2ICλ, ICµ[1])

= Hom(ι∗2ICλ, ι
!
1ICµ[1]) = 0.

The argument for the vanishing is exactly the same as for Claim B above. □

4.3. Proof of Lemma 4.2.2. Recall that pHj(i∗ICµ) = 0 for j > −1. Therefore we just need to
show that pH−1(i∗ICµ) = 0. We shall show more generally that

i∗ICµ ∈ pD≤j ⇒ i∗ICµ ∈ pD≤j−1,

for all odd j. This comes down to the facts that

(I) the stalks of Hi(IC(Gr≤µ)) vanish unless i ≡ dµ (mod 2), where dµ := dimGrµ; and
(II) dimGr≤λ and dimGr≤µ have the same parity whenever λ ⪯ µ in the usual partial order on

dominant cocharacters X∗(T )
+
I .

First we prove these facts. In what follows let ICµ = IC(Gr≤µ), and similarly write ICw = IC(Fl≤w),
the analogue for the affine flag variety (in final version of notes, we will recall that Fl = GrGa ,
hence has already been shown to be representable, etc). Statement (II) is obvious from
the formula dim(Gr≤µ) = ⟨2ρ, µ⟩ and the fact that ⟨2ρ, α∨⟩ is even for any α∨ ∈ Σ∨ (we will add
more details in the non-split case).

Let us explain why (I) holds. We have a smooth surjective morphism p : Fl→ Gr with connected
geometric fibers isomorphic to the finite flag variety G/B over k. Moreover, if wµ := tµw0, then
p−1(Gr≤µ) = Fl≤wµ

. Let d = dimG/B be the relative dimension of p. By Lemma 3.3.10, p∗[d] gives
a fully faithful embedding taking L+G-equivariant perverse sheaves on Gr≤µ to those on Fl≤wµ

.
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Note also that [BBD82, 4.2.5] proves that p∗[d]ICµ = ICwµ
. To understand the parity vanishing at

the stalk at y ∈ Gr≤µ, choose x ∈ Fl≤wµ
with p(x) = y. Then we have

Hi−d
x ICwµ

= Hi
yICµ.

Let π : D(ẇµ) → Fl≤wµ be the Demazure resolution corresponding to a choice ẇµ of reduced
expression for wµ in the quasi-Coxeter group W . The Decomposition Theorem [BBD82] implies
that ICwµ is a direct summand of π∗(IC(D(ẇµ)) = π∗(Q̄ℓ[d + dµ]). So from the paving by affine
spaces of the fibers of (see [Hai05], [dCHL18], or [Hai23] – need additional refs in non-split
case), the above stalk cohomology vanishes unless i− d− (d+ dµ) is even. We conclude that

Hi
yICµ = 0 unless i− dµ is even.

This proves (I).

Using (I) and (II), the desired vanishing follows immediately from the lemma below, taking
K = i∗ICµ.

Lemma 4.3.1. Let K ∈ Db
c(Gr≤µ,Qℓ) be such that

(a) HiK vanishes unless i− dµ is even; and
(b) for any i, dim suppHiK ≡ dµ (mod 2).

Then for any j odd we have

K ∈ pD≤j ⇒ K ∈ pD≤j−1,

or, equivalently (by [KS90, Prop. 10.1.10]) we have pHj(K) = 0.

Proof. Since K ∈ pD≤j , we have K[j] ∈ pD≤0, and so for all i

dim suppHiK[j] ≤ −i.

This means

dim suppHiK ≤ −i+ j.

By (a), without loss of generality i = 2m+ dµ. So

dim suppHiK ≤ −2m− dµ + j.

By (b), the left hand side is congruent to dµ modulo 2, and the right hand side is not. Therefore
we must have

dim suppHiK ≤ −2m− dµ + j − 1.

Now reversing the steps above, this means that K ∈ pD≤j−1, and the lemma is proved. □

Remark 4.3.2. A more general version of the paving of fibers by affine spaces used above can be
used to prove that every affine Schubert variety has parity vanishing of its intersection cohomology
complexes and its intersection cohomology. See [dCHL18] – in the split case.

5. Lecture 5

5.1. Convolution diagram. For simplicity of notation only, for now assume G split, and
write G = G, etc.

Definition 5.1.1. The convolution diagram is the digram of morphisms of ind-schemes over k

GrG ×GrG LG× LG
poo q // GrG×̃GrG

m // GrG.

Here p is the product of the two obvious projection morphisms, that is, the quotient by the obvious
right action α1. We define the twisted product as the étale sheaf quotient

GrG×̃GrG := LG×L+G LG/L+G,

for the right action α2 of L+G × L+G on LG × LG given by (g1, g2) · (h1, h2) = (g1h1, h
−1
1 g2h2).

Then q is the quotient morphisms, and m is the “multiplication” morphism.
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There is a also a “finite-dimensional version”, meaning we mod out everywhere by the principal
congruence subgroups L≥nG ⊂ L+G, and thereby achieve finite dimensional varieties. To do this
correctly, one fixes any dominant λ and µ, any integers n >> m >> 0 and write L+G/L≥nG =: Gn,
a finite-type smooth connected k-group scheme (at least in the split case – we have to define
the jet scheme differently in general).

The finite-type convolution diagram takes the following form:

Gr≤µ ×Gr≤λ L+G tµ L+G/L≥nG × L+G tλ L+G/L≥mG
pn,moo qn,m // Gr≤µ×̃Gr≤λ

m // Gr≤µ+λ.

The reason we need to consider two integers n > m > 0 is that having fixed a large m, we need a
possibly larger n such that the usual left multiplication action of the subgroup L≥nG is trivial on

L+G tλ L+G/L≥mG.
Here

pn,m = quotient by the usual right action of Gn ×Gm

qn,m = quotient by the twisted right action (x, y) · (hn, hm) = (xhn, h
−1
n yhm).

Theorem 5.1.2. The following properties hold:

(a) The morphisms p, q are smooth of the same relative dimension (meaning, pn,m and qn,m
are).

(b) The morphism m is locally trivial in the stratified sense and is semismall.

Proof. (Sketch.)
Part (a): The smoothness is clear for p. For q, it follows from the theory of the big cell (L<0G×

L+G → LG is an open immersion) that the target of q is étale-locally (even Zariski-locally, in the
split case) isomorphic to the usual product and q is locally in the same sense isomorphic to p; hence
q is also smooth, and has the same relative dimension as q.

Part (b): For local triviality, see [Hai06, Lem. 2.1]. Here is the precise statement for the finite-
dimension version of m: The scheme Gr≤µ×̃Gr≤λ is stratified by locally closed twisted products

Grµ′×̃Grλ′ = {E0
µ′

–E1
λ′

–E2}

where µ′ ⪯ µ and λ′ ⪯ λ, and where E1
λ′

–E2 denotes the relative position of the two L+G-torsors
(defined using the Cartan decomposition). In this description, m(E1, E2) = E2. We also have

Gr≤µ+λ =
∐

ν⪯µ+λ

Grν .

By L+G-equivariance, m(Grµ′×̃Grλ′) =
∐

certain ν

Grν .

The local triviality of m means the following: if y ∈ Grν , then there exists an open subset V with
y ∈ Y ⊂ Grν such that (

m|Grµ′ ×̃Grλ′

)−1
(V ) ∼=

(
m−1(y) ∩ (Grµ′×̃Grλ′

)
× V.

As for semi-smallness of m this is proved in [MV07, ??] and [NP01, ??]. We shall also sketch
a purely combinatorial proof in the final version of the notes we will handle the non-split
case. □

5.2. Descent to the twisted sheaf and definition of convolution. Now supppose F1,F2 ∈
PL+G(GrG). Then p∗(F1 ⊠ F1) is perverse (up to shift) and α1-equivariant. This sheaf is auto-
matically α2-equivariant (in final version, this will be in the Appendices). The action α2

satisfies the axioms of Lemma 3.3.11, and as q has the same relative dimension as p, there is a

unique perverse sheaf F1⊠̃F2 on GrG×̃GrG such that

p∗(F1 ⊠ F1) ∼= q∗(F1⊠̃F2).

Definition 5.2.1. We set F1 ⋆ F2 = Rm!(F1⊠̃F2).
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We note that F1 ⋆F2 is perverse due to the semismallness of m (use Proposition 3.5.1). It is also
L+G-equivariant.

The final version of these notes will have full proofs of the following facts in the
non-split cases:

• semismallness of m
• α2-equivariance above (see the Appendices)

5.3. Some explanations.

5.3.1. Convolution morphisms are semi-small: statement. We can consider r-fold convolution mor-
phisms, for any r ≥ 2. Let µ• = (µ1, . . . , µk) be dominant cocharacters and recall we can describe
the convolution diagram total space as the projective variety

Oµ• = p−1(Oµ1
)×L+G · · · ×L+G p−1(Oµk−1

)×L+G Oµk
,

inside LG×L+G · · · ×L+G GrG, where p : LG→ GrG is the projection map.
Let |µ•| = µ1 + · · ·+ µk. Then the k-fold convolution factors as

mµ• : Oµ• → O|µ•|.

Lemma 5.3.1. For λ ∈ X∗(T )
+
I with λ ⪯ |µ•|, and x ∈ Oλ, we have

dim(m−1
µ•

(x)) ≤ ⟨ρ, |µ•| − λ⟩
i.e., the convolution morphism is semi-small.

Proof. This is essentially a consequence of the dimension estimate in Proposition 5.3.2, see the proof
in [NP01, Lemme 9.3], as we explain in more detail below. □

5.3.2. A dimension bound for LU -orbits. Again abbreviate GrG,≤µ = Oµ. We also define for any
ν ∈ X∗(T )I the locally closed sub-ind-scheme

Sν = LUtµe0.

in the final version of the notes we will prove this is actually a locally closed sub-ind-
scheme. This will be done using general facts about contracting sets with respect to a
Gm-orbit, see [HR21]...

We have

Oµ =
∐
λ⪯µ

Oλ (Cartan stratification)

Oµ =
∐

ν∈X∗(T )I

Sν ∩ Oµ (Iwasawa stratification)

Proposition 5.3.2. (split version) For ν ∈ X∗(T ) and µ ∈ X∗(T )
+, the intersection Sν ∩ Oµ is

non-empty if and only if ν ∈ Ω(µ) (:= weight space for Vµ), and in this case is pure of dimension
⟨ρ, µ+ν⟩, with number of irreducible components mµ(ν), the dimension of the ν-weight space in Vµ.

Proof. This statement and proof is currently just for the split case. The schemes are all
defined over Z and all associated data are defined over a finitely generated Z-algebra. By generic
flatness, we reduce to the case where k = F̄p. The dimension estimate

dim (Sν ∩ Oµ) ≤ ⟨ρ, µ+ ν⟩.
(which is all that is needed for semi-smallness of convolution morphisms – see below) is proved
by a combinatorial argument using Macdonald’s formula (alternatively the Lusztig-Kato formula),
see below. After that, at least in the split case, one proof of the equidimensionality is given
in [GHKR06, 2.17.4], making use of the purity of the cohomology RΓc(Sν , ICµ) proved in [NP01,
Theorem 3.1]. □

In this course, we do not really need the equidimensionality and the purity. We need only the
dimension bound

(5.3.1) dim (Sν ∩ Oµ) ≤ ⟨ρ, µ+ ν⟩.
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5.3.3. Why the dimension bound (5.3.1) implies semi-smallness of m. For proofs of this in the
literature, see [MV07, proof of Lem. 4.4], and [NP01, Proof of Lem. 9.3]. We shall explain something
along the lines of [NP01] but we will not directly get the purity result they prove, only the semi-
smallness bound.

Let (µ1, . . . , µr) be an r-tuple in (X∗(T )
+
I )

r, let λ ∈ X∗(T )
+
I , and suppose λ ⪯ µ := |µ•| :=

∑
i µi.

We consider the convolution morphism

mµ• : Oµ1
×̃Oµ2

×̃ · · · ×̃Oµr
−→ Oµ.

By the local triviality of m GIVE CROSS-REF], the semi-smallness of mµ• is equivalent to: for
any λ as above,

dimm−1
µ•

(Oλ) ≤ ⟨ρ, µ+ λ⟩.
We claim that Sλ ∩ Oλ is open dense in Oλ.

The proof which follows ultimately relies on negative loop groups so works for the
split case – final version will have a different proof. For example, we could also argue
that Oλ is stratified by finitely many locally closed subsets of the form Sν ∩Oλ, and by
the dimension calculation below, Sλ ∩Oλ is the only one of full dimension in Oλ, hence
it must be dense and open, and the union of all the others is closed.

Indeed, since λ is dominant, J<λ := (tλ L<0Gt−λ) ∩ L≥0G maps isomorphically via j 7→ jtλ∗
onto the open

tλ L<0G ∗ ∩ Oλ ⊂ Oλ.

Also, Jλ ∩LU ∼−→ Sλ ∩Oλ via j 7→ jtλ∗. (Use Sλ ∩Oλ ⊆ tλL<0G ∗ ∩Oλ, as LU = (tλ L<0Gt−λ ∩
LU) · (tλ L≥0Gt−λ ∩ LU).)

Now observe that claim follows, as

J<λ ∩ L≥0U = (tλL<0Gt−λ ∩ (UB ⋊ L>0G)

is open dense in

(tλL<0Gt−λ) ∩ L≥0G = J<λ.

The claim is proved, so we just need to show that

(5.3.2) dimm−1
µ•

(Sλ ∩ Oλ) ≤ ⟨ρ, µ+ λ⟩.

We let ν• = (ν1, . . . , νr) ∈ X∗(T )
r be such that νi ∈ Ω(µi) for all i. Then the key observation is

that for any λ ≤ µ = |µ•|, we have

m−1
µ•

(Sλ ∩ Oµ) ∼=
⋃

|ν•|=λ

(Sν1 ∩ Oµ1)×̃ · · · ×̃(Sνr ∩ Oµr ).

Thus the dimension of the LHS is maxν•

∑
i dim(Sνi

∩Oµi
), which by repeated application of (5.3.1)

gives (5.3.2). Definition of this twisted product as well as computation of its dimension
relies on étale-local sections of LG→ LG/L+G – more details in final version.

5.3.4. Macdonald’s formula implies the Mirkovic-Vilonen dimension formula. The argument be-
low is for the split case. The non-split version of Macdonald’s formula exists and in
the final version of the notes we will give the proof in general.

Let mµ(ν) be the multiplicity of ν in the highest weight representation Vµ ∈ Rep(Ĝ). The variety

Sν ∩Oµ is is defined over the finite field Fq for all q = pn. Write U = U(Fq((t))) and K = G(Fq[[t]]),
and G = G(Fq((t))). Write B = TU similarly, and TO for T (Fq[[t]]). We think of q as varying. For
λ ∈ X∗(T ) write eλ = tλe0. Write fµ := 1KtµK , and let f∨µ denote its Satake transform.

Proposition 5.3.3. (split version) The dimension of Sλ ∩ Oµ is at most ⟨ρ, µ+ λ⟩.

Proof. As stated above, by defining objects over Z and using a generic flatness argument, it suffices
to prove the theorem for k = F̄q. Then we may define all the objects over a fixed finite field and
look at how the number of points grows over larger finite fields. Over the field F̄q we will show the
dimension is exactly ⟨ρ, µ+λ⟩ and the number of top dimensional irreducible components is mµ(λ).
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By the Weil conjectures, it is enough to show that

limq→∞
#(UtλK/K ∩KtµK/K)

q⟨ρ,µ+λ⟩ = mµ(λ).

The following lemma was taken from [HKM, Lem. 10.2].

Lemma 5.3.4. We have

#
(
UtλK/K ∩KtµK/K

)
= q⟨ρ,λ⟩f∨µ (t

λ).

Proof. The Iwasawa decomposition G = KUT gives rise to an integration formula, relating inte-
gration over G to an iterated integral over the subgroups K, U , and T , where if Γ is any of these
unimodular groups, we equip Γ with the Haar measure which gives Γ ∩K volume 1. For a subset
S ⊂ G, write 1S for the characteristic function of S. Using the substitution y = kut in forming the
iterated integral, the left hand side above can be written as∫

G

1UK(t−λy)1KtµK(y)dy =

∫
G

1UK(t−λy−1)1KtµK(y−1) dy

=

∫
T

∫
U

∫
K

1UK(t−λt−1u−1k−1)1KtµK(t−1u−1k−1) dk du dt

=

∫
T

∫
U

1UK(t−1u−1)1KtµK(tλt−1u−1) du dt

=

∫
T

∫
U

1UK(t)1KtµK(tλtu) du dt

=

∫
U

1KtµK(tλu) du

= δ
−1/2
B (tλ)f∨µ (t

λ),

which implies the lemma since δ
1/2
B (tλ) = q−⟨ρ,λ⟩. □

By Macdonald’s formula (see [HKP, Thm. 5.6.1] – in the split case), the quantity in Lemma
5.3.4 is the coefficient of tλ in

q⟨ρ,µ+λ⟩

Wµ(q−1)

∑
w∈W0

w
( ∏

α>0

1− q−1t−α∨

1− t−α∨

)
· twµ.

Divide this by q⟨ρ,µ+λ⟩ and take the limit as q → ∞. The Weyl character formula implies we get
mµ(λ). This completes the proof.

In the final version of these notes, this argument will be given for all quasi-split
groups. □

6. Lecture 6

Our goal is to show that (PL+G(GrG), ⋆) is a neutral Tannakian category. Our reference for the
definitions and results below is [DM82].

6.1. Preliminaries and definition of neutral Tannakian categories.

6.1.1. Symmetric monoidal categories. Let (C,⊗, I) be a category C endowed with a functor ⊗ :

C × C → C and an “identity” object I. The identity object comes with “right unit” rA : A⊗ I ∼→ A
and “left unit” lA : I ⊗A ∼→ A isomorphisms, which are natural in A.

Definition 6.1.1. We say (C,⊗, I) is a symmetric monoidal category (or a tensor category) if there

exist isomorphisms sAB : A⊗B ∼→ B⊗A, for A,B ∈ ob(C), which are natural in A,B and are such
that the following properties hold:
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• the following diagram commutes

A⊗ I I ⊗A

A ,

sAI

rA lA

• there is an associativity constraint αABC : (A ⊗ B) ⊗ C
∼→ A ⊗ (B ⊗ C) satisfying the

pentagon axiom, i.e., identifying the two obvious isomorphisms

A⊗ (B ⊗ (C ⊗D))
∼→ ((A⊗B)⊗ C)⊗D

and which further is compatible with the sAB in that it satisfies the hexagon axiom, i.e.,
the following diagram commutes:

(A⊗B)⊗ CsAB⊗1C
∼
//

αABC ≀
��

(B ⊗A)⊗ C

αBAC≀
��

A⊗ (B ⊗ C)

sA,B⊗C ≀
��

B ⊗ (A⊗ C)

idB⊗sAC≀
��

(B ⊗ C)⊗A αBCA

∼
// B ⊗ (C ⊗A)

• the composition A⊗B sAB→ B ⊗A sBA→ A⊗B is the identity 1A⊗B .

6.1.2. Internal Hom and dual objects. Let (C,⊗, 1) be a symmetric monoidal category, as above
(except we now denote the identity object by 1). If T 7→ Hom(T ⊗X,Y ) is representable, we denote
the representing object by Hom(X,Y ) and call it the “internal hom”. In other words we have an
identification

(6.1.1) Hom(T ⊗X,Y ) = Hom(T,Hom(X,Y )).

When it exists, we denote

(6.1.2) X∨ = Hom(X, 1).

Then there exists a unique morphism evX : X∨ ⊗X → 1 corresponding to idX∨ under the isomor-
phism

Hom(T,X∨)
∼→ Hom(T ⊗X, 1).

Under this isomorphism X ⊗X∨ sX,X∨
→ X∨ ⊗X evX→ 1 corresponds to a morphism iX : X → X∨∨.

Definition 6.1.2. An object X is called reflexive if iX is an isomorphism.

Remark 6.1.3. We can make the correspondence between f ∈ Hom(T,Hom(X,Y )) and g : T⊗X →
Y explicit: given f the morphism g is the unique one making the following diagram commute:

T ⊗X
g

&&

f⊗1X
��

Hom(X,Y )⊗X
evX,Y

// Y

where evX,Y is the morphism corresponding to idHom(X,Y ) under (6.1.1).

For finite families (Xi), (Yi), i ∈ I, there is a morphism⊗
i

Hom(Xi, Yi) −→ Hom(⊗iXi,⊗iYi).

corresponding to⊗
i

Hom(Xi, Yi)⊗
⊗
i

Xi
s,α−→

⊗
i

(
Hom(Xi, Yi)⊗Xi

) ⊗ev−→
⊗
i

Yi.
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In particular we have morphisms

⊗iX
∨
i −→

(
⊗i Xi

)∨
X∨ ⊗ Y −→ Hom(X,Y ).

6.1.3. Rigid Tensor Categories.

Definition 6.1.4. A rigid tensor category (C,⊗, 1) is a symmetric monoidal category such that

(a) Hom(X,Y ) exists for all X,Y ∈ ob(C)
(b) Hom(X1, Y1)⊗Hom(X2, Y2)

∼−→ Hom(X1 ⊗X2, Y1 ⊗ Y2). for all X1, X2, Y1, Y2 ∈ ob(C)
(c) All objects in C are reflexive.

The following is a consequence of the definitions.

Lemma 6.1.5. In an rigid tensor category the canonical morphisms above are isomorphisms, i.e.,⊗
i

X∨
i

∼−→
(⊗

i

Xi

)∨
,

and

X∨ ⊗ Y ∼−→ X∨ ⊗ Y ∨∨

∼−→ Hom(X ⊗ Y ∨, 1)

∼= Hom(X,Y ∨∨) ∼= Hom(X,Y ).

More generally, ∀X,Y, Z we have canonical natural isomorphisms

Hom(X,Hom(Y, Z)) ∼= Hom(X ⊗ Y,Z).

For the last statement, observe that both sides represent isomorphic functors: for every object
T , we have

Hom(T,LHS) = Hom(T ⊗X,Hom(Y,Z)) ∼= Hom(T ⊗X ⊗ Y,Z) ∼= Hom(T,RHS).

In the final version of the notes, more properties of rigid tensor categories will be
inserted here...

Remark 6.1.6. Let K be any field. Then C is often a K-linear abelian category, that is, the hom
sets HomC(X,Y ) have the structure of K-vector spaces in such a way that the composition laws are
K-bilinear.

We have the following criterion for a K-linear abelian category to be a rigid tensor category.

Proposition 6.1.7. [DM82, Prop. 1.20] Suppose K is a field and C is a K-linear abelian category,
and suppose ⊗ : C × C → C is a K-bilinear functor. Suppose that F : C → VectK is a faithful,
exact, and K-linear functor. Suppose that ∀X,Y, Z we are given functorial isomorphisms ϕXY Z :
(X ⊗ Y )⊗ Z ∼→ X ⊗ (Y ⊗ Z) and ψXY : X ⊗ Y ∼→ Y ×X such that

(a) F ◦ ⊗ = ⊗ ◦ (F × F )
(b) F (ϕXY Z) is the usual associativity isomorphism in VectK
(c) F (ψXY ) is the usual commutative isomorphism in VectK
(d) there is an identity object U ∈ ob(C) and an isomorphism K

∼→ End(U) and dimK F (U) = 1
(e) If dimK F (L) = 1, then L is invertible in C, i.e.,there exists another object L−1 and an

isomorphism L⊗ L−1 ∼→ U .

Then (C,⊗, U, ϕ, ψ) is a rigid tensor category.
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6.1.4. Tensor functors and morphisms between them.

Definition 6.1.8. A ⊗-functor (C,⊗) → (C′,⊗′) of symmetric monoidal categories is a pair (F, c)
consisting of a functor F : C → C′ and the data of functorial isomorphisms

cXY : F (X)⊗ F (Y )
∼−→ F (X ⊗ Y )

which are compatible with the commutativity and associativity constraints, and with
unit objects. That is, they satisfy:

(a) ∀X,Y, Z ∈ ob(C), the following commutes

FX ⊗ (FY ⊗ FZ) id⊗c //

≀
��

FX ⊗ F (Y ⊗ Z) c // F (X ⊗ (Y ⊗ Z))

≀
��

(FX ⊗ FY )⊗ FZ c⊗id // F (X ⊗ Y )⊗ FZ c // F
(
(X ⊗ Y )⊗ Z

)
.

(b) ∀X,Y , the following commutes

FX ⊗ FY c //

s′

��

F (X ⊗ Y )

F (s)

��
FY ⊗ FX c // F (Y ⊗X)

(c) if (U, u) is an identity for (C,⊗) in the sense of [DM82, §1], then (FU,Fu) is an identity
object in (C′,⊗′).

Remark 6.1.9. We can clearly upgrade the definition so that c consists of isomorphisms indexed
by finite families

c :
⊗
i

F (Xi)
∼−→ F

(⊗
i

Xi

)
satisfying the obvious compatibility with the symmetric monoidal structures.

Definition 6.1.10. Let (F, c) and (G, d) be two⊗-functors (C,⊗)→ (C′,⊗′) between two symmetric
monoidal categories. A morphism of ⊗-functors (F, c) → (G, d) is a natural transformation of
functors λ : F → G such that the following diagrams commute for every finite I-family of
objects (Xi)i∈I ⊗

i F (Xi)
c
∼
//

⊗iλXi

��

F (
⊗

iXi)

λ⊗iXi

��⊗
iG(Xi)

d
∼
// G(

⊗
iXi).

If I = ∅, this diagram should be interpreted as the commutative diagram

1′
∼ // F (1)

λ1

��
1′

∼ // G(1).

Definition 6.1.11. Denote by Hom⊗(F,G) the class of ⊗-morphisms (F, c)→ (G, d).

Proposition 6.1.12. Suppose (F, c) : (C,⊗) → (C′,⊗′) is a ⊗-functor of rigid tensor categories.
Then the canonical map F (evXY ) gives an isomorphism

FXY : F (Hom(X,Y ))
∼−→ Hom(FX,FY ).

Proof. Will appear in final version of notes. □

Proposition 6.1.13. If (C,⊗) and (C′,⊗′) are rigid, then any λ ∈ Hom⊗(F,G) is an isomorphism.
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Proof. Will appear in final version of notes. □

Proposition 6.1.14. Assume (C,⊗) is abelian and rigid. Then ⊗ is biadditive and commutes with
direct and inverse limits in each variable. In particular, it is exact in each variable.

Proof. For each object Y , the functor X → X⊗Y has a right adjoint (namely Z → Hom(Y,Z)), so it
is additive and preserves colimits. On the other hand, one can show that Z → Hom(Y,Z) = Y ∨⊗Z
is also left adjoint to X → X ⊗ Y ∼= Hom(Y ∨, X). □

6.1.5. Neutral Tannakian categories.

Definition 6.1.15. A neutral Tannakian category over K is a rigid K-linear abelian tensor category
such that K = End(1), for which there is an exact faithful K-linear tensor functor

ω : C −→ VectK .

Example 6.1.16. The most important example of a neutral Tannakian category is one of the form
(RepK(G∨),⊗), where G∨ is an affine group scheme over K.

When working over a field K, we may drop the hypothesis “faithful” in the above definition, as
it is automatic.

Proposition 6.1.17. Suppose C, C are rigid tensor categories, End(1) is a field, and 1′ ̸= 0. Then
every exact ⊗-functor F : C → C′ is faithful.

Proof. Note that C ̸= 0 ⇐⇒ C∨ ⊗ C evC→ 1 is surjective (use Lemma 6.1.5). Hence C ̸= 0 implies
F (C) ̸= 0. In other words, F is conservative.

Now f, g : C1 → C2 in C have f ̸= g if and only if C1/eq(f, g) ̸= 0. But

(6.1.3) F (C1/eq(f, g)) = FC1/eq(Ff, Fg)

as F is exact. This implies the result. □

Corollary 6.1.18 (of proof). If F is exact and conservative, then F is faithful.

Remark 6.1.19. For the Corollary, it seems essential that we are working over a field and not a
more general ring. Indeed, suppose K = Zp, G

∨ is an affine Zp-group scheme, and C = RepZp
(G∨)

is the exact category of representations of G∨ on the category Proj.ftZp
of finite-type projective Zp-

modules. Let F : RepZp
(G∨) → Proj.ftZp

be any exact and conservative functor. These conditions
need not imply that F is faithful. The problem we encounter is that these conditions are not strong
enough to force F to preserve kernels. The above proof breaks down because C2/im(f − g) could
have Zp-torsion, hence there is no reason that F (im(f − g)) should inject into F (C2), and hence no
reason that F (ker(f − g)) ⊂ ker(Ff − Fg) should be an equality, hence no reason that the natural
surjection F

(
C1/eq(f, g)

)
→ F (C1)/eq(Ff, Fg) should be an isomorphism. The assumption that

F is conservative implies the source is non-zero when f ̸= g, but the target could well be zero, that
is, we could have Ff = Fg.

The following is one of the main theorems about Tannakian categories. It tells us there are no
other examples of neutral Tannakian categories besides those listed in the Example above. Our
reference is [DM82, Thm. 2.11].

Theorem 6.1.20. Let (C,⊗, 1) be a neutral Tannakian category over a field K with fiber functor
ω : C → VectK . Then:

(a) the functor of K-algebras Aut⊗(ω) (cf. [DM82, Prop. 2.8]) is represented by an affine K-
group scheme G∨.

(b) C → RepK(G∨) defined by ω is an isomorphism of tensor categories.

We term G∨ the Tannakian group of C.
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6.2. Properties of G∨ and RepK(G∨). In this section we see how properties of G∨ can be read
off from properties of (RepK(G∨),⊗). A reference for the following facts is [DM82, §2]. We assume
throughout that K is an algebraically closed field.

(i) The group G∨ is algebraic (i.e. finite-type overK) if and only if C = RepK(G∨) has a tensor
generator, namely an object X such that every object Y is isomorphic to a subquotient of
P (X,X∨) for some P ∈ N[r, s]. Here we interpret Un + V m := U⊗n ⊕ V ⊗m, and U0 := 1.

(ii) Assume char(K) = 0. Then G∨ is connected if and only if for every nontrivial representa-
tion X the subcategory〈

X
〉
:= {all subquotients of X⊕n |n ∈ N}

is not ⊗-stable.
(iii) Assume char(K) = 0. Then G∨ is pro-reductive if and only if RepK(G∨) is semisimple.

6.3. Sketch of proof that our category is Tannakian.

6.3.1. First steps.

• Let C = (PL+G(GrG), ⋆). We wish to show this is a neutral Tannakian category.
• We define ω : C → VectQℓ

by

F 7→
⊕
i∈Z

RiΓ(GrG ,F).

• C has an identity object 1 := Q̄ℓ,∗, the constant sheaf supported on the base point ∗. Clearly
1 ̸= 0 and ω(1) = Qℓ, the identity object in VectQℓ

.

• We want to show that C,1, ω satisfies the Deligne-Milne axioms for a category to be rigid.
• We will use ULA sheaves and a global convolution diagram of BD-Grassmannians to show
that ⋆ has commutativity and associativity isomorphisms.

• The ULA/global method will show that ω is symmetric monoidal, ie., it takes the tensor
product and the commutativity and associativity isomorphisms to the natural ones in VectQ̄ℓ

.
• We postpone this and assume it for now.
• We will next check the remaining conditions in Deligne-Milne Proposition 1.20 (Proposition
6.1.7).

6.3.2. Checking the Deligne-Milne axioms.

• It is clear that ⋆ : PL+G(GrG)× PL+G(GrG)→ PL+G(GrG) is Q̄ℓ-bilinear.
• ω : PL+G(GrG) → VectQℓ

is exact since it is clearly additive and Q̄ℓ-linear, and since

PL+G(GrG) is semisimple, so that every short exact sequence splits (any additive functor
preserves split exact sequences).

• ω is faithful: we proved above that any exact conservative functor is faithful (conservative:
C ̸= 0⇒ F (C) ̸= 0).

• But ω is conservative: the IC-complex of any Schubert variety Oµ has non-vanishing global
cohomology (e.g. by a theorem of Kazhdan-Lusztig relating the latter to KL-polynomials).

• A different (more elementary) proof is given in [dCHL18] – for split groups.
• Finally, suppose A ∈ PL+G(GrG) has dimω(A) = 1. Then A is a single ICµ.

• By Poincaré duality for ω(ICµ) = IH•(Oµ, Q̄ℓ) (which forces cohomology in top and bottom

degrees) we must have Oµ = tµ∗, that is, µ is a central cocharacter.
• Then IC±µ = Q̄ℓ,t±µ∗ satisfy

ICµ ⋆ IC−µ = IC0,

which follows from the definition of ⋆ in this case.
• We conclude that (PL+G(GrG), ⋆) is a rigid tensor category by Proposition 6.1.7. □

Thus, assuming the ULA ingredients, we have proved that there is a unique (up to isomorphism)
affine group scheme G∨ over Q̄ℓ, such that there is an isomorphism of rigid tensor categories

(6.3.1) (PL+G(GrG), ⋆) ∼= (RepQ̄ℓ
(G∨),⊗).

We next consider what we can say about the group G∨ as this point.
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6.3.3. Finite type. To check that G∨ is algebraic, choose a finite set λ1, . . . , λn of generators for the
monoid of dominant coweights X∗(T )

+
I . So any λ = k1λ1 + · · ·+ knλn for some ki ∈ Z≥0. One can

see that ICλ appears as a direct summand of

(ICλ1
)⋆k1 ⋆ · · · ⋆ (ICλn

)⋆kn .

(See e.g. [dCHL18] at least for the split case). Thus ICλ1
⊕ · · · ⊕ ICλn

is a tensor generator,
which proves G∨ is algebraic.

6.3.4. Reductivity. The group G∨ is reductive because the category is semisimple by Proposition
4.2.1.

6.3.5. Connectedness. First suppose that G/k((t)) is split. Then is enough to show that if F ∈
PL+G(GrG) is a non-zero object and not a sum of copies of the unit object 1, then

〈
F
〉
is not closed

under ⊗. This follows easily from the observation that F must have a summand of the form ICµ

where µ ̸= 0 and this µ has infinite order in the additive group X∗(T ).
In the non-split case, the same argument does not work, as then X∗(T )

+
I can indeed have torsion

elements and in fact these parametrize the connected components of the eventual Tannakian group

ĜI,◦, as π0(T̂
I,◦)

∼→ π0(Ĝ
I,◦) by e.g. [Hai15, Prop. 4.1].

6.3.6. Aside: What are the dual and internal Hom objects?

• Assuming the ULA ingredients, we have proved (PL+GGrG), ⋆) is Tannakian, in particular,
it is a rigid tensor category.
• In particular, each object X has a dual X∨ and is reflexive. What is X∨?
• We claim that IC∨

µ = ICµ∗ , where µ∗ := −w0(µ) (here w0 is the longest element in the finite
Weyl group).
• I do not know a direct proof, but here is an argument using the geometric Satake correspon-
dence.
• Under the correspondence we will prove (RepQ̄ℓ

(Ĝ),⊗) ∼= (PL+G(GrG), ⋆), the highest weight

representation Vµ of Ĝ corresponds to ICµ (up to some normalization).
• The identity characterizing Hom(ICµ, ICλ) we wish to prove for dominant λ, µ, ν follows
from the identity

Hom(Vν , Vµ∗ ⊗ Vλ) = Hom(Vν ⊗ Vµ, Vλ),

which follows from the definitions using the well-known fact that Vµ∗ is the Ĝ-dual of Vµ.

6.4. Our approach to identifying the Tannakian group G∨. We will follow the approach of
Timo Richarz in his paper [Ri14].

The basic idea is to use a result of Kazhdan-Larsen-Varshavsky which shows how to recover a
root system from its Grothendieck semiring.

Useful References:

(1) [Hai03] T.Haines, Structure constants for Hecke and representation rings , IMRN, no.39,
(2003), 21030-2119.

(2) [KLV] D.Kazhdan, M. Larsen, Y.Varshavsky, The Tannakian formalism and the Langlands
conjectures, Alg. Numb.Th.8, (2014), no. 1, 243-256. [?, NP01]. C.Ngô, P. Polo, Résolutions
de Demazure affines et formule de Casselman-Shaliko géométrique, J. Alg.Geom.10 (2001),
no. 3, 515-547.

(3) [Ri14] T.Richarz, A new approach to the geometric Satake equivalence, Documenta Math.19
(2014), 209-246.

(4) [Kum90] S.Kumar, Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture, Invent.Math.93,
(1988), 117-130.
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6.4.1. Preliminaries. The following will only discuss the split case. The general case is
almost the same and will appear in the final version.

In what follows, we will abbreviate X∨ = X∗(T ) = X∗(T̂ ), X∨
+ = X∗(T )

+ = X∗(T̂ )+, and also
we set X = X∗(T ) and X+ = X∗(T )+. We let 2ρ =

∑
α>0 α, the sum of B-positive roots in the

absolute root system Φ = Φ(G,T ).
Reminders:

• Let µ, λ generally denote dominant cocharacters: µ, λ ∈ X∨
+. Let ν generally denote any

cocharacter: ν ∈ X∨

• Oµ is the Zariski-closure GrG,≤µ of the L+(G)-orbit of tµ∗ ∈ GrG. (Recall dim Ōµ =
⟨2ρ, µ⟩.) Let Sν := LUtν∗

• Q (resp.Q∨) dnotes the Z-lattice in X∗(T ) (resp.X∨) spanned by the roots (resp. coroots).
Write ν ≤ ν′ whenever ν′ − ν is a sum of positive coroots.

• Ω(µ) := {ν ∈ X∨ |wν ≤ µ, ∀w ∈W}
• Recall the twisted product Ōµ• = Ōµ1×̃ · · · ×̃Ōµr and morphism mµ• : Ōµ• → Ō|µ•| associ-
ated to µ• = (µ1, . . . , µr) and |µ•| :=

∑
i µi.

• The morphism mµ• is semi-small, which translates to the following: for any λ ∈ X∨
+ with

λ ≤ |µ•|, and x ∈ Oλ(k), we have

dimm−1
µ•

(x) ≤ ⟨ρ, |µ•| − λ⟩.

(Recall we proved semi-smallness earlier, relying on Macdonald’s formula for Satake trans-
forms of basis elements in the Hecke algebra.)

6.4.2. Result on semismallness, fibers, and cohomology. By semi-simplicity and perverse-presernation
of ⋆, we can write

ICµ1
⋆ · · · ⋆ ICµr

=
⊕

λ≤|µ•|

V λ
µ•
⊗ ICλ,

for certain multiplicity vector spaces V λ
µ•

over Q̄ℓ. The following two results are well-known, and
the author gives citations to [Hai03] only for convenience.

Lemma 6.4.1. ([Hai03, Prop. 3.1]) For any λ ≤ |µ•| and y ∈ Oλ(k), the vector space V λ
µ•

has a

canonical basis indexed by the set of irreducible components of m−1
µ•

(y) having the maximal possible
dimension of ⟨ρ, |µ•| − λ⟩.

Proof. (Sketch). By the characterization of intersection complexes in Proposition 3.3.9, we see that

ICµ1
⊠̃ICµ2

⊠̃ · · · ⊠̃ICµr
= IC×̃iŌµi

.

We have from the definition of ⋆

Rmµ•,∗(IC×̃iŌµi
) =

⊕
λ≤|µ•|

V λ
µ•
⊗ ICλ.

Let d = −dimOλ. Now apply the cohomology-stalk functor Hd
y to the above formula, and use

the local-global spectral sequence, vanishing properties of cohomology of IC-complexes, and the
semi-smallness (in the stratified sense) of mµ• [GIVE CROSS-REF]. □

The fiber over y ∈ Oλ(k) of the LHS is the group Hd(m−1
µ•

(y), IC×̃iŌµi
). The Lemma above

results from a special case of the following general lemma, whose proof is the same as that sketched
above.

Lemma 6.4.2. ([Hai03, Lem. 3.2]) Let f : X = ∪αXα → Y = ∪βYβ be a semi-small morphism
between proper stratified schemes such that for each α, f(Xα) is a union of certrain strata in Y .
Suppose y ∈ Yβ. Let d = −dimYβ. There there is a canonical isomorphism

Hd(f−1(y), ICX) = Q̄Cmax(y)
ℓ

where Cmax(y) is the set of irreducible components of f−1(y) having the maximal possible dimension
1
2 (dimX − dimYβ).
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6.4.3. PRV Conjecture. The following is the PRV Conjecture, now a theorem proved by Shrawan
Kumar [Kum90] and independently by Oliver Mathieu [Mat89].

Theorem 6.4.3. Suppose µi, λ are dominant weights for any complex connected reductive group
H and let Vµi

and Vλ denote the corresponding irreducible highest weight representations. If λ =
ν1 + · · ·+ νr with νi ∈Wµi for all i, then Vλ appears as a direct summand of Vµ1

⊗ · · · ⊗ Vµr
.

We also need the geometric PRV Conjecture, which was discovered and proved by Richarz:

Theorem 6.4.4. ([Ri14, Lem. 5.5]) If λ ∈ X∨
+ with λ ≤ |µ•| is of the form λ = ν1 + · · · + νr for

νi ∈Wµi for all i, then ICλ appears as a direct summand of ICµ1
⋆ · · · ⋆ ICµr

.

Remark 6.4.5. The proof of geometric PRV is elementary, so you might think we can use the
geometric Satake correspondence (after it is proved) to give an alternative proof of [Kum]. However,
this would be circular, since in our current strategy, Theorem 6.4.3 is used to prove geometric Satake.

6.4.4. Proof of the geometric PRV.

• By induction, we easily reduce to case r = 2. By Lemma 6.4.1, we need to find x ∈ Oλ such
that the dimension of m−1

µ•
(x) is at least ⟨ρ, |µ•| − λ⟩.

• We have λ = ν1 + ν2. Choose w ∈ W such that wν1 is dominant, that is, wν1 = µ1. Write
wλ = wν1 + wν2.
• Let Swν• ∩ Ōµ• be the intersection with Ōµ• ⊂ Ōµ1

× Ōµ1+µ2

Swν• ∩ Ōµ• := (Swν1
× Swν1+wν2

) ∩ Oµ• .

• By [NP01, Lem. 5.2], we have an isomorphism

Swλ ∩ Ōλ =
∏
α>0

wα>0

⟨α,λ⟩−1∏
i=0

Uwα,i,

and similarly for (wνi, µi) replacing (wλ, λ).
• Using this we get that Swν• ∩ Ōµ•

∼= (Swν1
∩ Ōµ1

)× (Swν2
∩ Ōµ2

) in the following way:

• y = (y1, y2) ∈ (Swν1
×Swν1+wν2

) ∩ Oµ• can be written uniquely for certain u1, u2 ∈ L+U(k)
as

y1 = u1t
wν1∗ , y2 = u1t

wν1u2t
wν2 ∗ .

• Here uit
wνi∗ ∈ (Swνi

∩ Ōµi
) for i = 1, 2.

• Since wν1 is dominant we have twν1u2t
−wν1 ∈ L+U(k), and so y2 = mµ•(y) ∈ Owν1+wν2

, so
in fact mµ• sends Swν• ∩ Oµ• into Swλ ∩ Oλ.
• In fact these two spaces are irreducible, and there is an open dense Y ⊂ Swν• ∩Oµ• mapped
by mµ• onto an open dense Y ′ ⊂ Swλ ∩ Oλ.
• This is a little bit tricky, and is not explained in [Ri14]. One uses the fact that mµ• is locally
trivial in the stratified sense [GIVE CROSS-REF]. This means that

mµ• : m−1
µ•

(V ) ∩ Oµ• → V

is an open morphism for some small open V ⊂ Oλ containing a twλ∗. In particular, its
restriction over Swλ ∩ Ōλ is still open.

• The restriction of this last over the 1st factor preimage of the open dense Swν1 ∩ Oµ1 is
still an open map. The restriction to the intersection of this with some subset of the form
Sν′

1
× Sν′

1+ν′
2
with ν′1 + ν′2 = wλ (these cover the preimage of Swλ) must also be open.

• But by choice of our open subsets, we must have ν′1 = wν1 and hence ν′2 = wν2. This gives
the open Y and shows that its image Y ′ is also open in Swλ ∩ Oλ.

• Let h = mµ• |Y . Then by generic flatness of h : Y ↠ Y ′, there exists x ∈ Y ′ such that

dimh−1(x) = dimY − dimY ′ = ⟨ρ, |µ•|+ wλ⟩ − ⟨ρ, λ+ wλ⟩ = ⟨ρ, |µ•| − λ⟩.

• In particular dimm−1
µ•

(x) ≥ ⟨ρ, |µ•|−λ⟩, and hence equality by semi-smallness. We conclude

that V λ
µ•
̸= 0 using Lemma 6.4.1. □
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Remark 6.4.6. The above uses crucially that dim Swλ ∩Oλ = ⟨ρ, λ+ wλ⟩. This is a consequence
of the description in [NP01, Lem. 5.2] we already used. We do not need the finer result (which is
also true) that for any ν ∈ Ω(λ), Sν ∩ Oλ is equidimensional of dimension ⟨ρ, λ+ ν⟩.

6.5. Preliminaries related to the KLV theorem. Let H be any connected reductive group
over Q̄ℓ and let K+

0 (H) denote the Grothendieck semiring attached to the category RepQ̄ℓ
(H). The

theorem of Kazhdan-Larsen-Varshavsky [KLV] is that H can be determined from K+
0 (H).

In what follows X,X+ will be weights. We will also now change our previous notation ⪯ to ≤
and replace the former ⪯ with a variant. More precisely, for λ, µ ∈ X+, define λ ⪯ µ if µ− λ is an
R≥0-linear combination of positive roots. Note λ ≤ µ iff λ ⪯ µ and the images of µ and λ in X/Q
agree.

Define Dom⪯µ = {ν ∈ X+ | ν ⪯ µ}.

Lemma 6.5.1 (KLV Lemma). For λ, µ ∈ X+, the following are equivalent:

(i) λ ⪯ µ
(ii) Conv(Wλ) ⊆ Conv(Wµ)
(iii) There is a finite subset F ⊂ X+ such that for all k ∈ N:

Dom⪯kλ ⊆WF +

k∑
i=1

Wµ

(iv) There is a representation U such that for all k ∈ N, every irreducible subquotient of V ⊗k
λ is

a subquotient of V ⊗k
µ ⊗ U .

We omit the proof, given in [Ri14, Prop. B.3], but note that it is elementary except for the fact
that it relies on the PRV Conjecture (proved in [Kum90, Mat89]). The most important equivalence
is (i)⇔ (iv): this expresses λ ⪯ µ purely in terms of the Grothendieck semiring.

7. Lecture 7

7.1. The results of Kazhdan-Larsen-Varshavsky.

7.1.1. Tannakian reduction theorem.

Theorem 7.1.1 (KLV Theorem [KLV]). The based root system B = (X,R,X∨, R∨,∆) of H can
be reconstructed from the semiring K+

0 [H].

Let vµ be the image in K+
0 [H] of the highest weight representation Vµ. Thus, the vµ with µ ∈ X+

form a basis for K+
0 [H]. The first key lemma is the following.

Lemma 7.1.2 (⪯ Lemma). The partial ordering ⪯ can be reconstructed from the semiring K+
0 [H].

Proof. By the KLV Lemma (Lemma 6.5.1), for weights λ, µ ∈ X we have λ ⪯ µ if and only if there
exists u ∈ K+

0 [H] such that, for all k ∈ N and irreducible vν ∈ K+
0 [H], we have

vkλ − vν ∈ K+
0 [H] =⇒ vkµu− vν ∈ K+

0 [H].

N.B. We can formulate this without using “-“, that is, without going outside of the semiring
structure. □

The second key lemma is the following.

Lemma 7.1.3 (∆ Lemma). A weight α ∈ X belongs to ∆ if and only if it is a ⪯-minimal nonzero
element in X with the following property: there exists µ ∈ X+ such that 2µ − α ∈ X+ and V2µ−α

appears in V ⊗2
µ , i.e., v2µ − v2µ−α ∈ K+

0 [H].

Proof. First suppose α ∈ ∆. Then take any µ ∈ X+ such that ⟨µ, α∨⟩ ≥ 1 (we can even take µ to be
a suitable dominant weight plus α and thus arrange ⟨µ, α∨⟩ ≥ 2). Then 2µ−α ∈ X+ as ⟨α, β∨⟩ < 0
for β ∈ ∆\{α}.

Now note that the weight 2µ−α appears with multiplicity at least 2 in V ⊗2
µ , but with multiplicity

exactly 1 in V2µ (use Kostant’s weight multiplicity via partitions theorem for the latter statement).
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Remark 7.1.4. The Kostant weight multiplicity via partitions theorem gives the equality

dimV2µ(2µ− α) =
∑

w∈W0

sgn(w)P
(
w(2µ+ ρ)− (2µ− α+ ρ)

)
.

Here P is defined as follows: if α1, . . . , αN are the elements in ∆ and ν ∈ X, P(ν) is the number of
tuples (n1, . . . , nN ) ∈ ZN

≥0 such that n1α1+· · ·+nNαN = ν. Thus the key lemma, taking λ = 2µ+ρ,
is the following:

Lemma 7.1.5. If λ is regular dominant and ⟨λ, α∨⟩ ≥ 2, then for w ∈W0, the condition wλ−λ+α ∈
Z≥0[∆] implies that w = 1.

Proof. Note first that λ − α is dominant. Suppose w ̸= 1. Since λ is regular dominant, wλ − λ
is a non-empty sum of negative roots. Adding α cannot give a sum of positive roots, so by our
hypothesis we must have wλ− λ+ α = 0. Then wλ = λ− α is dominant, which implies since λ is
regular that w = 1, a contradiction. □

This means that V2µ−α must appear in V ⊗2
µ . Next we prove that α ∈ ∆ implies α is ⪯-minimal

nonzero with respect to the given properties.
Suppose β ∈ X with 0 ̸= β ⪯ α has a dominant µ′ for which 2µ′ − β ∈ X+ and V2µ′−β appears

in V ⊗2
µ′ . Then β ∈ Q+, and it is then elementary to check that β = α (using α ∈ ∆ and 0 ̸= β ⪯ α).

This proves the “only if” direction.

Now suppose α ∈ X is minimal nonzero such that µ exists with the required properties. We must
have α ∈ Q+. By Stembridge’s Lemma ([NP01, 10.1]), there exists a positive root β such that

2µ− α ≤ 2µ− β < 2µ

and all three lie in X+.
Write β =

∑
i aiαi for certain αi ∈ ∆ and all ai ∈ N. There exists i such that ⟨µ, α∨

i ⟩ > 0
(otherwise ⟨µ, β∨⟩ = 0 and thus ⟨2µ− β, β∨⟩ = −2 < 0, a contradiction).

Then 2µ− αi ∈ X+ and by the above argument, V2µ−αi
appears in V ⊗2

µ . By minimality α = αi,
that is, α ∈ ∆. This proves the “if” direction. □

7.1.2. Sufficiency of reconstructing (X+,≤).

Lemma 7.1.6. To reconstruct B from K+
0 [H], it is enough to reconstruct the semigroup (X+,≤)

of dominant weights together with its partial order structure.

Proof. The weight lattice X is the group completion of X+, and is a finite free Z-module. The dom-
inance order ≤ extends uniquely to X, also denoted ≤. Then X∨ = Hom(X,Z) is also determined,
along with the canonical pairing

⟨− , −⟩ : X ×X∨ → Z.
A weight α ∈ X\{0} is in ∆ if and only if 0 ≤ α and α is minimal with this property. This

reconstructs ∆.
Reconstructing α∨ ∈ ∆∨: it is determined by its values on all µ ∈ X+. But ⟨µ, α∨⟩ is the unique

m ∈ Z≥0 such that 2µ−mα ∈ X+ but 2µ− (m+ 1)α /∈ X+.
The finite Weyl group W0 ⊂ AutZ(X) is the finite subgroup generated by the reflections sα,α∨

for α ∈ ∆. Then R =W0 ·∆ and R∨ =W0 ·∆∨. Thus B is determined from (X+,≤). □

7.1.3. Proof of the KLV Theorem.

• By Lemma 7.1.6 it is enough to reconstruct (X+,≤) from the semiring K+
0 [H].

• The irreducible objects inK+
0 [H] are given by elements of X+, which reconstructs the latter.

• By the ⪯ Lemma (Lemma 7.1.2), the partial order ⪯ is reconstructed from the semiring
K+

0 [H].
• The semigroup structure on X+ is given by: ν = λ+ µ iff ν is the unique dominant weight
which is ⪯-maximal with the property that vλ · vµ − vν ∈ K+

0 [H].
• Recall X is the group completion of X+, so is determined. Also ∆ is determined by the ∆
Lemma (Lemma 7.1.3). Then also Q+ is determined, and thus its group completion Q is
determined.
• Finally, ≤ is determined from ⪯ and X/Q, so is determined. □
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7.2. Reconstruction Theorem on the geometric side.

7.2.1. First steps. Write (PL+G(GrG), ⋆) = (Rep(H),⊗), for the connected reductive Q̄ℓ-groupH :=
G∨. Let (X ′, R′, X ′∨, R′∨,∆′) be the based root system for H.

We know that X ′ is the group completion of X ′
+, which can be identified with the irreducible

elements of PL+G(GrG), that is, with the classes [ICµ] ∈ K+
0 [H] where µ ∈ X∗(T )

+. Thus we can
already identify X ′

+ = X∗(T )
+, where the notion of dominant cocharacter comes from our choice of

Borel pair T ⊂ B ⊂ G.
We therefore have a bijection X∨

+ → X ′
+ given by µ 7→ [ICµ]. It is enough (by the proof of the

KLV Theorem) to show that this extends to a bijection of partially ordered semigroups

(X∨
+,≤)

∼→ (X ′
+,≤′),

where (X,R,X∨, R∨,∆) = (X∗(T ), R,X∗(T ), R
∨,∆) is the based root system for (G,B, T ).

7.2.2. Game plan.

• Use the PRV Conjecture and the geometric PRV result to prove that λ ⪯ µ is equivalent to
[ICλ] ⪯′ [ICµ].

• Then one puts together the two lemmas below (the Geometric ∆ Lemma and the Geometric
Multiplicity Lemma) to prove that Q∨

+ corresponds to Q′
+ (equivalently, ∆∨ = ∆′) and thus

that ≤ corresponds to ≤′.
• We then conclude as desired

(X∨
+,≤)

∼→ (X ′
+,≤′),

which finishes the proof of the Main Theorem, Theorem 1.5.1, modulo ULA and fusion
ingredients.

7.2.3. The proof, continued.

• We claim for λ, µ ∈ X∨
+ that λ ⪯ µ iff [ICλ] ⪯′ [ICµ].

• Assume λ ⪯ µ and choose the finite subset F ⊂ X∨
+ as in the KLV Lemma. Let A =

⊕ν∈F ICν and suppose ICχ appears in IC⋆k
λ for some k ∈ N.

• Thus χ ≤ kλ and by the KLV Lemma, χ ∈WF +
∑k

i=1Wµ.

• By the geometric PRV, ICχ appears as a direct summand of IC⋆k
µ ⋆A.

• We have proved: there exists A such that for all k ∈ N, if [ICχ] appears in [ICλ]
⋆k, then it

appears in [ICµ]
⋆k ⋆A. Thus by the KLV Lemma, we have proved [ICλ] ⪯′ [ICµ].

• Conversely, assume [ICλ] ⪯′ [ICµ]. By (iv) of the KLV Lemma, by looking at supports we
see that ∃ν ∈ X∨

+ that that

Okλ ⊂ Okµ+ν

for infinitely many k ∈ N. This implies λ ⪯ µ.

7.2.4. Additive and ⪯ structures match.

• We have proved ⪯ and ⪯′ correspond.
• For λ, µ ∈ X∨

+, we claim that [ICλ] + [ICµ] = [ICλ+µ] in X
′
+. Indeed, [ICλ] + [ICµ] is the

class of the maximal element appearing in ICλ ⋆ ICµ, which is [ICλ+µ], as one sees from the
definition of ⋆.

• It remains to show that ≤ and ≤′ correspond. It is enough to show that under X∨
+

∼→ X ′
+,

we have Q∨
+

∼→ Q′
+.

• For this the key is a geometric ∆ Lemma.

Lemma 7.2.1 (Geometric ∆ Lemma). A coweight λ ∈ X∨ has λ ∈ ∆∨ if and only if it is ⪯-
minimal among nonzero coweights for which there exists a µ ∈ X∨

+ with 2µ − λ ∈ X∨
+ and IC2µ−λ

appears in IC⋆2
µ .
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7.2.5. Proof of Lemma 7.2.1.

• Proof of “only if”: Assume λ = α∨ ∈ ∆∨. Let µ ∈ X∨
+ be such that ⟨α, µ⟩ ≥ 1

• We clearly have 2µ − α∨ ∈ X∨
+, since ⟨β, α∨⟩ < 0 for any β ∈ ∆\{α}. Next, we need to

show that IC2µ−α∨ appears in IC⋆2
µ .

Lemma 7.2.2 (Geometric multiplicity Lemma). In the above situation, IC2µ−α∨ appears in IC⋆2
µ .

Proof. First consider the case ⟨α, µ⟩ = 1. Then sα(µ) = µ− α∨, and 2µ− α∨ = µ+ sα(µ). By the
Geometric PRV, we see that IC2µ−α∨ appears in IC⋆2

µ .
Now consider the case where ⟨α, µ⟩ ≥ 2.

Let S2µ−α∨ be the LU -orbit of t2µ−α∨∗ ∈ GrG. Consider the µ• = (µ, µ) and the convolution

morphism mµ• : Ōµ

∼
× Ōµ → Ō2µ.

We can write ICµ ⋆ ICµ = ⊕λ≤2µV
λ
µ•
⊗ ICλ. Take λ = 2µ− α∨.

By Lemma 6.4.1, it is enough to find at least one irreducible component ofm−1
µ•

(S2µ−α∨∩O2µ−α∨)
having the maximal possible dimension

⟨ρ, 4µ− α∨⟩.

We proceed with the following steps:

• We can write m−1
µ•

(S2µ−α∨ ∩ Ō2µ) as the disjoint union

m−1
µ•

(S2µ−α∨ ∩ Ō2µ) = (Sµ ∩ Ōµ)
∼
× (Sµ−α∨ ∩ Ōµ)

∐
(Sµ−α∨ ∩ Ōµ)

∼
× (Sµ ∩ Ōµ).

• The factor Sµ−α∨ ∩ Ōµ contains (details below) the irreducible subset S( ∏
γ>0

⟨γ,µ−α∨⟩>0

( ⟨γ,µ−α∨⟩−1∏
i=0

Uγ+i

)
· Uα−1

)
tµ−α∨

∗ .

• The
(
· · ·

)
term lies in L+U ·Uα−1 and its intersection with StabLU (t

µ−α∨∗) = tµ−α∨
L+U t−(µ−α∨)

is trivial. To handle Uα−1, this is where we use the assumption ⟨α, µ⟩ ≥ 2.
• Thus S is irreducible of dimension ⟨2ρ, µ−α∨⟩+1 = ⟨ρ, 2µ−α∨⟩. Also, Sµ∩Ōµ is irreducible

of dimension ⟨ρ, 2µ⟩, and has a similar description, like S.
• Since tµUα−1t

−µ ⊂ L+U , the factor contains an irreducible component of dimension ⟨ρ, 2µ+
2µ−α∨⟩ which is entirely contained in m−1

µ•
(S2µ−α∨ ∩O2µ−α∨). This proves the Geometric

Multiplicity Lemma (Lemma 7.2.2).

□

Remark 7.2.3. Here we give more details about the inclusion Uα−1t
µ−α∨ ⊂ Sµ−α∨ ∩ Ōµ, under

the assumption ⟨α, µ⟩ ≥ 1 (we don’t need ≥ 2 here). This boils down to a computation of 2 × 2
matrices over k((t)). Fix integers a, b with a− b ≥ 1, and let x ∈ k. Then we have[

1 xt−1

0 1

] [
ta−1 0
0 tb+1

]
=

[
ta−1 xtb

0 tb+1

]
.

By looking at valuations of minors, we see that this belongs to K

[
ta 0
0 tb

]
K where K = GL2(k[[t]]),

whenever x ̸= 0.
This implies that Uα−1t

µ−α∨ ⊂ Sµ−α∨ ∩ Ōµ.

7.2.6. End of proof of Geometric ∆ Lemma (Lemma 7.2.1). We proceed as follows:

• Now we return to the proof of the Geometric ∆ Lemma. We will argue in a way that is very
parallel to the proof of the ∆ Lemma, with the Geometric Multiplicity Lemma playing the
role that Kostant’s weight multiplicity theorem played before.

• Although the argument is parallel, let us spell out again how it works. Recall we start with
λ = α∨ ∈ ∆∨, and we may choose any µ ∈ X∨

+ such that ⟨α, µ⟩ ≥ 2. We clearly have
2µ− α∨ ∈ X∨

+, since ⟨β, α∨⟩ < 0 for any β ∈ ∆\{α}.
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• Now the geometric multiplicity lemma shows that IC2µ−α∨ must appear in IC⋆2
µ .

Similarly to before, we see that α∨ is minimal nonzero such that a µ with the required
properties exists. This proves the “only if” direction of the Geometric ∆ Lemma.

• Conversely, assume λ ∈ X∨ is minimal nonzero with the property that a µ with the required
properties exists. So we have 2µ−λ ∈ X∨

+ and IC2µ−λ appears in IC⋆2
µ . This implies λ ∈ Q∨

+.
• By Stembridge, there exists a positive coroot β∨ with

2µ− λ ≤ 2µ− β∨ < 2µ

and all three are dominant.
• Write β∨ =

∑
i aiα

∨
i where ai ∈ N and αi ∈ ∆ for all i.

• As before, for some i with ai ≥ 1, we have ⟨αi, µ⟩ ≥ 1. This means 2µ− α∨
i ∈ X∨

+ and (as
in “only if”, relying on the full strength of the Geometric Multiplicity Lemma), IC2µ−α∨

i

appears in IC⋆2
µ .

• By minimality, we must have α∨
i = λ, that is, λ ∈ ∆∨. This proves the Geometric ∆ Lemma

(Lemma 7.2.1). □

7.2.7. End of the proof of the geometric reconstruction theorem.

• Finally, we can complete the proof of the Reconstruction Theorem, which identifies H with

Ĝ.
• Recall, we were almost done, and only had to show that Q′

+ = Q∨
+. This follows from

∆′ = ∆∨.
• This last identification follows immediately if we put together the ∆ Lemma and the Geo-
metric ∆ Lemma. □

Remark 7.2.4. If you look at [Ri14], you will notice that the Geometric ∆ Lemma does not appear
there, and instead the argument looks simpler. However, there is a mistake in one small computation
in [Ri14]: for α ∈ ∆, and µ ∈ X+ with ⟨µ, α∨⟩ = 2, it is asserted that sα(µ) = µ−α; however this is
false and in fact sα(µ) = µ− 2α. This mistake has serious consequences, as it is no longer possible
to assert that the PRV Conjecture shows that V2µ−α appears in Vµ ⊗ Vµ (since 2µ− α is not equal
to µ + sα(µ), and in fact only 2µ − 2α = µ + sα(µ)). A similar state of affairs occurs in using the
geometric PRV Conjecture. Therefore, a different argument is needed and this is the origin of our
∆-Lemma (resp. our geometric ∆ Lemma).

7.3. Beilinson-Drinfeld Grassmannians. Wemake some closing remarks about how the Beilinson-
Drinfeld Grassmannians allow for the construction of a fusion product on ULA perverse sheaves,
which yields the commutativity constraints and the ⊗-preservation of the fiber functor R∗Γ(−).

7.3.1. Definition. The main remaining difficulty is to prove the commutativity constraint, and for
this the standard method is to express the convolution of perverse sheaves on GrG in terms of the
fusion product of certain sheaves on the Beilinson-Drinfeld Grassmannian.

For the moment we let k denote any finite or separably closed field. Let X be a smooth geomet-
rically connected curve over k (for simplicity, we assume it is quasi-projective). Given R ∈ Affk set
XR := X ×Spec(k) Spec(R). Let Σ be the presheaf on Affk defined by

Σ(R) = {D ⊂ XR relative effective Cartier divisors (in particular D → Spec(R) is finite and flat)}.
Note that Σ is represented by the ind-scheme

∐
n
Xn/Sn.

For the next material, we assume G = G is split, so we can consider it as a constant
group scheme over the curve X. In the final version, this assumption will be removed
but the definitions look slightly different, see [HR20b].

Definition 7.3.1. Let GrBD
G be the presheaf on Affk defined by sending a k-algebra R to the set

GrBD
G (R) of isomorphism classes of triples (D,F , β) where
• D ∈ Σ(R)
• F is a G-torsor on XR

• β : F|XR\D
∼−→ F0|XR\D, a trivialization, i.e., F0 is the trivial G-torsor.
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Proposition 7.3.2. The forgetful functor GrBD
G → Σ is representable by an ind-projective ind-

scheme over Σ.

Proof. A detailed proof appears (also in the non-split context) in [HR20b, §3.8 − 3.10]. Here is a
rough outline:

• First show GrBD
GLn

= “R[[D]]-lattices in R((D))n
′′
is representable

• Show that G ↪→ H being a closed immersion of groups such that H/G is quasi-affine

(resp. affine) implies that GrBD
G → GrBD

H is represented by a quasi-compact immersion
(resp, closed immersion).

□

7.3.2. Global loop groups and relation to usual affine Grassmannians. We need global versions LG
and L+G of LG and L+G, respectively.

For D ∈ Σ(R), let Spf(ÔX,D) denote the formal completion of XR along D. (This is the defini-

tion of the R-algebra ÔX,D.) Let D̂ := Spec(ÔX,D) and D̂◦ = D̂\D.

Definition 7.3.3. Define the fpqc sheaves LG and L+G:

LG : R 7→ {(s,D) |D ∈ Σ(R), s ∈ G(D̂◦)}

L+G : R 7→ {(s,D) |D ∈ Σ(R), s ∈ G(D̂)}.

The following is the Beauville-Laszlo theoorem in this context:

Lemma 7.3.4. We have the following statements:

(i) LG is an ind-group scheme over Σ, and represents the functor on k-algebras parametriz-
ing isomorphisms classes of quadruples (D,F , β, σ) where (D,F , β) are as before, and

σ : F0|D̂
∼→ F|D̂ is an isomorphism.

(ii) L+G is an affine group scheme over Σ with geometrically connected fibers.

(iii) LG → GrBD
G,X , (D,F , β, σ) 7→ (D,F , β) is a right L+G-torsor and induces an isomorphism

of fpqc-sheaves over Σ

LG/L+G ∼→ GrBD
G,X .

Proof. WLOG X is affine. Then fppf-locally on R any D ∈ Σ(R) is of form V (f). Then the moduli
part of (i) follows from the Beauville-Laszlo descent lemma. Ind-representability follows from (ii,
iii). This proves (i).

Part (ii): Let D(i) the the i-th infinitesimal neighborhood of D . Note that

L+G ×Σ,D Spec(R)
∼→ lim←−

i

ResD(i)/R(G).

This proves (ii).

Part (iii): The main point is that after an fpqc cover R→ R′, any G-torsor on D̂R aquires a section

over D̂R′ . This follows because F admits an R′-section, which extends over D̂R′ by smoothness (and
affineness of F) – this is a form of Grothendieck’s Algebraization (Existence) Theorem. □

Abbreviate Gr := GrBD
G,X from now on.

Remark 7.3.5. The group LG acts on Gr over D ∈ Σ(R) as follows: for g ∈ G(D̂),

(g,D) · (F , β,D) = (gF , gβ,D)

where the right hand side is defined using Beauville-Laszlo gluing. We also have a union operation

∪ : Σ× Σ→ Σ

(D1, D2) 7→ D1 ∪D2.

Remark 7.3.6. Here is the connection with the usual affine Grassmannian. Note that X identifies
with a connected component of Σ. Any point x ∈ X(k) is identified with Dx ∈ Σ(k), and D̂x

∼=
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Spec(k[[t]]), where t be a local parameter of X in x. Then as fpqc-sheaves we identify the fibers over
x ∈ Σ:

LGx
∼= LG

L+Gx ∼= L+G
Gr,x ∼= GrG .

7.3.3. Convolution diagram towards fusion.

Definition 7.3.7. For k ≥ 1 we define the convolution version G̃rk to be the ind-scheme over Σk

sending a k-algebra R to the set of isomorphism classes of tuples ((Di,Fi, βi)i=1,...,k) with

• Di ∈ Σ(R)
• Fi is aG-torsor on XR

• βi : Fi|XR\Di

∼→ Fi−1|XR\Di
, i = 1, . . . , k

Proposition 7.3.8. The morphism G̃rk → Σk is represented by a strict ind-scheme which is ind-
proper over Σk.

Let L+GX := L+G ×Σ X, LGX := LG ×Σ X, and GrX := Gr ×Σ X. Similarly base-changing
along XI → Σ we defined L+GI = L+GXI , etc.

There is a class of ULA perverse sheaves PULA
L+GX

(GrX) on Gr which have good properties as
below. Namely, for each finite set I there is a convolution diagram∏

i GrX,i LGI
pIoo qI // G̃rI

mI // GrI .

with the usual good properties. The first key result which leads to fusion and the commutativity
constraint is the following.

Let jI : UI ↪→ XI be the open embedding of the locus of points with pairwise distinct coordinates.

Proposition 7.3.9. Suppose Ai ∈ PULA
L+GX

(GrX), for i ∈ I. There exists a unique ULA perverse

sheaf ⊠̃iAi on G̃rI such that

p∗I(⊠iAi) ∼= q∗I (⊠̃iAi)

and moreover

mI,∗
(
⊠̃Ai

) ∼= jI,!∗
(
⊠i Ai |UI

)
.

But this still lives on XI , not X.

7.3.4. Fusion product. We define the k-fold fusion product on PULA
L+GX

(GrX), by considering a dia-

gram with |I| = k

GrX

��

iI // GrI

��

GrIX |UI
jIoo

��
X

∆ // XI UI .
jIoo

Definition 7.3.10. If |I| = k and we fix a total order on I, set

∗iAi = i∗I [−k + 1]jI,!∗
(
⊠i Ai |UI

)
.

This manifestly obeys a commutativity constraint. This ends up forcing the commutativity
constraint on (PL+G(GrG), ⋆), and it also plays a role in the proof that the fiber functor ω = R∗Γ(−)
is a ⊗-functor.

In the final version of these notes, this will be explained. Moreover, the definition of
the fusion product will be given and it will be related to the above. However, there will
be nothing new in this part, because this topic is already treated well in the articles of
Baumann-Riche, Richarz, Riche, and Xinwen Zhu.



LECTURES ON THE GEOMETRIC SATAKE CORRESPONDENCE 41

8. Appendices

8.0.1. Proof of Cartan, Iwasawa, and refined Iwasawa decomposition from the Bruhat-Tits decom-
position.

8.0.2. Remarks about the thick subcategory consisting of the essential image of p∗[d]. Ths section
will describe a general criterion for descent of a simple perverse sheaf along p∗[d|.

8.0.3. Proof of Lemma 3.3.11. This section describes a general criterion of descent of suitably equi-
variant perverse sheaves for a functor of the form p∗[d].

Write π : GY → Y for the structure morphism. Assume temporarily that f has a section
s : Y → X. This gives an morphism a : GY → X by sending g ∈ GY ×Y X to g · s(π(g)) ∈ X.

Lemma 8.0.1. The morphism a is smooth.

Proof. Since a is locally of finite presentation it is enough to show it is flat and all geometric fiber
are smooth over the corresponding residue field (see [BLR90, 2.4, Prop. 8]). The geometric fibers of
a are isomorphic to the stabilizer subgroups GY,x (which are smooth by hypothesis). So it is enough
to show that a is flat.

First, a is surjective (this is clear on geometric points, which suffices). We have for any point
y ∈ Y a surjective morphism GY ×Y {y} → Xy. Since the left hand side is a smooth and connected
group scheme, the right hand side is irreducible.

Now GY → Y is flat, so by the fiberwise flatness criterion (see [StaPro, Lem. 37.16.4]) it is enough

to show that Gy ×Y {y}
ay→ Xy is flat for all y ∈ Y . But ay is generically flat (since Xy is reduced

hence integral, being smooth over Spec(k(y)) hence flat everywhere on Xy by the transitivity of the
group action on the fibers. □

Let A : GY ×Y X → X denote the action morphism. We have a commutative diagram

GY ×Y X
p2

//
A // X.

GY ×Y X

id×s

OO

sfa

::
a

::

So for any equivariant sheaf F , we have an isomorphism A∗F ∼= p∗2F , which implies

a∗F ∼= a∗f∗s∗F .

Since a and f◦a are both smooth with geometrically connected fibers, we deduce that s∗F is perverse
(up-to-shift). Indeed, (fa)∗ kills all other pHi(s∗F), and (fa)∗ (suitably shifted) is a fully faithful
conservative functor. Then f∗s∗G is also perverse (up-to-shift). Now applying the full-faithfulness
of a∗ (suitably shifted), we deduce that

F ∼= f∗s∗F ,

meaning that F descends to Y .
In general, there exists an étale cover U → Y such that fU : X×Y U → U has a section. Using the

GY ×Y U -group action, the above shows that FU descends to a unique perverse (up-to-shift) sheaf
on U . Now using ([BBD82, 3.2.4]) to glue the perverse sheaves on U , we get the desired descent of
F . □

8.0.4. Proof of α2-equivariance and descent. Here we prove that p∗(F1⊠F2) is α2 equivariant,
and the α2-action of L+G × L+G on LG × LG satisfies the axioms of Lemma 3.3.11, so

that there exists a unique perverse sheaf F1⊠̃F2 with p∗(F1 ⊠ F2) ∼= q∗(F1⊠̃F2).
We abbreviate K = L+G, L = LG, and write the constant sheaf as 1 = Q̄ℓ (on any space, which

is understood from context). We also switch to left actions instead of right actions. Recall the α1

action of K × K on L × L is given by (k1, k2) · (x, y) = (xk−1
1 , yk−1

2 ). The action α2 is given by
(k1, k2) · (x, y) = (xk−1

1 , k1yk
−1
2 ).
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Definition 8.0.2. We define the morphism

a : K ×K ×K × L× L→ L× L
(k, k′′, k′, x, y) 7→ (xk−1, k′′yk′−1).

Note that a = a2 ◦ (p2 × α1), where

p2 × α1 : (k, k′′, k′, x, y) 7→ (k′′, α1(k, k
′, x, y))

a2 : (k′′, x, y) 7→ (x, k′′y).

We claim that the left K-equivariance of F2 implies that p∗(F1⊠F2) is α2-equivariant. By abuse
of notation, write p as

p× p′ : L× L→ GrG ×GrG .

Then we see that p∗F1 ⊠ p′∗F2 is a2-equivariant. Therefore,

a∗2(p
∗F1 ⊠ p′∗F2) ∼= 1⊠ p∗F1 ⊠ p′∗F2.

By α1-equivariance,
α∗
1(p

∗F1 ⊠ p′∗F2) ∼= 1⊠ 1⊠ p∗F1 ⊠ p′∗F2,

hence
(p2 × α1)

∗(1⊠ p∗F1 ⊠ p′∗F2) ∼= 1⊠ 1⊠ 1⊠ p∗F1 ⊠ p′∗F2,

Therefore

(8.0.1) a∗(p∗(F1 ⊠ F2)) ∼= 1⊠ 1⊠ 1⊠ p∗F1 ⊠ p′∗F2.

But α2 = a ◦∆1, where
∆1 : (k, k′, x, y) 7→ (k, k, k′, x, y).

Pulling back (8.0.1) with ∆∗
1, we get

α∗
2(p

∗(F1 ⊠ F2)) ∼= 1⊠ 1⊠ p∗F1 ⊠ p′∗F2,

as desired. □

(It remains to check the action α2 satisfies the axioms of Lemma 3.3.11 – see final
version of these notes...)

8.0.5. Proof that convolution morphisms are locally trivial in the stratified sense. The point is this
is for the non-split case, so without big cells....
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