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Introduction

In stratified randomized experiments (SRE), units are stratified (or grouped or blocked)
according to the values of (a function of) the covariates.

Within the strata, independent completely randomized experiments (CRE) are
conducted, but possibly with different relative sizes of treatment and control groups.

Part of the motivation is interest in such experiments per sé.

Another, reason is that observational studies can be viewed in some way as analyzing
the data as if they arose from hypothetical SRE.

Understanding these methods in the context of randomized experiments will aid their
interpretation and implementation in observational studies.
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Introduction

First we describe the data that will be used to illustrate the concepts. These data are
from a randomized experiment designed to evaluate the effect of class size on
academic achievement, known as Project Star.

Then we discuss the general structure of SRE.

We will discuss inferences for the four approaches; the FEP approach, the Neyman
approach, the regression approach and the model-based imputation approach.

Then we discuss design issues, and specifically the benefits of SRE over CRE.

Finally computer assistant designs, e.g. rerandomization, will be briefly discussed
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The Tennesee Project STAR Data

The data stems from a randomized evaluation of the effect of class size on test scores
conducted in 1985-1986 in Tennesee called the Student/Teacher Achievement Ratio
experiment, or Project STAR for short.

Mosteller (1995) calls it “one of the most important educational investigations ever
carried out.”

Here we use the kindergarten data where students and teachers were randomly
assigned to small classes (13-17 students per teacher), regular classes (22-25 students
per teacher), or regular classes with a teacher’s aide.

To be eligible for Project Star, a school had to have a sufficient number of students to
allow the formation of at least one class of each of the three types.
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The Tennesee Project STAR Data

Once a school had been admitted to the program, a decision was made on the number
of classes of each type (small, regular, regular with aide).

We take as fixed the number of classes of each type in each school. The unit of
analysis for our analyses is the teacher or class, rather than the individual student, to
help justify the no-interference part of SUTVA.

A school has a pool of at least 57 students, so they could support at least one small
and two regular sized classes. Where these students come from, and how they differ
from students in other schools is not important for the validity of our analysis (although
it obviously affects the interpretation of the results and their generalizability).
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The Tennesee Project STAR Data

Given the number of classes of each type, a school needs a certain number of teachers
and teachers’ aides. The availability of the teachers and aides may determine the
number of classes, but this is again irrelevant for the validity of our analysis.

Two separate and independent randomizations took place.

One random assignment is that of teachers to classes of different types, small, regular,
or regular with aide. The second randomization is of students to classes/teachers.

In our analysis, we mainly rely on the first randomization, of class-size and aides to
teachers, using the teachers as the units of analysis.

Irrespective of the assignments of students to classes, the resulting inferences are valid
for the effect on the teachers of being assigned to a particular type of class.
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The Tennesee Project STAR Data

However, the second randomization is important for the interpretation of the results.
Suppose we find that assignment to a small class leads on average to better outcomes
for the teacher.

Without the randomization of students to classes, this could be due to systematic
assignment of better students to the smaller classes. With the second randomization,
this is ruled out, and systematic effects can be interpreted as the effects of class size.

This type of double randomization is somewhat similar to that in “split plot” designs
(Cochran and Cox, 1957), although in split plot designs two different treatments are
being applied by the double randomization.

Causal Inference for Statistics, Social and Biomedical Sciences 6 / 99



Stratified Randomized Experiments and Computer assistant design
References

The Tennesee Project STAR Data

Given the structure of the experiment, one could also focus on students as the unit of
analysis, and investigate effects of class size on student-level outcomes.

The concern, however, is that the SUTVA is not plausible in that case.

Violations of SUTVA complicate the Neyman, regression and imputation approaches
considerably, and we therefore primarily focus on class (i.e., teacher-)level analyses in
this chapter.

As we see, however, it remains straightforward to use the FEP approach to test the
null hypothesis that assignment of students to different classes had no effect on test
scores whatsoever, because SUTVA is automatically satisfied under Fisher’s sharp null
hypothesis of no effects of the treatment.
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The Tennesee Project STAR Data
We focus on the comparison between regular (control) and small (treated) classes, and
ignore the data for regular classes with teacher’s aides.

We discard schools that do not have at least two classes of both the small size and the
regular size.

Focusing on schools with at least two regular classes and two small classes leaves us
with sixteen schools, which creates sixteen strata or blocks. Most have exactly two
classes of each size, but one has two regular classes and four small classes, and a two
other schools have three small classes and two regular-sized classes.

The total number of teachers and classes in this reduced data set is N = 68. Out of
these Nc = 32 are assigned to regular-sized classes and Nt = 36 are assigned to small
classes.

Outcomes are defined at the class (i.e., teacher) level. The class-level outcomes we
focus on are averages of mathematics test scores over all students for a given teacher.

The individual student scores were normalized to have mean equal to zero and
standard deviation equal to one across all the students in the reduced data set.
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Table 9.1: Class Average Mathematics Scores from Project STAR
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The Structure of Stratified Randomized Experiments

In SRE, units are grouped together according to some pre-treatment characteristics
into strata.

Within each stratum, a CRE is conducted, and thus, within each stratum, the methods
previously discussed are applicable.

However, the interest is not about hypotheses or treatment effects within a single
stratum, but rather it is about hypotheses and treatment effects across all strata.
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The Case with Two Strata

Divide the sample of N units into two subsamples, e.g., females and males, with
subsample size Nf and Nm respectively, so that N = Nf + Nm.

It is useful to postulate for each unit a binary covariate, e.g., the unit’s sex, with the
membership in strata based on this covariate, denoted Gi for this particular covariate.

As with any other covariate, the value of Gi is not affected by the treatment. In this
example Gi takes on the values f and m.

Define the finite sample average treatment effects in the two strata:
τFS(f ) = 1

Nf

∑
i :Gi =f

(
Yi (1)− Yi (0)

)
, and τFS(m) = 1

Nm

∑
i :Gi =m

(
Yi (1)− Yi (0)

)
.
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The Case with Two Strata

Within each stratum, we conduct a CRE; with Ntf and Ntm ‘treated’ in the two
subsamples respectively, and the remaining Ncf = Nf − Ntf and Ncm = Nm − Ntm
‘controls’.

Let Nt = Ntf + Ntm be the total number of ‘treated’ units and Nc = Ncf + Ncm be the
total number of ‘control’ units.

Let us consider the assignment mechanism.
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The Case with Two Strata
Within the Gi = f subpopulation, Ntf units out of Nf are randomly chosen to receive
the treatment.

There are
(

Nf
Ntf

)
such allocations.

There are, furthermore
(

Nm
Ntm

)
allocations for the units with Gi = m

The assignment mechanism can thus be written as

Pr(W|Y(0),Y(1),S) =
(

Nf
Ntf

)−1
·
(

Nm
Ntm

)−1
for W ∈W+,

where W+ =

W such that
∑

i :Gi =f
Wi = Ntf ,

∑
i :Gi =m

Wi = Ntm

 .
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The Case with Two Strata

Compare this to that for a CRE with Nt = Ntf + Ntm assigned to treatment and
Nc = Nf − Ntf + Nm − Ntm assigned to control.

A large number of assignment vectors that would have positive probability with a CRE
have probability zero with the SRE: all vectors with

∑N
i=1Wi = Ntf + Ntm but∑

i :Gi =f Wi 6= Ntf (or, equivalently,
∑

i :Gi =m Wi 6= Ntm).

If Ntf /Nf ≈ Ntm/Nm the stratification rules out substantial imbalances in the covariate
distributions in the two treatment groups that could arise by chance in a CRE.

The possible disadvantage of the stratification is that a large number of possible
assignment vectors are eliminated, just as a CRE eliminates assignment vectors that
would be allowed under Bernoulli trials.
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The Case with Two Strata

The advantage of a CRE over a Bernoulli trial is that of eliminating typically those
assignment vectors with a severe imbalance between the number of controls and the
number of treated.

Here the argument is similar, although not quite as obvious.

If we were to randomly partition the population into strata, the assignment vectors
eliminated by the stratification are in expectation as helpful as the ones included, and
the stratification will not produce a more informative experiment.

However, if the stratification is based on characteristics that are associated with the
outcomes of interest, we shall see that SRE generally are more informative than CRE.
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The Case with Two Strata

For example, in many drug trials, one may expect systematic differences in typical
outcomes, both given the drug and without the drug, for men and women.

In that case, a SRE makes eminent sense. It can lead to more precise inferences, by
eliminating the possibility of assignments with severe imbalances in sex distribution, for
example, the extreme and uninformative assignment with all women exposed to the
active treatment and all men exposed to the control treatment.
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The Case with J Strata

Let J be the number of strata, and N(j) and Ntj the total number of units and the
number of treated units in strata j respectively, for j = 1, . . . , J .

Let Gi ∈ {1, . . . , J} denote the stratum for unit i , and let Bi (j) = 1Gi =j , be the
indicator that is equal to one if unit i is in stratum j , and zero otherwise.

Within stratum j there are now
(

N(j)
Ntj

)
possible assignments, so that the

assignment mechanism is

Pr(W|S,Y(0),Y(1)) =
J∏

j=1

(
N(j)
Ntj

)−1
for W ∈W+,

where W+ = {W|
∑

i :Gi =j Wi = Ntj for j = 1, . . . , J}.
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Fisher’s Exact P-values in SRE

Let Y obs
c (j) and Y obs

t (j) be the average observed outcome for units in stratum
Gi = j , j = 1, . . . , J and let Nc(j) and Nt(j) be the number of units in stratum Gi = j
assigned to the control and treatment groups respectively:

Y obs
c (j) = 1

Nc(j)
∑

i :Gi =j
(1−Wi ) · Y obs

i , Y obs
t (j) = 1

Nt(j)
∑

i :Gi =j
Wi · Y obs

i

Nc(j) =
N∑

i=1
Bi (j) · (1−Wi ), and Nt(j) =

N∑
i=1

Bi (j) ·Wi .

For ease of exposition, we focus initially on the case with two strata, Gi ∈ {f ,m}.

The Fisher’s sharp null hypothesis is H0 : Yi (0) = Yi (1) for i = 1, 2, . . . ,N.
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Fisher’s Exact P-values in SRE
Obvious statistics are:

T avg(f ) =
∣∣∣Y obs

t (f )− Y c(f )obs
∣∣∣ and T avg(m) =

∣∣∣Y obs
t (m)− Y obs

c (m)
∣∣∣ .

Neither of the statistics is particularly attractive by itself: for either one an entire
stratum is ignored, and thus the test would not be sensitive to violations of the null
hypothesis in the stratum that is ignored.

A more appealing statistic is based on the combination of the two within-stratum
statistics, T avg(f ) and T avg(m), for example, the absolute value of a convex
combination of the two difference in averages:

T avg,λ =
∣∣∣λ · (Y obs

t (f )− Y obs
c (f )

)
+ (1− λ) ·

(
Y obs

t (m)− Y obs
c (m)

)∣∣∣ ,
for some λ ∈ [0, 1].

Causal Inference for Statistics, Social and Biomedical Sciences 19 / 99



Stratified Randomized Experiments and Computer assistant design
References

Fisher’s Exact P-values in SRE

For any fixed value of λ, we can use the same FEP approach and find the distribution
of the statistic under the null hypothesis, and thus calculate the corresponding p-value.

An obvious choice for λ is to weight T ave(f ) and T ave(m) by the relative sample sizes
(RSS) in the strata, and choose λ = λRSS ≡ Nf /(Nf + Nm).

In that case, this choice for the weight parameter λRSS would lead to the natural
statistic that is common in a CRE,

T avg,λRSS =
∣∣∣∣ Nf
Nf + Nm

·
(
Y obs

t (f )− Y obs
c (f )

)
+ Nm

Nf + Nm
·
(
Y obs

t (m)− Y obs
c (m)

)∣∣∣∣ .
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Fisher’s Exact P-values in SRE

If the relative proportions of treated and control units in each stratum, Ntf /Nf and
Ntm/Nm respectively, are very different, however, this choice for λ does not necessarily
lead to a very powerful test statistic.

Suppose, for example, that both strata contain 50 units, where in stratum f , only a
single unit gets assigned to treatment, and the remaining 49 units get assigned to
control, whereas in stratum m, the number of treated and control units is 25.

In that case, the test based on T avg(m) is likely to have substantially more power than
the test based on T avg(f ).

By using λRSS we are giving both stratum-specific average observed outcome
differences τ̂(f ) and τ̂(m) equal weights which would lead to that a test statistic with
poor power properties.
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Fisher’s Exact P-values in SRE
An alternative choice for λ is motivated by considering against which alternative
hypotheses we would like our test statistic to have power.

Often an important alternative hypothesis has a treatment effect that is constant both
within, and between, strata.

Based on this perspective, it is useful to consider the sampling variances of T avg(f )
and T avg(m), under Neyman’s repeated sampling perspective.

VW
(
Y obs

t (f )− Y obs
c (f )

)
= S2

t (f )
Ntf

+ S2
c (f )
Ncf

− Stc(f )2
Nf

,

and
VW

(
Y obs

t (m)− Y obs
c (m)

)
= S2

t (m)
Ntm

+ S2
c (m)
Ncm

− S2
tc(m)
Nm

.
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Fisher’s Exact P-values in SRE

Suppose that the treatment effects are constant (i.e. S2
tcf = S2

tcm = 0).

Assume, in addition, that all four variances, S2
xw , are equal to S2.

Then the sampling variances of the two observed differences are

VW
(
Y obs

tf − Y obs
cf

)
= S2 ·

( 1
Ntf

+ 1
Ncf

)
,

and
VW

(
Y tm − Y cm

)
= S2 ·

( 1
Ntm

+ 1
Ncm

)
.
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Fisher’s Exact P-values in SRE

In that case, a sensible choice for λ would be the value that maximizes precision by
weighting the two statistics by the inverse of their sampling variances, or

λopt = 1
1

Ntf
+ 1

Ncf

/(
1

1
Ntm

+ 1
Ncm

+ 1
1

Ncm
+ 1

Ntm

)

=
Nf · Ntf

Nf
· Ncf

Nf

Nf · Ntf
Nf
· Ncf

Nf
+ Nm · Ntm

Nm
· Ncm

Nm

,

with the weight for each stratum proportional to the product of the stratum size and
the stratum proportions of treated and control units.
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Fisher’s Exact P-values in SRE

An alternative natural statistics is:
T avg =

∣∣∣Y obs
t − Y obs

c

∣∣∣ .
In the current setting of SRE, with two strata, this statistic can be written as:

T avg =
∣∣∣∣∣ 1
Ntf + Ntm

N∑
i=1

Wi · Y obs
i − 1

Nf − Ntf + Nm − Ntm

N∑
i=1

(1−Wi ) · Y obs
i

∣∣∣∣∣ .
Then we can write this statistic as

T avg =
∣∣∣∣Ntf
Nt
· Y obs

t (f )− Nf − Ntf
Nc

· Y obs
c (f ) + Ntm

Nt
· Y obs

t (m)− Ncm
Nc
· Y obs

c (m)
∣∣∣∣ .
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Fisher’s Exact P-values in SRE

This statistic T avg is a valid statistic for testing from the FEP perspective, but
somewhat unnatural in the current context.

Because of Simpson’s paradox one would not always expect small values for the
statistic, even when the null hypothesis holds.

Suppose that the null hypothesis of zero treatment effects for all units holds, and that
the potential outcomes are closely associated with the covariate that determines the
strata

For example, assume Yi (0) = Yi (1) = Xi for all units (e.g., Yi (0) = Yi (1) = 1 for units
with Xi = 1 and Yi (0) = Yi (1) = 2 for units with Xi = 2).
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Fisher’s Exact P-values in SRE

In that case, the statistic T avg is equal to

T avg =
∣∣∣∣Ntf
Nt
· 1− Nf − Ntf

Nc
· 1 + Ntm

Nt
· 2− Ncm

Nc
· 2
∣∣∣∣ .

If Nf = 10, Ntf = 5, Nm = 20, and Ntm = 5, this is equal to

T avg =
∣∣∣∣ 510 · 1− 5

20 · 1 + 5
10 · 2−

15
20 · 2

∣∣∣∣ =
∣∣∣∣12 + 1− 1

4 −
3
2

∣∣∣∣ = 1
4 .

Under the sharp null hypothesis of no causal effects, the statistic Y obs
t − Y obs

c no
longer has expectation equal to zero, whereas it did have expectation zero in the CRE.
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Fisher’s Exact P-values in SRE
Finally, let us consider rank-based statistics. In the setting with a CRE we focused on
the difference in average ranks.

In that case we defined the normalized rank Ri (allowing for ties) as

Ri =
N∑

j=1
1Y obs

j <Y obs
i

+ 1
2

1 +
N∑

j=1
1Y obs

j =Y obs
i

− N + 1
2 .

Given the N ranks Ri , i = 1, . . . ,N, an obvious test statistic is the absolute value of
the difference in average ranks for treated and control units:

T rank =
∣∣∣Rt − Rc

∣∣∣ , where Rt = 1
Nt

∑
i :Wi =1

Ri , and R1 = 1
Nc

∑
i :Wi =0

Ri .

where Rt and Rc are the average rank in the treatment and control groups respectively.
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Fisher’s Exact P-values in SRE

Although we can use this statistic for the FEP approach, this would not be attractive if
there is substantial variation between strata.

We therefore propose modifying this statistic for the setting of a SRE.

Let Rstrat
i be the normalized within-stratum rank of the observed outcome for unit i :

Rstrat
i =


∑

j:Gi =f 1Y obs
j <Y obs

i
+ 1

2

(
1 +

∑
j:Gi =f 1Y obs

j =Y obs
i

)
− Nf +1

2 , if Gi = f ,∑
j:Gi =m 1Y obs

j <Y obs
i

+ 1
2

(
1 +

∑
j:Gi =m 1Y obs

j =Y obs
i

)
− Nm+1

2 , if Gi = m.
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Fisher’s Exact P-values in SRE

Then we can use the average value of the within-stratum ranks for treated and control
units:

T rank,stratum =
∣∣∣Rstrat

t − Rstrat
c

∣∣∣ ,
where

Rstrat
t = 1

Nt

∑
i :Wi =1

Rstrat
i , and Rstrat

c = 1
Nc

∑
i :Wi =0

Rstrat
i .
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The FEP approach with J Strata

Most of the statistics discussed in the previous section extend naturally to the case
with J strata.

Define for a general J-component vector λ the statistic

T avg,λ =

∣∣∣∣∣∣
J∑

j=1
λj ·

(
Y obs

t (j)− Y obs
c (j)

)∣∣∣∣∣∣ .
The first natural choice for λ has λj proportional to the stratum size,

λj = N(j)
N , leading to T avg,λRSS =

∣∣∣∣∣∣
J∑

j=1

N(j)
N ·

(
Y obs

t (j)− Y obs
c (j)

)∣∣∣∣∣∣ .
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The FEP approach with J Strata

The second choice for λ minimizes the sampling variance of the contrast between
treated and control averages under homoskedasticity, leading to

λopt =
N(j) · Nt(j)

N(j) ·
Nc(j)
N(j)∑J

k=1N(k) · Nt(k)
N(k) ·

Nc(k)
N(k)

,

in turn leading to

T ave,λopt =

∣∣∣∣∣∣ 1∑J
j=1N(j) · Nt(j)

N(j) ·
Nc(j)
N(j)

J∑
j=1

N(j) · Nt(j)
N(j) ·

Nc(j)
N(j) ·

(
Y obs

t (j)− Y obs
c (j)

)∣∣∣∣∣∣ .
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The FEP approach with J Strata

For the modified rank statistic, we define Rstrat
i to be the normalized within-stratum

rank of the observed outcome for unit i , taking account of ties:

Rstrat
i =

∑
i ′:Gi′ =Gi

1Y obs
i′ <Y obs

i
+ 1

2

1 +
∑

i ′:Gi′ =Gi

1Y obs
i′ =Y obs

i

− N(Gi ) + 1
2 .

Then we can use the average value of the within-stratum ranks for treated and control
units:

T rank,stratum =
∣∣∣Rstrat

t − Rstrat
c

∣∣∣ ,
where, as before, Rstrat

t and Rstrat
c are the averages of the ranks for treated and control

units.
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The FEP approach with Class-level Data from Project STAR
Let Bi (j), i = 1, . . . , 68, j = 1, . . . , 16 be an indicator for unit (i.e., teacher) i being
from stratum (school) j .

For 13 schools with 2 classes of each type, the number of possible assignments are(
4
2

)
= 6.

For 2 schools with 3 small classes and 2 regular classes, the number of possible

assignments are
(

5
2

)
= 10

For 1 school with 4 small and 2 regular classes, he number of possible assignments

are
(

6
2

)
= 15.

Hence, the total number of assignments of teachers to class type with positive
probability is (613)× 102 × 15 ≈ 2× 1013. We therefore use numerical methods to
approximate the p-values for the FEP approach.

Causal Inference for Statistics, Social and Biomedical Sciences 34 / 99



Stratified Randomized Experiments and Computer assistant design
References

The FEP approach with Class-level Data from Project STAR

We focus on the null hypothesis that there is no effect of class size on the average test
score that a teacher would achieve for their students,

H0 : Yi (0) = Yi (1), for all i = 1, . . . , 68 classes.

We consider the follow four test statistics.
(1) T avg =

∣∣∣Y obs
t − Y obs

c

∣∣∣
(2) T avg,λRSS =

∣∣∣∑J
j=1

N(j)
N ·

(
Y obs

t (j)− Y obs
c (j)

)∣∣∣ .
(3) T ave,λopt =

∣∣∣∣∣ 1∑J
j=1

N(j)
N ·

Nt (j)
N(j) ·

Nc (j)
N(j)

∑J
j=1

N(j)
N · Nt(j)

N(j) ·
Nc(j)
N(j) ·

(
Y obs

t (j)− Y obs
c (j)

)∣∣∣∣∣ .
(4) T range = 1

N
∑J

j=1N(j) ·∆(j), where
∆c(j) = maxi :Wi =0,Gi =j Y obs

i −mini :Wi =0,Gi =j Y obs
i ,

∆t(j) = maxi :Wi =1,Gi =j Y obs
i −mini :Wi =1,Gi =j Y obs

i and ∆(j) = ∆t(j)−∆c(j).
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The FEP approach with Class-level Data from Project STAR
The realized value of
(1) is 0.224, with a corresponding p-value of p = 0.034.
(2) is 0.241, with a corresponding p = 0.023.
(3) is 0.238, with a corresponding p = 0.025
(4) is 0.226, with a corresponding p = 0.109
The first three test statistics suggesting that it is unlikely that the students of teachers
assigned to the small classes had the same average test scores as the students of
teachers assigned to large classes.

Wrt to the last, there is limited evidence against the null hypothesis that the variation
in average scores differs between small and regular sized classes.

Recall that the p-value only has a valid interpretation if one statistic is specified a
priori, and our exercise is for illustrative purposes only.
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The FEP approach with Class-level Data from Project STAR

Note that (1) is not natural in this setting because one would not expect small values
even when the null hypothesis is true (especially if there is substantial variation of the
shares of treated units within the strata), although the results of the test are valid.

(3) is preferable when there is considerable variation in the proportion of treated and
control units between strata, this statistic is more powerful against alternative
hypotheses with constant additive treatment effects.

In the current application, these three test-statistics lead to very similar p-values. This
is partly because most of the schools have two classes of each type. If there were more
dispersion in the fraction of small classes by school and in the number of classes per
school, the results could well differ more for the three statistics.
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The FEP approach with Class-level Data from Project STAR

The value of the rank-based test T rank,stratum is 0.48, leading to a p-value of 0.15.

Because the outcomes themselves are averages (over students within the classes),
there are few outliers, and in this case, the rank-based tests would not be expected to
have an advantage over statistics based on simple averages.
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The FEP approach with Class-level Data from Project STAR

Under the null hypothesis, the expected value of the average mathematics score in
regular and small classes should be the same.

However, because in small classes the average is calculated over fewer students than in
large classes, the small class averages should have a larger variance.

More precisely, if the individual test scores have a mean µ and variance σ2, than the
average in a class of size K should have mean µ and variance σ2/K .

So, even if individual student scores are not affected by class size, the null hypothesis
that at the teacher level, the average test score is not affected by the class size need
not be true. This is the rational for using (4)
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The FEP approach with Student-level Data from Project STAR

This analysis is specific to the FEP approach and the particular structure of the
Project Star data, and not generally applicable to SRE. The purpose here, is to show
the richness of the FEP approach.

The key issue is that under the null hypothesis of no effects whatsoever, the no
interference assumption in the SUTVA holds automatically, but it need not hold under
the alternative hypothesis.

Recall that the experiment assigned students and teachers randomly to the classes.

We index potential outcomes by the assignment vector that describes the class and
teacher pair for each student.
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The FEP approach with Student-level Data from Project STAR

First consider the data from a single school, j . This school has N(j) students and P(j)
teachers and classes.

These students and teachers will be randomly assigned to P(j) classes, with the class
size for class s equal to Ms(j).

The class sizes must add to the school size, or
∑P(j)

s=1 Ms(j) = N(j). The total number
of ways one can select the students, given class sizes, is

P(j)−1∏
s=1

(
N(j)−

∑
t<s Mt(j)

Ms(j)

)
.
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The FEP approach with Student-level Data from Project STAR

The P(j) teachers can be assigned to the P(j) classes in P(j)! ways, so the total
number of ways the students and teachers for school j can be assigned to classes is

P(j)−1∏
s=1

(
N(j)−

∑
t<s Mt(j)

Ms(j)

)
· P(j)!.

For each student this is the total number of potential outcomes. The basis for the
randomization distribution is this set of assignments, which are all equally likely. The
total number of assignments is obtained by multiplying this for each school, across all
schools:

J∏
j=1

Sj−1∏
s=1

(
N(j)−

∑
t<s Mt(j)

Ms(j)

)
· P(j)!.

Causal Inference for Statistics, Social and Biomedical Sciences 42 / 99



Stratified Randomized Experiments and Computer assistant design
References

The FEP approach with Student-level Data from Project STAR

The null hypothesis we consider is that of no effect whatsoever, against the alternative
hypothesis that some potential outcomes differ.

The following stratum weighted test statistic is used

T student =

∣∣∣∣∣∣ 1∑J
j=1

N(j)
N · Nc(j)

N(j) ·
Nt(j)
N(j)

·
J∑

j=1

N(j)
N · Nc(j)

N(j) ·
Nt(j)
N(j) ·

(
Y t(j)obs − Y c(j)obs

)∣∣∣∣∣∣ .
The observed statistic is 0.242, with a p-value < 0.001. Thus, we get much stronger
evidence against this null hypothesis than we did for the null hypothesis using
class-level data.

If the no-interference assumption in SUTVA holds at the student level this is a valid
test for an effect of class size.
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The FEP approach with Student-level Data from Project STAR

In that case the student-level test will likely be more powerful than the teacher-level
test.

However, here, the student-level stability assumption is strong and tenuous.

It is very plausible that there are interactions between children that would violate this
assumption. Hence, even clear rejections of the null hypothesis of no differences by
teacher assignment would not necessarily be credible evidence of systematic effects of
class size — it may simply indicate the presence of effects of teachers or peers.

In contrast, the teacher-level assessment does not rely on within-class no-interference
assumptions, and so clear evidence against the null hypothesis of no effect based on
that assessment are more credible as evidence of class-size effects.
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The Analysis of SRE from Neyman’s Repeated Sampling Perspective

Initially we derive results with two strata (f and m), and then apply the framework to
the Project Star data.

For the first stratum, the natural unbiased estimator for the average treatment effect
τFS(f ) is

τ̂dif(f ) = Y obs
t (f )− Y obs

c (f ) = 1
Ntf

∑
i :Gi =f

Wi · Y obs
i − 1

Ncf

∑
i :Gi =f

(1−Wi ) · Y obs
i .

The sampling variance of this estimator, under the randomization distribution, is

VW
(
τ̂dif(f )

)
= S2

c (f )
Ncf

+ S2
t (f )
Ntf

− S2
ct(f )
Nf

,

with analogous expressions for τ̂dif(m)
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The Analysis of SRE from Neyman’s Repeated Sampling Perspective

A natural estimand is the finite sample average treatment effect,

τS = Nf
Nf + Nm

· τFS(f ) + Nm
Nf + Nm

· τFS(m) = 1
N

N∑
i=1

(
Yi (1)− Yi (0)

)
.

Because the stratum sizes are known, unbiasedness of the two within-stratum
estimators implies unbiasedness of

τ̂ strat = Nf
Nf + Nm

· τ̂dif(f ) + Nm
Nf + Nm

· τ̂dif(m),

for the population average treatment effect τS.
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The Analysis of SRE from Neyman’s Repeated Sampling Perspective

Similarly, the assumption that the randomizations in the two strata are independent,
implies

VW
(
τ̂ strat

)
=
( Nf
Nf + Nm

)2
· VW (τ̂f ) +

( Nm
Nf + Nm

)2
· VW (τ̂m)

=
( Nf
Nf + Nm

)2
·
(
Sc(f )2
Ncf

+ S2
t (f )
Ntf

− S2
ct(f )
Nf

)

+
( Nm
Nf + Nm

)2
·
(
Sc(m)2
Ncm

+ S2
t (m)
Ntm

− S2
ct(m)
Nm

)
.
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The Analysis of SRE from Neyman’s Repeated Sampling Perspective

As discussed in Chapter 6 there is no direct way to estimate S2
ct(f ) and S2

ct(m), so
typically those terms are ignored, giving the estimator:

V̂neyman =
( Nf
Nf + Nm

)2
·
(
s2c (f )
Ncf

+ s2t (f )
Ntf

)
+
( Nm
Nf + Nm

)2
·
(
s2c (m)
Ncm

+ s2t (m)
Ntm

)
.

This estimator of the sampling variance is unbiased if the within-stratum treatment
effects are constant and additive, and overestimates the sampling variance in
expectation otherwise.

Note that we do not need to make assumptions about the variation in treatment
effects between strata.
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The Analysis of SRE from Neyman’s Repeated Sampling Perspective

In some cases we may be interested in a different weighted average than τS of the
within-strata treatment effects.

For example, we may be interested in the average effect of the treatment on the
outcome for the units who received the treatment.

Given the random assignment, and within the strata, this effect is equal to τFS(f ) and
τFS(m), respectively.

However, when the proportions of treated units differ between the strata, the weights
have to be adjusted to obtain an unbiased estimate of the average effect of the
treatment on the units who received treatment.
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The Analysis of SRE from Neyman’s Repeated Sampling Perspective
The appropriate weights are proportional to the fraction of treated units in each strata,
leading to the estimand

τFS,t = Ntf
Ntf + Ntm

· τFS(f ) + Ntm
Ntf + Ntm

· τFS(m),

and thus to the natural unbiased estimator

τ̂t = Ntf
Ntf + Ntm

· τ̂(f ) + Ntm
Ntf + Ntm

· τ̂(m).

The sampling variance of τ̂t can be estimated in the same way as the sampling
variance for the population average treatment effect, modifying the weights to reflect
the new estimand:

V̂neyman
t =

( Ntf
Ntf + Ntm

)2
·
(
sc(f )2
Ncf

+ s2t (f )
Ntf

)
+
( Ntm
Ntf + Ntm

)2
·
(
s2c (m)
Ncm

+ s2t (m)
Ntm

)
.

Causal Inference for Statistics, Social and Biomedical Sciences 50 / 99



Stratified Randomized Experiments and Computer assistant design
References

The Analysis of SRE from Neyman’s Repeated Sampling Perspective
More generally we can look at other weighted averages (e.g. the average effect for the
non-treated).

A natural unbiased estimator for the difference between τFS(m) and τFS,(f ) is

τ̂dif(m)− τ̂dif(f ) = Y obs
t (m)− Y obs

c (m)−
(
Y obs

t (f )− Y obs
c (f )

)
.

This estimator is unbiased with sampling variance

VW (τ̂dif(m)− τ̂dif(f )) = S2
c (f )
Ncf

+ S2
t (f )
Ntf

− S2
ct(f )
Nf

+ S2
c (m)
Ncm

+ S2
t (m)
Ntm

− S2
ct(m)
Nm

.

We can use the upper bound estimator to create large-sample confidence intervals:

V̂neyman
(
τ̂dif(m)− τ̂dif(f )

)
= s2c (f )

Ncf
+ s2t (f )

Ntf
+ s2c (m)

Ncm
+ s2t (m)

Ntm
.
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The Neyman approach and Project STAR
For each school j , j = 1, . . . , 16, the average effect of the treatment and the
corresponding sampling variance were estimated as

τ̂dif(j) = Y obs
t (j)− Y obs

c (j), and V̂neyman(j) = sc(j)2
Nc(j) + st(j)2

Nt(j) ,

respectively.

The population average effect was estimated as

τ̂ strat =
J∑

j=1

N(j)
N · τ̂(j) = 0.241,

and its sampling variance by

V̂neyman =
J∑

j=1

(N(j)
N

)2
· V̂neyman(j) = 0.0922.
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Table 9.2: Within-School Estimates of Treatment Effect of Small Classes Relative to Regular Classes
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The Neyman approach and Project STAR

Hence the large sample 95% confidence interval for the average effect was

CI0.95(τFS) =
(
0.061, 0.421

)
.

Treating the data as arising from a CRE, the point estimate of the average effect
τ̂dif = Y obs

t − Y obs
c = 0.224, with an estimated standard error of 0.141, leading to a

large sample 95% confidence interval of (−0.053, 0.500).

This estimator of the sampling variance is biased if there is variation in the probability
of treatment between the different strata, or if there is variation in the average
potential outcomes by stratum.
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The Neyman approach and Project STAR

We know the former is the case, with the probability of a small class equal to 0.5 in
most schools, and equal to 0.60 and 0.67 in some schools.

Assessing the latter is more complicated, and we shall return to this in a couple of
slides.

The fact that the point estimates differ under the assumptions of a CRE versus a SRE
analyses, suggests that average potential outcomes also differ between strata.

The estimated standard error for the stratification-based analysis is smaller than that
for the CRE, suggesting, again, that average potential outcomes differ between strata,
which implies that there is a gain in precision from the stratification.
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Regression Analysis of SRE

In order to interpret regression-based estimators, we take a super population
perspective with a fixed number of strata, and an infinite number of units within each
stratum.

Let q(j) = N(j)/N and e(j) = Nt(j)/N(j) be the proportion of each stratum in the
sample from the infinite super-population, and the proportion of treated units in each
stratum, or the propensity score, respectively.

We consider two specifications of the regression function
the stratum indicators are included additively as additional regressors
the stratum indicators and a full set of interactions of the stratum indicators with
the treatment indicator.

and then investigate the large sample properties of the OLS estimator.
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Regression Analysis of SRE

Y obs
i = τ ·Wi +

J∑
j=1

β(j) · Bi (j) + εi . (1)

In this specification, a full set of stratum indicators Bi (j), for j = 1, . . . , J , is included
why an intercept is not included.

We focus on the OLS estimator for τ ,

(τ̂ols, β̂ols) = arg min
τ,β

N∑
i=1

Y obs
i − τ ·Wi +

J∑
j=1

β(j) · Bi (j)

2

. (2)

As before, define τ∗ and β∗ as the population counterparts to the OLS estimator,

(τ∗, β∗) = arg min
τ,β

E


Y obs

i − τ ·Wi +
J∑

j=1
β(j) · Bi (j)

2
 . (3)
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Regression Analysis of SRE
The first question concerns the population value τ∗ corresponding to τ̂ols.

In general τ̂ols is not consistent for the population average treatment effect τSP.
Instead, it estimates a weighted average of the within-stratum average effects, with
weights proportional to the product of the fraction of observations in the stratum and
the probabilities of receiving and not receiving the treatment.

More specifically,

ω(j) = q(j) · e(j) · (1− e(j)), and τω =
J∑

j=1
ω(j) · τ(j)

/ J∑
j=1

ω(j)

 . (4)

Then τ̂ols is consistent for τω.

The following theorem formalizes this result.
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Regression Analysis of SRE

Theorem
Suppose we conduct a SRE in a sample drawn at random from an infinite population.
Then, for estimands τ∗ and τω defined in (3) and (4), the estimator τ̂ols satisfies, (i)

τ∗ = τω,

and (ii),

√
N
(
τ̂ols − τω

) d−→ N

0,
E
[(

Wi −
∑J

j=1 q(j)Bi (j)
)2 (

Y obs
i − τ∗Wi −

∑J
j=1 β

∗
j Bi (j)

)2]
(∑J

j=1 q(j) · e(j) · (1− p(j))
)2

 .
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Regression Analysis of SRE

Suppose we estimate τ̂dif(j) = Y obs
t (j)− Y obs

c (j).

The sampling variance of τ̂dif(j), under the assumption of a constant treatment effect,
is (S2/N) · (q(j) · e(j) · (1− e(j)))−1.

Hence the weights ωj are proportional to the precision of natural unbiased estimators
of the within-stratum treatment effects, which leads to a relatively precisely estimated
weighted average effect.
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Regression Analysis of SRE

The second specification of the regression function is

Y obs
i = τ ·Wi ·

Bi (j)
N(j)/N +

J∑
j=1

β(j)·Bi (j)+
J−1∑
j=1

γ(j)·Wi ·
(
Bi (j)− Bi (J) · N(j)

N(J)

)
+εi . (5)

Note that in this specification we only include the first J − 1 interactions to avoid
perfect collinearity in the regression function.

In this case, the population value τ∗, corresponding to the large sample limit of the
OLS estimator τ̂ols,inter, is equal to the population average treatment effect τSP:
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Regression Analysis of SRE

Theorem
Suppose we conduct a SRE in a sample drawn at random from an infinite population.
Then, for τ̂ols,inter defined as the OLS estimator corresponding to the regression
function in (5), and τ∗ defined as the population limit corresponding to that estimator,
(i)

τ∗ = τSP,

and (ii),
√
N ·

(
τ̂ols,inter − τSP

) d−→ N

0, J∑
j=1

q(j)2 ·
(

σ2j0
(1− e(j)) · q(j) + σ2t (j)

e(j) · q(j)

) .

Note: In general, the sampling variance of τ̂ols,inter is larger than that of τ̂ols.
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Regression Analysis of Project STAR

The point estimate and the estimated standard error from the first specification are are

τ̂ols = 0.238 (ŝ.e. 0.103).

Recall from the previous discussion that this estimator is not necessarily consistent for
the τSP if there is variation in the effect of the class-size by school.

The point estimate and the estimated standard error based on the second specification
are

τ̂ols,inter = 0.241 (ŝ.e. 0.095).

The two estimates for the average effect are fairly close, with similar standard errors.
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Model-based Analysis of SRE

In a model-based analysis, it is conceptually straightforward to take account of the
stratification.

As in the analysis of CRE, we combine the specification of the joint distribution of the
potential outcomes with the known distribution of the vector of assignment indicators
to derive the posterior distribution of the causal estimand.

There is one new issue that arises in this context: the link between the distributions of
the potential outcomes in distinct strata.

One can choose to have distinct parameters for the distributions in different strata,
i.e., independent prior distributions.
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Model-based Analysis of SRE

Alternatively the researcher may wish to link the parameters in the different strata
either deterministically by imposing equality restrictions, or stochastically through a
dependence structure in the prior distribution, that is, for example, through a
hierarchical model.

In situations with few strata and many units per stratum, one may wish to pursue the
first strategy and specify distinct distributions for the potential outcomes in each
stratum, with independent prior distributions on the parameters of these distributions.

In contrast, in settings with a substantial number of strata, and a modest number of
units per stratum, one may wish to link some of the parameters. One can do so by
restricting them to be equal, or by incorporating dependence into the specification of
the prior distribution.
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Model-based Analysis of SRE

We make this more specific and illustrate the issues for the case with common and
stratum-specific parameters.

Suppose we specify the joint distribution of the potential outcomes in stratum j as

(
Yi (0)
Yi (1)

)∣∣∣∣∣Bi (j) = 1,
(
µc(j), µt(j), σ2c (j), σ2t (j)

)J

j=1
∼ N

((
µc(j)
µt(j)

)
,

(
σ2c (j) 0
0 σ2t (j)

))
,

(6)
where the means (µc(j), µt(j)) and variances (σ2c (j), σ2t (j)) are specific to stratum j .

The full parameter vector is θ = (µc(j), µt(j), σ2c (j), σ2t (j), w = 0, 1, j = 1, . . . , J).
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Model-based Analysis of SRE

However, if there are many strata and the number of units per stratum is modest, we
may wish to specify a hierarchical prior distribution for the means to obtain more
precise estimates.

For example, we may wish to restrict the variances of the potential outcomes to be the
same across strata, and to specify the means to have a joint normal prior distribution,
independent of the variances σ20 and σ2t :

µc(1)
µc(2)

...
µc(j)

 ∼ N


γc
γc
...
γc

 ,

η2c 0 . . . 0
0 η2c

...
... . . .
0 . . . η2c



 ,
and
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Model-based Analysis of SRE


µt(1)
µt(2)
...

µt(j)

 ∼ N


γt
γt
...
γt

 ,

η2t 0 . . . 0
0 η2t

...
... . . .
0 . . . η2t



 ,

The full parameter vector is now θ = (σ2c , σ2t , γc , γt , η
2
c , η

2
t ).
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A Model-based Analysis of Project STAR

The model considered for the potential outcomes are

(
Yi (0)
Yi (1)

)∣∣∣∣µc(1), µt(1), . . . , µc(j), µt(j), σ2,Bi (j) = 1 ∼ N
((

µc(j)
µt(j)

)
,

(
σ2 0
0 σ2

))
,

in addition we assume(
µc(j)
µt(j)

)∣∣∣∣σ2, γc , γt ,Σ ∼ N
((

γc
γt

)
,Σ
)
,

(
µc(j)
µt(j)

)
⊥⊥
(
µc(k)
µt(k)

)∣∣∣∣σ2, γc , γt ,Σ, j 6= k.

In this model, the two potential outcome means (µc(j), µt(j)) are specific to the stratum, and
the variance σ2 is common to all strata and both potential outcomes and θ = (γc , γt ,Σ, σ2).
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A Model-based Analysis of Project STAR

For the prior distributions, we use conventional proper choices.

For the variance parameter σ2 we use a standard inverse gamma prior distribution,
k0 · ν20 · σ−2 ∼ X 2(k0), or σ2 ∼ X−2(k0, ν20),

using the notation from Gelman, Carlin, Stern and Rubin (1995).

The choices for the parameters of the prior distribution are k0 = 2 and ν20 = 0.001.

For γc and γt we use independent normal prior distributions,(
γc
γt

)
∼ N

((
0
0

)
,

(
1002 0
0 1002

))
.
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A Model-based Analysis of Project STAR
The prior distribution for Σ is an inverse wishart distribution,

Σ ∼ W−1(k1, Γ−11 ).
We consider two pairs of values for (k1, Γ1).
(1) k1 = 1000, Γ1 = 1000 · I2.
(2) k1 = 3 and Γ−11 = 0.001 · k1 · I2.

(1) essentially corresponds to removing the link between the parameters in the
different strata. We refer to this as the ⊥⊥ prior, corresponding to independence
between the stratum specific means.

(2) allows the hierarchical structure to influence answers. We refer to this as the
hierarchical choice.
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A Model-based Analysis of Project STAR

The posterior mean and standard deviation for the independent prior are

E[τS|Yobs,W,B,⊥⊥] = 0.241, V(τS|Yobs,W,B,⊥⊥) = 0.0952.

Substantively it is difficult to see why one would wish to impose the ex post
independence. Certainly, as we will see below, there is strong evidence in the data to
suggest that the average potential outcomes within the schools are related.

The posterior mean and standard deviation for the hierarchical prior are

E[τS|Yobs,W,B, hierarchical] = 0.235, V(τS|Yobs,W,B,hierarchical)2 = 0.1072.
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A Model-based Analysis of Project STAR
To assess the evidence for variation in average potential outcomes and treatment
effects by strata, we inspect the posterior distribution of Σ given the hierarchical prior
distribution.

The logarithm of the square root of the two diagonal elements correspond to the
logarithm of the standard deviation of µc(j) and µt(j) over the 16 schools.

The posterior means of logarithms of those two standard deviations are

E
[

ln(
√

Σ11)
∣∣∣Yobs,W,B, hierarchical

]
= −1.14, V

(
ln(
√

Σ11)
∣∣∣Yobs,W,B, hierarchical

)
= 0.472,

and

E
[

ln(
√

Σ22)
∣∣∣Yobs,W,B, hierarchical

]
= −1.08, V

(
ln(
√

Σ22)
∣∣∣Yobs,W,B, hierarchical

)
= 0.452.
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A Model-based Analysis of Project STAR

There is clearly some evidence of heterogeneity in the stratum means.

However, the heterogeneity is highly correlated across potential outcomes, with the
posterior mean for the Fisher Z transformation of the correlation between βc(j) and
βt(j) (the (1,2) element of Σ divided by the square root of the product of the (1, 1)
and (2, 2) elements) equal to

E
[
1
2 ln

(
1 + Σ12/(

√
Σ11Σ22)

1− Σ12/(
√

Σ11Σ22)

)∣∣∣∣∣Yobs,W,B, hierarchical
]

= 2.63,

and the posterior variance equal to

V
(
1
2 ln

(
1 + Σ12/(

√
Σ11Σ22)

1− Σ12/(
√

Σ11Σ22)

)∣∣∣∣∣Yobs,W,B, hierarchical
)

= 0.672.

Causal Inference for Statistics, Social and Biomedical Sciences 74 / 99



Stratified Randomized Experiments and Computer assistant design
References

A Model-based Analysis of Project STAR

The posterior mean of the correlation itself is 0.96.

The average treatment effect in school j is approximately τ(j) = µt,j − µc,j . In terms
of the parameters, the variance of the treatment effect across the 16 schools is
(−1 1)Σ(−1 1)′ = Σ11 − Σ12 − Σ21 + Σ22.

We focus on the standard deviation of the treatment effect over the schools.

The posterior mean of the logarithm of the standard deviation of the treatment effect is

E
[

ln
(√

Σ11 − Σ12 − Σ21 + Σ22
)∣∣∣Yobs,W,B, hierarchical

]
= −2.33,

and the posterior variance is
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A Model-based Analysis of Project STAR

V
(

ln
(√

Σ11 − Σ12 − Σ21 + Σ22
)∣∣∣Yobs,W,B, hierarchical

)
= 0.592.

Comparing the posterior mean of the standard deviation of the stratum-specific
treatment effect τ(j) over the 16 strata, (0.115), with the posterior mean of the
standard deviation of the stratum specific level under the control treatment µc,j over
the 16 strata, (0.349), suggests that, although there is considerable evidence that
levels of the average test scores vary by school, there is little evidence that average
class size effects vary much by school.

The former may be due to differences in teacher quality or differences in student
populations. This type of conclusion highlights the advantage of a fully model-based
analysis, which allows for the simultaneous investigation of multiple questions
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Design Issues: SRE versus CRE

Here we study the implications of the choice between the different experimental
designs for the expected sampling variance of the standard unbiased estimator for the
average treatment effect.

There is a sense in which one is never worse off stratifying on a covariate. However, to
make this point precise, we need to pose the question appropriately.

We analyze the problem in a super population setting. Each unit in this population has
a binary characteristic Gi , Gi ∈ {f ,m}.

Let q be the proportion of f types in the population.
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Design Issues: SRE versus CRE

We consider two designs. We randomly draw
(1) N units from the population. We then randomly draw M = q · N units to receive

the active treatment and Nc = (1− q) · N units to receive the control treatment
(2) N(f ) = q · N units from the subpopulation of units who have Gi = f , and

N(m) = N · (1− q) units from the population who have Gi = m.
randomly select Nt(f ) = pqN and Nt(m) = p(1− q)N units to be ‘treated’
let the remaining Nc(f ) = (1− p) · q · N and Nc(m) = (1− p) · (1− q) · N units to
be ‘controls’.
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Design Issues: SRE versus CRE

For design (1) we estimate the average treatment effect in the superpopulation as

τ̂dif = Y obs
t − Y obs

c ,

with (super-population) sampling variance

VSP(τ̂dif) = σ2c
Nc

+ σ2t
Nt
.

For design (2) we estimate

τ̂dif(f ) = Y obs
t (f )− Y obs

c (f ), and τ̂dif(m) = Y obs
t (m)− Y obs

c (m),
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Design Issues: SRE versus CRE

and the overall average effect as

τ̂ strat = Nf
N · τ̂

dif(f ) + Nm
N · τ̂dif(m) = q · τ̂dif(f ) + (1− q) · τ̂dif(m).

The sampling variance for this estimator is

VSP(τ̂ strat) = q
N ·

(
σ2t (f )
p + σ2c (f )

1− p

)
+ 1− q

N ·
(
σ2t (m)

p + σ2c (m)
1− p

)
.

The difference between the two sampling variances, normalized by the sample size N, is

N ·
(
VSP(τ̂dif)− VSP(τ̂ strat)

)
= q(1−q) ·

(
(µc(f )−µc(m))2 + (µt(f )−µt(m))2

)
≥ 0.
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Design Issues: SRE versus CRE

Although there is an unambiguous ranking of VSP(τ̂dif) and VSP(τ̂ strat), the estimated
sampling variance for the SRE may be larger than for the CRE.

The natural estimator for the sampling variance of the simple unbiased estimator in a
SRE has a larger sampling variance than that for the natural estimator for the
sampling variance in a CRE, because of the need to estimate the within-stratum
potential outcome variances.

We can assess the benefits of having the stratification for an experiment with the size
of project STAR.
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Design Issues: SRE versus CRE, project STAR

Suppose we have S strata, each with Nt treated (small) and Nc = Nt control
(regular-sized) classes.

Suppose that the true within-stratum variance of the potential outcomes is σ2 = 0.432,
which is the posterior mean for the hierarchical model estimated on the STAR data.

Suppose also that the true variance of the within-stratum average potential outcomes
over the strata is Σ11 = 0.372 for the control averages µc,j and Σ22 = 0.372 for the
averages given the treatment µt,j , again estimated on the STAR data.

Then the ratio of the variances under CRE versus a SRE would be
(0.432 +0.372)/0.432) = 1.65. Thus, the stratified design reduces the variance by 40%.
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Computer assisted designs

An alternative, or complement, to stratification or blocking that has received attention
lately is to utilize modern computational capabilities in finding allocations with balance
in observed covariates.

Rerandomiziation: Morgan and Rubin (2012) formalized rerandomization by
suggesting the experiment allocation to be one with a Mahalanobis distance (MD) in
covariate means of treated and control units to be less than a given threshold. In
Johansson and Schultzberg (2020) the experiment allocations are instead randomly
chosen among the approximate ‘best’ subset of admissible allocations.

Algorithms: Bertsimas et al. (2015); Lauretto et al. (2017); Kallus (2018); Krieger
et al. (2019); Kapelner et al. (2020) suggest using covariates in algorithms to find a set
of (optimal) allocations from which the final experimental allocation should be chosen.
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Computer assisted designs and inference.

As we saw, with stratification standard normal asymptotic inference is straightforward.
This is no longer the case in these designs.

Morgan and Rubin (2012) suggested using the FEP based on τ̂dif = Y obs
t − Y obs

c . The
asymptotic distribution for this estimator was later derived in Li et al. (2018) and Li
and Ding (2020) derived the asymptotics under regression adjustment.

Kallus (2018) suggested using bootstrap inference in his optimal design but gave no
formal proof of its validity.
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Computer assisted designs and inference.

Krieger et al. (2019); Kapelner et al. (2020); Johansson and Schultzberg (2020) all
suggested FEP, while Bertsimas et al. (2015); Lauretto et al. (2017) did not discuss
inference in their designs.

Zhang and Johansson (2019) suggested Bayesian inference and studied the small
sample performance under the MD rerandomization design.
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Rerandomization and “optimal designs”

The idea of rerandomization is to remove allocations in W with imbalance in observed
covariates between treated and control units given a pre-specified imbalance criterion,
thus W→Wa. Different criteria give rise to different rerandomization designs.

Morgan and Rubin (2012) used the MD as the criterion for defining Wa with the aim
to make inference about the τFS , estimated using τ̂dif .

Johansson and Schultzberg (2020) suggested a rank based criterion and to find all
allocations in Wa such that the Fisher exact test has a certain “resolution” (e.g. 200
possible assignments allows for a p-value of 0.01 and larger).

Kallus (2018) suggested finding the allocation that minimizes the estimated sampling
variance of the τ̂dif estimator. Denote this set WOpt .
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Mahalanobis-based rerandomization

Let X be the N × K matrix of fixed covariates with the finite population covariance
matrix Sxx .

With xi , i = 1, ...,N, the K × 1 covariate vector, this covariance matrix is defined

Sxx = 1
N − 1

N∑
i=1

(xi − x̄)(xi − x̄)′, (7)

In a balanced experiment, i.e. N1 = N0 = N/2, there are
(N

N1

)
=A possible treatment

allocation (assignment) vectors, thus Wj , j = 1, ...,A. The MD for each allocation j
is defined:

M(Wj ,X) =N
4 (τ̂ j

X S−1xx τ̂
j
X ), j = 1, ...,A,
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Mahalanobis-based rerandomization

where

τ̂ j
x = 1

N1

N1∑
i=1

W j
i x′i −

1
N0

N0∑
i=1

(1−W j
i )x′i = xj

1 − xj
0.

Accept the treatment assignment vector Wj if
M(Wj ,X) ≤ a,

where a is a positive constant. Using the central limit theorem the means will be
normally distributed why M(Wj ,X) ∼ χ2K .
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Mahalanobis-based rerandomization

Three properties of the MD criterion
1 χ2K distributed with moderate size N. This imply that a can be implicitly defined.

1 Let a be a value such that P(M(Wj ,X) ≤ a) = P(χ2K ≤ a) = pa, then to randomize
within the set of the 0.01% best balanced allocations implies setting a : pa = 0.0001.

2 The percent reduction in variance of all of the (equally weighted) included
covariates is equal to

100(1− νa)

where νa = Pr(χ2K+2≤a)
Pr(χ2K≤a) ; 0 < νa < 1,

3 Assume (i) Y(0) conditionally on X to be normal and (ii) additive treatment
effects then the percent reduction in variance on the treatment effect is equal to
R2(1− νa),where R2 is the coefficient of determination of a regression of Y(0) on
X.
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Mahalanobis-based rerandomization and inference

Most often we do not have random sampling to the experiment. That is, interest in
inferences to the sample only why the FRT can be used for inference.

If we however would like to make use of asymptotic inferences based on τ̂dif after
rerandomization, τ̂ rr , then we can no longer make use of the normal distribution.

Under rerandomization based on the MD criterion Li et al. (2018) shows that

√
N(τ̂ rr − τFS)|τ̂X ∼

√
VττQ,
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Mahalanobis-based rerandomization and inference

where Q =
√

(1− R2)ε0 +
√
R2LK ,a.

Here ε0 is a standard normal random variable orthogonal to the covariates while the
other part

LK ,a ∼ χK ,aS
√
βK ,

projects into the space of covariates and is thus affected by the rerandomization. Here
χk,a = χ2K |χ2K ≤ a,S a random sign taking ±1 with probability 1/2, and
βK ∼Beta(1/2; (K − 1)/2) a Beta random variable degenerating to a point mass at 1
when K = 1.
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Rerandomization and inference, continued

Under Mahalanobis-based rerandomization, Li and Ding (2020) showed that
asymptotically Lin (2013)’s approach is valid also under MD rerandomization. That is
run the regression

Yi = β00 + (xi − x)′β0 + Wi (xi − x)′(β1 − β0) + τWi + ηi

and for inference use the Eicker-Huber-White (EHW) covariance estimator (Eicker
(1967); Huber (1967); White (1980). That is, use the Q × Q element in:

V̂ (τ̂) = N

( N∑
i=1

z′izi

)−1 N∑
i=1

η̂2i z′izi

( N∑
i=1

z′izi

)−1
Q×Q

, (8)

where zi = (1, xi ,Wi (xi − x̄)′,Wi )′ is a Q × 1 vector and η̂i is the OLS residual from
the regression.
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Rerandomization and inference, continued

Zhang and Johansson (2019) proposed model-based Bayesian inference as yet another
strategy, that is not restricted to the MD criterion

The strategy is based on the fact that, with rerandomization, treatment allocation only
depends on the covariates of the experimental units and does not depend on the
outcomes, so imputation of missing outcomes from the posterior distribution
conditional on the covariates provides correct inference.

An advantage in comparison to Li and Ding (2020) is that it allows for efficient
inference of discrete and censored outcome data after rerandomization.
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Rerandomization and stratification

Johansson and Schultzberg (2020) suggested a sampling scheme for choosing the
approximate ‘best’ subset of admissible allocations and also develop a rerandomization
covariate balance measure that is easy to use when pre-experimental outcome data
(possibly high frequency longitudinal) are available.

Based on this algorithm, Johansson and Schultzberg (2019) show that substantial
computational and efficiency gains can be obtained by first stratifying and then finding
the “optimal” allocations.

With discrete covariates, rearandomiziation with a = 0 can be seen to be equivalent to
blocking in a within block balanced design
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Rerandomization and stratification

This statement can illustrated using the stratification example above.

With a = 0, M(Wj ,X) = 0. This imply x1 − x0 = 0. This means these two possible
allocations in the example Wj = (1, 0, 1, 0, 1, 0, 1, 0)′ and 1−Wj .

“Block or stratify what you can, rerandomize what you can’t”
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Rerandomization and “optimal designs”, a discussion

The ‘optimal’ designs suggested by Kallus (2018) includes rerandomization based on
the MD as a special case.

The underlying assumption of the proof in Li et al. (2018) is that of replicated
randomization and that the sample size N go to infinite. The only thing stochastic is
thus the allocation of treatments.

In the optimal design the cardinality of WOpt , card(WOpt), is reduced to a minimum.
The implication, is that we cannot derive the asymptotic distribution τ̂dif as estimator
of τFS (Johansson et al., 2019). For instance, in a deterministic design (i.e.
card(WOpt) = 1) the resulting distribution have zero variance.

Note that with a limited set of allocations a FEP has no power.
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Rerandomization and “optimal designs”, a discussion

The assumption deriving the asymptotic distribution of τ̂dif as an estimator of τSP is
that of random sampling to the experiment from a population of size Np (Np > N), or
from a superpopulation.

When interest is on conduction inference to PATE there is no lower limit on the
number of possible allocations as the asymptotic distribution is derived under the
assumption of random sampling to the experiment only.

The consequence is that we, in theory, can have a deterministic design and then
conduct inference to τSP , however no inference is possible regarding an effect in the
experiment. This is an anomaly, but it is a consequence of the idea behind
Neyman-Pearson inference.
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Rerandomization and “optimal designs”, a discussion

Schultzberg and Johansson (2020) show that when card(W0) = 2, in MD
rerandomization, the asymptotic distribution of τ̂dif for inference to τSP is normally
distributed with known variance.

Furthermore, the difference in efficiency compared to using the ‘optimal’ set,
card(W0) = 2, is typically very small.

This means that, using a slightly larger ‘near optimal’ set, admits non-degenerate
inference to both τFS and to τSP without substantially decreasing efficiency in
inference to τSP .
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Rerandomization and “optimal designs”, a discussion

Lastly, the large sample asymptotic distribution of the τ̂dif estimator is well
approximated by a normal distribution also when a larger ‘near optimal’ set is used.

The implication is important as the asymptotic inference after MD rerandomization is
simplified in contrast to what is suggested in Li et al. (2018).
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