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Fisher’s Exact P-values in Completely Randomized Experiments

Introduction
Fisher (1935) suggested a test of no effect of the active versus control treatment under
the sharp null hypothesis or exact null hypothesis under a complete RCT.

Under the sharp null hypothesis, both potential outcomes are “known” for each unit in
the sample— being either directly observed or inferred through the sharp null
hypothesis—there are no missing data for the units in this experiment.

The setup enabled Fisher to develop methods for calculating “p-values”. We refer to
them as Fisher Exact P-values (FEPs).

The Fisher’s null hypothesis is distinct from the typical, question of an average
treatment effect across all units being zero (see Chapter 6).

The latter is a weaker hypothesis, because the average treatment effect may be zero
even if there exists unit specif effects.

Causal Inference for Statistics, Social and Biomedical Sciences 1 / 73



Fisher’s Exact P-values in Completely Randomized Experiments

Introduction
Consider any test statistic T—a function of W, Yobs, and any potential X.

The fact that the null hypothesis is sharp allows us to determine the distribution of T ,
generated by the complete randomization of units across treatments.

The test statistic is stochastic solely through the stochastic nature of W. The statistic
determined by the randomization is referred to as the randomization distribution of the
test statistic T .

Using this distribution, we can compare the actually observed value of the test
statistic, T obs, against the randomization distribution distribution of T .

A T obs that is “very unlikely,”given the randomization distribution distribution of T
will be taken as evidence against the null hypothesis. That is, a stochastic version of a
“proof by contradiction.”
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Introduction

The FEP approach entails two steps:
1 the choice of a sharp null hypothesis
2 the choice of test statistic.

The scientific nature of the problem should govern these choices.

In particular, although in Fisher’s analysis the null hypothesis was always the one with
no treatment effect whatsoever, in general the null hypothesis should follow from the
substantive question of interest.

The statistic should then be chosen to be sensitive to the difference between the null
and some alternative hypothesis that the researcher wants to assess for its scientific
interest. That is, the statistic should be choosen to have, what is now commonly
referred to as, statistical power against a scientifically interesting alternative hypothesis.
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Introduction

An important characteristic of this approach is that it is truly nonparametric.

We do not need modeling assumptions to calculate the randomization distribution of
any test statistic; instead the assignment mechanism completely determines the
randomization distribution of the test statistic.

This freedom from reliance on modelling assumptions does not mean, of course, that
the values of the potential outcomes do not affect the properties of the test.

These values will certainly affect the distribution of the p-value when the null
hypothesis is false (that is, the statistical power of the test).
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The Honey Study
The data used to illustrate this approach are from a randomized experiment by Paul et
al. (2007) on the evaluation of the effect of three treatments on nocturnal cough and
sleep difficulties associated with childhood upper respiratory tract infections. The three
treatments are

1 a single dose of buckwheat honey,
2 a single dose of honey-flavored dextromethorphan, an over-the-counter drug
3 no active treatment

Here we only use data on the N = 72 children receiving buckweat honey (Nt = 35) or
no active treatment (Nc = 37).

We focus on two, of in total six outcomes: cough frequency afterwards (cfa), and
cough severity afterwards (csa). Both measured on a scale from zero (“not at all
frequent/severe”) to six (“extremely frequent/severe”).
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The Honey Study

We also use two covariates, measured on the night prior to the randomized
assignment: cough frequency prior (cfp) and cough severity prior (cfp).
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The Honey Study
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Fisher’s Exact P-values in Completely Randomized Experiments

A Simple Example with Six Units

Initially we consider a subsample from the honey data set, with six children.
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A Simple Example with Six Units

The sharp null hypothesis that the treatment had absolutely no effect on coughing
otucomes, that is:

H0 : Yi(0) = Yi(1) for i = 1, . . . , 6.

Under this null hypothesis, for each child, the missing potential outcomes, Y mis
i are

equal to the observed outcomes for the same child, Y obs
i , or Y mis

i = Y obs
i for all

i = 1, . . . ,N.

This means that we can fill in all six of the missing entries in Table 5.3.
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A Simple Example with Six Units
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A Simple Example with Six Units

To estimate the FEPs we use the test statistic:

T (W,Yobs) = T avg =
∣∣∣Y obs

t − Y obs
c

∣∣∣ ,

where Y obs
t =

∑
i :Wi =1 Y obs

i /Nt and Y obs
c =

∑
i :Wi =0 Y obs

i /Nc , and
Nc =

∑N
i=1(1−Wi) and Nt =

∑N
i=1 Wi .

This test statistic is likely to be sensitive to deviations from the null hypothesis
corresponding to a constant additive effect of the treatment.
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A Simple Example with Six Units
The value of the test statistic is

T obs = T (W,Yobs) = |Y obs
t − Y obs

c |

= |(Y obs
1 + Y obs

2 + Y obs
3 )/3− (Y obs

4 + Y obs
5 + Y obs

6 )/3| = |8/3− 5/3| = 1.00.
Under the null hypothesis, we can calculate the value of this statistic under each vector
of treatment assignments, W.

Suppose for example, that the assignment vector would have been
W̃ = (0, 1, 1, 0, 1, 0), then the test statistic would have been
T (W̃,Yobs) = |(Y obs

2 +Y obs
3 +Y obs

5 )/3−(Y obs
1 +Y obs

4 +Y obs
6 )/3| = |6/3−7/3| = 0.33.

Given that we have a population of six children with three assigned to treatment, there

are
(

6
3

)
= 20 different assignment vectors. Table 5.5 lists all twenty possible

assignment vectors for these six children.
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A Simple Example with Six Units

Causal Inference for Statistics, Social and Biomedical Sciences 13 / 73



Fisher’s Exact P-values in Completely Randomized Experiments

A Simple Example with Six Units
From Table 5.5 we see that there are sixteen assignment vectors with at least a
difference in absolute value of 1.00 between children in the treated and control groups,
out of a set of twenty possible assignment vectors.

This corresponds to a p-value of 16/20 = 0.80. Thus, if there were no effect of giving
honey at all, we could have seen an effect as large as the one we actually observed for
eighty out of every hundred times that we randomly assigned the honey.

Note that, with three children out of six receiving the treatment, the most extreme
p-value that we could have for this statistic for any values of the data is 2/20 = 0.10;
if T = t is a possible value for the test statistic, then t will also be the value of the
test statistic by using the opposite assignment vector. Hence the sample of size six is
generally too small to be able to assess, with any reasonable certainty, the existence of
some effect of honey versus nothing—the sample size is not sufficient to have adequate
power to reach any firm conclusion.
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The Choice of Null Hypothesis
Fisher himself only focused on what is arguably the most interesting sharp null
hypothesis, that of no effect whatsoever of the treatment:

H0 : Yi(0) = Yi(1), for i = 1, . . . ,N. (1)

We need not necessarily believe such a null hypothesis, but we may wish to see how
strongly the data can speak against it.

Note again that this sharp null hypothesis of no effect whatsoever is very different
from the null hypothesis that the average effect of the treatment in the sample of N
units is zero.

Neyman, whose approach focused on estimating the average effect of the treatment,
was critized, perhaps unfairly, by Fisher for his (Neyman’s) questioning of the relative
importance of the sharp null of absolutely no effect that was the focus of Fisher’s
analysis.
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The Choice of Null Hypothesis

Although Fisher’s approach cannot accommodate a null hypothesis of an average
treatment effect of zero, it can accommodate sharp null hypotheses other than the null
hypothesis of no effect whatsoever.

An obvious alternative is the hypothesis that there is a constant additive treatment
effect, Yi(1) = Yi(0) + C , possibly after some transformation of the outcomes, (e.g.,
by taking logarithms, so that the null hypothesis is that Yi(1)/Yi(0) = C for all units)
for some pre-specified value C .

Once we depart from the world of no effect, however, we encounter several possible
complications, among them, why the treatment effect should be additive in levels
rather than in logarithms, or after some other transformation of the basic outcome.
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The Choice of Null Hypothesis

Although the FEP approach can allow for general sharp null hypotheses, we focus on
the case where the null hypothesis is that of no effect whatsoever, Yi(1) = Yi(0) for all
i = 1, . . . ,N, hence implying that Y mis

i = Y obs
i .

This limitation is without essential loss of generality. If the null hypothesis is instead
that the treatment effect for unit i is equal to Ci , we can transform the potential
outcomes under the active treatment to Ỹi(1) = Yi(1)− Ci , and continue with testing
the null hypothesis Ỹi(1) = Yi(0).

If, under the nullhypothesis all Yi(0) and Yi(1) are known, then so are all Yi(0) and
Ỹi(1).
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The Choice of Statistic
The second decision, typically more difficult, is the choice of test statistic.
Definition

(Statistic)
A statistic T is a known, real-valued (scalar) function T (W,Yobs,X) of: the vector of
assignments, W, the vector of observed outcomes, Yobs (itself a function of W and the
potential outcomes Y(0) and Y(1)), and the matrix of pretreatment variables, X.

Any statistic that satisfies this definition is valid for use in the FEP approach.

When such a statistic is used to find p-values, we call it a “test-statistic.”

However, not all such statistics are sensible. We also want the test statistic to have the
ability to distinguish between the null hypothesis and an interesting alternative
hypothesis, that is to have power against alternatives.

Causal Inference for Statistics, Social and Biomedical Sciences 18 / 73



Fisher’s Exact P-values in Completely Randomized Experiments

The Choice of Statistic
Our desire for statistical power is complicated by the fact that there may be many
alternative hypotheses of interest, and it is typically difficult/impossible to specify a
single test statistic that has substantial power against all interesting alternatives.

We therefore look for statistics that lead to tests that have power against those
alternative hypotheses that are viewed as the most interesting from a substantive point
of view.

The most popular choice of test statistic is:

T avg =
∣∣∣Y obs

t − Y obs
c

∣∣∣ =
∣∣∣∣∣
∑

i :Wi =1 Y obs
i

Nt
−
∑

i :Wi =0 Y obs
i

Nc

∣∣∣∣∣ . (2)

This test statistic is relatively attractive if the most interesting alternative hypothesis
corresponds to an additive treatment effect, and the frequency distibutions of Yi(0)
and Yi(1) have few outliers.
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The Choice of Statistic

Somewhat coincidental, and largely irrelevant here, T avg has an interpretation as an
“unbiased”estimator for the average effect of the treatment under any alternative
hypothesis.

This interpretation may be an attractive property, but it is not essential, and in this
FEP approach, focusing only on such statistics can at times divert attention from
generally more powerful test statistics.

Note: Although there are many choices for the statistic, the validity of the FEP
approach and its p-values hinges on using one statistic and its p-value only.

If one calculates multiple statistics and their corresponding p-values, the probability of
observing at least one p-value less than a fixed value of p is larger than p.
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Transformations

An obvious alternative to (2) is to transform the outcomes before comparing average
differences between treatment levels.

This procedure is attractive if a plausible alternative hypothesis corresponds to an
additive treatment effect after such a transformation.

For example, if we consider a constant multiplicative effect of the treatment to be
relevant, the following test statistic is relevant:

T log =
∣∣∣∣∣
∑

i :Wi =1 ln(Y obs
i )

Nt
−
∑

i :Wi =0 ln(Y obs
i )

Nc

∣∣∣∣∣ . (3)
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The Choice of Statistic

This transformation could also be sensible if the raw data have a quite skewed
distribution (e.g. earnings or wealth, or levels of a pathogen and treatment effects are
then also more likely to be multiplicative than additive), although one needs to take
care in case there units with zero values.

In such a case, the test statistic based on taking the average difference, after
transforming to logarithms, would likely be more powerful than the test based on the
simple average difference.

Causal Inference for Statistics, Social and Biomedical Sciences 22 / 73
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Quantiles

Motivated by the same concerns that led to test statistics based on logarithms, one
may be led to test statistics based on trimmed means or other “robust” estimates of
location, which are not sensitive to outliers.

For example, one could use:
T median =

∣∣∣medt(Y obs
i )−medc(Y obs

i )
∣∣∣ , (4)

where medt(Y obs
i ) and medc(Y obs

i ) are the observed sample medians of the
subsamples with Wi = 0, {Y obs

i : Wi = 0}, and Wi = 1, {Y obs
i : Wi = 1}, respectively.
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Quantiles

Other test statistics based on robust estimates of location include the average in each
subsample after trimming the lower and upper, e.g. 5% of the two subsamples.

T quant =
∣∣∣qδ,t(Y obs

i )− qδ,c(Y obs
i )

∣∣∣ , (5)

where qδ,t(Y obs
i ) and qδ,c(Y obs

i ), for δ ∈ (0, 1), are the δ quantiles of the empirical
distribution of Y obs

i in the subsample with Wi = 0 and Wi = 1 respectively, so that,∑
i :Wi =0 1Y obs

i <qδ,c(Y obs
i )/Nc < δ, and

∑
i :Wi =0 1Y obs

i ≤qδ,c(Y obs
i )/Nc ≥ δ, and similarity

for Wi = 1.

Here 1E is the indicator function, equal to 1 if the event E is true and equal to 0
otherwise.
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T-statistics

Another choice for the test statistic is

T t−stat =

∣∣∣∣∣∣ Y obs
t − Y obs

c√
s2
c /Nc + s2

t /Nt

∣∣∣∣∣∣ , (6)

where s2
c =

∑
i :Wi =0(Y obs

i −Y obs
c )2/(Nc − 1) & s2

t =
∑

i :Wi =1(Y obs
i −Y obs

t )2/(Nt − 1).

Note that, here, we do not compare T t−stat to a student t or normal distribution.
Rather, we use the randomization distribution to obtain the exact distribution of
T t−stat under the null hypothesis given the potential outcomes.

In many cases, the conventional normal or student-t approximation may be excellent in
moderate to large samples, but in small samples, and with thick-tailed or skewed
distributions for the potential outcomes, these approximations can be poor.
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Rank Statistics
An important class of test statistics involves transforming the outcomes to ranks before
considering differences by treatment status.

This is particularly attractive when the raw outcomes have substantial number of
outliers.

The rank of unit i , for i = 1, . . . ,N, is defined as the number of units with an observed
outcome less than or equal to Y obs

i .

Without ties, the rank will take on all integer values from 1 to N, with a discrete
uniform distribution.

This transformation leads to inferences that are insensitive to outliers, without
requiring consideration of which continuous transformation would lead to a
well-behaved distribution of observed potential outcomes.
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Rank Statistics

Formally the basic definition of rank in the absence of ties is

R̃i = R̃i(Y obs
1 , . . . ,Y obs

N ) =
N∑

j=1
1Y obs

j ≤Y obs
i
.

We often subtract (N + 1)/2 from each rank to obtain a normalized rank that has
average value equal to zero in the sample:

Ṙi = R̃i(Y obs
1 , . . . ,Y obs

N )− N + 1
2 =

N∑
j=1

1Y obs
j ≤Y obs

i
− N + 1

2 .
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Rank Statistics

When there are ties in outcomes the definition is typically modified, for instance, by
averaging all possible ranks across the tied observations.

Suppose we have two units with outcomes both equal to y ; if there are L units with
outcomes smaller than y , the two possible ranks for these two units are L + 1 and L + 2.

Hence we assign each of these units the average rank (L + 1)/2+ (L + 2)/2 = L + 3/2.

Generally, if there are M observations with the same outcome value, and L
observations with a strictly smaller value, the rank for the M observations with the
same outcome value is L + (1 + M)/2.
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Rank Statistics

Formally, after again subtracting the mean rank, we use the following definition for the
normalized rank:

Ri = Ri(Y obs
1 , . . . ,Y obs

N ) =
N∑

j=1
1Y obs

j <Y obs
i

+ 1
2

1 +
N∑

j=1
1Y obs

j =Y obs
i

− N + 1
2 .

Given the N ranks Ri , i = 1, . . . ,N, an obvious test statistic is the absolute value of
the difference in average ranks for treated and control units:

T rank =
∣∣∣Rt − Rc

∣∣∣ =
∣∣∣∣
∑

i :Wi =1 Ri

Nt
−
∑

i :Wi =0 Ri

Nc

∣∣∣∣ , (7)

where Rt and Rc are the average rank in the treatment and control group respectively.
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Rank Statistics

The p-value for this test statistic is closely related to that based on the Wilcoxon rank
sum test statistic, which is defined as T wilcoxon =

∑N
i=1 R̃i , because T rank is a simple

transformation of T wilcoxon:

T rank =
∣∣∣∣∣T wilcoxon − N(N + 1)/2

Nt
− N(N − 1)/2− T wilcoxon

Nc

∣∣∣∣∣ .
Let us return to the first six units from the honey data. The ranks for all six units are
reported in Table 5.5.

Causal Inference for Statistics, Social and Biomedical Sciences 30 / 73



Fisher’s Exact P-values in Completely Randomized Experiments

To obtain the FEP for this test statistic, we count the number of times we get a test statistic equal to,

or larger than, 0.67, across all randomized assignment vectors (or allocations). This number is 16, why

FEP= 16/20 = 0.80
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Rank Statistics

Unlike the simple difference in means, or the difference in logarithms, the rank-based
statistics do not have a direct interpretation as a meaningful treatment effect.

Nevertheless, rank-based statistics can in practice lead to more powerful tests than
statistics that have an interpretation as an estimated causal effect, due to their
insensitivity to thick-tailed or skewed distributions.
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Model-based Statistics
A rich class of possible test statistics is motivated by parametric models of the
potential outcomes. To be discussed extensively in chapter 8.

Here we briefly discuss their role in motivating statistics in the FEP approach.

Suppose we have two models, one for Yi(0) and the other for Yi(1), governed by
unknown parameters θc and θt respectively, where both θc and θt generally are vectors.

Assume that both models have a common functional form so that θc and θt have the
same number of components.

Let us estimate θc and θt using the observed outcomes from the units assigned to the
control and treatment groups, respectively.

Denote the estimators θ̂c and θ̂t , respectively.
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Model-based Statistics

We can use a variety of methods for estimation here, for example, method of moments
(MM), least squares or maximum likelihood (ML) estimation.

Now, take any scalar function of the resulting estimates, say the difference in one of
the components of the two vectors θ̂c and θ̂t , or the sum of the squared differences
between elements of the vectors θ̂c and θ̂t .

Because θ̂c and θ̂t are functions of the observed data (W,Yobs,X), they are statistics
according to Definition 1.

Hence any scalar function of the estimated parameters θ̂c and θ̂t is also a statistic that
can be used to obtain a p-value for a sharp null hypothesis.
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Model-based Statistics
As the models are purely descriptive given that the potential outcomes are considered
fixed quantities, the validity of an FEP based on any one of them does not rely on the
validity of these models.

The reason such models may be useful, however, is that they may provide good
descriptive approximations to the sample distribution of the potential outcomes under
some alternative hypothesis.

If so,the models can suggest a test statistic that is relatively powerful against such
alternatives.

Two examples:

(1) Let Yi(0) be normal with mean µc and variance σ2
c . Similarly, suppose the model

for Yi(1) is also normal but with a possibly different mean µt and variance σ2
t .
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Model-based Statistics

Thus, θc = (µc , σ
2
c ), and θt = (µt , σ

2
t ).

The natural estimates for µc and µt are the two subsample means by treatment status
µ̂c = Y obs

c and µ̂t = Y obs
t . Hence if we use the statistic

T model = |µ̂t − µ̂c | =
∣∣∣Y obs

t − Y obs
c

∣∣∣ = T avg,

we return to the familiar territory of using the difference in averages by treatment
status for the test statistic.
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Model-based Statistics

(2) Let Yi(0) be normal with mean µc and variance σ2
c , censored from above at C , and

similarly let Yi(1) be normal with mean µt and variance σ2
t , also censored from above

at a known value C , so that again, θc = (µc , σ
2
c ), and θt = (µt , σ

2
t ).

We can estimate the parameters µc , µt , σ2
c and σ2

t by ML as µ̂ml,c , µ̂ml,t , σ̂2
ml,c , and

σ̂2
ml,t respectively, or by the MM.

There are no analytic solutions for the ML in this case, but the FEP based on a test
statistic using such estimates, e.g., T model = |µ̂ml,t − µ̂ml,c |, is still valid.
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The Kolmogorov-Smirnov Statistic

The test statistics discussed so far focus on difference in particular features of the
outcome distributions between treated and control units.

Focusing on a single, or even multiple, features of these distributions may lead the
researcher to miss differences in other aspects.

Formally, the test based on the difference in averages will have little power against an
alternative hypothesis with different variances. We may, therefore, be interested in test
statistics that would be able to detect, given sufficiently large samples, any differences
in distributions between treated and control units. An example of such a test statistic
is the Kolmogorov-Smirnov statistic.
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The Kolmogorov-Smirnov Statistic

Let F̂c(y) and F̂t(y) be the empirical distribution functions based on units with
treatment Wi = 0 and Wi = 1 respectively:

F̂c(y) = 1
Nc

∑
i :Wi =0

1Y obs
i ≤y , and F̂t(y) = 1

Nt

∑
i :Wi =1

1Y obs
i ≤y ,

for all −∞ < y <∞. Then the Kolmogorov-Smirnov test statistic is

T ks = T (W,Yobs) = sup
y

∣∣∣F̂t(y)− F̂c(y)
∣∣∣ = maxi=1,...,N

∣∣∣F̂t
(
Y obs

i

)
− F̂c

(
Y obs

i

)∣∣∣ .
(8)

Because it is a function of the vector of assignments and the vector of observed
outcomes, it is a valid statistic. Therefore we use exactly the same procedure as with
the simpler statistics: calculate its exact finite sample distribution generated by the
randomization, and then calculate the associated exact p-value.

Causal Inference for Statistics, Social and Biomedical Sciences 39 / 73



Fisher’s Exact P-values in Completely Randomized Experiments

Statistics with Multiple Components
The validity of the FEP approach depends on an a priori (i.e., before seeing the data)
commitment to a specific pair of: a null hypothesis and a test statistic.

Sometimes there is an interest in testing more than one hypothesis. For instance when
the researcher has more than one outcome for each unit or when testing for both mean
and distribution shifts from the treatment.

Consider the honey study with measures on both cough frequency and cough severity.
In that case, one statistic could be the difference in average cough frequency by
treatment status and the the other the difference in average cough severity by
treatment status.

Consider the test statistics, T 1(W,Yobs,X), and T 2(W,Yobs,X), with realized values
T 1,obs and T 2,obs. For instance, testing for a mean effect on cough frequency and
cough severity.
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Statistics with Multiple Components

The corresponding p-values are valid for each pair considered in isolation, but the
p-values are not independent across pairs.

Under any sharp null hypothesis, one can calculate p-values for each of the tests, for
example,

p1 = Pr(T 1 ≥ T 1,obs|X,Y(0),Y(1),H0) and p2 = Pr(T 2 ≥ T 2,obs|X,Y(0),Y(1),H0).

These p-values are valid for each test in isolation, but using the minimum of p1 and p2
as an overall p-value for the null hypothesis is not valid, nor is using the average of p1
and p2 for this purpose.
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Statistics with Multiple Components

The simplest way to obtain a valid p-value with multiple test statistics is to combine
the two (or more) test statistics into a single test statistic.

One can do this directly, by defining the test statistic as a function of the two original
test statistics:

T comb = g(T 1,T 2),

for some scalar function g(·, ·).

Choices for T comb could include a (weighted) average of the two statistics, or the
minimum or maximum of the two statistics.

Alternatively, T comb could be a function of the two p-values, e.g., the minimum or the
average.
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Statistics with Multiple Components

Because T 1 and T 2 (or p1 and p2) are functions of (W,Y,X), it follows that T comb is
a function of these vectors, and thus a valid scalar test statistic according to our
definition.

Hence, its randomization distribution can be calculated, and the corresponding p-value
would equal

pg = Pr(g(T 1,T 2) ≥ g(T 1,obs,T 2,obs)|X,Y(0),Y(1),H0).

As an example, take the honey comb study. For each outcome we use:

T t−stat,1 =

∣∣∣∣∣∣ Y obs
t1 − Y obs

c1√
s2
c1/Nc + s2

t1/Nt

∣∣∣∣∣∣ , and T t−stat,2 =

∣∣∣∣∣∣ Y obs
t2 − Y obs

c2√
s2
c2/Nc + s2

t2/Nt

∣∣∣∣∣∣ .
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Statistics with Multiple Components
Then we could choose for our test statistic

T comb = max(|T 1|, |T 2|).

A more natural test statistic in this case is the Hotelling’s T 2 statistic.

T Hotelling =
(

Y obs
t,1 − Y obs

c,1
Y obs

t,2 − Y obs
c,2

)′ (
V̂c/Nc + V̂t/Nt

)−1
(

Y obs
t,1 − Y obs

c,1
Y obs

t,2 − Y obs
c,2

)
, (9)

where

V̂c = 1
Nc − 1

∑
i :Wi =0

(
Y obs

i ,1 − Y obs
c,1

Y obs
i ,2 − Y obs

c,2

)
·
(

Y obs
i ,1 − Y obs

c,1
Y obs

i ,2 − Y obs
c,2

)′
,

Thus, T Hotelling is the Mahalanobis squared distance between the averages in the
treatment group and the control group.
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Choosing a Test Statistic
In principle, the choice of statistic should be governed by considering plausible
alternative hypotheses.

If we e.g. believe the treatment effect to be multiplicative a natural test statistic is the
differences in the average logarithms of the outcomes between the treatment groups.

If the alternative hypothesis is correct the test will be more powerful than using
differences in raw averages as the statistic.

If we expect the treatment to increase the dispersion of the outcomes, but leave the
location unchanged and natural statistic is difference in or ratio of estimates of
measures of dispersion (e.g. variance or the interquartile range), for our test statistic.

Again, if the alternative hypothesis is correct the test statistic will be more powerful
then if e.g. using the difference in raw averages as our test statistic.
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Choosing a Test Statistic

A second consideration concerns the distribution of the values of the potential
outcomes.

If the empirical distributions of the potential outcomes have some outliers, calculating
average differences by treatment status may lead to a FEP with low power against
alternatives that correspond to constant additive treatment effects.

In that case, it may be possible to use test statistics that measure the difference in
centers of the two potential outcome distributions, not affected by a few extreme
values, such as the medians, trimmed means, ranks, or even ML estimates of locations
based on long tailed distributions, such as the family of t-distributions.

In practice, using the average difference in ranks is an attractive test statistic that has
decent power in a wide range of settings.
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A Small Simulation Study

Three data generating processes (DGPs). In the first the population distribution for
Yi(0) is normal with mean zero and unit variance, N (0, 1).

The treatment effect is τ for all units, so that Yi(1) = Yi(0) + τ ∼ N (τ, 1).

In each replication, we draw a random sample of size N = 2000 with Nc = 1000
assigned to the control group and Nt = 1000 assigned to the treatment group.

The calculations of the FEP is based on three test statistics

(i) T ave =
∣∣∣Y obs

t − Y obs
c

∣∣∣ =
∣∣∣∣∣
∑

i :Wi =1 Y obs
i

Nt
−
∑

i :Wi =0 Y obs
i

Nc

∣∣∣∣∣ .
(ii) T median =

∣∣∣medt(Y obs
i )−medc(Y obs

i )
∣∣∣
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A Small Simulation Study

(iii) T rank =
∣∣∣Rt − Rc

∣∣∣ =
∣∣∣∣
∑

i :Wi =1 Ri

Nt
−
∑

i :Wi =0 Ri

Nc

∣∣∣∣
In all three cases, the p-values are calculated as the probability under the null (i.e.
Yi(1) = Yi(0) for all units) hypothesis of getting a test statistic as large as the
observed test statistic, or larger.

This process is by repeated by drawing random samples and calculating the
corresponding p-values. We then compute the power of the tests for each test statistic
as the proportion of p-values less than or equal to 0.10.

The simulation is conducted over a range of values of τ > 0.
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A Small Simulation Study

Figure: The solid line corresponds to the mean, the dashed line to the median, and the dotted
line corresponds to the rank statistic
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DGP two and three

In the second DGP a binary random variable Ui is added to the normal components
with Pr(Ui = 0) = 0.8 and Pr(Ui = 5) = 0.2, which leads to a distribution with 20%
outliers.

In the third DGP the distribution of Yi(0) so that the logarithm of Yi(0) has a normal
distribution with mean zero and unit variance, and make the treatment effect
multiplicative: Yi(1) = Yi(0) · exp(τ). Here also

(iv) T log =
∣∣∣∣∣
∑

i :Wi =1 ln(Y obs
i )

Nt
−
∑

i :Wi =0 ln(Y obs
i )

Nc

∣∣∣∣∣
is used in the calculation of the FEP.
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Results second DGP

Figure: The solid line corresponds to the mean, the dashed line to the median, and the dotted
line corresponds to the rank statistic
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Results third DGP

Figure: The solid line corresponds to the mean, the dashed line to the median, and the dotted
line corresponds to the rank statistic, and dash-dot line corresponds to the statistic based on
the difference in average logarithms
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Interval Estimates Based on Fisher P-value Calculations

Earlier we discussed how we can use FEP calculations for null hypotheses other than
that of absolutely no effect of the treatment.

If we e.g. wish to assess the null hypothesis that unit level effect of the ‘treatment’ on
cough frequency is equal to C = 0.5: Yi(1) = Yi(0) + 0.5. This assumption is itself a
sharp null hypothesis, and it allows us to fill in all of the missing outcomes
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Interval Estimates Based on Fisher P-value Calculations

Given this complete knowledge, we can calculate the randomization distribution of any
test statistic, and the corresponding p-value of any observed test statistic.
Table 5.7 display the results for the full honey data set for the FEP’s associated with a
constant treatment effect, C , for C ∈ {−3,−2.75,−2.50, . . . , 1.00}.
Here the test statistic is the absolute value of the difference in average treated and
control units minus C , and the p-value is the proportion of draws of the assignment
vector leading to a test statistic at least as large as the observed value of that test
statistic.
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Interval Estimates Based on Fisher P-value Calculations
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Interval Estimates Based on Fisher P-value Calculations

For C < −1.50 or C > 0.25, the p-value is more extreme (smaller) than 0.05.

The set of values where we get p-values larger than 0.05 is [−1.44, 0.06], which
provides a 90% “Fisher” interval for a common additive treatment effect, in the spirit
of Fisher’s exact p-values.

Causal Inference for Statistics, Social and Biomedical Sciences 56 / 73



Fisher’s Exact P-values in Completely Randomized Experiments

The rank-based test statistics
The statistic T = |Rt − Rc |, where overlineRt and Rc is the average rank of the
treated and controls, respectively.

Given the null Yi(1)− Yi(0) = C calculate for each unit the implied value of Yi(0).

For units with Wi = 0, we have Yi(0) = Y obs
i , and for units with Wi = 1, we have

Yi(0) = Y obs
i − C under the null hypothesis. Then Yi(0) is converted to ranks Ri .

Next, calculate T obs = |Rt − Rc |.

Finally, the p-value is calculated as the proportion of values of T under the
randomization distribution that are larger than or equal to T obs .

The set of values where we get p-values larger than 0.05 is [−2.00,−0.00], which
provides a 90% “Fisher” interval for the treatment effect.
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Computation of p-values

With N units, the number of distinct values of the assignment vector is

k =
(

Nc + Nt
Nt

)
.

With both Nc and Nt sufficiently large, it is infeasible to calculate the test statistic for
every value of the assignment vector, even with current advances in computing.

This does not mean, however, that it is difficult to calculate an accurate p-value
associated with a test statistic, because we can rely on numerical approximations to
the p-value.

Let T obs
avg be the observed value of the test statistic. Then, randomly draw an

N-dimensional vector with Nc zeros and Nt ones from the set of possible assignment
vectors. For each draw from this set, the probability of being drawn is 1/k.
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Computation of p-values

Calculate the statistic for the first draw, say T avg,1 = Y t,1 − Y c,1.

Repeat this process K − 1 times, in each instance drawing a new vector of assignments
and calculating the statistic T avg,k = Y t,k − Y c,k , for k = 2, . . . ,K .

We then approximate the p-value for our test statistic by the fraction of these K
statistics that are as extreme as, or more extreme than, the observed value T avg,obs,

p̂ = 1
K

N∑
k=1

1T avg,k≥T avg,obs .

The exact p-value would have been obtained if we would have sampled all k
assignment vectors (i.e. sampled without replacement). In practice, if K is large, the
p-value based on a random sample will be quite accurate.
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Computation of p-values
It does not matter whether we sample with or without replacement.

The latter will lead to slightly more precise p-values for modest values of K .

Given a true p-value of p∗, the number of independent draws required for a given
degree of accuracy can easily be obtained.

The large sample standard error of the p-value is
√

p∗(1− p∗)/K .

The maximum value for the standard error is thus 1/(2
√

K ), i.e. at p∗ = 1/2.

Hence if we want to estimate the p-value accurately enough that its standard error is
less than 0.001, it suffices to use K = 250, 000 draws.

This may be a problem when the test statistic is based on a model without closed form.
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Computation of p-values

T rank =
∣∣∣Rt − Rc

∣∣∣
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Fisher Exact P-values with Covariates
First, one can use the pretreatment variables to transform the observed outcome.

For instance, if the pretreatment variable is analogous to the outcome, but measured
prior to assignment to treatment or control.

Thus, define
Y ′i (w) = Yi(w)− Xi ,

for each level of the treatment w , and define the realized transformed outcome as

Y ′,obs
i = Y obs

i − Xi =
{

Y ′i (0) if Wi = 0,
Y ′i (1) if Wi = 1.

Such gain scores are often used in educational research. One should resist the
temptation, though, to interpret the gain Y ′,obs

i as a causal effect of the program for a
treated unit i . Such an interpretation requires that Yi(0) is equal to Xi , which is
generally not warranted.
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Fisher Exact P-values with Covariates

The unit-level causal effect on the modified outcome Y ′ is Y ′i (1)− Y ′i (0).

Substituting Y ′i (w) = Yi(w)− Xi shows that this causal effect is identical to the
unit-level causal effect on the original outcome Yi , Yi(1)− Yi(0).

Hence the null hypothesis that Yi(0) = Yi(1) for all units is identical to the null
hypothesis that Y ′i (1) = Y ′i (0) for all units.

However, the FEP based on Y ′,obs
i generally differs from the FEP based on Y obs

i .

A natural test statistic, based on average differences between treated and control units,
measured in terms of the transformed outcome is
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Fisher Exact P-values with Covariates

T gain =
∑

i :Wi =1 Y ′,obs
i

Nt
−
∑

i :Wi =0 Y ′,obs
i

Nc
(10)

=
∑

i :Wi =1

(
Y obs

i − Xi
)

Nt
−
∑

i :Wi =0

(
Y obs

i − Xi
)

Nc

= Y obs
t − Y obs

c − (X t − X c),

where X c =
∑

i :Wi =0 Xi/Nc and X t =
∑

i :Wi =1 Xi/Nt are the average value of the
covariate in the control and treatment group respectively.
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Fisher Exact P-values with Covariates

Compare this test statistis with the statistic based on the simple difference in average
outcomes, T ave = Y obs

t − Y obs
c .

The difference between the two statistics is equal to the difference in pre-treatment
averages by treatment group, X t − X c .

This difference is, on average (that is, averaged over all assignment vectors), equal to
zero by the randomization, but typically it is different from zero for any particular
assignment vector.

The distribution of the test statistic T gain = Y obs
t − Y obs

c − (X t − X c) will therefore
generally differ from that of T ave = Y obs

t − Y obs
c , and thus so will be the associated

p-value.
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Fisher Exact P-values with Covariates

An alternative transformation involving the pre-test score is to use

Y ′′i (w) = Yi(w)− Xi
Xi

, for w = 0, 1,

and
Y ′′,obs

i = Y obs
i − Xi

Xi
.

Here the implicit causal effect being estimated for unit i is
Yi(1)− Xi

Xi
− Yi(0)− Xi

Xi
= Yi(1)− Yi(0)

Xi
.

A natural test statistic is now
T prop−change = Y ′′t − Y ′′c = 1

Nt

∑
i :Wi =1

Y obs
i − Xi

Xi
− 1

Nc

∑
i :Wi =0

Y obs
i − Xi

Xi
(11)
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Fisher Exact P-values with Covariates

Both the gain score and the proportional change from baseline statistics are likely to
lead to more powerful tests if the covariate Xi is a good proxy for Yi(0).

Such a situation often arises if the covariate is a lagged value of the outcome, e.g., a
pre-test score in an educational testing example, or lagged earnings in a job training
example.

Both T gain and T prop−change use the covariates in a very specific way: transforming
the original outcome using a known, pre-specified function.

Most often, however, one may think that the covariate is highly correlated with the
potential outcomes, but their scales may be different, for example, if Xi is a health
index and Yi is post-randomization medical complications for unit i .
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Fisher Exact P-values with Covariates
Recall that any scalar function T = T (W,Yobs,X) can be used in the FEP framework.

One possibility is to calculate a more complicated transformation that involves the
values of both outcomes and pre-treatment variables for all units.

For instance, let (β̂0, β̂X , β̂W ) be the least squares coefficients in a regression of Y obs
i

on a constant, Xi , and Wi

If the covariates are powerful predictors of the potential outcomes the test statistic
T reg−coef = β̂W , (12)

is likely to be more powerful than those based on simple differences in observed
outcomes.

The validity of a test based on only one such statistic does not rely on the regression
model being correctly specified.
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Fisher Exact P-values for the Honey Data

Main outcome: cough frequency by treatment status
T ave = |Y obs

t − Y obs
c |

T quant, δ = 0.25, δ = 0.5, and δ = 0.75
T t−stat

T rank

Kolmogorov-Smirnov based test statistic. As can be seen from Table 5.2, this
maximum difference occurs at y = 2, where F̂Y (1)(2) = 0.63 and F̂Y (0)(2) = 0.32
T Hotelling based on cough frequency and cough severity.
T gain using pretreatment variable cfp

T reg−coef pretreatment variable cfp
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Fisher Exact P-values with Covariates

P-values estimated using 1, 000, 000 draws from the
randomization distribution. Note the substantially lower p-values with the regression
estimators. This reflects the strong correlation between the prior cough frequency and

ex post cough frequency (the unconditional correlation is 0.41 in the full sample).
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Conclusion

The FEP approach is an excellent one for simple situations when one is willing to
assess the premise of a sharp null hypothesis.

It is also a very useful starting point, prior to any more sophisticated analysis, to
investigate whether a treatment does indeed have some effect on outcomes of interest.

For this purpose, an attractive approach is to use the test statistic equal to the
difference in average ranks by treatment status, and calculate the p-value as the
probability, under the null hypothesis of absolutely no effect of the treatment, of the
test statistic being as large as, or larger than, in absolute value, the realized value of
the test statistic.

In most situations, however, researchers are not solely interested in obtaining p-values
for sharp null hypotheses.

Causal Inference for Statistics, Social and Biomedical Sciences 71 / 73



Fisher’s Exact P-values in Completely Randomized Experiments

Conclusion

Simply being confident that there is some effect of the treatment for some units is not
sufficient to inform policy decisions.

Instead researchers often wish to obtain estimates of the average treatment effect
without being concerned about variation in the effects. In such settings the FEP
approach does not immediately apply.

In the next chapter, we shall discuss a framework for inference that does directly apply
in such settings, at least asymptotically, while maintaining a randomization
perspective; this was developed by Neyman (1923).

As stated here, what we call “Fisher interval” was not actually proposed by Fisher, but
may be close to what Fisher would have called a “fiducial interval.”
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Conclusion
Extensive work on exact inference using the randomization distribution, considerably
extending Fisher’s work in this area, has been done by Kempthorne and in the recent
literature by Rosenbaum (e.g. Rosenbaum (2002, 2009)).

Randomization tests based on residuals from regression analyses are discussed in Gail,
Tian, and Piantadosi (1988).

A Bayesian approach to the analysis of randomized experiments is developed in Rubin
(1978). Rubin (1990a) provides a general discussion of modes of inference for causal
effects, relating randomization-based inference to other modes of inference such as
those discussed in Chapters 6, 7 and 8.

The Wilcoxon rank sum test was originally developed for equal sized treatment and
control groups in Wilcoxon (1945). Generalizations were developed in Mann and
Whitney (1947); see also Lehman (1975) and Rosenbaum (2000).
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