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Introduction
During the same period in which Fisher was developing the FEP approach, Neyman
(1923, 1990) was focusing on methods for the estimation of, and inference for,average
treatment effects, also using the distribution induced by randomization of the units in
the experiment from a larger population of units.

At a general level, he was interested in the long-run operating characteristics of
statistical procedures under both repeated sampling from the population and
randomized assignment of treatments to the units in the sample.

Specifically, he attempted to find point estimators that were unbiased, and also
interval estimators that had the specified nominal coverage in large samples.

As noted before, his focus on average effects was different from the focus of Fisher;
the average effect across a population may be equal to zero even when some, or even
all, unit-level treatment effects differ from zero.Causal Inference for Statistics, Social and Biomedical Sciences 1 / 62
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Introduction
Neyman’s basic questions were the following.

What would the average outcome be if all units were exposed to the active
treatment, Y (1) in our notation?
How did that compare to the average outcome if all units were exposed to the
control treatment, Y (0) in our notation?
Most importantly, what is the difference between these averages, the average
treatment effect τFS = Y (1)− Y (0) =

∑N
i=1(Yi (1)− Yi (0))/N?

Neyman’s approach was to develop an estimator of τFS and derive its mean and
variance under repeated sampling.

His approach is similar to Fisher’s, in that both consider the distribution of statistics
(functions of the observed W and Yobs) under the randomization distribution, with all
potential outcomes regarded as fixed. The similarity ends there.
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Introduction

In Neyman’s analysis, we do not start with an assumption that allows us to fill in all
values of the missing potential outcomes

Neyman’s primary concern was whether an estimator was unbiased for τFS.

A secondary goal was to construct an interval estimator for τFS, which he hoped to
base on an unbiased estimator for the sampling variance of the average treatment
effect estimator.

Confidence intervals, as they were called later by Neyman (1934), are stochastic
intervals that are constructed in such a way that they include the true value of the
estimand (here τFS) with probability, over repeated draws, at least equal to some fixed
value, the confidence coefficient.
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The Duflo-Hanna-Ryan Teacher Incentive Experiment
Use data from a randomized experiment conducted in rural India by Duflo, Hanna, and
Ryan (2012). It was designed to study the effect of financial incentives on teacher
performance, both measured directly by teacher absences, as well as by educational
output measures, such as average class test scores.

A sample of 113 single-teacher schools was selected, and in a randomly selected subset
of 57 schools, the salary structure was changed so that teachers were given a salary
that was tied to their attendance over a month long period, whereas in the remaining
56 schools, the salary structure was unchanged.

In all schools, the teachers were given cameras with time stamps and asked to have
students take pictures of the class with the teacher (beginning, and at the end of every
school day). In addition, there were random unannounced visits to the schools by
program officials to see whether the school was open or not.

Causal Inference for Statistics, Social and Biomedical Sciences 4 / 62
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The Duflo-Hanna-Ryan Teacher Incentive Experiment
6 schools with missing data are dropped, why N = 107 (Nt = 53 and Nc = 54) with
recorded values on five key variables: four outcomes and one covariate.

Outcomes
open: the proportion of times the school was open during a random visit.
pctpostwritten: he percentage of students who completed a writing test
written: writing test score averaged over all the students in each school who
took the test. (In each class at least some students took the writing test at the
end of the study.)
written_all: average writing test score with zeros imputed for the students who
did not take the test

One covariate, pctprewritten: the percentage of students who took the written test
prior to the study.

Causal Inference for Statistics, Social and Biomedical Sciences 5 / 62
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The Duflo-Hanna-Ryan Teacher Incentive Experiment
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Unbiased Estimation of the Average Treatment Effect
As before, for each unit in the population of N units, there exist two potential
outcomes, Yi (0) and Yi (1), corresponding to the outcome under control and treatment
respectively.

The only random component is W, with ith element Wi , which by definition has a
known distribution in a completely randomized experiment (CRE).

Neyman was interested in the population average treatment effect: τFS = Y (1)−Y (0)

A natural estimator for the average treatment effect is:
τ̂dif = 1

Nt

∑
i :Wi =1

Y obs
i − 1

Nc

∑
i :Wi =0

Y obs
i

= Y obs
t − Y obs

c ,
Causal Inference for Statistics, Social and Biomedical Sciences 7 / 62
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Unbiased Estimation of the Average Treatment Effect

where
Y obs

c = 1
Nc

∑
i :Wi =0

Y obs
i and Y obs

t = 1
Nt

∑
i :Wi =1

Y obs
i .

Theorem

The estimator τ̂dif is unbiased for τS.

Proof of Theorem 1: Using the fact that Y obs
i = Yi (1) if Wi = 1, and

Y obs
i = Yi (0) if Wi = 0, we can write the estimator τ̂dif as:

τ̂dif = 1
N

N∑
i=1

(Wi · Yi (1)
Nt/N

− (1−Wi ) · Yi (0)
Nc/N

)
.
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Unbiased Estimation of the Average Treatment Effect
Because the potential outcomes as fixed, the only component in this statistic that is
random is the treatment assignment, Wi .

Given the set up of a CRE, by Section 3.5,
PrW (Wi = 1|Y(0),Y(1)) = EW [Wi |Y(0),Y(1)] = Nt/N. Thus, τ̂dif is unbiased for
the average treatment effect τFS:

EW
[
τ̂dif |Y(0),Y(1)

]
= 1

N

N∑
i=1

(EW [Wi ] · Yi (1)
Nt/N

− EW [1−Wi ]) · Yi (0)
Nc/N

)

= 1
N

N∑
i=1

(
Yi (1)− Yi (0)

)
= τFS.

�
Causal Inference for Statistics, Social and Biomedical Sciences 9 / 62
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Unbiased Estimation of the Average Treatment Effect

Note that the estimator is unbiased, irrespective of the share of treated and control
units in the randomized experiment. This does not imply, however, that this share is
irrelevant for inference; it can greatly affect the precision of the estimator.

For the teacher-incentive experiment, taking the proportion of days that the school was
open (open) as the outcome of interest, this estimator for the average effect is

τ̂dif = Y obs
t − Y obs

c = 0.80− 0.58 = 0.22,

.
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The Sampling Variance of the Neyman Estimator

Neyman was also interested in constructing interval estimates for the average
treatment effect, which he later (Neyman, 1935a) termed confidence intervals.
Three steps, (1) derive the sampling variance of the estimator, (2) develop estimators
for this sampling variance and (3) use central limit argument over the estimators
distribution, and use (2) to create a large sample confidence interval of τS.
Here we focus on the (1). This derivation is relatively cumbersome because the
assignments for different units are not independent in a CRE.

We start with two units and then expand to the general case.

Causal Inference for Statistics, Social and Biomedical Sciences 11 / 62
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The Sampling Variance of the Neyman Estimator With Two Units
The estimand, in this case is

τFS = 1
2 ·
[
(Y1(1)− Y1(0)) + (Y2(1)− Y2(0))

]
. (1)

In a CRE, both units cannot receive the same treatment; it follows that W1 = 1−W2.

The estimator is therefore:
τ̂dif = W1 ·

(
Y obs
1 − Y obs

2

)
+ (1−W1) ·

(
Y obs
2 − Y obs

1

)
.

If W1 = 1, our estimate will be τ̂dif = Y obs
1 − Y obs

2 = Y1(1)− Y2(0). If on the other
hand, W1 = 0, the estimate will be τ̂dif = Y obs

2 − Y obs
1 = Y2(1)− Y1(0), so that we

can also write:

τ̂dif = W1 ·
(
Y1(1)− Y2(0)

)
+ (1−W1) ·

(
Y2(1)− Y1(0)

)
.

Causal Inference for Statistics, Social and Biomedical Sciences 12 / 62
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The Sampling Variance of the Neyman Estimator With Two Units
Let D = 2 ·W1 − 1, so that D ∈ {−1, 1}, W1 = (1 + D)/2 and
W2 = 1−W1 = (1− D)/2.

Because EW [W1] = 1/2 is EW [D] = 0 and the variance is VW (D) = EW [D2] = 1.

In terms of D and the potential outcomes, we can write the estimator τ̂dif as:
τ̂dif = D + 1

2 ·
(
Y1(1)− Y2(0)

)
+ 1− D

2 ·
(
Y2(1)− Y1(0)

)
,

which can be rewritten as:
τ̂dif = 1

2 ·
[(
Y1(1)−Y1(0)

)
+
(
Y2(1)−Y2(0)

)]
+D

2 ·
[(
Y1(1)+Y1(0)

)
−
(
Y2(1)+Y2(0)

)]
= τFS + D

2 ·
[(
Y1(1) + Y1(0)

)
−
(
Y2(1) + Y2(0)

)]
.

Causal Inference for Statistics, Social and Biomedical Sciences 13 / 62



Neyman’s Repeated Sampling

Introduction
The Duflo-Hanna-Ryan Teacher Incentive Experiment
Unbiased Estimation of the Average Treatment Effect
The Sampling Variance of the Neyman Estimator

The Sampling Variance of the Neyman Estimator With Two Units

Because EW [D] = 0, we can see immediately that τ̂dif is unbiased for τFS, .

However, the representation in terms of D also makes the calculation of its sampling
variance straightforward:

VW (τ̂dif) = VW

(
τFS + D

2 ·
[(
Y1(1) + Y1(0)

)
−
(
Y2(1) + Y2(0)

)])

= 1
4 · VW (D) ·

[(
Y1(1) + Y1(0)

)
−
(
Y2(1) + Y2(0)

)]2
,

Causal Inference for Statistics, Social and Biomedical Sciences 14 / 62
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The Sampling Variance of the Neyman Estimator With Two Units

Given that VW (D) = 1, it follows that the sampling variance of τ̂dif is equal to:

VW (τ̂dif) = 1
4 ·
[(
Y1(1) + Y1(0)

)
−
(
Y2(1) + Y2(0)

)]2
. (2)

This representation of the sampling variance shows that this will be an awkward object
to estimate, because it depends on all four potential outcomes, including products of
the different potential outcomes for the same unit that are never jointly observed.

Causal Inference for Statistics, Social and Biomedical Sciences 15 / 62
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The Sampling Variance of of the Neyman Estimator with N Units
To calculate the sampling variance of τ̂dif we need the expectations of the second and
cross moments of the treatment indicators Wi for i = 1, . . . ,N.

Because Wi ∈ {0, 1}, W 2
i = Wi , and thus

EW
[
W 2

i

]
= EW [Wi ] = Nt

N , and VW (Wi ) = Nt
N ·

(
1− Nt

N

)
.

With the number of treated units fixed at Nt , the two events—unit i being treated and
unit i ′ being treated—are not independent.

Therefore
EW [Wi ·Wi ′ ] = PrW (Wi = 1) · PrW (Wi ′ = 1|Wi = 1) = Nt

N ·
Nt − 1
N − 1 , for i 6= j ,

because conditional on Wi = 1 there are Nt − 1 treated units remaining, out of a total
of N − 1 units remaining.

Causal Inference for Statistics, Social and Biomedical Sciences 16 / 62
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The Sampling Variance of of the Neyman Estimator with N Units

Theorem

The sampling variance of τ̂dif = Y obs
t − Y obs

c is:

VW
(
Y obs

t − Y obs
c

)
= S2

c
Nc

+ S2
t

Nt
− S2

tc
N , (3)

where S2
c and S2

t are the variances of Yi (0) and Yi (1) in the sample, defined as:

S2
c = 1

N − 1

N∑
i=1

(
Yi (0)− Y (0)

)2
, and S2

t = 1
N − 1

N∑
i=1

(
Yi (1)− Y (1)

)2
,

and S2
tc is the sample variance of the unit-level treatment effects, defined as:

S2
tc = 1

N − 1

N∑
i=1

(
Yi (1)−Yi (0)− (Y (1)−Y (0))

)2
= 1

N − 1

N∑
i=1

(
Yi (1)−Yi (0)− τFS

)2
.

Proof of Theorem 2: See Appendix B. Causal Inference for Statistics, Social and Biomedical Sciences 17 / 62
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The Sampling Variance of of the Neyman Estimator with N Units

The first two elements follow by using standard results from the analysis of simple
random samples: given a CRE, the Nt and Nc units provide a simple random sample of
the N values of Yi (1) of Yi (0), respectively.

We estimate Y (1), by the average outcome for the Nt treated units, Y obs
t . This

estimator is unbiased for Y (1).

The population variance of Yi (1) is S2
t =

∑
i (Yi (1)− Y (1))2/(N − 1). The sampling

variance for an average from a sample of size Nt is
S2

t /Nt =
∑

i (Yi (1)− Y (1))2/(Nt(N − 1)).

Similarly, the average outcome for the Nc units assigned to control, Y obs
c , is unbiased

for Y (0), and its sampling variance is S2
c /Nc .

Causal Inference for Statistics, Social and Biomedical Sciences 18 / 62
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The Sampling Variance of of the Neyman Estimator with N Units

S2
tc/N, is the sample variance of the unit-level treatment effects, Yi (1)− Yi (0).

If the treatment effect is constant in the population, S2
tc = 0, if not S2

tc > 0.

Because it is subtracted from the sum of the first two elements, the positive value for
S2

tc reduces the sampling variance of this estimator for the average treatment effect.

Note that
S2

tc = S2
c + S2

t − 2 · ρtc · Sc · St ,

where

ρtc = 1
(N − 1) · Sc · St

N∑
i=1

(
Yi (1)− Y (1)

)
·
(
Yi (0))− Y (0)

)
. (4)

Causal Inference for Statistics, Social and Biomedical Sciences 19 / 62



Neyman’s Repeated Sampling

Introduction
The Duflo-Hanna-Ryan Teacher Incentive Experiment
Unbiased Estimation of the Average Treatment Effect
The Sampling Variance of the Neyman Estimator

The Sampling Variance of of the Neyman Estimator with N Units
By definition, ρtc is a correlation coefficient, and so lies in the interval [−1, 1].

Substituting this representation of S2
tc into equation (3), the alternative expression for

the sampling variance of τ̂dif (alternative to (3)) is:
VW

(
Y obs

t − Y obs
c

)
= Nt

N · Nc
· S2

c + Nc
N · Nt

· S2
t + 2

N · ρtc · Sc · St . (5)

The sampling variance of our estimator is smallest when the potential outcomes are
perfectly negatively correlated (ρtc = −1), so that

S2
tc = S2

c + S2
t + 2 · Sc · St ,

and
VW

(
Y obs

t − Y obs
c

∣∣∣ ρtc = −1
)

= Nt
N · Nc

· S2
c + Nc

N · Nt
· S2

t −
2
N · Sc · St ,

Causal Inference for Statistics, Social and Biomedical Sciences 20 / 62
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The Sampling Variance of of the Neyman Estimator with N Units

VW
(
Y obs

t − Y obs
c

∣∣∣ ρtc = −1
)

= Nt
N · Nc

· S2
c + Nc

N · Nt
· S2

t −
2
N · Sc · St ,

= S2
c

Nc
+ S2

t
Nt
− (Sc − St)2

N . (6)

When the treatment effect is constant and additive, Yi (1)− Yi (0) = τ for all
i = 1, . . . ,N,

Vconst = VW
(
Y obs

t − Y obs
c

∣∣∣ ρtc = 1,S2
c = S2

t

)
= S2

c
Nc

+ S2
t

Nt
. (7)

The fact that the sampling variance of Y obs
t −Y obs

c is largest when the treatment effect
is constant (i.e., not varying) across units may appear somewhat counterintuitive.
Howebr the two-unit case provides the intuition for why this is the case.

Causal Inference for Statistics, Social and Biomedical Sciences 21 / 62
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The Sampling Variance of the Neyman Estimator with N Units
Consider two numerical examples.
(1) Y1(0) = Y1(1) = 10, and Y2(0) = Y2(1) = −10, corresponding to a zero
treatment effect for both units.

In this example ρtc = 1 as can be seen from that the numerator in (4) equals
1

N − 1

N∑
i=1

(
Yi (1)− Y (1)

)
·
(
Yi (0)− Y (0)

)
=
(

(Y1(1)− 0) · (Y1(0)− 0) + (Y2(1)− 0) · (Y2(0)− 0)
)

= 200,

and the two components of the denominator in (4) equal

S2
c = 1

N − 1

N∑
i=1

(
Yi (0)− Y (0)

)2
=
(

(10− 0)2 + (−10− 0)2
)

= 200,

Causal Inference for Statistics, Social and Biomedical Sciences 22 / 62
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The Sampling Variance of the Neyman Estimator with N Units

and

S2
t = 1

N − 1

N∑
i=1

(
Yi (1)− Y (1)

)2
=
(

(10− 0)2 + (−10− 0)2
)

= 200,

(2) suppose that Y1(0) = Y2(1) = −10, and Y1(1) = Y2(0) = 10. A similar
calculation shows that the ρtc = −1

In both examples, the average treatment effect is zero, but in (1), it constant. In (2),
the treatment effect for unit 1 is 20, and for unit 2 the it is equal to −20.

Causal Inference for Statistics, Social and Biomedical Sciences 23 / 62
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The Sampling Variance of the Neyman Estimator with N Units

In (1) the two possible values of the estimator are Y obs
1 − Y obs

2 = 20 (if W1 = 1 and
W2 = 0) and Y obs

2 − Y obs
1 = −20 (if W1 = 0 and W2 = 1).

In (2) the two values of the estimator are both equal to 0.

Hence the sampling variance of the estimator in (1), with ρtc = +1, is positive (in
fact, equal to 202), whereas in(2), with ρtc = −1, the sampling variance is 0.

Causal Inference for Statistics, Social and Biomedical Sciences 24 / 62
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Estimating the Sampling Variance
The next step is to develop an estimator for the sampling variance. To do this, we
consider separately each of the three elements of the sampling variance.

The numerator of the first term, the sample variance of the potential control outcome
vector, Y(0), is equal to S2

c .

From standard results on simple random samples, an unbiased estimator for S2
c is

s2c = 1
Nc − 1

∑
i :Wi =0

(
Yi (0)− Y obs

c

)2
= 1

Nc − 1
∑

i :Wi =0

(
Y obs

i − Y obs
c

)2
.

Analogously, we can estimate S2
t , the population variance of Yi (1), by

s2t = 1
Nt − 1

∑
i :Wi =1

(
Yi (1)− Y obs

t

)2
= 1

Nt − 1
∑

i :Wi =1

(
Y obs

i − Y obs
t

)2
.

Causal Inference for Statistics, Social and Biomedical Sciences 25 / 62



Neyman’s Repeated Sampling

Introduction
The Duflo-Hanna-Ryan Teacher Incentive Experiment
Unbiased Estimation of the Average Treatment Effect
The Sampling Variance of the Neyman Estimator

Estimating the Sampling Variance
The third term, S2

tc is generally impossible to estimate empirically because we never
observe both Yi (1) and Yi (0) for the same unit.

As noted previously, if the treatment effects are constant and additive
(Yi (1)− Yi (0) = τS for all units), then this component of the sampling variance is
equal to zero and the third term vanishes.
Thus we have proved:

Theorem

If the treatment effect Yi (1)− Yi (0) is constant, then an unbiased estimator for the
sampling variance is

V̂neyman = s2c
Nc

+ s2t
Nt
. (8)

Causal Inference for Statistics, Social and Biomedical Sciences 26 / 62
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Estimating the Sampling Variance

This estimator for the sampling variance is widely used, even when the assumption of
an additive treatment effect may be known to be inaccurate.

Two main reasons, fist by implicitly setting the third element of the estimated sampling
variance equal to zero, the expected value of V̂neyman is at least as large as the true
sampling variance of Y obs

t − Y obs
c .

Hence, in large samples, confidence intervals generated using this estimator of the
sampling variance will have coverage at least as large, but not necessarily equal to,
their nominal coverage (i.e. conservative inference).

The second reason is that it is always unbiased for the sampling variance of τ̂dif as an
estimator of the infinite super population average treatment effect.

Causal Inference for Statistics, Social and Biomedical Sciences 27 / 62
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Estimating the Sampling Variance

Here we consider two alternative estimators for the sampling variance of τ̂dif .

The first explicitly allows for treatment effect heterogeneity.

Under treatment effect heterogeneity, the estimator for the sampling variance in
equation (8), V̂neyman, provides an upwardly biased estimate: the third term, which
vanishes if the treatment effect is constant, is now negative.

The question arises whether we can improve upon the Neyman variance estimator
without risking under coverage in large samples.

Causal Inference for Statistics, Social and Biomedical Sciences 28 / 62



Neyman’s Repeated Sampling

Introduction
The Duflo-Hanna-Ryan Teacher Incentive Experiment
Unbiased Estimation of the Average Treatment Effect
The Sampling Variance of the Neyman Estimator

Estimating the Sampling Variance

Note that the implication of constant treatment effects is S2
c = S2

t

If S2
c 6= S2

t this would in large samples lead to a difference in the corresponding
estimates s2c and s2t .

The sampling variance given in equation (5) is

VW
(
Y obs

t − Y obs
c

)
= S2

c ·
Nt

N · Nc
+ S2

c ·
Nc

N · Nt
+ ρtc · Sc · St ·

2
N .

Thus, if ρtc was known we could estimate the sampling variance
V̂ρtc = s2c ·

Nt
N · Nc

+ s2t ·
Nc

N · Nt
+ ρtc · sc · st ·

2
N . (9)
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Estimating the Sampling Variance

This variance is maximized if ρ01 = 1. Thus an alternative conservative estimator that
exploits this bound is:

V̂ρtc=1 = s2c ·
Nt

N · Nc
+ s21 ·

Nc
N · Nt

+ sc · st ·
2
N

= s2c
Nc

+ s2t
Nt
− (st − sc)2

N . (10)

If s2c and s2t are unequal, then V̂ρtc=1 will be smaller than V̂neyman.

Using V̂ρtc=1 to construct confidence intervals will result in tighter confidence intervals
than using V̂neyman, without compromising their large sample validity.
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Estimating the Sampling Variance

The intervals based on V̂ρtc=1 will still be conservative, in large samples, because
V̂ρtc=1 is still upwardly biased when the true correlation is smaller than one, although
less so than V̂neyman.

Note, however, that with no information beyond the fact that S2
c 6= S2

t , all choices for
ρtc smaller than unity raise the possibility that we will underestimate the sampling
variance and construct invalid confidence intervals.

The second estimator builds on the assumption that Yi (1)− Yi (0) = τ for all i . Under
the constant treatment assumption, the population variances of the two potential
outcomes, S2

c and S2
t , must be equal.
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Estimating the Sampling Variance
We can therefore define S2 ≡ S2

c = S2
t and pool the outcomes for the the treated and

control units to estimate this common variance:
s2 = 1

N − 2 ·
(
s2c · (Nc − 1) + s2t · (Nt − 1)

)
= 1

N − 2 ·

 ∑
i :Wi =0

(
Y obs

i − Y obs
c

)2
+

∑
i :Wi =1

(
Y obs

i − Y obs
t

)2 . (11)

The larger sample size for this estimator, leads to a more precise estimator if the
treatment effect is constant, namely

V̂const = s2 ·
( 1
Nc

+ 1
Nt

)
. (12)

When the treatment effects are constant this estimator is preferable to either V̂neyman

or V̂ρtc=1, but if not, it need not be valid. Both V̂neyman and V̂ρtc=1 are valid
generally, and therefore may be preferred.
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The Duflo-Hanna-Ryan Teacher Incentive Experiment
We found that the incentives-based salary rather than the conventional salary structure
increased the probability that the school was open by 0.22. What is the variance of
this estimator?

The estimates of S2
c , S2

t , and the combined variance S2 are

s2c = 0.192, s2t = 0.132, and s2 = 0.162.
Note that the two sample variances s2c and s2t are quite different.

This means that

V̂neyman = s2c
Nc

+ s2t
Nt

= 0.03112

and
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The Duflo-Hanna-Ryan Teacher Incentive Experiment

V̂ρtc=1 = s2c ·
Nt

N · Nc
+ s2t ·

Nc
N · Nt

+ sc · st ·
2
N = 0.03052.

By construction this estimator is smaller than V̂neyman.

However, even though the variances s2c and s2t differ by more than a factor of two, the
difference in the estimated sampling variances V̂ρtc=1 and V̂neyman is very small in this
example, less than 1%.

In general, the standard variance V̂neyman is unlikely to be substantially larger than
V̂ρtc=1, as suggested by this example.
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The Duflo-Hanna-Ryan Teacher Incentive Experiment

The third and final estimate of the sampling variance, which relies on a constant
treatment effect for its validity, is

V̂const = s2 ·
( 1
Nc

+ 1
Nt

)
= 0.03122,

slightly larger than the other estimates, but essentially the same for practical purposes.
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The Duflo-Hanna-Ryan Teacher Incentive Experiment
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Confidence Intervals and Testing

This section discuss a number of ways to construct a confidence interval (CI) and to
conduct tests for hypotheses concerning the average treatment effect.

By a CI with confidence coefficient 1− α, we mean a pair of functions CL(Yobs,W)
and CU(Yobs,W), defining an interval [CL(Yobs,W),CU(Yobs,W)], such that

PrW (CL(Yobs,W) ≤ τ ≤ CU(Yobs,W)) ≥ 1− α.

The only reason the lower and upper bounds in this interval are random is through
their dependence on W.

Note that, in this expression, the probability of including the true value τ may exceed
1− α, in which case the interval is valid but conservative.
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The CI is based on a normal approximation to the randomization distribution of τ̂dif .

This approximation is somewhat intellectually inconsistent with our stress on finite
sample properties of the estimator for τ and its sampling variance, but it is driven by
the common lack of empirical a priori information about the joint distribution of the
potential outcomes.

Let V̂ be an estimate of the sampling variance of τ̂dif over its randomization
distribution (in practice we recommend using V̂neyman).
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Confidence Intervals
Normality is often a good approximation to the randomization distribution of standard
estimates, even in fairly small samples. To further improve on this approximation, we
could approximate the distribution of V̂ by a chi-squared distribution, and then use
that to approximate the distribution of τ̂dif/

√
V̂ by a t-distribution.

A central CI with nominal confidence level (1− α)× 100%, is

CI1−α(τFS) =
(
τ̂dif + zα/2 ·

√
V̂, τ̂dif + z1−α/2 ·

√
V̂
)
,

where zα/2 and z1−α/2 are the α/2 and 1− α/2 quantiles of the standard normal
distribution, respectively.

Thus, with a wish to construct a 90% CI, the nominal central 90% CI is
CI0.90(τFS) =

(
τ̂dif − 1.645 ·

√
V̂, τ̂dif + 1.645 ·

√
V̂
)
.
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Confidence Intervals
Note that the validity of the CIs is under the same assumptions that make the
corresponding estimator for the sampling variance an unbiased or upwardly biased
estimator of the true sampling variance.

Based on the three estimators V̂neyman, V̂const and V̂ρtc=1, the 90% confidence
intervals are

CI0.90neyman(τFS) = (0.2154− 1.645 · 0.0311, 0.2154 + 1.645 · 0.0311) = (0.1642, 0.2667),

CI0.90const(τFS) = (0.1640, 0.2668),
and

CI0.90ρtc=1(τFS) = (0.1652, 0.2657),
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Testing

Suppose we wish to test:

Hneyman
0 : 1

N

N∑
i=1

(Yi (1)− Yi (0)) = 0

Hneyman
a : 1

N

N∑
i=1

(Yi (1)− Yi (0)) 6= 0

A natural test statistic to use for Neyman’s “average null” is the ratio of the point
estimate to the estimated standard error.

We have Y obs
t − Y obs

c = 0.2154 and V̂neyman=0.0311.
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Testing

The resulting t-statistic is therefore

t = Y obs
t − Y obs

c√
V̂neyman

= −0.2154
0.0311 = 6.9.

The associated p-value for a two-sided test, based on the normal approximation to the
distribution of the t-statistic, is 2 · (1− Φ(6.9)) < 0.001.

At conventional significance levels, we clearly reject the (Neyman) null hypothesis that
the average treatment effect is zero.
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Testing

There are two important differences between the Neyman and Fisher approaches.

1 they assess different null hypotheses.
2 the Neyman test relies on a large sample normal approximation for its validity

With regard to (1), The Neyman null assesses whether the average treatment effect is
zero and with the alternative being different from zero, while in the Fisher approach
the null hypothesis is

Hfisher
0 : Yi (1)− Yi (0) = 0 for all i = 1, . . . ,N,

and the (implicit) alternative hypothesis is
Hfisher

a : Yi (1)− Yi (0) 6= 0 for some i = 1, . . . ,N.
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Testing

Depending on the implementation of the FEP approach, this difference in null
hypotheses may be unimportant.

To illustrate thsi point consider as an example, a population where for all units
Yi (0) = 2. For 1/3 of the units the treatment effect is 2. For 2/3 of the units the
treatment effect is -1.

In this case the Neyman null hypothesis of a zero average effect is true. The Fisher
null hypothesis of no effect whatsoever is not true.
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Testing

Whether we can detect this violation depends on the choice of statistic. The FEP
approach, with the statistic equal to the average difference in outcomes by treatment
status, has no power against this alternative.

However, the FEP approach, with a different statistic, based on the average difference
in outcomes after transforming the outcomes by taking logarithms, does have power in
this setting.

In this artificial example, the expected difference in logarithms by treatment status is
-0.23. The FEP based on the difference in average logarithms will detect this
difference in large samples.

Causal Inference for Statistics, Social and Biomedical Sciences 45 / 62



Neyman’s Repeated Sampling

Introduction
The Duflo-Hanna-Ryan Teacher Incentive Experiment
Unbiased Estimation of the Average Treatment Effect
The Sampling Variance of the Neyman Estimator

Testing

The second difference between the two procedures is in the approximate nature of the
Neyman test, compared to the exact results for the FEP approach.

We use two approximations in the Neyman approach. First, we use the estimated
variance (e.g., V̂neyman) instead of the actual variance (VW (Y obs

t − Y obs
c )).

Second, we use a normal approximation for the repeated sampling distribution of the
difference in averages Y obs

t − Y obs
c . Both approximations are justified in large samples.

If the sample is reasonably large, and if there are few or no outliers, as in the
application in this chapter, these approximations will likely be accurate.
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Inference for Population Average

Suppose that the population of N subjects taking part in the CRE is itself a simple
random sample from a larger population, which, for simplicity, we assume is infinite.

Viewing our N units as a sample of the target super population, rather than viewing
them as the population itself, induces a distribution on the two potential outcomes for
each unit.

The pair of potential outcome values for an observed unit i is simply one draw from
the distribution in the population and is, therefore, itself stochastic.
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Inference for Population Average

To be clear about this super population perspective, we used the subscript FS to
denote the finite sample average treatment effect and SP to denote the super
population average treatment effect:

τFS = 1
N

N∑
i=1

(Yi (1)− Yi (0)) and τSP = ESP [Yi (1)− Yi (0)] .

the subscript SP indicates that the expectation is taken over the distribution generated
by random sampling from the super population, and not solely over the randomization
distribution.
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Inference for Population Average
τSP = ESP[Yi (1)− Yi (0)] is denoted as the average treatment effect in the super
population.

Because of the random sampling, τSP is also equal to the expected value of the finite
sample average treatment effect,

ESP [τFS] = ESP
[
Y (1)− Y (0)

]
= 1

N

N∑
i=1

ESP [Yi (1)− Yi (0)] = τSP. (13)

Let σ2c and σ2t denote the population variances of the two potential outcomes, or the
super population expectations of S2

c and S2
t :

σ2c = VSP(Yi (0)) = ESP
[
(Yi (0)− ESP[Yi (0))2

]
,

and
σ2t = VSP(Yi (1)) = ESP

[
(Yi (1)− ESP[Yi (1))2

]
.
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Inference for Population Average

The variance of the unit-level treatment effect in the super-population is similarly
defined, σ2tc = VSP(Yi (1)− Yi (0)) = ESP[(Yi (1)− Yi (0)− τSP)2].

As seen from this definition the variance of τFS across repeated random samples is
equal to

VSP(τFS) = VSP
(
Y (1)− Y (0)

)
= σ2tc/N. (14)

Now consider the sampling variance of τ̂dif = Y obs
t − Y obs

c , given this sampling from
the super-population.

The expectation and variance operators without subscripts denote expectations and
variances taken over both the randomization distribution and the random sampling
from the super-population.
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Inference for Population Average

We have
V
(
τ̂dif

)
= E

[(
Y obs

t − Y obs
c − E

[
Y obs

t − Y obs
c

])2]
= E

[(
Y obs

t − Y obs
c − ESP

[
Y (1)− Y (0)

])2]
,

where the second equality holds because E
[
Y obs

t − Y obs
c

]
= ESP[Y (1)− Y (0)] = τSP.

Adding and subtracting Y (1)− Y (0) within the expectation, this sampling variance,
over both randomization and random sampling, is equal to:
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Inference for Population Average

V
(
τ̂dif

)
= E

[(
Y obs

t − Y obs
c −

(
Y (1)− Y (0)

)
+
(
Y (1)− Y (0)

)
− ESP

[
Y (1)− Y (0)

])2]
= E

[(
Y obs

t − Y obs
c − (Y (1)− Y (0))

)2]
+ESP

[((
Y (1)− Y (0)

)
− ESP

[
Y (1)− Y (0)

])2]
+2·E

[(
Y obs

t − Y obs
c −

(
Y (1)− Y (0)

))
·
((

Y (1)− Y (0)
)
− ESP

[
Y (1)− Y (0)

])]
.
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Inference for Population Average

The third term is equal to zero because the expectation of the first factor,
Y obs

t − Y obs
c − (Y (1)− Y (0)), conditional on the N–vectors Y(0) and Y(1), is zero.

Hence the sampling variance reduces to:
V
(
Y obs

t − Y obs
c

)
= E

[(
Y obs

t − Y obs
c − Y (1)− Y (0)

)2]

+ESP

[(
Y (1)− Y (0)− ESP [Y (1)− Y (0)]

)2]
. (15)

Because EW
[
Y obs

t − Y obs
c

∣∣∣Y(0),Y(1)
]

= τFS = Y (1)− Y (0) the first term is equal

to the expectation of the conditional variance of Y obs
t − Y obs

c (conditional on the
N-vector of potential outcomes Y(0) and Y(1)).
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Inference for Population Average
This means that conditional variance is equal to

EW

[(
Y obs

t − Y obs
c − Y (1)− Y (0)

)2∣∣∣∣Y(0),Y(1)
]

= S2
c

Nc
+ S2

t
Nt
− S2

tc
N , (16)

as in equation (3).

The expectation of (16) over the distribution of Y(0) and Y(1) generated by sampling
from the superpopulation is then

E
[(

Y obs
t − Y obs

c − Y (1)− Y (0)
)2]

= ESP

[
EW

[(
Y obs

t − Y obs
c − Y (1)− Y (0)

)2∣∣∣∣Y(0),Y(1)
]]

= ESP

[
S2

c
Nc

+ S2
t

Nt
− S2

tc
N

]
= σ2c

Nc
+ σ2t

Nt
− σ2tc

N .
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Inference for Population Average
As the expectation of the second term on the right side of equation (15), is equal to
σ2tc/N this means that the variance of τ̂dif over sampling from the superpopulation
equals:

VSP = VSP
(
τ̂dif

)
= σ2c

Nc
+ σ2t

Nt
, (17)

which we can estimate without bias by substituting s2c and s2t for σ2c and σ2t ,
respectively:

V̂SP = s2c
Nc

+ s2t
Nt
.

The estimator V̂SP is identical to the previously introduced conservative estimator of
the sampling variance for the finite population average treatment effect estimator,
V̂neyman

Under simple random sampling from the super-population, the expected value of the
estimator V̂neyman equals VSP. Hence, considering the N observed units as a simple
random sample from an infinite super-population, the estimator in (8) is an unbiased
estimate of the sampling variance of the estimator of the super-population average
treatment effect. Neither of the alternative estimators—V̂const in equation (12), which
exploits the assumption of a constant treatment effect, nor V̂ρtc=1 in equation (10),
derived through bounds on the correlation coefficient—have this attractive quality.
Thus, despite the fact that V̂const may be a better estimator of the sampling variance
in the finite population when the treatment effect is constant, and V̂ρtc=1 may be a
better estimator of VFS, V̂neyman is used almost uniformly in practice in our
experience, although the logic for it appears to be rarely explicitly discussed.
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Inference for Population Average

Under simple random sampling from the super-population, the expected value of the
estimator V̂neyman equals VSP.

Neither V̂const nor V̂ρtc=1 in equation (10)have this attractive quality.

Thus, despite the fact that V̂const may be a better estimator of the sampling variance
in the finite population when the treatment effect is constant, and V̂ρtc=1 may be a
better estimator of VFS, V̂neyman is used almost uniformly in practice in our
experience, although the logic for it appears to be rarely explicitly discussed.
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Neyman’s Approach With Covariates
One can easily extend Neyman’s approach for estimating average treatment effects to
settings with discrete covariates.

In this case, one would partition the sample into subsamples defined by the values of
the covariate and then conduct the analysis separately within these subsamples.

The resulting within-subsample estimators would be unbiased for the within-subsample
average treatment effect.

Taking an average of these estimates, weighted by subsample sizes, gives an unbiased
estimate of the overall average treatment effect (more on this in Chapter 9 on
stratified random experiments).

It is impossible, however, in general to derive estimators that are exactly unbiased
under the randomization distribution, conditional on the covariates, when there are
covariate values for which we have only treated or only control units, which is likely to
happen with great frequency in settings with covariates that take on many values.

In such settings, building a model for the potential outcomes, and using this model to
create an estimator of the average treatment effect, is a more appealing option. We
turn to this topic in the next two chapters.
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Neyman’s Approach With Covariates

It is impossible, however, in general to derive estimators that are exactly unbiased
under the randomization distribution, conditional on the covariates, when there are
covariate values for which we have only treated or only control units, which is likely to
happen with great frequency in settings with covariates that take on many values.

In such settings, building a model for the potential outcomes, and using this model to
create an estimator of the average treatment effect, is a more appealing option. We
turn to this topic in the next two chapters.
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Results for the Duflo-Hanna Teacher Incentive Data
We analyze four outcomes in turn, plus one “pseudo-outcome”, (pctprewritten). In
general, it can be useful to carry out such analyses as a check on the success of the
randomization.

1 pctprewritten, the point estimate is -0.03 and the 95% confidence interval is
(-.10,0.04)).

2 open, the proportion of days that the school was open during the days it was
subject to a random check. 0.22 and [0.15, 0.28].

3 pctpostwritten, the percentage of students in the school who took the written
test. 0.05 and [−0.03, 0.13]

4 written, the average score on the writing test. 0.17 and [0.00, 0.34].
5 written_all, the average test score, assigning zeros to students not taking the

test. 0.14 and [0.00, 0.28]
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Results for the Duflo-Hanna Teacher Incentive Data
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Results for the Duflo-Hanna Teacher Incentive Data

In the final analysis, we look at estimates separately for two subsamples, defined by
whether the proportion of students taking the initial writing test was zero or positive,
to illustrate the application of the methods developed in this chapter to subpopulations
defined by covariates.

Again, these analyses are for illustrative purposes only, and we do not take account of
the fact that we do multiple tests.

The first subpopulation (pctprewritten= 0) comprises 40 schools (37%) and the
second (pctprewritten> 0) 67 schools (63%). We analyze separately the effect of
assignment to attendance-based teacher incentives on all four outcomes.
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