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Introduction

One of the more common ways of estimating causal effects with experimental, as well
as observational, data in many disciplines is based on regression methods.

Typically an additive linear regression function is specified for the observed outcome as
a function of a set of predictor variables and the treatment indicator.

Inferences, including point estimates, standard errors, tests, and confidence intervals,
are based on standard least squares methods.
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Introduction

Although popular, the use of these methods in this context is not without controversy,
with some researchers arguing that experimental data should be analyzed based on
randomization inference (see e.g. Freedman, 2006, Freedman, 2008a).

Both the Fisher approach and the Neyman methods as it core view the potential
outcomes as fixed and the treatment assignments as the sole source of randomness.
Here, as in Section 6.7, the starting point is an infinite super-population of units.

The chapter can be viewed as providing a bridge between the previous chapter and the
next chapter, which is based on fully parametric models for imputation of the
unobserved potential outcomes.
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Introduction

There are four key features of the models considered.
1 We consider models for the observed outcomes, rather than models for the

potential outcomes
2 We consider only models for the conditional mean, rather than for the full

distribution
3 The estimand, here always an average treatment effect, is a parameter of the

statistical model
4 In the current context of CRE, the validity of these models, is immaterial for the

large—sample unbiasedness of the least squares estimator (OLS) of the average
treatment effect
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The LRC-CPPT Cholesterol Data

The Lipid Research Clinics Coronary Primary Prevention Trial (LRC-CPPT), designed
to evaluate the effect of the drug cholestyramine on cholesterol levels is used to
illustrate the concepts.

Here N = 337 individuals of which Nt = 165 were randomly assigned to receive
cholestyramine and the remaining Nc = 172 received a placebo.
We observe two cholesterol measures recorded prior to the random assignment. The
two measures differ in their timing.

1 chol1, was taken prior to a communication, sent to all 337 individuals in the
study, about the benefits of a low-cholesterol diet

2 chol2 was taken after this suggestion, but prior to the random assignment to
cholestyramine or placebo.
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The LRC-CPPT Cholesterol Data
We observe two outcomes.

1 cholf the an average of post-randomization cholesterol readings, averaged over
two-month readings for a period of time averaging 7.3 years (primary outcome)

2 comp, the percentage of the nominally assigned dose (the same nominal dose of
the drug or placebo, for the same time period)

The primary outcome in Efron and Feldman (1991) (who also analyzed the data) is the
change in cholesterol level, relative to a weighted average of the two pre-treatment
cholesterol levels, cholp= 0.25 · chol1 + 0.75 · chol2. This change in cholesterol
levels is denoted chold=cholf-cholp.

Although individuals did not know whether they were assigned to cholestyramine or to
the placebo, later we shall see that differences in side effects between the active drug
and the placebo induced systematic differences in compliance behavior by treatment
status.
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The LRC-CPPT Cholesterol Data

In all RCTs compliance to the treatment is an issue when studying efficacy of the drug.

The availability of compliance data raises the issue of analyzing the differences
between the effect of being assigned to the taking of cholestyramine and the effect of
actually taking cholestyramine (this problem is discussed in Chapters 23-25).

Here we analyze the compliance measure solely as a secondary outcome. In general it
is not appropriate to interpret either the difference in final cholesterol levels by
assignment, conditional on observed compliance levels, or the difference in final
cholesterol levels by actual dosage taken, as estimates of average causal effects.

Causal Inference for Statistics, Social and Biomedical Sciences 6 / 68



Regression Methods for Completely Randomized Experiments
Introduction
The LRC-CPPT Cholesterol Data
Super-Population Average Treatment Effects

The LRC-CPPT Cholesterol Data

Such causal interpretations would require strong additional assumptions beyond
randomization. For example, to validate conditioning on observed compliance levels
would require that observed compliance is a proper pretreatment variable unaffected by
the assignment to treatment versus placebo.

Because observed compliance reflects behavior subsequent to the assignment, it may
be affected by the treatment assigned. This is an assumption that can be assessed,
and, in the current study we can reject the assumption that observed compliance is a
proper covariate at conventional significance levels.
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TThe LRC-CPPT Cholesterol Data
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The Super-Population Average Treatment Effects

To be clear about this super-population perspective, define the two estimands

τFS = 1
N

N∑
i=1

(Yi (1)− Yi (0)) ,

the average effect of the treatment in the finite sample, and

τSP = ESP [Yi (1)− Yi (0)] ,

the expected value of the unit-level treatment effect under the distribution induced by
sampling from the super population, or, equivalently, the average treatment effect in
the super population.
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The Super-Population Average Treatment Effects

Define the super-population average and variance of the two potential outcomes
conditional on the covariates or pretreatment variables, e.g., Xi = x ,

µc(x) = ESP [Yi (0)|Xi = x ] , µt(x) = ESP [Yi (1)|Xi = x ] ,

σ2c (x) = VSP (Yi (0)|Xi = x) , and σ2t = VSP (Yi (1)|Xi = x) ,

and let the mean and variance of the unit-level treatment effects at Xi = x be denoted
by
τ(x) = ESP(Yi (1)− Yi (0)|Xi = x ], and σ2ct(x) = VSP (Yi (1)− Yi (0)|Xi = x) ,

respectively.
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The Super-Population Average Treatment Effects

In addition, denote the marginal means and variances
µc = ESP [Yi (0)] , µt = ESP [Yi (1)] ,

σ2c = VSP (Yi (0)) , and σ2t = VSP (Yi (1)) .

Note that the two marginal means are equal to the expectation of the corresponding
conditional means:

µc = ESP [µc(Xi )] , and µt = ESP [µt(Xi )] ,

but, by the law of iterated expectations, the marginal variance differs from the average
of the conditional variance by the variance of the conditional mean:
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The Super-Population Average Treatment Effects

σ2c = ESP
[
σ2c (Xi )

]
+VSP (µc(Xi )) , and σ2t = ESP

[
σ2t (Xi )

]
+VSP (µt(Xi )) . (1)

Finally, let

µX = ESP [Xi ] , and ΩX = VSP(Xi ) = ESP
[
(Xi − µX )T (Xi − µX )

]
,

denote the super-population mean and covariance matrix of the row-vector of
covariates Xi , respectively.
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Linear Regression With No Covariates
We maintain the assumption of a CRE and specify a linear regression function as

Y obs
i = α + τ ·Wi + εi ,

where the unobserved residual εi captures unobserved determinants of the outcome.

The OLS estimator for τ is based on minimizing the sum of squared residuals over α
and τ ,

(τ̂ols, α̂ols) = arg min
τ,α

N∑
i=1

(
Y obs

i − α− τ ·Wi
)2
,

with solutions

τ̂ols =
∑N

i=1

(
Wi −W

)
· (Y obs

i − Y obs)∑N
i=1

(
Wi −W

)2 , and α̂ols = Y obs − τ̂ols ·W ,
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Linear Regression With No Covariates

where

Y obs = 1
N

N∑
i=1

Y obs
i and W = 1

N

N∑
i=1

Wi = Nt
N .

Simple algebra shows that in this case

τ̂ols = Y obs
t − Y obs

c = τ̂dif ,

where, as before, Y obs
t =

∑
i :Wi =1 Y obs

i /Nt and Y obs
c =

∑
i :Wi =0 Y obs

i /Nc .
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Linear Regression With No Covariates

The assumptions traditionally used in the least squares approach are that the residuals
εi are independent of, or at least uncorrelated with, the treatment indicator Wi .

This assumption is difficult to evaluate as the residuals in general is a vague notion of
capturing unobserved factors affecting the outcome.

Statistical textbooks, therefore, often stress that in observational studies the regression
estimate τ̂ols measures only the association between the two random variables Wi and
Y obs

i , and that a causal interpretation is generally not warranted.

In the current context, however, we already have a formal justification for the causal
interpretation of τ̂ols because it is identical to Y obs

t − Y obs
c , which was shown to be

unbiased for τFS and τSP.
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Linear Regression With No Covariates

Nevertheless, it is useful to justify the causal interpretation of τ̂ols more directly in
terms of the standard justification for regression methods, using the assumptions that
random sampling created the sample and a CRE generated the observed data from
that sample.

Let α be the population average outcome under the control, α = µc = ESP [Yi (0)],
and recall that τSP is the super-population average treatment effect,
τSP = µt − µc = ESP [Yi (1)− Yi (0)]. Now,

εi = Yi (0)− α + Wi · (Yi (1)− Yi (0)− τSP) =
{

Y obs
i − α if Wi = 0,

Y obs
i − α− τSP if Wi = 1.
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Linear Regression With No Covariates

Then we can write
εi = Y obs

i − (α + τSP ·Wi ),

and thus we can write the observed outcome as
Y obs

i = α + τSP ·Wi + εi .

Random sampling allows us to view the potential outcomes as random variables. In
combination with random assignment this implies that assignment is independent of
the potential outcomes,

Pr (Wi = 1|Yi (0),Yi (1)) = Pr (Wi = 1) ,

or in Dawid’s (1979) “⊥⊥” independence notation,
Wi ⊥⊥ (Yi (0),Yi (1)) .
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Linear Regression With No Covariates
The definition of the residual, in combination with random assignment and random
sampling from a super-population, implies that the residual has mean zero conditional
on the treatment indicator in the population:

ESP[εi |Wi = 0] = ESP [Yi (0)− α|Wi = 0] = ESP [Yi (0)]− α] = 0,
and
ESP[εi |Wi = 1] = ESP [Yi (1)− α− τSP|Wi = 1] = ESP [Yi (1)− α− τSP|Wi = 1] = 0,
so that

ESP[εi |Wi = w ] = 0, for w = 0, 1.
The fact that the conditional mean of εi given Wi is zero in turn implies unbiasedness
of the the least squares estimator, τ̂ols for τSP = ESP [Yi (1)− Yi (0)], over the
distribution induced by random sampling.

The above derivation shows how properties of residuals commonly asserted as
assumptions in least squares analyses, actually follow from random sampling and
random assignment, and thus have a scientific basis in the context of a CRE.
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Linear Regression With No Covariates

Another way, which is closer to the way we will do this for the general case with
covariates, is to consider the super population limits of the estimators.

The estimators are defined as

(α̂ols, τ̂ols) = arg min
α,τ

N∑
i=1

(
Y obs

i − α− τ ·Wi
)2
.

Under some regularity conditions, these estimators converge, as the sample size goes to
infinity, to the population limits (α∗, τ∗) which minimizes:

(α∗, τ∗) = arg min
α,τ

ESP

[
1
N

N∑
i=1

(
Y obs

i − α− τ ·Wi
)2]

= arg min
α,τ

ESP

[(
Y obs

i − α− τ ·Wi
)2]

.
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Linear Regression With No Covariates

This implies that the population limit is τ∗ = ESP[Y obs
i |Wi = 1]− ESP[Y obs

i |Wi = 0].

Random assignment of Wi implies

ESP[Y obs
i |Wi = 1]− ESP[Y obs

i |Wi = 0] = ESP[Yi (1)− Yi (0)] = τSP,

so that the population limit of the OLS estimator is equal to τ∗ = τSP.
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Linear Regression With No Covariates

Now let us analyze the least squares approach to inference.

Let us first assume homoskedasticity: (σ2Y |W = σ2c = σ2t ).

Using OLS, the variance of the residuals would be estimated as

σ̂2Y |W = 1
N − 2

N∑
i=1

ε̂2i = 1
N − 2

N∑
i=1

(
Y obs

i − Ŷ obs
i

)2
,

where the estimated residual is ε̂i = Y obs
i − Ŷ obs

i , and the predicted value Ŷ obs
i is

Ŷ obs
i =

{
α̂ols if Wi = 0,
α̂ols + τ̂ols if Wi = 1.
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The OLS variance estimate can be rewritten as

σ̂2Y |W = 1
N − 2

 ∑
i :Wi =0

(
Y obs

i − Y obs
c

)2
+

∑
i :Wi =1

(
Y obs

i − Y obs
t

)2 ,
which is equivalent to our calculation of s2 in Chapter 6.

The conventional estimator for the sampling variance of τ̂ols is then

V̂homosk =
σ̂2Y |W∑N

i=1

(
Wi −W

)2 = s2 ·
( 1
Nc

+ 1
Nt

)
.

This expression is equal to V̂const.
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For comparison with subsequent results, let p = plim(Nt/N).

Then, as the sample size increases, the normalized sampling variance estimator
converges in probability to

N · V̂homosk p−→
σ2Y |W

p · (1− p) . (2)

Note, that random assignment implies independence between assignments and
potential outcomes, however it implies only zero correlation between the assignment
and the residual.
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Yet we rely on independence when assuming the variance to be homoskedastic. In
many cases, the homoskedasticity assumption will not be warranted, and one may wish
to use an estimator for the sampling variance of τ̂ols that allows for heteroskedasticity.

The standard robust sampling variance estimator for OLS estimators is

V̂hetero =
∑N

i=1 ε̂
2
i ·
(
Wi −W

)2
(∑N

i=1

(
Wi −W

)2)2 .

Defining, as the previous chapter,
s2c = 1

Nc − 1
∑

i :Wi =0

(
Y obs

i − Y obs
c

)2
, and s2t = 1

Nt − 1
∑

i :Wi =1

(
Y obs

i − Y obs
t

)2
,
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we can write the variance estimator under heteroskedasticity as

V̂hetero = s2c
Nc

+ s2t
Nt

= (V̂neyman.

So, in the case without additional predictors, the regression approach leads to sampling
variance estimators that are familiar from the discussion in the previous chapter. It
does, however, provide a different perspective on these results as it allows for a natural
and simple extension to the case with additional covariates.
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Let
Y obs

i = α + τ ·Wi + Xiβ + εi , (3)

where Xi is a row-vector of covariates (i.e., pretreatment variables).

We estimate the regression coefficients again using OLS:

(τ̂ols, α̂ols, β̂ols) = arg min
τ,α,β

N∑
i=1

(
Y obs

i − α− τ ·Wi − Xiβ
)2
.

The first question we address in this section concerns the causal interpretation of τ̂ols.
We are not interested per sé in the value of the “nuisance” parameters, β and α.

Moreover, we will not make the assumption that (3) is correctly specified nor that the
conditional expectation of Y obs

i is actually linear in Xi and Wi .
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However, in order to be precise about the causal interpretation of τ̂ols, it is useful to
define the limiting values to which the OLS estimators converge as the sample gets
large.

We refer to these limiting values as the super–population values corresponding to the
estimators, and denote them as before with a superscript ∗.

Using this notation, under some regularity conditions, (α̂rols , τ̂
ols, β̂ols) converge to

(α∗, τ∗, β∗), defined as
(α∗, τ∗, β∗) = arg min

α,β,τ
E
[(

Y obs
i − α− τ ·Wi − Xiβ

)2]
.
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Linear Regression With Additional Covariates
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Linear Regression With Additional Covariates

These population values are generally well-defined (subject, essentially, only to finite
moment conditions and positive definiteness of ΩX ), even if the conditional
expectation of the observed outcome given covariates is not linear in the covariates.

In this case with additional predictors, it is no longer true that τ̂ols is unbiased for τSP
in finite samples. However, irrespective of whether the regression function is truly
linear in the covariates in the population, τ̂ols is unbiased in large samples for τSP.

In other words, τ∗, the probability limit of the estimator, is equal to the population
average treatment effect τSP.

In addition,
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Theorem
Suppose we conduct a completely randomized experiment in a sample drawn at
random from an infinite population. Then, (i)

τ∗ = τSP,

and (ii),

√
N ·

(
τ̂ols − τSP

) d−→ N

0, E
[

(Wi − p)2 ·
(
Y obs

i − α∗ − τSP ·Wi − Xiβ
∗
)2]

p2 · (1− p)2

 .

The proof of (ii) and of subsequent results, are given in the Appendix to this chapter.
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Proof of Theorem 1(i): Consider the limiting objective function:

Q(α, τ, β) = E[(Y obs
i − α− τ ·Wi − Xiβ)2]

= E
[(

Y obs
i − α̃− τ ·Wi − (Xi − µX )β

)2]
,

where α̃ = α+ µXβ, with µX = E[Xi ]. Minimizing the right hand side over α̃, τ and β
leads to the same values for τ and β as minimizing the left hand side over α, τ , and β,
with the least squares estimate of α̃ equal α̂ + β̂′µX . Next,

Q(α̃, τ, β) = ESP

[(
Y obs

i − α̃− τ ·Wi − (Xi − µX )β
)2]

= ESP

[(
Y obs

i − α̃− τ ·Wi
)2]

+ ESP
[
((Xi − µX )β)2

]
−2 · ESP

[(
Y obs

i − α̃− τ ·Wi
)
· (Xi − µX )β

]
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= ESP

[(
Y obs

i − α̃− τ ·Wi
)2]

+ESP
[
((Xi − µX )β)2

]
−2·ESP

[
Y obs

i · (Xi − µX )β
]
,

(4)
because

ESP [(Xi − µX )β] = 0, and ESP [τ ·Wi · (Xi − µX )β] = 0,

Because the last two terms in (4) do not depend on α̃ or τ , minimizing (4) over τ and
α is equivalent to minimizing the objective function without the additional covariates,

ESP

[(
Y obs

i − α̃− τ ·Wi
)2]

.
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This leads to the solutions

α̃∗ = ESP[Y obs
i |Wi = 0] = ESP [Yi (0)|Wi = 0] = ESP [Yi (0)] ,

and
τ∗ = ESP[Y obs

i |Wi = 1]−ESP[Y obs
i |Wi = 0] = ESP[Yi (1)|Wi = 1]−ESP[Yi (0)|Wi = 0] = τSP.

Thus, the OLS estimator is consistent for τSP. �

What is important in the first part of the result is that the consistency of the OLS
estimator for τSP does not depend on the correctness of the specification of the
regression function in a CRE.

No matter how nonlinear the conditional expectations of the potential outcomes given
the covariates is in the super population, the OLS estimator is consistent for
estimating the population average treatment effect.
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Linear Regression With Additional Covariates

The key insight into this result is that, by randomizing treatment assignment, the
super-population correlation between the treatment indicator and the covariates is zero.

Even though in finite samples the actual correlation may differ from zero, in large
samples this correlation will vanish.

The fact that in finite samples the correlation may differ from zero is what leads to the
possibility of finite sample bias.

Although the inclusion of the additional covariates does not matter for the limit of the
corresponding estimator, it does matter for the sampling variance of the estimators.

Let us interpret the sampling variance in some special cases.
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Suppose that,

ESP[Yi (0)|Xi = x ] = αc + xβ, and ESP[Yi (1)|Xi = x ] = αt + xβ,

so that, in combination with random assignment, we have
ESP

[
Y obs

i

∣∣∣Xi = x ,Wi = t
]

= αc + τSP · t + β′x ,

where τSP = αt − αc .

Instead of the unconditional variance of the potential outcomes, as in the expression
for the sampling variance in the case without covariates in (2),we now have the
conditional variance of the outcome given the covariates.
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Linear Regression With Additional Covariates

If the covariates explain much of the variation in the potential outcomes, so that
σ2Y |W ,X is substantially smaller than σ2Y |W , then including the covariates in the
regression model will lead a considerable increase in precision.

The price paid for the increase in precision from including covariates is relatively minor.
Instead of having (exact) unbiasedness of the estimator in finite samples, unbiasedness
now only holds approximately, that is, in large samples.

The sampling variance for the average treatment effect can be estimated easily using
standard least squares methods.
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Linear Regression With Additional Covariates

Substituting averages for the expectations, and least squares estimates for the
unknown parameters, we estimate the sampling variance as

V̂hetero
SP = 1

N (N − 1− dim(Xi )) ·
∑N

i=1

(
Wi −W

)2
·
(
Y obs

i − α̂ols − τ̂ols − Xi β̂
olsXi

)2
(
W · (1−W )

)2 .

A more precise estimator of the sampling variance under assumption of
homoskedasticity is of the form:

V̂homo
SP = 1

N (N − 1− dim(Xi )) ·
∑N

i=1

(
Y obs

i − α̂ols − τ̂ols − Xi β̂
olsXi

)2
W · (1−W )

.
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Linear Regression With Covariates and Interactions
We specify the regression function as

Y obs
i = α + τ ·Wi + Xiβ + Wi · (Xi − X )γ + εi .

We include the interaction of the treatment indicator with the covariates in deviations
from their sample means to simplify the relationship between the population limits of
the estimators for the parameters of the regression function and τSP.

Let α̂ols, τ̂ols, β̂ols, and γ̂ols denote the least squares estimates,

(τ̂ols, α̂ols, β̂ols, γ̂ols) = arg min
τ,α,β,γ

N∑
i=1

(
Y obs

i − α− τ ·Wi − Xiβ −Wi · (Xi − X )γ
)2
,

and let α∗, τ∗, β∗, and γ∗ denote the corresponding population values:
(α∗, τ∗, β∗, γ∗) = arg min

α,β,τ,γ
ESP

[(
Y obs

i − α− τ ·Wi − Xiβ −Wi · (Xi − µX )γ
)2]

.
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Linear Regression With Covariates and Interactions
Results similar to Theorem 1 can be obtained for this case. The τ̂ols is consistent for
τSP, and inference can be based on least squares methods.

Theorem

Suppose we conduct a CRE in a random sample from a super population. Then (i)
τ∗ = τSP,

and (ii), √
N ·

(
τ̂ols − τSP

) d−→ N0, ESP

[
(Wi − p)2 ·

(
Y obs

i − α∗ − τSP ·Wi − Xiβ
∗ −Wi · (Xi − µX )γ∗

)2]
p2 · (1− p)2

 .
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Linear Regression With Covariates and Interactions

A slightly different interpretation of this result connects it to the imputation-based
methods that are the topic of the next chapter.

Suppose we take the model at face value and assume that the regression function
represents the conditional expectation:

ESP
[
Y obs

i

∣∣∣Xi = x ,Wi = w
]

= α + τ · t + β′x + w · (x − µX )γ. (5)

In combination with the random assignment, this implies that
ESP [Yi (0)|Xi = x ] = ESP [Yi (0)|Xi = x ,Wi = 0] = ESP

[
Y obs

i

∣∣∣Xi = x ,Wi = 0
]

= α+xβ,

and
ESP [Yi (1)|Xi = x ] = α + τ + xβ + (x − µX )γ.
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Linear Regression With Covariates and Interactions

Suppose that Wi = 1 for unit i , so Yi (1) is observed and Yi (0) is missing.

Under the model in (5), the predicted value for the missing potential outcome Yi (0) is

Ŷi (0) = α̂ols + Xi β̂
ols,

so that for this treated unit the predicted value for the unit-level causal effect is

τ̂i = Yi (1)− Ŷi (0) = Y obs
i −

(
α̂ols + Xi β̂

ols
)
.

For a control unit i the predicted value for the missing potential outcome Yi (1) is
Ŷi (1) = α̂ols + τ̂ols + Xi β̂

ols + (Xi − X )γ̂ols,
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Linear Regression With Covariates and Interactions

and the predicted value for the unit-level causal effect for this control unit i is
τ̂i = Ŷi (1)− Yi (0) = α̂ + τ̂ + Xi β̂ + (Xi − X )γ̂ − Y obs

i .

Now we can estimate the overall average treatment effect τFS by averaging the
estimates of the unit-level causal effects τ̂i . Simple algebra shows that this leads to the
OLS estimator:

1
N

N∑
i=1

τ̂i = 1
N

N∑
i=1

{
Wi ·

(
Yi (1)− Ŷi (0)

)
+ (1−Wi ) ·

(
Ŷi (1)− Yi (0)

)}
= τ̂ols.

Thus, the τ̂ols can be interpreted as averaging estimated unit-level causal effects in the
sample, based on imputing the missing potential outcomes through a linear regression
model.
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Linear Regression With Covariates and Interactions
There is another important feature of the estimator based on linear regression with a
full set of interactions.

As the above derivation shows, the estimator essentially imputes the missing potential
outcomes. The regression model with a full set of interactions does so separately for
the treated and control units.

When imputing the value of Yi (0) for the treated units, this procedure uses only the
observed outcomes, Y obs

i , for control units, without any dependence on observations
on Yi (1) (and vice versa).

This gives the estimator attractive robustness properties, clearly separating imputation
of control and treated outcomes. This will be important in the context of observational
studies.
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Transformations of the Outcome Variable

If one is interested in the average effect of the treatment on a transformation of the
outcome, one can first transform the outcome, and then apply the methods discussed
so far.

For example, in order to estimate the average effect on the logarithm of the outcome,
we can first take logarithms and then estimate the regression function

ln
(
Y obs

i

)
= α + τ ·Wi + Xiβ + εi .

Irrespective of the form of the association between outcomes and covariates, in a CRE,
regression estimators of τ are consistent for E[ln(Yi (1))− ln(Yi (0))].
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Transformations of the Outcome Variable

There is an important issue, though, involving such transformations that relates to the
correctness of the specification of the regression function.

Suppose one is interested in the average effect E[Yi (1)− Yi (0)], but suppose that one
actually suspects that a model linear in logarithms provides a better fit to the
distribution of Y obs

i given Xi and Wi .

Estimating a model linear in logarithms and transforming the estimates back to an
estimate of the average effect in levels requires assumptions beyond those on the
conditional expectation of the logarithm of the potential outcomes: one needs to make
distributional assumptions on the unobserved component (more on this in the next
chapter).
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Transformations of the Outcome Variable
As an extreme example, consider the case where the researcher is interested in the
average effect of the treatment on a binary outcome.

Estimating a linear regression function by least squares will lead to a consistent
estimator for the average treatment effect.
However, such a linear probability model is unlikely to provide an accurate
approximation of the conditional expectation of the outcome given covariates and
treatment indicator.

Logit models (where Pr(Y obs
i = 1|Wi = w ,Xi = x) is modelled as

exp(α + τ · w + xβ)/(1 + exp(α + τ · w + xβ))),
or probit models (where Pr(Y obs

i = 1|Wi = w ,Xi = x) = Φ(α + τ · w + xβ), with
Φ(z) =

∫ z
−∞(2π)−1/2 exp(−z2/2) the normal cumulative distribution function), are

more likely to lead to an accurate approximation of the conditional expectation of the
outcome given the covariates and the treatment indicator.

However, such a model will not generally lead to a consistent estimator for the average
effect unless the model is correctly specified. Moreover, the average treatment effect
cannot be expressed directly in terms of the parameters of the logistic or probit
regression model.
The issue is that in the regression approach, the specification of the statistical model is
closely tied to the estimand of interest. In the next chapter we separate these two
issues. This separation is attractive for a number of reasons discussed in more detail in
the next chapter, but it also carries a price, namely that consistency of the estimators
will be tied more closely to the correct specification of the model. We do not view this
as a major issue.
In the setting of CRE, the bias is unlikely to be substantial with moderate sized
samples, as flexible models are likely to have minimal bias.

Moreoever, this consistency property despite possible misspecification of the regression
function only holds with completely randomized experiments. In observational studies,
even regression models rely heavily on the correct specification for consistency of the
estimator.

Furthermore, large sample results, such as consistency, are only guidelines for finite
sample properties, and as such not always reliable.
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Transformations of the Outcome Variable

As an extreme example, consider the case where the researcher is interested in the
average effect of the treatment on a binary outcome.

Estimating a linear regression function by OLS will lead to a consistent estimator for
the average treatment effect.

However, such a linear probability model is unlikely to provide an accurate
approximation of the conditional expectation of the outcome.

Probit or logit models (Pr(Y obs
i = 1|Wi = w ,Xi = x) = Φ(α + τ · w + xβ) or

Pr(Y obs
i = 1|Wi = w ,Xi = x) = exp(α + τ · w + xβ)/(1 + exp(α + τ · w + xβ))), are

more likely to lead to an accurate approximation of the conditional expectation of the
outcome given the covariates and the treatment indicator.
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Transformations of the Outcome Variable

However, such a model will not generally lead to a consistent estimator for the average
effect unless the model is correctly specified.

Moreover, the average treatment effect cannot be expressed directly in terms of the
parameters of the logistic or probit regression model.

The issue is that in the regression approach, the specification of the statistical model is
closely tied to the estimand of interest.

This separation is attractive for a number of reasons discussed in more detail in the
next chapter, but it also carries a price, namely that consistency of the estimators will
be tied more closely to the correct specification of the model. However, we do not view
this as a major issue
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Transformations of the Outcome Variable

In the setting of CRE. The bias is unlikely to be substantial with moderate sized
samples, as flexible models are likely to have minimal bias.

Moreoever, this consistency property despite possible misspecification of the regression
function only holds with completely randomized experiments. In observational studies,
even regression models rely heavily on the correct specification for consistency of the
estimator.

Furthermore, large sample results, such as consistency, are only guidelines for finite
sample properties, and as such not always reliable.
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The Limits on Increases in Precision due to Covariates

Suppose we do not include any predictor variables in the regression beyond the
indicator variable for the treatment, Wi .

Normalized by the sample size, the sampling variance of the OLS estimator is equal to
the difference in means estimator

N · Vnocov = σ2c
1− p + σ2t

p ,

Now suppose we have available a vector of covariates, Xi and that these covariates,
their interactions with the treatment indicator, and possibly higher order moments of
these covariates is included in the regression.
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The Limits on Increases in Precision due to Covariates

The normalized sampling variance is the bounded from below by

N · Vbound = ESP[σ2c (Xi )]
1− p + ESP[σ2t (Xi )]

p .

The difference between the two expressions for the sampling variance

Vnocov − Vbound =
(

σ2c
1− p + σ2t

p

)
−
(
ESP[σ2c (Xi )]

1− p + ESP
[
σ2t (Xi )

]
p

)

= VSP(µc(Xi ))
1− p + VSP(µt(Xi ))

p ,

where the last row is obtained from Equation (1), thus
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The Limits on Increases in Precision due to Covariates

σ2c = ESP
[
σ2c (Xi )

]
+ VSP (µc(Xi )) , and σ2t = ESP

[
σ2t (Xi )

]
+ VSP (µt(Xi )) .

The more the covariates help in explaining the potential outcomes, and thus the bigger
the variation in µw (x), the bigger the gain from including them in the specification of
the regression function.

When neither µc(x) nor µt(x) vary with the predictor variables, there is no gain from
using the covariates. In small samples there will actually be a loss of precision due to
the estimation of coefficients, that are, in fact, zero.
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Testing for the Presence of Treatment Effects

In the current setting of CRE, tests for the presence of any treatment effects are not
necessarily as attractive as the FEP calculations, but their extensions to observational
studies are relevant.

In addition, we may be interested in testing hypotheses concerning the heterogeneity in
the treatment effects that do not fit into the FEP framework because the associated
null hypotheses are not sharp.

As in the discussion of estimation, we focus on procedures that are valid in large
samples, irrespective of the correctness of the specification of the regression model.
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Testing for the Presence of Treatment Effects

The most interesting setting is

Y obs
i = α + τSP ·Wi + Xiβ + Wi · (Xi − X )γ + εi .

In that case we can test the null hypothesis of a zero average treatment effect by
testing the null hypothesis that τSP = 0.

However, we can construct a different test by focusing on the deviation of either τ̂SP or
γ̂ from zero.

If the regression model were correctly specified, that is

ESP
[
Y obs

i

∣∣∣Xi = x ,Wi = w
]

= α + τ · w + xβ + w · (x − µX )γ′,
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Testing for the Presence of Treatment Effects

a test of τ = γ = 0 would test the null hypothesis

H0 : ESP[Yi (1)− Yi (0)|Xi = x ] = 0, ∀ x ,

against the alternative hypothesis
Ha : ESP[Yi (1)− Yi (0)|Xi = x ] 6= 0, for some x .

Without making the assumption that the regression model is correctly specified, it is
still true that, if the null hypothesis that E[Yi (1)− Yi (0)|Xi = x ] = 0 for all x is
correct, then the population values τSP and γ∗ are both equal to zero.
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Testing for the Presence of Treatment Effects

However, it is no longer true that for all deviations of this null hypothesis the limiting
values of either τSP or γ∗ differ from zero. It is possible that E[Yi (1)− Yi (0)|Xi = x ]
differs from zero for some values of x even though τSP and γ∗ are both equal to zero.

In order to implement these tests, one can again use standard least squares methods.
The normalized covariance matrix of the vector (τ̂ols, γ̂ols) is

Vτ,γ =
(

Vτ Cτ,γ
CT
τ,γ Vγ

)
.
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Testing for the Presence of Treatment Effects

The precise form of the components of the covariance matrix, as well as consistent
estimators for these components, are given in the appendix.

In order to test the null hypothesis that the average effect of the treatment given the
covariates is zero for all values of the covariates, we then use the quadratic form

Qzero =
(
τ̂ols

γ̂ols

)T

V̂−1τ,γ

(
τ̂ols

γ̂ols

)
. (6)

Note that this is not a test that fits into the FEP approach because it does not specify
all missing potential outcomes under the null hypothesis.
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Testing for the Presence of Treatment Effects

The second null hypothesis we consider is that the average treatment effect is constant
as a function of the covariates:

H ′0 : ESP[Yi (1)− Yi (0)|Xi = x ] = τSP, for all x ,

against the alternative hypothesis

H ′a : ∃ x0, x1, such that ESP[Yi (1)− Yi (0)|Xi = x0] 6= ESP[Yi (1)− Yi (0)|Xi = x1].

This null hypothesis may be of some importance in practice. If there is evidence of
heterogeneity in the effect of the treatment as a function of the covariates, one has to
be more careful in extrapolating to different subpopulations.
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Testing for the Presence of Treatment Effects

Lack of positive evidence for heterogeneity does not imply a constant treatment effect,
but in cases with sufficient variation in the covariates, it does suggest that treatment
effect heterogeneity may be a a second order problem why it may may be more credible
to extrapolate estimates to different subpopulations.

In order to test this null hypothesis we can use the quadratic form
Qconst = (γ̂ols)T V̂−1γ γ̂ols. (7)
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Testing for the Presence of Treatment Effects

Theorem

Suppose we conduct a completely randomized experiment in a random sample from a
large population. If Yi (1)− Yi (0) = τ for some value τ and all units, then
(i): γ∗ = 0,
and (ii)

Qconst
d−→ X (dim(Xi )).

If Yi (1)− Yi (0) = 0 for all units, then (iii),
Qzero

d−→ X (dim(Xi ) + 1).
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Estimates for LRC-CPPT Cholesterol Data

We look at estimates for two average effects. The effects on
1 the cholesterol levels, the primary outcome of interest, denoted by cholf.
2 the level of compliance, comp

For each outcome, we present four regression estimates of the average effects.
1 only W .
2 include the composite prior cholesterol level, cholp, as a linear predictor.
3 include both prior cholesterol level measurements, chol1 and chol2, as linear

predictors.
4 add interactions of the chol1 and chol2 with W
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Estimates for LRC-CPPT Cholesterol Data
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Estimates for LRC-CPPT Cholesterol Data

Compliance was far from perfect. On average, 75% and 60% in the control and
treatment group took the nominal dose, respectively. Thus a difference of -15%
(=60-70).

This means that the estimates of the effect on cholesterol levels, cholf, is estimates of
intention-to-treat (ITT) effects, rather than estimates of the efficacy of the drug.

The consequence of the non-complience for the efficacy is studied in later chapters.

The left panel of Table 7.3 presents more detailed results for the regression.

The right panel of of Table 7.3 present the results using log transforming of cholf.
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Estimates for LRC-CPPT Cholesterol Data
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Estimates for LRC-CPPT Cholesterol Data

When using ln(cholf) this changes the estimand, and so the results are not directly
comparable.

It is however useful to note, that in this case, the transformation does not improve the
predictive power as shown by the R-squared.

In Table 7.4 we report p-values for some of the two tests: Qzero (see equation (6) and
Qconst (see equation 7) and the FEP on both outcomes.
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Estimates for LRC-CPPT Cholesterol Data
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