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Estimating the Propensity Score

Introduction

It is rare that we know the PS a priori in settings other than those involving
randomized experiments.

A common situation is where a researcher views unconfoundedness as a reasonable
approximation to the actual assignment mechanism, with only vague a priori
information about the form of the dependence of the PS on the observed
pre-treatment variables.

For example, in many medical settings, decisions are based on a set of clinically relevant
patient characteristics observed by doctors and entered in patients’ medical records.

However, there is typically no explicit rule that requires physicians to choose a specific
treatment based on particular values of the pre-treatment variables, why there is no
explicitly known form for the PS, and, thus, that it need to be estimated.
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Estimating the Propensity Score

Introduction

It is important to note that some of the methods for causal analysis rely more heavily
than others on an accurate approximation of the true PS by the estimated PS.

For example, the exact specification will likely matter less than when using the
stratification methods then when using the inverse of the PS using weighting methods.

As a consequence, estimators for the treatment effects may be more or less sensitive to
the decisions made in the specification of the PS.

In the following, we assume have a random sample of N units from an infinite
super-population, that is either exposed to, or not exposed to, the treatment.

In the sample Nc units are exposed to the control treatment Wi = 0 and Nt units
exposed to the active treatment Wi = 1, with N = Nc + Nt .
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Estimating the Propensity Score

Introduction

The sole focus is on the statistical problem of estimating the conditional probability of
receiving the treatment given the observed covariates, Xi , i = 1, ...N:

Pr(Wi = 1|Xi = x) = E [Wi |Xi = x ] , (1)

which is equal to the super-population PS, e(x), and we will use that notation here.

If the covariate Xi is a binary scalar, or more generally takes on only a few values, the
statistical problem of estimating the PS is straightforward: we can simply partition the
sample into subsamples that are homogeneous in the covariates, and estimate the PS
for each subsample as the proportion of treated units in that subsample.

Using such a fully saturated model is not feasible in many realistic settings.
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Estimating the Propensity Score

Introduction

Here we explicitly focus on settings where the covariates take on too many values to
allow for a fully saturated model, so that some form of smoothing is essential.

The goal is to obtain estimates of the PS that balance the covariates between treated
and control subsamples.

It is important to note, that the goal is not simply to get the best estimate of the PS
in terms of mean-integrated-squared-error, or a similar criterion based on minimizing
the difference between the estimated and true PS.

Such a criterion would always suggest that using the true PS is preferable to using an
estimated PS.
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Estimating the Propensity Score

Introduction

In contrast, for our purposes, it is often preferable to use the estimated PS.

The reason is that using the estimated PS may lead to superior covariate balance in
the sample compared to that achieved when using the true super-population PS.

For example, in a CRE with a single binary covariate using the estimated PS to stratify
units would lead to perfect within-stratum balance on the covariates in the sample,
whereas using the true PS generally would not.

The difficulty is that our criterion, in-sample balance in the covariates given the
(estimated) PS, is not as easy to formalize and operationalize as some of the
conventional goodness-of-fit measures,
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Estimating the Propensity Score

Introduction

There are two parts to the proposed algorithm of specifying the PS.

First we specify an initial model, motivated by substantive knowledge. Second, we
assess the statistical adequacy of an estimate of that initial model, by checking
whether the covariates are balanced within strata defined by the estimated PS.

In principle, one can iterate back and forth between these two stages, (i) specification
of the model and (ii) assessment of that model, each time refining the specification of
the model.

This lecture will describe a procedure (i.e., an algorithm) for selecting a specification
that can, at the very least, provide a useful starting point for such an iterative
procedure.
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Estimating the Propensity Score

Introduction

Three general comments are in order.
1 We do not use the outcome data. Consequently, there is no concern regarding the
statistical properties of the ultimate estimates of the average treatment effects
obtained from iterating back and forth between (i) and (ii).

2 It is difficult to give a fully automatic procedure for specifying the PS in a way
that leads to a specification that passes all the tests and diagnostics that we may
subject that specification to in the second stage.

3 The primary goal is to find an adequate specification of the PS, in the sense of a
specification that achieves statistical balance in the covariates.
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The Reinisch Barbituate Exposure Data
The data we use to illustrate the methods come from a study of the effect of prenatal
exposure to barbituates (Reinisch, Sanders, Mortenson, and Rubin, 1995).

The data set contains information on N = 7, 943 men and women born between 1959
and 1961 in Copenhagen, Denmark.

Of these, Nt = 745 men and women had been exposed in utero to substantial amounts
of barbituates due to maternal medical conditions, and thus Nc = 7, 198.

The substantive interest is in the effect of the barbituate exposure on cognitive
development measured many years later.

The data set contains information on seventeen covariates that are potentially related
to both the outcomes of interest, reflecting cognitive development, and the likelihood
of having been prescribed and taking, barbituates.
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Estimating the Propensity Score

Table 13.1: Summary Statistics Reinisch Data Set
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Estimating the Propensity Score

Selecting the Covariates and Interactions
With many covariates it is is not always feasible simply to include all covariates in a
model for the PS.

Moreoever, for some of the most important covariates, it may not be sufficient to
include them only linearly, and we may wish to include functions, such as logarithms,
and higher-order terms.

Here we describe a step-wise procedure for selecting the covariates and higher-order
terms for inclusion in the PS.

We focus on logistic regression models and estimate the coefficients by maximum
likelihood

The main question now concerns the selection of the functions of the basic covariates
to include in the specification.
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Selecting the Covariates and Interactions

We start by selecting a subset of the K covariates to be included linearly when
estimating the log odds ratio of the PS, as well as a subset of all K · (K + 1)/2 second
order terms (both quadratic and interactions terms). Thus a total of
K + K · (K + 1)/2 = K · (K + 3)/2 included predictors.

As the the number of such subsets is 2K ·(K+3)/2 we cannot compare all possible
subsets of this set. Instead we follow a stepwise procedure with three stages.
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Estimating the Propensity Score

Selecting the Covariates and Interactions

1 select a set of KB basic covariates that will be included in the PS, regardless of
their statistical association with the treatment indicator, because they are viewed
as important on substantive grounds.

2 decide which of the KL of the remaining K − KB covariates that will also be
included linearly to estimate the log odds ratio.

3 decide which of the KL · (KL + 1)/2 interactions and quadratic terms involving
only the KL selected covariates to include.

Stage 3 will lead to the selection of KQ second-order terms, leaving us with a vector of
covariates with KL + KQ components to be included linearly in the specification of the
log odds ratio.

Now let us consider each of these three stages in more detail.
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Step 1: Basic Covariates
The KB basic covariates include those that are a priori viewed as important for
explaining the assignment and plausibly related to some outcome measures. It may
also be that KB = 0.

In evaluations of JTP, this step might lead to including covariates, viewed as important
for the decision of the individual to participate, such as recent labor market
experiences. With regard to the association with the outcomes, prior earnings or
education levels should be highly relevant.

In the barbituate exposure example, this set includes three pretreatment variables,
mother’s age (lmotage), which is plausibly related to cognitive outcomes for the child,
as well as socio-economic status (ses), which is strongly related to the number of
physician visits during pregnancies and, thus exposes the mother to greater risk of
barbituate prescriptions, and finally, gender of the child (gender), which may be
associated with measures of cognitive outcomes.
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Step 2: Additional Linear Terms

There are K − KB covariates not included yet. We only consider at most (K − KB)! of
the 2K−KB different subsets involving these covariates.

Exactly how many and which of the subsets we consider depends on the configuration
of the data.

We add one of the remaining covariates at a time, each time checking whether we wish
to add it.

More specifically, suppose that at some point in the covariate selection process, we
have selected K̃L linear terms, including the KB terms selected in the first step.

At that point we are faced with the decision whether to include an additional covariate
from the set of K − K̃L covariates, and if so, which one.
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Step 2: Additional Linear Terms

This decision is based on the results of K − K̃L additional logistic regression models.

In each of these K − K̃L additional logistic regression models, we add to the basic
specification with K̃L covariates and an intercept, a single one of the remaining
K − K̃L covariates at a time.

For each of these K − K̃L specifications, we calculate the likelihood ratio statistic
assessing the null hypothesis that the newly included covariate has a zero coefficient.

If all the likelihood ratio statistics are less than some pre-set constant CL, we stop, and
we include only the K̃L covariates linearly.
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Step 2: Additional Linear Terms

If at least one of the likelihood ratio test statistics is greater than CL, we add the
covariate with the largest likelihood ratio statistic.

We now have K̃L + 1 covariates, and check whether any of the remaining K − K̃L − 1
covariates should be included by calculating likelihood ratio statistics for each of them.

We continue this process until none of the remaining likelihood ratio statistics exceeds
CL.

This second stage leads to the addition of KL − KB covariates to the KB covariates
already selected for inclusion in the linear set in the first stage, for a total of KL
covariates.
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Step 3: Quadratic and Interaction Terms

Given that KL ≤ K covariates in the linear stage, we now decide which of the
KL · (KL + 1)/2 quadratic and interactions terms involving these KL covariates to
include.

Note that if some of the covariates are binary the effective set of possible second-order
terms may be smaller than KL · (KL + 1)/2.

We follow essentially the same procedure as for the linear stage. Suppose at some
point we have added K̃Q of the KL · (KL + 1)/2 possible interactions.
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Step 3: Quadratic and Interaction Terms

We estimate KL · (KL + 1)/2− K̃Q logistic regressions, each of which includes the
intercept, the KL linear terms (including the KB basic ones), the K̃Q second-order
terms already selected, and one of the remaining KL · (KL + 1)/2− K̃Q terms.

For each of these KL · (KL + 1)/2− K̃Q logistic regressions, we calculate the likelihood
ratio statistic for the null hypothesis that the most recently added second order term
has a coefficient of zero.

If the largest likelihood ratio statistic is greater than some predetermined constant CQ,
we include that interaction term in the model.
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Step 3: Quadratic and Interaction Terms

Then we re-calculate the likelihood ratio statistics for the remaining
KL · (KL + 1)/2− K̃Q − 1 interaction terms, and we keep including the term with the
largest likelihood ratio statistic until all of the remaining likelihood ratio statistics are
below CQ.

This algorithm leaves us with a selection of KL linear covariates and a selection of KQ
second order terms (plus an intercept).

We estimate the PS using this vector of 1 + KL + KQ terms.

To illustrate the implementation of this strategy, we use the threshold value for the
likelihood ratio statistic of CL = 1 and CQ = 2.71, corresponding implicitly to
z-statistics of 1 and 1.645.
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Choosing the Specification of the PS for the Barbituate Data

The ultimate interest is in the effect of in utero barbituate exposure on cognitive
outcomes when young adults.

Based on the substantive argument in the original papers using these data, it was
argued that the child’s sex, the mother’s age, and mother’s socio-economic status
(sex, lmotage, and ses respectively) are particularly important covariates, the first
two because they are likely to be associated with the outcomes of interest, and the last
two because they are likely to be related to barbituate exposure.

With these three basic covariates in the specification of the PS, KB = 3.

As the first step towards deciding which other covariates to include linearly, we
estimate the baseline model with an intercept and these three covariates.
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Table 13.2: Estimated Parameters of PS: Baseline Case

Both lmotage and ses are statistically significantly (at the 0.05 level) associated with
in utero exposure to barbituates.
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Choosing the Specification of the PS for the Barbituate Data
Next we estimate fourteen logistic regression models where we always include an
intercept, sex, lmotage, ses, and additionally include, one at a time, the remaining
14 covariates.

For each specification, we calculate the likelihood ratio statistic for the test of the null
hypothesis that the coefficient on the additional covariate is equal to zero.

For example, for the covariate lpbc420, the second pregnancy complication index
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Choosing the Specification of the PS for the Barbituate Data

We do this for each of the fourteen remaining covariates (seventeen covariates minus
the three pre-selected).

We report the fourteen likelihood ratio statistics in the first column of Table 13.4.

We find that the covariate that leads to the biggest improvement in the likelihood
function is lpbc420.

The likelihood ratio statistic for that covariate is 1308.0. Because this value exceeds
our threshold of CL = 1, we include the second pregnancy complication index lpbc420
in the specification of the PS.
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Table 13.4: Likelihood Ratio Statistics for Sequential Selection of Covariates to Enter Linearly
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Choosing the Specification of the PS for the Barbituate Data

Next we estimate thirteen logistic regression models where we always include an
intercept, sex, lmotage, ses, and lpbc420, and additionally include, one at a time,
the remaining thirteen covariates.

The likelihood ratio statistics for the inclusion of these thirteen covariates are reported
in the second column of the previous Table.

Now mbirth, the indicator for multiple births, is the most important covariate.
Because the likelihood ratio statistic for the inclusion of mbirth, 66.1, exceeds the
threshold of CL = 1, mbirth is added to the specification.

We keep checking whether there is any covariate that, when added to the baseline
model, improves the likelihood function sufficiently, and if so, we include it in the
specification of the PS.
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Proceeding this way leads to the inclusion to ten additional covariates.

In the order they were added to the specification, these are, lpbc420, mbirth, chemo,
psydrug, sib, cage, lgest, motwt, cigar, and antih.

With thirteen covariates there are potentially 13× (13+ 1)/2 = 91 second order terms.

Not all 91 potential second-order terms are feasible, because some of the thirteen
covariates selected in the first two steps are binary indicator variables, so that the
corresponding quadratic terms are identical to the linear terms.

We select a subset of the non-trivial second-order terms in the same way we selected
the linear terms, with the only difference being that the threshold for the likelihood
ratio statistic is now 2.71, which corresponds to nominal statistical significance at the
10% level.
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Choosing the Specification of the PS for the Barbituate Data

Following this procedure, adding one second-order term at a time, leads to the
inclusion of seventeen second order terms.

Table 3.6 reports the parameter estimates for the PS with all the linear and second
order terms selected, with the variables in the order in which they were selected for
inclusion in the specification of the PS.
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Table 13.6: Estimated Parameters of PS – Final Specification
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Constructing Propensity-Score Strata

Next we wish to assess the adequacy of estimated PS at each value x , ê(x), by
exploiting a property of the true PS, namely

Wi ⊥⊥ Xi

∣∣∣∣ e(Xi). (2)

We substitute ê(Xi) for e(Xi) and investigate whether, at least approximately,

Wi ⊥⊥ Xi

∣∣∣∣ ê(Xi), (3)

Ideally we would do this by stratifying the sample into subsamples or blocks within
each of which all units would have the exact same value of ê(x), and then assessing
whether Wi and Xi within each resulting block are independent.
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Constructing Propensity-Score Strata

This plan is only feasible if ê(x) takes on a relatively small number of values, and thus
if the covariates jointly only take on a relatively small number of values in the sample.

Typically, in practice, that is not the case, and so we coarsen ê(x) by constructing
blocks (i.e., strata or subclasses) within which ê(x) vary only little.

For a set of boundary points, 0 = b0 < b1 < . . . < bJ−1 < bJ = 1, define the block
indicator Bij , for the i-th unit, as

Bij =
{

1 if bj−1 ≤ ê(Xi) < bj ,
0 otherwise,

for j = 1, . . . , J . (Here we ignore the possibility that there are units with ê(Xi) exactly
equal to BiJ = 1.)
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Constructing Propensity-Score Strata

Then we will assess adequacy of ê(x) by assessing whether

Wi ⊥⊥ Xi

∣∣∣∣ Bi1, . . . ,BiJ . (4)

We operationalize the assessment of independence by examining whether the
treatment indicator and the covariates are uncorrelated within each of these blocks:

E [Xi |Wi = 1,Bij = 1] = E [Xi |Wi = 0,Bij = 1] , (5)

for all blocks j = 1, . . . , J .

The first step in implementing this procedure is the choice of boundary values bj , for
j = 0, . . . , J .
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Constructing Propensity-Score Strata

We want to choose the boundary values in such a way that within each stratum, the
variation in ê(x) is modest.

The reason is that, if the e(x) itself varies substantially within a stratum, then any
evidence that the covariates are correlated with the treatment indicator within that
same stratum is not compelling evidence of misspecification of ê(x).

Thus, we choose the boundary values in such a way that, within any stratum, the
indicator of receiving the treatment appears statistically unrelated to ê(x).

We implement the selection of boundary points by an iterative procedure as follows.
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Constructing Propensity-Score Strata

First we drop from this analysis all ‘controls’ with ê(Xi) < et and all ‘treated’ with
ê(Xi) > ec , where

et = min
i :Wi =1

ê(Xi),

and
ec = max

i :Wi =0
ê(Xi).

This trimming ensures some overlap between the two groups.

We start with a single block: J = 1, with boundaries b0 = et and b1 = bJ = ec . We
then iterate through two steps.
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Constructing Propensity-Score Strata

Step 1. Assessment of Adequacy of Blocks.

We use the linearized PS and its estimated counterpart, defined respectively as:

`(x) = ln
( e(x)
1− e(x)

)
and ˆ̀(x) = ln

( ê(x)
1− ê(x)

)
.

The main reason to focus on the linearized PS is that it is more likely than the PS to
have a distribution that is well approximated by a normal distribution.

Using the linearized PS we check the following two conditions for each block
j = 1, . . . , J .
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1.A Independence

Let Nc(j) and Nt(j) denote the subsample sizes for controls and treated in block j ,

Nc(j) =
N∑

i=1
(1−Wi) · Bij , and Nt(j) =

N∑
i=1

Wi · Bij ,

and let `c(j) and `t(j) denote the average values for the estimated linearized PS, by
treatment status and block,

`c(j) = 1
Nc(j)

N∑
i=1

(1−Wi) · Bij · ˆ̀(Xi), `t(j) = 1
Nt(j)

N∑
i=1

Wi · Bij · ˆ̀(Xi),
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1.A Independence

We the calculate the sample variance of the estimated linearized PS within block j ,

s2
` (j) = 1

Nt(j) + Nc(j)− 2 ·

 ∑
i :Bij =1

(1−Wi)
(

ˆ̀(Xi)− `c(j)
)2

+
∑

i :Bij =1
Wi ·

(
ˆ̀(Xi)− `t(j)

)2
 .

The t-statistic for block j is then defined as

tj = `t(j)− `c(j)√
S2
` (j) · (1/Nc(j) + 1/Nt(j))

. (6)

We compare this t-statistic for each stratum to a threshold value, which we fix at
tmax = 1. If the t-statistic is less than or equal to tmax, we assess the estimated PS as
varying little within the block, and if the t-statistic exceeds tmax, we assess the block
as exhibiting substantial variation in the PS.
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1.B New Strata Size
If we were to split the current j-th stratum into two substrata, what would the new
boundary value be, and how many observations would fall in each of the new substrata?

We compute the median value of the PS among the Nc(j) + Nt(j) units with an
estimated PS in the interval [bj−1, bj). Denote this median by b′j .

Let l and h denote the low and high substratum respectively, then

N l
c(j) =

N∑
i=1

(1−Wi) · Bij · 1ê(Xi )<b′
j
, Nu

c (j) =
N∑

i=1
(1−Wi) · Bij · 1ê(Xi )≥b′

j

N l
t(j) =

N∑
i=1

Wi · Bij · 1ê(Xi )<b′
j
, and Nu

t (j) =
N∑

i=1
Wi · Bij · 1ê(Xi )≥b′

j
,

is the number of control and treated units with estimated PS in the lower subinterval
[bj−1, b′j) and in the upper subinterval [b′j , bj) respectively.
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1.B New Strata Size

The current block j is assessed to be inadequately balanced if the t-statistic is too
high, |tj | > tmax.

It also needs to be and amenable to splitting at the median. By choosing

min(N l
c(j),N l

t(j),Nu
c (j),Nu

t (j)) ≥ 3, and min(N l
c(j) + N l

t(j),Nu
c (j) + Nu

t (j)) ≥ K + 2,

this enables us to compare mean covariate values within blocks, and so that later we
can do at least some adjustment for remaining covariate differences within blocks.
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Constructing Propensity-Score Strata

Step 2: Split blocks that are both inadequately balanced and amenable to splitting.

If block j is assessed to be inadequately balanced and amenable to splitting, then this
block is split into two new blocks, corresponding to PS values in [bj−1, b′j) and in
[b′j , bj), and the number of strata is increased by 1.

We iterate between assessment (1.A) and the splitting (1.B) until all blocks are
assessed to be either adequately balanced, or too small to split.
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Choosing Strata for the Barbituate Data
We use the PS score estimated using the specification in Table 13.6.

With a single block, J = 1 the the lower and upper boundaries are equal to
b0 = et = 0.0080, and b1 = ec = 0.9252 respectively.

Out of the 7,198 individuals who were not exposed to barbituates, 2,737 have
estimated PS less than b0, and out of the 745 individuals who were exposed to
barbituates before birth, 3 have estimated PS exceeding b1. These individuals are
discarded.

Hence, in this first stratum we have Nc(1) = 4, 461 controls and Nt(1) = 742 treated
individuals left with estimated PS between b0 = 0.0080 and b1 = 0.9252.

For this first block we calculate the t-statistic, t1. This leads to t1 = 36.3, which
exceeds tmax = 1.
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Choosing Strata for the Barbituate Data

We split the block at the median of the estimated PS within this stratum (equal to
0.06) and find: N l

c(1) = 2, 540, N l
t(1) = 61, Nu

c (1) = 1, 921, and Nu
t (1) = 681.

Therefore the current single-block subclassification is deemed inadequate, and the
single block is split into two new blocks, with the new boundary equal to the median in
the original subclass, equal to 0.06. These results are in the first panel of Table 13.7
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Table 13.7: Determination of the Number of Blocks and Their Boundaries. Boldface block numbers indicate blocks that were split at this step.
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Choosing Strata for the Barbituate Data

The first block with boundaries 0.01 and 0.06 has Nc(1) = 2, 540 individuals in the
control group and Nt(1) = 61 individuals in the treatment group.

The t-statistic is 3.2. Splitting the block into two parts at the median value of the
estimated PS we find 1,280 control and 20 treated units in the first sub block, and
1,260 control and 41 treated units in the second sub block.

The number of units in each sub class is sufficiently large, and therefore the original
block will be split into two parts, at the median value of 0.02.
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Choosing Strata for the Barbituate Data

For the second block with boundary values 0.06 and 0.9252, we again find that the
stratification is inadequate, with a t-statistic of 23.7.

These results are in the second panel. As a result, we split both blocks, leading to four
new blocks.

When we continue this procedure with the four new blocks, we find that the second of
the four blocks was sufficiently balanced. The remaining three blocks were not well
balanced, leading a total of seven blocks in the next round. See the third panel.
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Choosing Strata for the Barbituate Data

We continue checking the adequacy of the blocks until either all the t-statistics are
below tmax = 1, or splitting a block would lead to a new block that would contain an
insufficient number of units of one treatment type or another.

This algorithm leads to ten blocks, with the block boundaries, block widths, and the
number of units of each type in the block presented in the last panel of the Table.

In the last column we also present the t-statistics. One can see that most of the blocks
are well-balanced in the linearized PS, with only two blocks somewhat unbalanced with
t-statistics exceeding tmax = 1.

For example, the second block is not particularly well balanced in the linearized PS,
with a t-statistic of 1.7, but splitting it would lead to a new block with no treated
units, and therefore this block is not split further.
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Assessing Balance Conditional on the Estimated PS

One problem assessing the within-block equality of means of the covariates across the
treatment groups is the large amount of relevant information.

We may have a large number of covariates (in the barbituate study, there are
seventeen covariates), and a substantial number of blocks (ten in our application).

Even if we were to have data from a randomized experiment, in a finite sample one
would expect some covariates, in at least some strata, to be sufficiently correlated with
Wi that some statistical tests ignoring the multiplicity of comparisons would suggest
statistical significance of some comparisons at conventional single-test levels.
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Assessing Balance Conditional on the Estimated PS

Here we propose a method for assessing the overall balance that allows for comparisons
of balance across specifications of the PS and across strata definitions.

We are interested in assessing

Wi ⊥⊥ Xi

∣∣∣∣ Bi1, . . . ,BiJ ,

implemented through an assessment of the equality,

E [Xi |Wi = 1,Bij = 1] = E [Xi |Wi = 0,Bij = 1] , for j = 1, . . . , J .

We discuss three sets of tests for each covariate.

The first two are based on single statistics while the third is a set of tests based on
separate within-stratum comparisons.
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Assessing Balance Conditional on the Estimated PS

For the first two tests, we analyze the data as if they arose from a SRE.

Define

X c,k(j) = 1
Nc(j)

∑
i :Wi =0

Bij · Xik , and X t,k(j) = 1
Nt(j)

∑
i :Wi =1

Bij · Xik ,

respectively, for k = 1, . . . ,K , and j = 1, . . . , J .
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Assessing Global Balance for Each Covariate Across Strata

Take the k-th component of the vector covariate Xi , Xik . In stratum j the pseudo
average causal effect of the treatment on this covariate can be estimated by

τ̂X
k (j) = X t,k(j)− X c,k(j),

The sampling variance of this estimator τ̂X
k (j) is estimated as

V̂X
k (j) = s2

k (j) ·
( 1

Nc(j) + 1
Nt(j)

)
,
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Assessing Global Balance for Each Covariate Across Strata
where

s2
k (j) = 1

Nc(j) + Nt(j)− 2

×
( N∑

i=1
(1−Wi) · Bij ·

(
Xik − X c,k(j)

)2
+

N∑
i=1

Wi · Bij ·
(
Xik − X t,k(j)

)2
)
.

The estimate of the pseudo average causal effect is then the weighted average of these
within-block estimates,

τ̂X
k =

J∑
j=1

Nc(j) + Nt(j)
N · τ̂X

k (j),

with estimated sampling variance

V̂X
k =

J∑
j=1

(Nc(j) + Nt(j)
N

)2
· V̂X

k (j).
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Assessing Global Balance for Each Covariate Across Strata

Finally we convert these into

zk = τ̂X
k√
V̂X

k

.

If we find that the z-values are substantially larger in absolute values than one would
expect if they were drawn independently from a normal distribution, we would
conclude that the stratification does not lead to satisfactory balance in the covariates.

The average pseudo causal effects τX
k may be zero, even if some of the τX

k (j) are not.

Causal Inference for Statistics, Social and Biomedical Sciences 51 / 67



Estimating the Propensity Score

Assessing Balance for Each Covariate Within All Blocks

Next we therefore assess overall balance by calculating F-statistics across all strata,
one covariate at a time.

To this end we use a two-way Analysis Of Variance (ANOVA) procedure to test the
null hypothesis that its mean for the treated subpopulation is identical to that of the
mean of the control subpopulation in each of the J strata.

One way to calculate the F-statistic is through a linear regression of the form

E [Xik |Wi ,Bi1, . . . ,BiJ ] =
J∑

j=1
αkj · Bij +

J∑
j=1

τX
k (j) · Bij ·Wi .
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Assessing Balance for Each Covariate Within All Blocks
First we estimate the unrestricted estimates (α̂ur, τ̂X ) by minimizing

(α̂ur, τ̂X ) = arg min
α,τ

N∑
i=1

Xik −
J∑

j=1
αkj · Bij −

J∑
j=1

τX
k (j) · Bij ·Wi

2

,

which leads to
α̂ur

kj = X c,k(j), and τ̂X
k (j) = X t,k(j)− X c,k(j).

Next we estimate the restricted estimates α̂r (under the restriction that all the
τX

k (j) = 0) by minimizing

α̂r = arg min
α

N∑
i=1

Xik −
J∑

j=1
αkj · Bij

2

,

leading to
α̂r

kj = Nc(j)
Nc(j) + Nt(j)

· X c,k(j) + Nt(j)
Nc(j) + Nt(j)

· X t,k(j).
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Assessing Balance for Each Covariate Within All Blocks
The F-test of interest is then the statistic for testing the null hypothesis that all
τX

k (j) = 0, for j = 1, . . . , J .

The form of the F-statistic for covariate Xik is
Fk = (SSRr

k − SSRur
k )/J

SSRur
k /(N − 2J) ,

where the restricted sum of squared residuals is

SSRr
k =

N∑
i=1

Xik −
J∑

j=1
α̂r

kj · Bij

2

,

and the unrestricted sum of squares is

SSRur
k =

N∑
i=1

Xik −
J∑

j=1
α̂ur

kj · Bij −
J∑

j=1
τ̂X

k (j) · Bij ·Wi

2

.
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Assessing Balance for Each Covariate Within All Blocks

We then convert the p-value associated with this F -stastistic, under normality of the
covariates nominally from an F-distribution with J and N − 2 · J degrees of freedom, to
a z-value.

For each of the K covariates Xik , we obtain a set of K z-values, zk , k = 1, . . . ,K .

If the covariates are well balanced between treatment and control groups conditional
on the PS, we would expect to find the z-values to be concentrated towards smaller
(more negative) values relative to a normal distribution.

Finding large positive values would suggest that the covariates are not balanced within
the strata.
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Assessing Balance within Strata for Each Covariate

The third approach focuses on a single covariate in a single stratum at a time.

For each covariate Xik , for k = 1, . . . ,K , and for each stratum j = 1, . . . , J , we test
the null hypothesis

E [Xik |Wi = 1,Bij = 1] = E [Xik |Wi = 0,Bij = 1] for j = 1, . . . , J .

against the alternative hypothesis that the two averages differ.

For the k-th covariate, and for this stratum j , we calculate

zjk = X t,k(j)− X c,k(j)√
s2
k (j) · (1/Nc(j) + 1/Nt(j))

, (7)

where
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Assessing Balance within Strata for Each Covariate

s2
k (j) = 1

Nc(j) + Nt(j)− 2

×
( N∑

i=1
(1−Wi) · Bij ·

(
Xik − X c,k(j)

)2
+

N∑
i=1

Wi · Bij ·
(
Xik − X t,k(j)

)2
)
.

If the covariates are well balanced, we would expect to find the absolute values of the
z-values to be concentrated towards smaller (less significant) values relative to a
normal distribution.

To summarize the K × J z-values it is useful to present Q-Q plots, comparing the
z-values against their expected values under independent draws from the normal
distribution. A Q-Q plots flatter than a 450 line is a sign of balance.
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Assessing Covariate Balance for the Barbituate Data

Given the previous stratification for the barbituate data with ten blocks we calculate a
number of statistics to assess the adequacy of the PS specification.

The results are presented in Table 13.8.

The Within-blocks panel presents the z-values given in equation (7)

In addition, there are two columns for the two overall tests.

For comparison, the last column present the t-statistic for the null hypothesis that the
overall average covariate values are equal in the two treatment groups, not adjusted for
the blocks.
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Table 13.8: z-values For Balancing Tests – Final PS Specification

Within Blocks Overall 1 block
Block → 1 2 3 4 5 6 7 8 9 10 t-test F-test t-test
Cov (z-value)
↓

sex -0.05 -2.27 1.97 0.81 0.89 -1.28 0.04 -0.39 -1.42 1.14 0.13 1.22 -0.73
antih -0.67 -0.47 0.67 0.03 0.37 -0.25 0.38 -0.53 -0.11 0.27 -0.17 -2.88 3.21
hormone -0.14 -0.42 -0.65 -1.00 0.25 0.71 -0.22 -1.05 -1.10 0.21 -0.99 -0.66 1.66
chemo 0.55 -0.39 -0.78 -0.75 -1.17 1.47 -0.94 0.61 0.66 0.29 -0.27 -0.61 1.76
cage -1.41 -0.29 -1.04 -0.46 2.11 0.28 0.20 0.46 -1.48 -0.74 -1.38 0.34 1.15
cigar -0.37 0.55 0.58 1.50 0.31 -0.93 0.21 -0.99 0.25 -0.39 0.52 -1.17 -3.13
lgest 0.90 0.58 -0.07 -0.82 0.79 -0.36 0.05 -0.33 -1.14 1.21 0.71 -1.48 0.12
lmotage -2.20 -1.37 0.56 1.64 0.95 0.60 -0.96 -1.73 -1.47 0.36 -1.26 1.45 8.56
lpbc415 -0.48 -1.84 -1.00 -0.34 0.59 0.44 -0.20 -0.16 1.07 -0.10 -1.49 -0.82 0.75
lpbc420 1.04 0.84 -0.67 -0.86 -1.61 1.80 -0.39 1.62 1.14 -1.80 0.51 0.59 32.04
motht -0.84 0.45 -0.67 0.75 0.64 0.09 0.30 -1.37 -0.60 -0.13 -0.50 -1.37 0.90
motwt 1.23 1.14 0.12 -1.23 -0.05 -0.45 -0.32 1.94 -0.01 -0.47 1.08 -0.18 1.44
mbirth -0.44 -0.80 -1.54 -0.37 1.80 0.20 0.00 2.25 -1.58 -1.60 -1.28 1.00 -2.93
psydrug -0.66 -1.01 1.05 -0.15 -0.78 0.06 -0.18 0.08 0.09 0.89 -0.29 -1.40 6.32
respir -0.49 0.53 -0.21 0.98 1.38 0.24 -0.78 -1.51 0.22 -0.28 0.24 -0.49 0.19
ses -0.60 -0.31 -0.74 1.16 0.82 -0.08 -0.03 -0.82 -0.91 0.36 -0.56 -1.37 5.19
sib 1.42 2.37 -1.09 -1.58 -1.53 0.11 0.63 1.63 1.19 0.23 0.98 1.64 1.48
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Assessing Covariate Balance for the Barbituate Data

The first ten columns of the table give the z-values separately for each block and each
of the seventeen covariates.

The largest of these 170 z-values is 2.37. To facilitate the overall assessment of these
z-values we construct a Q-Q plot, where we plot the ordered z-values, against the
corresponding quantiles of the normal distribution. The Q-Q plot is presented in the
top panel in the Figure in the next slide.
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Q-Q plots

Causal Inference for Statistics, Social and Biomedical Sciences 61 / 67



Estimating the Propensity Score

Assessing Covariate Balance for the Barbituate Data

The column with the heading “t-test” presents z-values for the test of zero average
pseudo causal effects for each of the seventeen covariates, after stratification on the
estimated propensity score.

The largest of the absolute values of the seventeen t-statistics is 1.49, suggesting
excellent balance.

For the alternative F-test we find that the largest value is 2.88, with all the others
below 2.00 again suggesting excellent balance conditional on the propensity score.

Based on these balance assessments, we conclude that the specification of the PS is
adequate in the sense that it leads to somewhat better balance than one would expect
to see if assignment were randomized within blocks.
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Assessing Covariate Balance for the Barbituate Data

If we had found that the balance was poor, we might have attempted to improve
balance by changing the specification for the PS.

We propose no general algorithm to improve balance beyond providing some general
guidelines.

For example, if one finds that many of the t-statisics for a particular covariate are large
in absolute value, one may wish to include more flexible functional forms for that
covariate, possibly piecewise linear components, or indicator variables for particularly
important regions of its values.

Causal Inference for Statistics, Social and Biomedical Sciences 63 / 67



Estimating the Propensity Score

Assessing Covariate Balance for the Barbituate Data

To put the extent of the covariate balance given our preferred specification in
perspective, we consider two alternative specifications of the PS.

In the first alternative specification we include all seventeen linear terms but no second
order terms. Within our algorithm this corresponds to CL = 0, CQ =∞.

This specification appears to be common in empirical work, where researchers often
simply include all covariates in the PS without investigating whether that specification
of the PS leads to adequate balance in the covariates.

Constructing the blocks with this specification of the PS leads to nine blocks.
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Assessing Covariate Balance for the Barbituate Data

We find that 15 out of 153 z-values exceed 2.0, compared to only 2 out of 170 with
our preferred specification of the PS (for details see Table 13.9).

The Q-Q plot for the 153 z-values is displayed in the second panel of the last figure in
the previous slide.

It is clear that including some second order terms leads to substantially better balance
in the covariates.

In the second alternative specification we use lasso methods to select among all
seventeen linear terms and 153 second order terms. We use ten-fold cross-validation to
select the penalty term.
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Assessing Covariate Balance for the Barbituate Data

The lasso procedure selects fourteen covariates, three linear ones (chemo, lpbc420,
and mbirth), and eleven second order terms.

We find that there are now 14 out of 204 z-values exceeding 2.0, again, compared to 2
out of 170 with our preferred specification of the PS (for details see Table 13.10).

The Q-Q plot for the 153 z-values is displayed in the last panel of the last figure.

It appears that the lasso does not lead to as good an in-sample fit as our proposed
specification, possibly due to its focus on out-of-sample prediction.
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Assessing Covariate Balance for the Barbituate Data

The correlation between the linearized PS based on our proposed specification and the
linear specification is 0.95, between the proposed specification and the lasso
specification the correlation is 0.96, and the correlation between the linear and the
lasso specification is 0.98.

The log likelihood values for the three specifications are -1,556.3 for the proposed
specification, -1.627.7 for the linear specification, and -1,614.7 for the lasso
specification.
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