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Introduction

As in the previous chapter the potential outcomes themselves are viewed as random
variables, even in the finite sample.

As a consequence will any function of the potential outcomes also be random
variables. This includes any causal estimand of interest, for example the average
treatment effect, the median causal effect, etcetera.

We begin by building a stochastic model for all potential outcomes that generally
depends on some unknown parameters.

Using the observed data to learn about these parameters, we stochastically draw the
unknown parameters and use the postulated model to impute the missing potential
outcomes, given the observed data, and use this to conduct inference for the estimand
of interest.
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Introduction

At some level, all methods for causal inference can be viewed as imputation methods,
although some more explicitly than others.

The discussion in the current chapter puts this imputation perspective front and center.

Because the imputations and resulting inferences are especially straightforward from a
Bayesian perspective, we primarily focus on the Bayesian approach, but we will also
discuss the implementation of frequentist approaches, as well as how the two differ.

This model-based approach is very flexible compared to the Fisher’s Exact P-value
approach, Neyman’s Repeated Sampling approach, or regression methods. For
instance, in the estimation of dispersion effects.
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Introduction

In general we can conduct inference in this model-based approach for any causal
estimand τ = τ(Y(0),Y(1)), or even more generally

τ = τ(Y(0),Y(1),X,W), (1)

the only ‘restriction’ is that τ is a row-exchangeable comparison of Y(0) and Y(1) on a
common set of units.

The model-based approach can easily accommodate super-population estimands.

Unlike Fisher’s and Neyman’s methods, the model-based approach can be extended
readily to observational studies, where the assignment mechanism is (partially)
unknown (see Parts III, IV, and V in the book).
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Introduction

One of the practical issues in the model-based approach will be the choice of a credible
model for imputing the missing potential outcomes for the missing Y(0) and Y(1).

These potential outcomes, and thus the causal estimands, τ = τ(Y(0),Y(1),X,W),
are well-defined irrespective of the stochastic model for either the treatment
assignment or for the potential outcomes.

In CRE, the inferences for the estimand of interest will often be relatively robust to the
parametric model chosen, as long as the specification is reasonably flexible.

In fact, in many cases, at least in large samples, estimates for the average treatment
effect will be unbiased from Neyman’s repeated sampling perspective, and the resulting
interval estimates will have the properties of Neyman’s confidence intervals.
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Introduction
In observational studies the specification of the model may be an inherently difficult
task, and the substantive conclusions will generally be sensitive to the
model-specification.

In contrast to the previous chapters, we will focus our discussion on simulation-based
computational methods rather than on analytical methods.

In principle either can be used. Two reasons for focusing on computational methods

i) they often simplify the analyses given recent advances in computational power and
in computational methods, such as Markov-chain-Monte-Carlo (MCMC)
techniques.

ii) in contrast to analytical approaches, they maintain the conceptual distinction
between parameters in the parametric model and the estimands of interest.
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The National Supported Work (NSW) Job Training Data
To illustrate the methods data is taken from Dehejia and Wabha (1999), a subset of a
data used in in Lalonde (1986) in an experimental evaluation of the NSW program.

The population consisted of men who were substantially disadvantaged in the labor
market. Most of them had very poor labor market histories with few instances of
long-term employment.

We have data on
X age (age), years of education (education), whether they were now or ever before

married (married), whether they were high school dropouts (nodegree),
ethnicity (black), pre-training earnings in 1975 and (mainly) in 1974, earn’75
and earn’74, respectively. earn’75= 0 and earn’74= 0 are indicator for zero
earnings in 1975 and 1974.

Y earnings in 1978 (earn’78)
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The NSW Job Training Data Note: All earnings variables are in thousands of dollars
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Earnings outcomes (in thousands of dollars) of ‘controls’ and trainees
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A Simple Example

We begin by working through a very simple example that introduces the key ideas
underlying this approach using the following subset of the NSW data.

Causal Inference for Statistics, Social and Biomedical Sciences 9 / 114



Model-based Imputation in Completely Randomized Experiments The National Supported Work (NSW) Job Training Data
A Simple Example: Naive and More Sophisticated Approaches to Imputation

A Simple Example

The illustration focus on the average treatment effect as the estimand.

We can write the average treatment effect for this population of six men as

τS = τ(Y(0),Y(1)) = 1
6 ·

6∑
i=1

(
Yi (1)− Yi (0)

)
. (2)

This estimand can be defined in terms of observed and missing potential outcomes
τS = τ̃(Yobs,Ymis,W).

To derive this representation, we use the characterization

Yi (0) =
{

Y mis
i if Wi = 1,

Y obs
i if Wi = 0, and Yi (1) =

{
Y mis

i if Wi = 0,
Y obs

i if Wi = 1. (3)
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A Simple Example

Thus,

τS = τ̃(Yobs,Ymis,W)

= 1
6 ·

N∑
i

(
(Wi · Y obs

i + (1−Wi ) · Y mis
i )− ((1−Wi ) · Y obs

i + Wi · Y mis
i )

)

= 1
6 ·

N∑
i=1

(
(2 ·Wi − 1) ·

(
Y obs

i − Y mis
i

))
. (4)

In the model-based approach, we estimate τS by explicitly imputing the six missing
potential outcomes, initially once, and then repeatedly to account for the uncertainty
in the imputation.
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A Simple Example

Let Ŷ mis
i be the imputed value for Y mis

i , leading to the following estimator for τS:

τ̂ = τ̃(Yobs, Ŷmis,W) = 1
6 ·

N∑
i=1

(
(2 ·Wi − 1) · (Y obs

i − Ŷ mis
i )

)
. (5)

The key question is how to impute the missing potential outcomes Ŷ mis
i , given the

observed values Yobs and the treatment assignments W.

First, a very simple, and naive, approach, where we impute each missing potential
outcome by the average of the observed potential outcomes with that treatment level.
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A Simple Example

Consider the first non-treated unit.

We observe Y1(0) but not Y1(1). Thus Y obs
1 = Y1(0) and Y mis

1 = Y1(1).

The average outcome for the three units (2, 4, and 6) randomly assigned to the
treatment is Y obs

t = (Y2(1) + Y4(1) + Y6(1))/3 = (9.9 + 3.6 + 24.9)/3 = 12.8.

In this illustrative example, we would therefore impute Ŷ mis
1 = 12.8.

In contrast, unit 2 received the treatment, thus Y mis
2 = Y2(0). The average observed

outcome for the three randomly chosen units who did receive the control treatment is
Y obs

c = (Y1(0) + Y3(0) + Y5(0))/3 = (0+12.4+0)/3 = 4.1, so we impute Ŷ mis
2 = 4.1.
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A Simple Example
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A Simple Example

Notice that Diff (ATE) is equal to Y obs
t − Y obs

c , which is not surprising, but the overall
result is unsatisfying. This method provides only a point estimate!

Thus, let us consider a less naive approach of imputation.

Let us again consider a unit with Wi = w , so that Y mis
i = Yi (1− w). Instead of

setting Ŷ mis
i for such a unit equal to the corresponding average observed value Y obs

1−w ,
let us draw Y mis

i for such a unit at random from the distribution of Y obs
j for those

units for whom we observe Yj(1− w), that is, units with Wj = 1− w .

For all non-treated unit for which Y1(1) is is missing this means that we draw at
random from the trinomial distribution that puts point mass 1/3 on each of the three
observed Yi (1) values, the observed Y obs

i values for units 2, 4 and 6, namely
Y2(1) = 9.9, Y4(1) = 3.6, and Y6(1) = 24.9.
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A less naive example

For the treated units we would be drawing from the trinomial distribution with values
Y1(0) = 0, Y3(0) = 12.4 and Y5(0) = 0, each with probability equal to 1/3; because
two of the values are equal, this amounts to a binomial distribution with support
points 0 and 12.4, with probabilities 2/3 and 1/3 respectively.

Suppose we draw 3.6 for non-treated unit 1 and 12.4 for treated unit 2, thereby
imputing Ŷ mis

1 = 3.6 and Ŷ mis
2 = 12.4. For the third unit we draw Ŷ mis

3 = 9.9, For the
fourth unit, Ŷ mis

4 = Ŷ mis
2 = 12.4 and so on.

Panel A of Table 8.4 gives these six observations with the missing values imputed in
this fashion. Here

τ̂ = 1
6 ·

6∑
i=1

(
(2 ·Wi − 1) · (Y obs

i − Ŷ mis
i )

)
= 4.1.
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Table 8.4 The Average Treatment Effect Using Imputed Draws from the Empirical Distributions within Treatment and Control Groups for the Data from Table 8.2
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A less naive example

Again drawing from the same assumed distributions for the missing Y(0) and Y(1), we
expect to draw different values.

Panel B of the Table presents such results, this time τ̂ = 10.7.

We can repeat this procedure as many times as we wish, although at some point we
will generate sets of draws identical to the ones already observed.

With six missing potential outcomes, each one drawn from a set of three possible
values, there are 36 = 729 different ways of imputing the data, all equally likely.

Calculating the corresponding average treatment effect for each set of draws, we can
then calculate the average and standard deviation of these 729 estimates.
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A less naive example

Note that not all of these will be different.

Over the 729 possible vectors of imputed missing data, this leads to an average
treatment effect of 8.7, and a standard deviation of 3.1.

Notice that this average is again identical to the difference in average outcomes by
treatment level, Y obs

t − Y obs
c .

As before, this should seem intuitive, because we have calculated this value from the
full set of 729 possible permutations. What this approach adds to the previous
analysis, however, is an estimate of the entire distribution of the average treatment
effect, and, in particular, an estimate of the variability of the estimated average
treatment effect, as reflected in the standard deviation of this distribution.
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A less naive example

Although this example focuses on the average treatment effect, the same procedure
could be applied to any other function of the six pairs of potential outcomes. For
example, one may be interested in the ratio of variances of the potential outcomes at
each treatment level, or other measures of central tendency or dispersion.

With more than six units, it quickly becomes expensive to calculate all possible
imputations of the missing data.

In practice one may, therefore, prefer to run a randomly selected subset of these
imputations, and estimate the distribution of a treatment effect as reflected by these
values.

Such an approach will give an accurate approximation to the distribution based on
drawing all possible imputations if enough replications are made.
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A less naive example

The use of this randomization in imputing the missing potential outcomes is purely a
computational device, albeit a very convenient one.

This second method for imputing the missing potential outcomes is substantially more
sophisticated than the first.

Nevertheless, it still does not address fully the uncertainty we face in estimating the
average treatment effect.

In particular, we impute the missing data as if we knew the exact distribution of each
of the potential outcomes, the {Yi (0)|i : Wi = 0} and the {Yi (1)|i : Wi = 1}.
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A less naive example

Yet, in practice, we have only limited information; in this example based on six units,
our information for the distributions of treatment and control outcomes comes entirely
from three observations for each. For instance, we assume the distribution of Yi (1),
based on the three observed values (9.9, 3.6, and 24.9), is trinomial for those three
values with equal probability.

If we actually observed three additional units exposed to the treatment, it is likely that
their observed outcomes would differ from the first three. If we study the set of all 445
observations in the NSW data set, we see that the other treated units do have different
observed outcomes.

To take into account this additional source of uncertainty essentially requires a model
for the potential outcomes—observed as well as missing—which formally addresses the
uncertainty about possible values of potential outcomes. We turn to this next.
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Bayesian Model-based Imputation in the Absence of Covariates

The primary goal is to build a model for the missing potential outcomes, given the
observed data,

f (Ymis|Yobs,W). (6)

Using the fact that τ = τ(Ymis,Yobs,W) = τ(Y(0),Y(1),W) we can derive the
distribution for any estimand of interest.

Throughout this chapter, we will be slightly informal in our use of notation, and use
f (·|·) to denote generic conditional distributions.

In each case it should be clear from the context which random variables the
distributions refer to.
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Bayesian Model-based Imputation in the Absence of Covariates

In the previous section the missing potential outcomes, for unit i was specified as

Pr
(

Y mis
i = y

∣∣∣Yobs,W
)

=


1 if y = 12.8, and Wi = 0,
1 if y = 4.1, and Wi = 1,
0 otherwise.

and

Pr
(

Y mis
i = y

∣∣∣Yobs,W
)

=


1/3 if y ∈ {3.6, 9.9, 24.9}, and Wi = 0,
1/3 if y = 12.4,Wi = 1,
2/3 if y = 0,Wi = 1,
0 otherwise.

.

Using these models we predicted Y mis
i which allowed us to calculate the corresponding

estimand, in the specific example, the average treatment effect.
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Bayesian Model-based Imputation in the Absence of Covariates

These models are straightforward, but too simplistic, in that neither model allowed for
uncertainty in the estimation of the distribution of the missing potential outcomes.

Here we consider methods for imputing the missing potential outcomes that allow for
such uncertainty.

Although what we are ultimately interested in is simply a model for the conditional
distribution of Ymis given (Yobs,W), this is not our initial focus.

The reason is that the conditional distribution of Ymis given (Yobs,W) depends
intricately on the joint distribution of the potential outcomes, (Y(0),Y(1)), and on the
assignment mechanism.
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Bayesian Model-based Imputation in the Absence of Covariates

Specification of the former requires scientific (that is, subject matter) knowledge, be it
economics, biology, or some other science.

In contrast, in the context of this chapter, the assignment mechanism is known by the
assumption of a CRE.

In the model-based approach, we will therefore step back and consider specification of
the two components separately.

Here, we describe the general approach for obtaining the distribution of the missing
data given the observed data in settings without covariates.
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Bayesian Model-based Imputation in the Absence of Covariates

We separate the derivation of the posterior distribution of the causal effect of interest
into four steps, laying out in detail the procedure that takes us from the specification
of the joint distribution of the potential outcomes to the conditional distribution of the
causal estimand given the observed data, called the posterior distribution of the
estimand.

We return to the six-unit example and show, in detail, how this can be implemented
analytically in a very simple setting with Gaussian distributions for the potential
outcomes.

However, in practice there are few situations where one can derive the posterior
distribution of interest analytically. We then show how simulation methods, which are
much more widely applicable, can be used to obtain draws from the posterior
distribution in the same simple example.
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Inputs into the Model-based Approach

The first input is a model of the joint distribution
f (Y(0),Y(1)). (7)

Under row (unit) exchangeability of the matrix (Y(0),Y(1)), and by an appeal to De
Finetti’s theorem, we can, with no essential loss of generality, let

f (Y(0),Y(1)) =
∫ N∏

i=1
f (Yi (0),Yi (1)|θ) · p(θ)dθ,

where θ is an unknown, finite-dimensional parameter of f (Yi (0),Yi (1)|θ), which lies in
a parameter space Θ, and p(θ) is its marginal (or prior) distribution.
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Inputs into the Model-based Approach

Specifying f (Yi (0),Yi (1)|θ) requires subject matter (scientific) knowledge. Although
in the current setting of completely randomized experiments, inferences will often be
robust to different specifications, this is not necessarily true in observational studies.

Specifying the second input, the prior distribution of θ,
p(θ), (8)

can also be difficult. In many cases, however, the substantive conclusions are not
particularly sensitive to this choice.

Causal Inference for Statistics, Social and Biomedical Sciences 29 / 114



Model-based Imputation in Completely Randomized Experiments The National Supported Work (NSW) Job Training Data
A Simple Example: Naive and More Sophisticated Approaches to Imputation

Inputs into the Model-based Approach

In observational studies there would be a third input: the conditional distribution of W
given the potential outcomes and parameters, or, in other words, the assignment
mechanism, f (W|Y(0),Y(1), θ).

Here, with a CRE, the assignment mechanism is equal to

Pr(W|Y(0),Y(1), θ) =
(

N
Nt

)−1
, for all W such that

N∑
i=1

Wi = Nt ,

with no dependence on unknown parameters, so this is an input that need no further
specification here.
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The Four Steps

1 deriving f (Ymis|Yobs,W, θ)
2 deriving the posterior distribution for the parameter θ, that is, f (θ|Yobs,W)
3 combining f (Ymis|Yobs,W, θ) and f (θ|Yobs,W) to obtain the conditional

distribution of the missing data given the observed data, but without conditioning
on the parameters, f (Ymis|Yobs,W), i.e., integrating their product over θ

4 use the definition of the estimand, τ = τ(Y(0),Y(1)), and the conditional
distribution f (Ymis|Yobs,W) to obtain the conditional distribution of the
estimand given the observed values, f (τ |Yobs,W).

We now examine these four steps in somewhat excruciating detail.
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Step 1

First we combine the assignment mechanism with f (Y(0),Y(1)|θ), to get the joint
distribution of (W,Y(0),Y(1)) given θ:

f (Y(0),Y(1),W|θ) = Pr(W|Y(0),Y(1), θ) · f (Y(0),Y(1)|θ). (9)

We then derive the conditional distribution of the potential outcomes given the vector
of assignments and the parameter, f (Y(0),Y(1)|W, θ), for the general case as

f (Y(0),Y(1)|W, θ) = f (Y(0),Y(1),W|θ)
Pr(W|θ) = f (Y(0),Y(1),W|θ)∫

f (Y(0),Y(1),W|θ)dY(0)dY(1) .

Given a CRE, W is independent of (Y(0),Y(1)), and so that this conditional
distribution is in fact equal to the marginal distribution:

f (Y(0),Y(1)|W, θ) = f (Y(0),Y(1)|θ).

This simplification more generally applies to all regular assignment mechanisms.
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Step 1

Next, we transform the distribution for Y(0) and Y(1) given W and θ into the
distribution for Ymis given Yobs, W, and θ.

Recall that we can express the pair (Y mis
i ,Y obs

i ) as functions of (Yi (0),Yi (1),Wi):

Y obs
i =

{
Yi (0) if Wi = 0,
Yi (1) if Wi = 1, Y mis

i =
{

Yi (0) if Wi = 1,
Yi (1) if Wi = 0. (10)

Hence (Ymis,Yobs) can be written as a transformation of (Y(0),Y(1),W), or

(Ymis,Yobs) = g(Y(0),Y(1),W).
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Step 1

We then use this transformation to obtain

f (Ymis,Yobs|W, θ). (11)

This, in turn, allows us to derive:

f (Ymis|Yobs,W, θ) = f (Ymis,Yobs|W, θ)
f (Yobs|W, θ) = f (Ymis,Yobs|W, θ)∫

Ymis f (Ymis,Yobs|W, θ)dYmis . (12)

This is the conditional distribution of the missing potential outcomes given the
observed values, also called the posterior predictive distribution of Ymis.
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Step 2

The posterior distribution of the parameters is defined as:

p(θ|Yobs,W) = p(θ) · L(θ|Yobs,W)
f (Yobs,W) , (13)

where f (Yobs,W) =
∫
θ p(θ) · L(θ|Yobs,W)dθ and L(θ|Yobs,W) is the marginal

distribution of the observed data given θ, that is, the likelihood function, thus

L(θ|Yobs,W) ≡ f (Yobs,W|θ) =
∫

Ymis
f (Ymis,Yobs,W|θ)dYmis.
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Step 3

We combine the conditional distribution of Ymis given (Yobs,W, θ), given in (12) and
the posterior distribution for θ, given in (13), to derive the joint distribution:

f (Ymis, θ|Yobs,W) = f (Ymis|Yobs,W, θ) · p(θ|Yobs,W).

Then we integrate over θ to obtain the conditional distribution of the missing data
given the observed data:

f (Ymis|Yobs,W) =
∫
θ

f (Ymis, θ|Yobs,W)dθ,

Causal Inference for Statistics, Social and Biomedical Sciences 36 / 114



Model-based Imputation in Completely Randomized Experiments The National Supported Work (NSW) Job Training Data
A Simple Example: Naive and More Sophisticated Approaches to Imputation

Step 4

The general form of the estimand is τ = τ(Y(0),Y(1),W) which can be re-written as
τ = τ(Ymis,Yobs,W).

Combined with f (Ymis|Yobs,W), we can derive the conditional distribution of τ given
the observed data (Yobs,W), that is, the posterior distribution of τ :

f (τ |Yobs,W).

Once we have this distribution, we can derive the posterior mean, standard deviation,
and any other feature of the posterior distribution of the causal estimand.
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General comments

Some key differences between the formal model-based approach and the simplistic
examples that opened this chapter.

First, the researcher must specify a complete model for the joint distribution of the
potential outcomes Y(0) and Y(1) by specifying a unit-level joint distribution,
f (Yi (0),Yi (1)|θ), given a generally unknown parameter θ.

Although this model depends on an unknown parameter, θ, and thus need not be very
restrictive, at first glance this approach may seem more restrictive than the initial
examples where no such model was necessary. Yet this is not necessarily correct.

The earlier, naive approaches assumed that the distribution of the missing data given
the observed data was known with certainty, an assumption that is more restrictive
than any parametric specification.
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General comments

The second difference is that the model-based approach requires the researcher to
choose a prior distribution for the unknown parameters θ in order to derive their
posterior distribution.

In practice, given a CRE, this choice is often not critical. As long as the model is
reasonably flexible, the prior distribution is not too dogmatic, and the data are
sufficiently informative, the substantive conclusions are typically robust.

In observational studies, however, the sensitivity to the model choice and the choice of
prior distribution will typically be much more severe.
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An Analytic Example with Six Units

To illustrate the four different steps in the model-based approach, consider again the
first six observations of the National Supported Work Experiment.

First we let: (
Yi (0)
Yi (1)

)∣∣∣∣∣ θ ∼ N
((

µc
µt

)
,

(
100 0
0 64

))
, (14)

where, thus θ = (µc , µt)′, implying

f (Yi (0),Yi (1)|θ) = 1
2π ·
√
64 · 100

·exp
(
− 1
2 · 100 (Yi (0)− µc)2 − 1

2 · 64 (Yi (1)− µt)2
)
.
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An Analytic Example with Six Units

Later we will relax the assumption that the covariance matrix is known. We may also
want to consider more flexible distributions, such as mixtures of normal distributions.

With regard to the second part we use here the following prior distribution:(
µc
µt

)
∼ N

((
0
0

)
,

(
10000 0
0 10000

))
. (15)

This prior distribution is relatively agnostic about the values of µc and µt over a wide
range of values, relative to the data values, displayed in Table 8.2.
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An Analytic Example with Six Units

Appendix B provides calculations for a more general specification of the prior
distribution, allowing for nonzero means, and a nondiagonal covariance matrix.

In an observational study we would also have to specify the assignment mechanism,
but here this is known to be

Pr(W = w|Y(0),Y(1), µc , µt) =
(

N
Nt

)−1
,

for all w with wi ∈ {0, 1} for all i = 1, . . . ,N, and
∑N

i=1 wi = Nt , and zero elsewhere.
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An Analytic Example with Six Units: Step 1

Because the potential outcomes are independent across units conditional on (µc , µt)
we get

f (Y(0),Y(1)|µc , µt) =
N∏

i=1
f (Yi (0),Yi (1)|µc , µt).

The 2N-component vector (Y(0)′,Y(1)′)′ is distributed as(
Y(0)
Y(1)

)∣∣∣∣∣µc , µt ∼ N
((

µc · ιN
µt · ιN

)
,

(
100 · IN 0 · IN
0 · IN 64 · IN

))
, (16)

where ιN is the N vector of 1’s and IN is identity matrix.
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An Analytic Example with Six Units: Step 1

Because of the independence (due to data from a CRE) of W and (Y(0),Y(1)) given θ
the conditional distribution of the potential outcomes given the assignment vector is
the same as the marginal distribution in (16), thus:

(
Y(0)
Y(1)

)∣∣∣∣∣W, µc , µt ∼ N
((

µc · ιN
µt · ιN

)
,

(
100 · IN 0 · IN
0 · IN 64 · IN

))
. (17)

Now we transform this conditional distribution to the conditional distribution of
(Ymis,Yobs) given (W, µc , µt).
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An Analytic Example with Six Units: Step 1

Because conditional on (W, µc , µt) the pairs (Yi (0),Yi (1)) and (Yi ′(0),Yi ′(1)) are
independent if i 6= i ′, it follows that

f (Ymis,Yobs)|W, µc , µt) =
N∏

i=1
f (Y mis

i ,Y obs
i |W, µc , µt),

where the joint distribution of (Y mis
i ,Y obs

i ) given (W, µc , µt) is

(
Y mis

i
Y obs

i

)∣∣∣∣∣µc , µt ,W ∼ N
((

Wi · µc + (1−Wi ) · µt
(1−Wi ) · µc + Wi · µt

)
,

(
Wi · 100 + (1−Wi ) · 64 0

0 (1−Wi ) · 100 + Wi · 64

))
. (18)
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An Analytic Example with Six Units: Step 1

Because Y mis
i and Y obs

i are uncorrelated given (µc , µt) the conditional distribution of
Y mis

i given (Y obs
i , µc , µt) is simply equal to the marginal distribution of Y mis

i given
(µc , µt):

Y mis
i |Yobs,W, µc , µt ∼ N

(
Wi · µc + (1−Wi ) · µt ,Wi · 100 + (1−Wi ) · 64

)
. (19)

Thus the joint distribution of the full N-vector Ymis given (Yobs,W, µc , µt), is
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An Analytic Example with Six Units: Step 1

Ymis|Yobs,W, µc , µt ∼ N




W1 · µc + (1−W1) · µt
W2 · µc + (1−W2) · µt

...
WN · µc + (1−WN) · µt

 ,


W1 · 100 + (1−W1) · 64 0 . . . 0
0 W2 · 100 + (1−W2) · 64 . . . 0
...

... . . . ...
0 0 . . . WN · 100 + (1−WN) · 64


 .

(20)
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An Analytic Example with Six Units: Step 1

For the six units in our illustrative data set, this leads to

Y mis
1

Y mis
2

Y mis
3

Y mis
4

Y mis
5

Y mis
6



∣∣∣∣∣∣∣∣∣∣∣∣∣
Yobs,W, µc , µt ∼ N





µt
µc
µt
µc
µt
µc


,



64 0 0 0 0 0
0 100 0 0 0 0
0 0 64 0 0 0
0 0 0 100 0 0
0 0 0 0 64 0
0 0 0 0 0 100




.

(21)
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An Analytic Example with Six Units: Step 2

The posterior distribution is defined as:
p(µc , µt |Yobs,W) ∝ p(µc , µt) · L(µc , µt |Yobs,W).

The prior distribution is given in (15), but we need to derive the likelihood function.

Conditional on (W, µc , µt), the distribution of the observed outcome Y obs
i is

Y obs
i |W, µc , µt ∼ N

(
(1−Wi ) · µc + Wi · µt , (1−Wi ) · 100 + Wi · 64

)
. (22)

But Y mis
i and Y mis

i ′ , and Y obs
i and Y obs

i ′ , are independent conditional on (W, µc , µt)
for i 6= i ′.
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An Analytic Example with Six Units: Step 2

Thus the contribution of unit i to the likelihood function is proportional to
Li ∝

1√
2π · ((1−Wi ) · 100 + Wi · 64)

× exp
[
−1
2

( 1
(1−Wi ) · 100 + Wi · 64

(
Y obs

i − (1−Wi ) · µc −Wi · µt
)2)]

.

The likelihood function is proportional to the product of these N factors and the
probability of the assignment vector.

Because the latter is a known constant, it can be ignored, and the likelihood function
is proportional to
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An Analytic Example with Six Units: Step 2

L(µc , µt |Yobs,W) ∝
6∏

i=1

{
1√

2π · ((1−Wi ) · 100 + Wi · 64)

× exp
[
−1
2

( 1
(1−Wi ) · 100 + Wi · 64

(
Y obs

i − (1−Wi ) · µc −Wi · µt
)2)]}

=
∏

i :Wi =0

1√
2π · 100

exp
[
−1
2

( 1
100

(
Y obs

i − µc
)2)]

×
∏

i :Wi =1

1√
2π · 64

exp
[
−1
2

( 1
64
(
Y obs

i − µt
)2)]

.
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An Analytic Example with Six Units: Step 2

To derive the posterior distribution, we exploit the fact that both the prior distribution
of µc and µt , and the likelihood function, factor into a function of µc and a function
of µt .

This factorization leads to the following posterior distribution of (µc , µt) given the
observed data:

Pr(µc , µt |Yobs,W) ∝

exp
[
−1
2

(
µ2c

10, 000

)]
·
∏

i :Wi =0

1√
2π · 100

exp
[
−1
2

(
(Y obs

i − µc)2
100

)]

× exp
[
−1
2

(
µ2t

10, 000

)]
·
∏

i :Wi =1

1√
2π · 64

exp
[
−1
2

(
(Y obs

i − µt)2
64

)]
.
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An Analytic Example with Six Units: Step 2

This expression implies that (
µc
µt

)∣∣∣∣∣Yobs,W

∼ N

 Y obs
c · Nc ·10000

Nc ·10000+100
Y obs

t · Nt ·10000
Nt ·10000+64

 ,( 1
Nc/100+1/10,000

0 1
Nt/64+1/10,000

) .
(23)
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An Analytic Example with Six Units: Step 2

Substituting the appropriate values from the six-unit data set in Table 8.2, with
Y obs

c = 4.1 and Nc = 3, we find that µc has a Gaussian posterior distribution with
mean equal to 4.1 and variance equal to 33.2 = 5.82.

Following the same argument for µt , with Y obs
t = 12.8 and Nt = 3, we find that µt

has a Gaussian posterior distribution with mean 12.8 and variance 21.3 = 4.62, so that:(
µc
µt

)∣∣∣∣∣Yobs,W ∼ N
((

4.1
12.8

)
,

(
5.82 0
0 4.62

))
. (24)
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An Analytic Example with Six Units: Step 2
The choice of prior distribution has had little effect on any of the moments of the
posterior distribution of (µc , µt).

In particular, notice in (24) that the mean values for µc and µt are equal, up to the
first significant digit, to the observed average values, Y obs

c and Y obs
t .

The posterior distribution, proportional to the product of the prior distribution for
(µc , µt) and the marginal distribution of Yobs, puts weight on each factor proportional
to their precisions, i.e., the inverse of their variances.

Our choice of prior distribution—with such large posited variances—implies giving
almost all of the weight to the observed data, Y obs

c and Y obs
t . This choice was made

specifically to impose little structure through our assumptions, instead allowing the
observed data the primary voice for the ultimate posterior distribution of τ .
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An Analytic Example with Six Units: Step 3

Now we combine the conditional distribution of Ymis given (Yobs,W, µc , µt), given in
(20), and the posterior distribution of (µc , µt), given (Yobs,W), given in (23), to
obtain the conditional distribution of Ymis given (Yobs,W).

Because the distribution of Ymis given (Yobs,W, µc , µt), and the distribution of
(µc , µt) given (Yobs,W) are Gaussian, it follows that the joint distribution of
(Ymis, µc , µt) given (Yobs,W) is normal, and thus the marginal distribution of Ymis

given (Yobs,W) is normal.

Hence, all we need to do is derive the first two moments of this distribution in order to
characterize it fully.
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An Analytic Example with Six Units: Step 3

First consider the mean of Y mis
i given (Yobs,W). Conditional on (Yobs,W, µc , µt), we

have, using (21):
E
[
Y mis

i |Yobs,W, µc , µt
]

= Wi · µc + (1−Wi ) · µt .

In addition, from (23), we have

E
[(

µc
µt

)∣∣∣∣∣Yobs,W
]

=

 Y obs
c · Nc ·10000

Nc ·10000+100
Y obs

t · Nt ·10000
Nt ·10000+64


Hence
E
[
Y mis

i |Yobs,W
]

= Wi ·
(

Y obs
c · Nc · 10000

Nc · 10000 + 100

)
+(1−Wi )·

(
Y obs

t · Nt · 10000
Nt · 10000 + 64

)
.

(25)
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An Analytic Example with Six Units: Step 3

Next, consider the variance. By the law of iterated expectations,
V
(
Y mis

i |Yobs,W
)

= E
[
V
(
Y mis

i |Yobs,W, µc , µt
)
|Yobs,W

]
+V

(
E
[
Y mis

i |Yobs,W, µc , µt
]
|Yobs,W

)
= E

[
Wi · 100 + (1−Wi ) · 64|Yobs,W

]
+ V

(
Wi · µc + (1−Wi ) · µt |Yobs,W

)
= Wi ·100+(1−Wi ) ·64+Wi ·

1
Nc/100 + 1/10000 +(1−Wi ) ·

1
Nt/64 + 1/10000

= Wi ·
(
100 + 1

Nc/100 + 1/10000

)
+(1−Wi )·

(
64 + 1

Nt/64 + 1/10000

)
. (26)
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An Analytic Example with Six Units: Step 3

Conditional on µc , µt the missing outcomes are independent. However, the fact that
they depend on common parameters introduces some dependence.

Thus, we also need to consider the covariance between Y mis
i and Y mis

i ′ , for i 6= i ′:
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An Analytic Example with Six Units: Step 3

C(Y mis
i ,Y mis

i ′ |Yobs,W) = E
[
C(Y mis

i ,Y mis
i ′ |Yobs,W, µc , µt)

∣∣∣Yobs,W
]

+C
(
E[Y mis

i |Yobs,W, µc , µt ],E[Y mis
i ′ |Yobs,W, µc , µt ] |Yobs,W

)
= 0 + C

(
Wi · µc + (1−Wi ) · µt ,Wi ′ · µc + (1−Wi ′) · µt |Yobs,W

)

= Wi ·Wj ·
1

Nc/100 + 1/10000 + (1−Wi ) · (1−Wj) ·
1

Nt/64 + 1/10000 . (27)
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An Analytic Example with Six Units: Step 3

Putting this all together we find



Y mis
1

Y mis
2

Y mis
3

Y mis
4

Y mis
5

Y mis
6



∣∣∣∣∣∣∣∣∣∣∣∣∣
Yobs,W ∼ N





12.8
4.1
12.8
4.1
12.8
4.1


,



85.3 0 21.3 0 21.3 0
0 133.2 0 33.2 0 33.2

21.3 0 85.3 0 21.3 0
0 0 0 133.2 0 33.2

21.3 0 21.3 0 85.3 0
0 33.2 0 33.2 0 133.2




.

(28)
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An Analytic Example with Six Units: Step 4
In this example, we are interested in:

τS = τ(Y(0),Y(1)) = 1
N

N∑
i=1

(Yi (1)− Yi (0)) .

Using (3), we can write this in terms of the missing and observed outcomes as

τS = τ(Ymis,Yobs,W) = 1
N

N∑
i=1

(1− 2 ·Wi ) · Y mis
i + 1

N

N∑
i=1

(2 ·Wi − 1) · Y obs
i .

Conditional on (Yobs,W) the only stochastic components of this expression are the
Y mis

i .

Because τS is a linear function of Y mis
1 , . . . ,Y mis

6 , the fact that the Y mis
i are jointly

normally distributed implies that τS has a normal distribution.
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An Analytic Example with Six Units: Step 4

We use the results from Step 3 to derive the first two moments of τS given (Yobs,W).
The conditional mean is

E
[
τS|Yobs,W

]
= 1

N

N∑
i=1

(2 ·Wi − 1) · Y obs
i + 1

N

N∑
i=1

(1− 2 ·Wi ) · E
[
Y mis

i |Yobs,W
]

= Nt
N · Y

obs
t − Nc

N · Y
obs
c

+ 1
N

N∑
i=1

(1−2·Wi )·
(

Wi

(
Y obs

c
Nc · 10000

Nc · 10000 + 100

)
+ (1−Wi )

(
Y obs

t
Nt · 10000

Nt · 10000 + 64

))

= Y obs
t · Nt · 10000 + 64 · Nt/N

Nt · 10000 + 64 − Y obs
c · Nc · 10000 + 100 · Nc/N

Nc · 10000 + 100 .
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An Analytic Example with Six Units: Step 4
Next, consider the conditional variance of τS.

Because τS is a linear function of the Y mis
i , the variance is a linear combination of the

variances and covariances:

V(τS|Yobs,W) = 1
N2

N∑
i=1

V
(

(1− 2 ·Wi ) · Y mis
i |Yobs,W

)

+ 1
N2

N∑
i=1

∑
i ′ 6=i

C
(

(1− 2 ·Wi ) · Y mis
i , (1− 2 ·Wi ′) · Y mis

i ′ |Yobs,W
)

= 1
N2

(
Nt ·

(
100 + 1

Nc/100 + 1/10, 000

)
+ Nc ·

(
64 + 1

Nt/64 + 1/10, 000

))
+ 1

N2

(
Nt · (Nt − 1) · 1

Nc/100 + 1/10, 000 + Nc · (Nc − 1) · 1
Nt/64 + 1/10, 000

)
.
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An Analytic Example with Six Units: Step 4

Substituting in the values for the six-unit data set, we find

τS|Yobs,W ∼ N
(
8.7, 5.22

)
. (29)

Note that our point estimate is very similar to the value we found previously in the two
imputation methods.

In contrast, the standard error estimated under the second method (the first method
essentially gave a standard error of zero for the estimate) was only 2.8.

This difference is driven by the fact that with the second method, we still assumed we
knew the model of Ymis given Yobs with certainty, whereas here we allow uncertainty
via the estimation of the parameter θ = (µc , µt).
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Simulation Methods In the Model-based Approach

So far our calculations have all been analytic. In many settings this approach is
infeasible, or at least impractical.

Depending on the model for the joint distribution of the potential outcomes, the
calculations required to derive the conditional distribution of the estimand τ given the
observed data—in particular, the integration across the parameter space—can be quite
complicated.

We therefore generally rely on simulation methods for evaluating the distribution of the
estimand of interest.

These simulation methods intuitively link the full model-based approach back to the
starting point of the chapter: the explicit imputation of the missing components of the
causal estimand.
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Simulation Methods In the Model-based Approach

The two key elements are f (Ymis|Yobs,W, µc , µt), derived in Step 1, and
p(µc , µt |Yobs,W), derived in Step 2.

Using these distributions, we can distributionally impute the missing data; that is, we
repeatedly (or multiply) impute the missing potential outcomes.

Here, we continue with the example with six individuals to illustrate these ideas. See
Appendix B for a more general example.
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Simulation Methods In the Model-based Approach

First, recall the posterior distribution of the parameters given data for the six units in
our illustrative sample, derived in Step 2:(

µc
µt

)∣∣∣∣∣Yobs,W ∼ N
((

4.1
12.8

)
,

(
5.82 0
0 4.62

))
.

We draw a pair of random values (µc , µt) from this distribution. Suppose the first pair
of draws is (µ(1)

c , µ
(1)
t ) = (1.63, 5.09).

Given this draw for the parameters (µc , µt), we can substitute these values into Ymis,
f (Ymis|Yobs,W, µc , µt), to impute, independently, all of the missing potential
outcomes.
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Simulation Methods In the Model-based Approach

Specifically, we draw Ymis from the normal distribution

Y mis
1

Y mis
2

Y mis
3

Y mis
4

Y mis
5

Y mis
6



∣∣∣∣∣∣∣∣∣∣∣∣∣
Yobs,W, θ ∼ N





5.09
1.63
5.09
1.63
5.09
1.63


,



64 0 0 0 0 0
0 100 0 0 0 0
0 0 64 0 0 0
0 0 0 100 0 0
0 0 0 0 64 0
0 0 0 0 0 100




.

Thus, the missing Yi (0) values for units 2, 4 and 6 will be drawn independently from a
N (1.63, 102) distribution, and the missing Yi (1) values for units 1, 3, and 5
independently from a N (5.09, 82) distribution. See panel A i Table 8.5
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Table 8.5 The Average Treatment Effect Using Full Model-Based Imputations For the Data from Table 8.2
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Simulation Methods In the Model-based Approach

Next we draw a new pair of parameter values. Suppose this time we draw
(µ(2)

c , µ
(2)
t ) = (6.01, 13.58).

The missing Yi (0) values are now drawn independently from a N (6.01, 100)
distribution, and the missing Yi (1) values independently from a N (13.58, 64)
distribution.

Panel B of Table 8.5. shows the data with the missing outcomes drawn from these
distributions.

To derive the full distribution for our estimate of τS, we repeat this a number of times
and calculate the average and standard deviation of the imputed estimators
τ̂ (1), τ̂ (2), . . ..
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Simulation Methods In the Model-based Approach

Our result, based on NR = 10, 000 draws of the pair is

1
NR

NR∑
r=1

τ
(r)
S = τ = 8.6, 1

NR − 1

NR∑
r=1

(
τ

(r)
S − τ

)2
= 5.32.

Notice that the simulated mean and standard deviation are quite close to the
analytically-calculated mean and variance given in Equation (29).

Hence we lose little precision by using simulation in place of the usually more
complicated analytical calculation.
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Dependence Between Potential Outcomes

As discussed, the most critical decision in the model-based approach is the
specification of f (Yi (0),Yi (1)|θ).

In the example we used a joint normal distribution with a known covariance matrix.

For simplicity, we assumed no dependence between the two potential outcomes—the
cross-terms of the covariance matrix were equal to zero.

Typically it is more appropriate to choose a model in which the elements of the
covariance matrix are also unknown.

In this case, the correlation coefficient ρ, or more generally, the parameters reflecting
the degree of dependence between Yi (0) and Yi (1) requires special consideration.
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Dependence Between Potential Outcomes

Suppose, in contrast to the earlier model, we assume:

f (Yi (0),Yi (1)|θ) ∼ N
((

µc
µt

)
,

(
σ2c ρσcσt

ρσcσt σ2t

))
,

where now the parameter vector is θ = (µc , µt , σ
2
c , σ

2
t , ρ)′.

In this setting,the conditional distribution of Y obs
i given (W, θ) is

f (Y obs
i |W, θ) = 1√

2π · ((1−Wi ) · σ2c + Wi · σ2t )

× exp

−1
2


(
Y obs

i − (1−Wi ) · µc −Wi · µt
)2

(1−Wi ) · σ2c + Wi · σ2t


 . (30)
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Dependence Between Potential Outcomes

The corresponding likelihood function is

L(µc , µt , σ
2
c , σ

2
t , ρ|Yobs,W) =

6∏
i=1

1√
2π · ((1−Wi ) · σ2c + Wi · σ2t )

× exp
[
−1
2

( 1
(1−Wi ) · σ2c + Wi · σ2t

(
Y obs

i − (1−Wi ) · µc −Wi · µt
)2)]

.

Note that the likelihood function does not depend on the correlation coefficient ρ; it is,
in fact, completely unchanged from the corresponding expression.

In other words, the data contain no information about the correlation between the
potential outcomes.
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Dependence Between Potential Outcomes

Suppose, in addition, that the prior distribution of the parameters θ can be factored
into a function of the correlation coefficient times a function of the remaining
parameters:

p(θ) = p(ρ) · p(µc , µt , σ
2
c , σ

2
t ).

In combination with the fact that the likelihood function is free of ρ, this implies that
the posterior distribution of the correlation coefficient will be identical to its prior
distribution.

Considering similar discussions in earlier chapters, for example the difficulty in
estimating the variance of the unit-level treatment effects in Chapter 6, this result
should not be surprising. We never simultaneously observe both potential outcomes for
any unit, and thus we have no empirical information on their dependence.
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Dependence Between Potential Outcomes

To understand the implications of this change in assumptions, let us estimate the
average treatment effect under the same model, except now assuming a correlation
coefficient equal to 1.

With the variances still known, σ2t = 100 and σ2t = 64, the parameter vector is again
θ = (µc , µt).

The distribution of the potential outcomes is now(
Yi (0)
Yi (1)

)∣∣∣∣∣ θ ∼ N
((

µc
µt

)
,

(
100 80
80 64

))
.
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Dependence Between Potential Outcomes

Using the same steps as earlier, we can derive the joint distribution:(
Y mis

i
Y obs

i

) ∣∣∣∣W, µc , µt ∼ N
((

Wi · µc + (1−Wi ) · µt
(1−Wi ) · µc + Wi · µt

)
,

(
Wi · 100 + (1−Wi ) · 64 80

80 (1−Wi ) · 100 + Wi · 64

))
.

This distribution is almost equal to the previously calculated joint distribution for
(Ymis,Yobs), seen in Equation (18), except that the cross-terms in the covariance
matrix are now also non-zero.
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Dependence Between Potential Outcomes

Using this joint distribution, we can derive the conditional distribution:

Y mis
i |Yobs,W, µc , µt ∼ (31)

∼ N
(

Wi ·
(
µc + 80

64 · (Y
obs
i − µt)

)
+ (1−Wi ) ·

(
µt + 80

100 · (Y
obs
i − µc)

)
, 0
)
.

This conditional distribution is quite different from the one derived for the case with
ρ = 0, given in (19).

Here the conditional variance is zero; because we assume a perfect correlation between
Yi (0) and Yi (1), it follows that given (Y obs

i , µc , µt) we know the exact value of Y mis
i .
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Dependence Between Potential Outcomes

However, our interest is not in this conditional distribution. Rather, we need the
distribution of Ymis given (Yobs,W).

To derive this distribution, we need the posterior distribution of (µc , µt).

Here it is key that f (Yobs|W, θ) is unaffected by our assumption on ρ. (Compare
Equation (30), with σ2t = 102 and σ2t = 82, to Equation (22).)

Thus the likelihood function remains the same, and this is in fact true irrespective of
the value of the correlation coefficient.

If we assume the same prior distribution for θ, the posterior distributions for (µc , µt)
will be the same as that derived before and given in (23).
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Dependence Between Potential Outcomes

Because Y mis
i is a linear function of (µc , µt), normality of (µc , µt) implies normality of

Y mis
i .

The mean and variance of Y mis
i given (Yobs,W) are

E
[
Y mis

i |Yobs,W
]

= Wi ·
{

Y obs
c · Nc · 10000

Nc · 10000 + 100 + 80
64 ·

(
Y obs

i − Y obs
t · Nt · 10000

Nt · 10000 + 64

)}

+(1−Wi )·
{

Y obs
t · Nt · 10000

Nt · 10000 + 64 + 80
100 ·

(
Y obs

i − Y obs
c · Nc · 10000

Nc · 10000 + 100

)}
,

V
(
Y mis

i |Yobs,W
)

= Wi ·
{
V(µc) +

(80
64

)2
· V(µt)

}
+(1−Wi )·

{
V(µt) +

( 80
100

)2
· V(µc)

}
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Dependence Between Potential Outcomes

= Wi ·
{

1
Nc/100 + 1/10, 000 +

(80
64

)2
· 1

Nt/64 + 1/10, 000

}

+(1−Wi ) ·
{

1
Nt/64 + 1/10, 000 +

( 80
100

)2
· 1

Nc/100 + 1/10, 000

}
.

Finally, the covariance between Y mis
i and Y mis

i ′ , for i 6= i ′, is

C(Y mis
i ,Y mis

i ′ |Yobs,W) = Wi ·Wi ′ ·
(

1
Nc/100 + 1/10, 000 +

(80
64

)2
· 1

Nt/64 + 1/10, 000

)

−Wi · (1−Wi ′) ·
( 80
100 ·

1
Nc/100 + 1/10, 000 + 80

64 ·
1

Nt/64 + 1/10, 000

)
−(1−Wi ) ·Wi ′ ·

( 80
100 ·

1
Nc/100 + 1/10, 000 + 80

64 ·
1

Nt/64 + 1/10, 000

)

+(1−Wi ) · (1−Wi ′) ·
(

1
Nt/64 + 1/10, 000 +

( 80
100

)2
· 1

Nc/100 + 1/10, 000

)
.
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Dependence Between Potential Outcomes

Again, our ultimate interest is not in this conditional distribution, but in the
conditional distribution of the estimand given (Yobs,W). Using the average treatment
effect as our estimand, we have

τS = 1
N

N∑
i=1

(2·Wi−1)·
(
Y obs

i − Y mis
i

)
= 1

N

N∑
i=1

(2·Wi−1)·Y obs
i − 1

N

N∑
i=1

(2·Wi−1)·Y mis
i .

Thus τS|Yobs,W has a normal distribution, with mean

E
[
τS|Yobs,W

]
= 1

N

N∑
i=1

(2 ·Wi − 1) · Y obs
i + 1

N

N∑
i=1

(1− 2 ·Wi ) · E
[
Y mis

i |Yobs,W
]

= Y obs
t · Nt · 1000− 16 · Nt/N

Nt · 1000 + 64 − Y obs
c · Nc · 1000 + 20 · Nc/N

Nc · 1000 + 100 .
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and variance
V
(
τS|Y

obs
,W
)

=
1

N2

N∑
i=1

V
(

Y mis
i |Yobs

,W
)

+
1

N2

N∑
i=1

∑
i′ 6=i

C
(

Y mis
i , Y mis

i′ |Yobs
,W
)

=
Nt

N2 ·
{

1
Nc/100 + 1/10, 000

+
(

80
64

)2
·

1
Nt/64 + 1/10, 000

}
+

Nc

N2 ·
{

1
Nt/64 + 1/10, 000

+
(

80
100

)2
·

1
Nc/100 + 1/10, 000

}
+

Nt · (Nt − 1)
N2 ·

(
1

Nc/100 + 1/10, 000
+
(

80
64

)2
·

1
Nt/64 + 1/10, 000

)
−

2 · Nc · Nt

N2 ·
(

80
100
·

1
Nc/100 + 1/10, 000

+
80
64
·

1
Nt/64 + 1/10, 000

)
+

Nc · (Nc − 1)
N2 ·

(
1

Nt/64 + 1/10, 000
+
(

80
100

)2
·

1
Nc/100 + 1/10, 000

)
.

Causal Inference for Statistics, Social and Biomedical Sciences 84 / 114



Model-based Imputation in Completely Randomized Experiments The National Supported Work (NSW) Job Training Data
A Simple Example: Naive and More Sophisticated Approaches to Imputation

Dependence Between Potential Outcomes

Substituting the values for the six-units we find

τS|Yobs,W ∼ N
(
8.7, 7.72

)
.

Thus, with the sole modification of assuming a correlation coefficient fixed at one
rather than zero, leads to an estimated average treatment effect with approximately
the same mean, 8.7, but a standard deviation now equal to 7.7, somewhat larger than
the standard deviation of 5.2 calculated assuming independent potential outcomes.

Because the sample size is so small, the difference in posterior variances between these
two distributions is actually quite sizeable.
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Dependence Between Potential Outcomes

Because the data do not contain empirical information about the correlation between
the potential outcomes ρ is somewhat different from other parameters of the model.

This leaves us with the question of how they should be modeled. Sometimes we choose
to be “conservative” about this dependence and therefore assume the worst case.

In terms of the posterior variance, the worst case is often the situation of perfect
correlation between the two potential outcomes. Note that this mirrors our approach
in Chapter 6 in the discussion of Neyman’s repeated sampling approach.

On the other hand, researchers often wish to avoid contamination of the imputation of
Yi (0) under the active treatment by values of Yi (0) under the control treatment, and
vice versa, thus choosing to model the distributions of Yi (0) and Yi (1) as conditionally
independent in an approach that is conservative in a different sense.
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Model-based Imputation with Covariates

In the current setting, the presence of covariates in principle allows for improved
imputations of the missing missing outcomes because the covariates provide
information to help predict the missing potential outcomes.

Given covariates, the first step now consists of specifying a model for the joint
distribution of the two potential outcomes conditional on these covariates,
f (Y(0),Y(1)|X, θ).

Suppose, by appealing to de Finetti’s theorem, that the triples (Yi (0),Yi (1),Xi ) are
modeled as independent and identically distributed conditional on θ = (θY |X , θX ), as
we can always factor this distribution into the two components:

f (Yi (0),Yi (1),X |θ) = f (Yi (0),Yi (1)|X , θY |X ) · f (X |θX ), (32)
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Model-based Imputation with Covariates

Often we assume that θX s are distinct from θY |X , and specify the prior distribution as:

p(θY |X , θX ) = p(θY |X ) · p(θX ) (33)

Although this assumption is often made in practice, it is not always innocuous. (For
example when the covariates include a time series of previous (outcome) measurements
(33) may not hold.)

However, if (33) holds we only need to model f (Yi (0),Yi (1)|Xi , θ). (We drop the
indexing of θ by Y |X because there is only one parameter vector left.)
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Model-based Imputation with Covariates

The remainder of the steps are essentially unchanged.

We derive the conditional distribution of the causal estimand given the observed data
and parameters, now also conditional on the covariates.

We also derive the posterior distribution of the parameters given the observed potential
outcomes and covariates.

Let us consider an example with a scalar covariate. The models that we have studied
so far have had bivariate normal distributions:(

Yi (0)
Yi (1)

)
∼ N

((
µc
µt

)
,

(
σ2c 0
0 σ2t

))
. (34)
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Model-based Imputation with Covariates

One way to extend the previous model is to assume(
Yi (0)
Yi (1)

) ∣∣∣∣∣ Xi , θ ∼ N
((

Xiβc
Xiβt

)
,

(
σ2c 0
0 σ2t

))
, (35)

where we include the intercept in the vector of covariates.

Thus θ = (β′c , β′t , σ2c , σ2t )′, where βc = (βc , βxc) and βt = (βt , βxt) .

An alternative is to assume βxc = βxt , although in many situations such restrictions are
not supported by the data.

Notice that the covariates affect only the location of the distribution, not its
dispersion. This modeling assumption too can be relaxed.
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Model-based Imputation with Covariates

The remainder of the steps in the model-based approach with covariates are very
similar to those in the situation without covariates.

We can derive the distribution of the average treatment effect given observed variables
and parameters θ = (β′c , β′t , σ2c , σ2t )′.

For unit i the missing potential outcome has, given θ, the distribution

Y mis
i |Yobs,W,X, θ ∼ N

(
Wi · Xiβc + (1−Wi ) · Xiβt ,Wi · σ2t + (1−Wi ) · σ2t

)
.

We combine this distribution with the posterior distribution of θ given (Y,W,X) to
obtain the joint posterior distribution of τ and θ, which we then use to get the
marginal posterior distribution of θ.
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Model-based Imputation with Covariates

If the prior distribution for θ factors into a function of (αc , βc , σ
2
t ) and a function of

(αt , βt , σ
2
t ), then we can factor the posterior distribution into a function of (αc , βc , σ

2
t )

and a function of (αt , βt , σ
2
t ), with the former depending only on the units with

Wi = 0, and the latter depending only on units with Wi = 1.

In situations with covariates, analytic solutions are difficult to obtain. In practice, we
use simulation methods to obtain draws from the posterior distribution of the causal
estimand.
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Superpopulation Average Treatment Effects

So far, we have focused on τS =
∑N

i=1(Yi (1)− Yi (0))/N.

Suppose instead that we view these observations as a random sample from an infinite
super-population, and that our interest lies in:

τSP = ESP[Yi (1)− Yi (0)].

As in Chapter 6 (where we used Neyman’s approach with a super-population), we can
modify the model-based approach in conducting inference for this different estimand.

Given a fully specified model for the potential outcomes, τSP can sometimes be
expressed solely as a function of the parameters.
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Superpopulation Average Treatment Effects

For example, in the normal linear model we can write:

τSP = τ(θ) = ESP [Yi (1)− Yi (0)| θ] = µt − µc .

In general, the population average treatment effect can be defined through the model
for the joint distribution of the potential outcomes as

τ(θ) =
∫ ∫

(y(1)− y(0)) f (y(1), y(0)|θ)dy(1)dy(0).

If there are covariates, the estimand may depend on both the parameters and the
distribution of covariates, e.g.,

τSP = ESP [τ(θ,X)] , where τ(θ,X) = ESP [Yi (1)− Yi (0)|X, θ] .
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Superpopulation Average Treatment Effects

The representation in the linear model makes inference for the τSP conceptually
straightforward.

As before, we draw randomly from the derived posterior distribution for θ.

Then, instead of using this draw θ(1) to draw from the conditional distribution of Ymis,
f (Ymis|Yobs,W, θ(1)), we simply use the draw to calculate the average treatment
effect directly: τ (1) = τ(θ(1)).

Using NR draws from the posterior distribution of θ (given the observed data) gives us
{τ̂ (r)

SP , r = 1, . . . ,NR}.

The average and sample variance of these NR draws give us estimates of the posterior
mean and variance of the population average treatment effect.
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Superpopulation Average Treatment Effects

Using the same six observations, let us see how the results for the τSP differ from those
for the τS

As previously derived, the joint posterior distribution for θ = (µc , µt)′ is equal to(
µc
µt

)∣∣∣∣∣Yobs,W ∼ N
((

4.1
12.8

)
,

(
33.2 0
0 21.3

))
.

The posterior distribution for τSP = µt − µc is therefore

µt − µc |Yobs,W ∼ N
(

(12.8− 4.1), (33.2 + 21.3 + 2 · 0)
)
∼ N

(
8.7, 7.42

)
.

Hence the posterior mean of τSP is 8.7, identical to the posterior mean of the sample
average treatment effect τ .
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Superpopulation Average Treatment Effects

The posterior standard deviation for the population average treatment effect is 7.4.

The standard deviation in the estimation of τS was equal to 5.2 (ρ = 0) and 7.7
(ρ = 1).

Compared to estimating τS , estimating τSP is, unsurprisingly, more demanding.

Even if we could observe all elements of Y(0) and Y(1) in our experiment — allowing
us to calculate the τS =

∑N
i=1(Yi (1)− Yi (0))/N with certainty — we would still be

uncertain about τSP from which our sample was taken.
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Superpopulation Average Treatment Effects

This result mirrors the discussion in Chapter 6, where we showed that using the
worst-case scenario assumption of perfect correlation not only gave a “conservative”
estimate of the sampling variance for τS, but also provided an unbiased estimate of the
sampling variance of τSP.

Note that as τSP = µt − µc does not depend on ρ, the value of ρ becomes
unimportant.

Because the likelihood function of the observed data does not depend on ρ either, the
posterior distribution for τ will not depend on the prior distribution for ρ, when the
prior distribution of θ has ρ and (µc , µt) marginally independent.
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A Frequentist Perspective

So far this discussion has taken an exclusively Bayesian perspective because this is
particularly convenient for the problem at hand; it treats the uncertainty in the missing
potential outcomes in the same way that it treats the uncertainty in the unknown
parameters.

In contrast, from the standard frequentist perspective, the unknown parameters are
taken as fixed quantities, always to be conditioned on, whereas the potential outcomes,
missing and observed, are considered unobserved and observed random variables given
parameters, respectively.

Nevertheless, as in many other instances,inferences based on Bayesian and frequentist
perspectives are often close in substantive terms, with Bayesian posterior intervals
often having good repeated sampling coverage rates, and it is instructive to understand
both perspectives.
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A Frequentist Perspective

Here we therefore outline the frequentist perspective in greater detail, focusing on the
case where the estimand of interest is τSP(θ).

Suppose, as before, we specify the joint distributions of Yi (0) and Yi (1) in terms of a
parameter vector θ.

As we saw τSP = E[Yi (1)− Yi (0)|θ] and that this can be expressed as a function of
the parameters, τSP(θ).

Consider first the situation without covariates, where the joint distribution of the two
potential outcomes is bivariate normal with means µc and µt , with both variances
equal to σ2, and the correlation coefficient equal to zero.

In this case the function τSP(θ) is simply τSP = µt − µc .
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A Frequentist Perspective

In fact, given that we are interested in the average treatment effect, we can
reparameterize θ as θ̃ = (µc , τSP, σ

2), where τSP = µt − µc .

The estimand of interest now equals one of the elements of our parameter vector, and
the inferential problem is now simply one of estimating θ̃ and its associated precision.

Taking this approach, we can make a direct connection to linear regression.

The conditional distribution of the observed potential outcomes given the assignment
and parameter vectors is now independent and identically distributed as

Y obs
i |W, θ̃ ∼ N (µc + Wi · τSP, σ

2).
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A Frequentist Perspective

Hence we can simply estimate the population average treatment effect, τSP, by OLS,
with the OLS standard errors providing the appropriate measure of uncertainty for τ̂SP.

Although this seems very appealing, it is somewhat misleading in its simplicity.

Often, statistical models, convenient for modeling the joint distribution of the potential
outcomes cannot be parameterized easily in terms of the average treatment effect.

In that case, τSP will generally be a more complex function of the parameter vector.
Nevertheless, in general we can still obtain maximum likelihood estimates of θ, and
thus of τSP(θ), as well as estimates of the large sample precision of τSP(θ).
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A Frequentist Perspective

To see how this would work in a slight modification of the linear model, suppose, for
example, that the model is specified on the logarithm of the potential outcomes:(

ln(Yi (0))
ln(Yi (1))

) ∣∣∣∣θ ∼ N
((

µc
µt

)
,

(
σ2c 0
0 σ2t

))
.

The population average treatment effect is now equal to

τSP = τ(θ) = exp
(
µt + 1

2 · σ
2
t

)
− exp

(
µc + 1

2 · σ
2
c

)
. (36)

Using this model, to estimate τSP we would first obtain maximum likelihood estimates
of the parameters, θ = (µc , µt , σ

2
c , σ

2
t ).
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A Frequentist Perspective

Next we substitute these estimates to obtain τ̂SP = τ(θ̂).

To calculate the asymptotic precision of our estimator, requires, for example, that we
first calculate the full large sample sampling covariance matrix for θ (e.g., using the
Fisher information matrix), followed by the application of the delta method (i.e., Taylor
series approximations) to derive the asymptotic variance for τ̂SP.

In this example, the frequentist approach has been only slightly more complicated than
in the simple linear model.

Often when there are covariates, however, these transformations of the original
parameters become quite complex. The temptation is to choose models that make this
transformation as simple as possible, as in the linear examples above.
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A Frequentist Perspective

We stress, however, that the role of the statistical model is solely to provide a good
description of the joint distribution of the potential outcomes.

This is conceptually distinct from being parameterized conveniently in terms of the
estimand of interest.

The possible advantage of the frequentist approach is that it avoids the need to specify
the prior distribution p(θ).

However, this does not come for free. Nearly always one has to rely on large sample
approximations to justify the derived frequentist confidence intervals.

But in large samples, by the Bernstein-Von Mises theorem, the implications of the
choice of p(θ) is limited, and the alleged benefits of the frequentist approach vanish.
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Model-based Estimates of the Effect of the NSW Program

We focus on a couple of aspects of the modeling approach, and in particular, the
sensitivity to the choice for the joint distribution of the potential outcomes.

We will not discuss in detail the choice of prior distribution for the Bayesian approach.

For the simple models we use here, standard diffuse prior distributions are available.
They perform well and the results are not sensitive to modest deviations from them.

We consider four specifications for the joint distribution of the potential outcomes
given covariates.

For each model, we report in Table 8.6 the posterior mean and posterior standard
deviation for the average effect τS, and the treatment minus control differences in
quantiles by treatment status for the 0.25, 0.50, and 0.75 quantiles.
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Table 8.6: Posterior Means and Standard Deviations for Average Treatment Effects τS for NSW Data
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Model-based Estimates of the Effect of the NSW Program

The first row presents results from the following model:

(
Yi (0)
Yi (1)

) ∣∣∣∣∣ Xi , θ ∼ N
((

µc
µt

)
,

(
σ2 σ2

σ2 σ2

))
, (37)

We take the parameters θ = (µc , µt , σ
2) to be independent a priori.

The prior distributions for µc and µt , are normal with zero means and variances equal
to 1002, the standard deviations of 100 being large relative to the scale of the data.
(the earnings variables are measured in thousands of dollars, and range from 0 to 60.3).

The prior distribution for σ2 is inverse gamma with parameters 1 and 0.01 respectively.
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Model-based Estimates of the Effect of the NSW Program

For the results reported in the second row again we let:(
Yi (0)
Yi (1)

) ∣∣∣∣∣ Xi , θ ∼ N
((

µc
µt

)
,

(
σ2c 0
0 σ2t

))
, (38)

The prior distributions for µc and µt , are, as before, normal with zero means and
variances equal to 1002.

The prior distributions for σ2t and σ2t are inverse gamma with parameters 1 and 0.01
respectively.
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Model-based Estimates of the Effect of the NSW Program

In the third row we allow for linear dependence of the conditional means of the
potential outcomes on covariates:(

Yi (0)
Yi (1)

) ∣∣∣∣∣ Xi , θ ∼ N
((

Xiβc
Xiβt

)
,

(
σ2c 0
0 σ2t

))
. (39)

For the parameters βc and βt , we assume prior independence from the other
parameters, as well as independence from each other. The prior distributions are
specified to be normal with zero means and variance equal to 1002.

The prior distributions for σ2c and σ2t are the same as before. The posterior mean for
the average effect is now 1.60 with a posterior standard deviation equal to 0.47.
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Model-based Estimates of the Effect of the NSW Program
These models are therefore implausible as descriptions of the distribution of the
potential outcomes, given the high proportion of zeros in the observed outcomes (equal
to 31%).

To take this into consideration the results in the forth row is from a model with two
parts of the conditional distribution. First, the probability of a positive value for Yi (0)
is

Pr (Yi (0) > 0|Xi ,Wi , θ) = exp(Xiγc)
1 + exp(Xiγc) , (40)

and similarly for Yi (1):

Pr (Yi (1) > 0|Xi ,Wi , θ) = exp(Xiγt)
1 + exp(Xiγt) .
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Model-based Estimates of the Effect of the NSW Program

Second, conditional on a positive outcome, the logarithm of the potential outcome is
assumed to have a normal distribution:

ln (Yi (0)) |Yi (0) > 0,Xi ,Wi , θ ∼ N
(
Xiβc , σ

2
c

)
, (41)

and
ln (Yi (1)) |Yi (1) > 0,Xi ,Wi , θ ∼ N

(
Xiβt , σ

2
t

)
.

Table 8.7 reports posterior means and standard deviations for all parameter estimates
in the last model.
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Table 8.7: Posterior Distributions for Parameters for Normal/Logistic Two- Part Model
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Model-based Estimates of the Effect of the NSW Program

To put the model-based results in perspective:

The average effect of the training program on annual earnings in thousands of dollars
was estimated to be τ̂FS = 1.79, with an estimated standard error of 0.63 based on
Vneyman.

Adjusting for all ten covariates from Table 8.1 using OLS (including an intercept), an
indicator for the treatment and the ten covariates, changes the estimate to 1.67 (with
a standard error equal to 0.64).
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