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Pairwise Randomized Experiments

Introduction

This chapter considers a special case of the SRE.

Each stratum contains exactly two units, with one randomly selected to be assigned to
the treatment group, and the other one assigned to the control group.

The design is known as a pairwise randomized experiment (PRE) or paired comparison.

There are two features of this design that warrant special attention.
1 The Neyman sampling variance estimator cannot be used as that estimator
requires the presence of at least two units assigned to each treatment in each
stratum.

2 Each stratum has the same proportion of treated units, which allows us to analyze
the within-stratum estimates symmetrically; the natural estimator for the average
treatment effect weights each stratum equally.
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Pairwise Randomized Experiments

Introduction

As in the case of SRE, the motivation in a PRE is that of a priori removing the
assignment vectors that are expected to lead to less informative inferences.

This argument relies on the within-pair variation in potential outcomes being small
relative to the between-pair variation. Often the assignment to pairs is based on
covariates.

Units are matched to other units based on their similarity in these covariates.

Suppose, for example, that the treatment is an expensive surgical procedure for a
relatively common condition. It may not be financially feasible to apply the treatment
to many individuals.
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Pairwise Randomized Experiments

Introduction

To increase the precision of an experiment, it may, in such cases, be sensible to
randomly draw J individuals from the target population of individuals who have the
condition for which the surgery may be beneficial.

Then, for each of these J individuals, find a matching individual in the same
population, as similar as possible to the original unit in terms of the characteristics
that may be correlated with potential outcomes and efficacy of the treatment.

If the population is relatively large, it may be possible to get very close matches with
respect to a large number of characteristics.

Given these J matched pairs, one can then conduct a PRE by randomly selecting one
member of each pair to be assigned to the active treatment.
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Pairwise Randomized Experiments

Introduction

In this lecture we will discuss the analyses of such PRE using the FEP, Neyman’s
repeated sampling, as well as regression and model-based inference.

The data to illustrate the concepts discussed is from a randomized experiment
designed by Samuel Ball, Gary Bogatz, Donald Rubin, and Albert Beaton (1973) to
evaluate “The Electric Company,” an educational television program aimed at
improving reading skills for young children, somewhat similar to Sesame Street.
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Pairwise Randomized Experiments

The Children’s Television Workshop Experiment

The experiment was conducted in two locations, Youngstown, Ohio, and Fresno,
California where the Electric Company was not broadcast on local stations. In each
location a number of schools was selected.

Here we focus on the data from Youngstown where two first grade classes from each of
eight schools participated in the experiment.

The data for the 16 classes for the Youngstown location from this experiment are
displayed in Table 10.1
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Pairwise Randomized Experiments

Table 10.1: Data from Youngstown Children’s Television Workshop Experiment
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Pairwise Randomized Experiments
The number of units, N, is even, the number of strata is J = N/2, with one treated
unit and one control unit in each stratum so that each stratum is a pair.

Let Gi be the variable indicating the pair, with Pi ∈ {1, . . . ,N/2}, where Pi can be
thought of as a function of covariates.

Within each pair there are
(

N(j)
Nt(j)

)
=
(

2
1

)
= 2 possible assignments, so that

p(W|X,Y(0),Y(1)) =
N/2∏
j=1

(
N(j)
Ntj

)−1

=
N/2∏
j=1

1
2 = 2−N/2, for W ∈W+,

where

W+ =

W

∣∣∣∣∣∣
∑
i :Gi=j

Wi = 1 for j = 1, . . . ,N/2

 .
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Pairwise Randomized Experiments

For convenience label the two units within a pair as units “A” and “B”. Then, for all
pairs j = 1, . . . ,N/2, let (Yj,A(0),Yj,A(1)) and (Yj,B(0),Yj,B(1)) be the potential
outcomes for units A and B respectively in pair j , and let Wj,A and Wj,B be the
treatment indicators for these units.

As one unit in each pair is randomly assigned ‘treatment’ while the other is a ‘control’
Wj,A = 1−Wj,B, with Pr(Wj,A = 1|Y(0),Y(1),X) = 1/2.

Define also

Y obs
j,A =

{
Yj,A(0) if Wj,A = 0,
Yj,A(1) if Wj,A = 1, and Y obs

j,B =
{

Yj,B(0) if Wj,A = 1,
Yj,B(1) if Wj,A = 0,
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Pairwise Randomized Experiments

The average treatment effect within pair j is τpair(j),
τpair(j) = 1

2
∑
i :Gi=j

(
Yi(1)− Yi(0)

)
= 1

2
(

(Yj,A(1)− Yj,A(0)) + (Yj,B(1)− Yj,B(0))
)
.

The finite sample average treatment effect is

τS = 1
N

N∑
i=1

(
Yi(1)− Yi(0)

)
= 2

N

N/2∑
j=1

τpair(j).

Also define the pair of observed variables, one treated and one control from each pair:

Y obs
j,c =

{
Y obs
j,A if Wi ,A = 0,

Y obs
j,B if Wi ,A = 1, and Y obs

j,t =
{

Y obs
j,B if Wi ,A = 0,

Y obs
j,A if Wi ,A = 1.
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Table 10.2: Potential Outcomes and Covariates from Children’s Television Workshop Experiment
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Pairwise Randomized Experiments

Fisher’s Exact P-values in PRE:s

Let us focus in this discussion on the usual Fisher null hypothesis

H0 : Yi(0) = Yi(1), for all i = 1, . . . ,N.

With the assignment mechanism fully known, for any fixed statistic, one can derive the
randomization distribution and thus calculate the corresponding p-value.

An obvious statistic is:

T avg =

∣∣∣∣∣∣1J
J∑

j=1

(
Y obs
j,t − Y obs

j,c

)∣∣∣∣∣∣
=

∣∣∣∣∣∣1J
J∑

j=1

(
Wi ,A ·

(
Y obs
j,A − Y obs

j,B

)
+ (1−Wi ,A) ·

(
Y obs
j,B − Y obs

j,A

))∣∣∣∣∣∣ .
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Pairwise Randomized Experiments

Fisher’s Exact P-values in PRE:s

Because each pair has a single treated and a single control unit, this also equals the
‘traditional’ difference in means estimator: T avg =

∣∣∣Y obs
t − Y obs

c

∣∣∣.
The p-value for this statistic will be different than when this statistic is used under a
CRE because here the randomization distribution is based on the assignment
mechanism corresponding to a PRE, leading to fewer elements in W+ than under
complete randomization.

Alternative statistics include the average of within-pair differences in logarithms or
other transformations of the basic outcomes, such as ranks.
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Pairwise Randomized Experiments

Fisher’s Exact P-values in PRE:s

To calculate the rank statistic, let Ri be the rank of Y obs
i among the N values

Y obs
1 , . . . ,Y obs

N , normalized to have mean zero, and let Rj,A and Rj,B be the rank of
the A and B units in pair j , among all N units.

The ranks for the sixteen classes are displayed in the last column in Table 10.1.

The rank statistic is

T rank =
∣∣∣Rt − Rc

∣∣∣ =

∣∣∣∣∣∣1J
J∑

j=1
(Wj,A · (Rj,A − Rj,B) + (1−Wj,A) · (Rj,B − Rj,A))

∣∣∣∣∣∣ .
Using ranks in PRE:s has the same advantages as using ranks in CRE:s, namely
reducing the sensitivity to outliers.
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Fisher’s Exact P-values in PRE:s

Another statistic that is specific to PRE:s is based on the average within-pair rank of
the observed outcomes.

T rank,pair =

∣∣∣∣∣∣ 2N
N/2∑
j=1

(
1Y obs

j,1 >Y obs
j,0
− 1Y obs

j,1 <Y obs
j,0

)∣∣∣∣∣∣ ,
where 1Y obs

j,1 >Y obs
j,0

and 1Y obs
j,1 <Y obs

j,0
are indicators for whether the observed outcome for

the ‘treated’ (‘control’) is larger than the observed outcome for the ‘control’ (‘treated’).

When there is substantial variation in the level of the outcomes between the pairs,
T rank,pair has more power than the statistic T rank against alternatives under which the
treatment effect is constant.
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Pairwise Randomized Experiments

Fisher’s Exact P-values in PRE:s

Although the p-value is only valid for a single statistic, for illustrative purposes, we do
the analysis of testing H0 for three statistics.

T avg = 13.4, p = 0.031, T rank = 3.8, p = 0.031 and T rank,pair = 0.5, p = 0.145.

The reason that the p-value for the within-pair rank statistic is larger than for the
other statistics is that for the two pairs where the outcome for the treated unit is less
than the outcome for the control unit in the pair, the difference in outcomes is small.

These small differences do not affect the average difference much, but they do matter
for the within-pair rank statistic.

The other two p-values suggest that the television program did affect reading ability at
conventional significance levels.
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Pairwise Randomized Experiments

The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective

Consider first the analysis of the average treatment effect in a single pair. The obvious
estimator for the average treatment effect in pair j , τpair(j), is,

τ̂pair(j) = Y obs
j,t − Y obs

j,c =
∑
i :Gi=j

(2 ·Wi − 1) · Y obs
i .

The values of τ̂pair(j) for the eight pairs are displayed in the next slide.

Causal Inference for Statistics, Social and Biomedical Sciences 16 / 41
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Table 10.3: Observed Outcome Data from Children’s Television Workshop Experiment by Pair
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Pairwise Randomized Experiments

The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective
Next, let us consider inference, first for the within-pair average treatment effect
τpair(j).

For each pair we have a CRE with two units of which one unit is assigned to active
treatment.

From the results in Chapter 6 it follows that τ̂pair(j) is unbiased for τpair(j) and that
its sampling variance, based on the randomization distribution, is equal to

VW (τ̂pair(j)) = Sc(j)2

Nc(j) + S2
t (j)

Nt(j)
− Sct(j)2

N(j) .

With N(j) = 2 and Nc(j) = Nt(j) = 1, this expression simplifies to

VW (τ̂pair(j)) = Sc(j)2 + S2
t (j)− Sct(j)2

2 .
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The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective

The within-pair variances can be written as
S2
c (j) =

∑
i :Gi=j

(
Yi(0)− Y j(0)

)2
= 1

2 · (Yj,A(0)− Yj,B(0))2 ,

S2
t (j) =

∑
i :Pi=j

(
Yi(1)− Y j(1)

)2
= 1

2 · (Yj,A(1)− Yj,B(1))2 ,

and
S2
ct(j) = 1

2 · ((Yj,A(1)− Yj,A(0))− (Yj,B(1)− Yj,B(0)))2 ,

where
Y j(0) = 1

2 ·
(
Yj,A(0) + Yj,B(0)

)
and Y j(1) = 1

2 ·
(
Yj,A(1) + Yj,B(1)

)
.
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Pairwise Randomized Experiments

The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective
If the primary interest is in the finite sample average treatment effect, τS, that is, the
within-pair average treatment effect averaged over the N/2 pairs,

τS = 1
N/2

N/2∑
j=1

τpair(j),

the natural estimator is

τ̂dif = 1
N/2

N/2∑
j=1

τ̂pair(j) =
(
Y obs

t − Y obs
c

)
. (1)

By unbiasedness of the within-pair estimators, τ̂dif is unbiased for τS and

VW (τ̂dif) = 1
(N/2)2

N/2∑
j=1

(
S2
c (j) + S2

t (j)− S2
ct(j)
2

)
.
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Pairwise Randomized Experiments

The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective

So far the discussion is exactly analogous to the discussion for SRE.

In a CRE (and similarly, within a stratum in the SRE) the standard estimator for the
sampling variance for the observed difference in treatment and control averages is

V̂neyman
(
Y obs

t − Y obs
c

)
= s2

c
Nc

+ s2
t

Nt
,

with
s2
c = 1

Nc − 1
∑

i :Wi=0

(
Yi(0)− Y obs

c

)2
= 1

Nc − 1
∑

i :Wi=0

(
Y obs
i − Y obs

c

)2
,

and analogously
s2
t = 1

Nt − 1
∑

i :Wi=1

(
Y obs
i − Y obs

t

)2
.
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Pairwise Randomized Experiments

The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective

Because Nc = Nt = 1, these estimators, s2
c and s2

t , cannot be used, thus disabling the
standard estimator for the sampling variance.

One solution to this problem is to assume that the treatment effect is constant and
additive, not only within pairs, but also across pairs.

Then it follows that the within-pair sampling variance is

VW (τ̂pair(j)) = 2 · S2(j), where S2(j) = S2
c (j) = S2

t (j).
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The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective

Moreover, if the treatment effect is constant across pairs, τpair(j) = τS for all j , then
S(j)2 = S2 for all j , and

VW
(
τ̂dif

)
= 1

(N/2)2

N/2∑
j=1

(
S2
c (j) + S2

t (j)− S2
ct(j)
2

)
= 4

N · S
2,

which can be estimated as :

V̂pair
(
τ̂dif

)
= 4

N · (N − 2) ·
N/2∑
j=1

(
τ̂pair(j)− τ̂dif

)2
.

If there is heterogeneity in the treatment effects, then this estimator is upwardly biased
and the corresponding confidence intervals will be conservative in the usual sense.
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The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective

Theorem
Suppose we have J pairs of units, and randomly assign one unit from each pair to the active treatment and the other unit to the control treatment.
Then, (i) τ̂dif is unbiased for τS, (ii) the sampling variance of τ̂dif is

VW
(
τ̂

dif
)

=
1
N2

N/2∑
j=1

(
Yj,A(0) + Yj,A(1) −

(
Yj,B (0) + Yj,B (1)

))2
,

and (iii) the estimator for the sampling variance

V̂pair
(
τ̂

dif
)

=
4

N · (N − 2)
·

N/2∑
j=1

(
τ̂

pair(j) − τ̂
dif
)2
,

satisfies

E
[
V̂pair

(
τ̂

dif
)]

= VW (τ̂dif ) +
4

N · (N − 2)
·

N/2∑
j=1

(
τpair(j) − τ

)2
,

with the expected value equal to VW (τ̂dif ) if the treatment effect is constant across and within pairs.
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The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective
The average of the within-pair differences τ̂pair(j), displayed in Table 10.3 is

τ̂dif = 1
8 ·

8∑
j=1

τ̂pair(j) = 13.4,

and its estimated sampling variance is

V̂pair
(
τ̂dif

)
= 1

8 · (8− 1) ·
8∑

j=1

(
τ̂pair(j)− τ̂dif

)2
= 4.62.

The standard, normal distribution-based 95% confidence interval is

CI0.95(τS) =
(
τ̂ − 1.96×

√
V̂pair (τ̂dif), τ̂ + 1.96×

√
V̂pair (τ̂dif)

)
= (4.3, 22.5). (2)

CI0.95
t(7) (τS) =

(
τ̂ − 2.365×

√
V̂pair (τ̂dif), τ̂ + 2.365×

√
V̂pair (τ̂dif)

)
= (2.5, 24.3).

(3)
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The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective

Because we only have eight pairs of classes, one may wish to use a confidence interval
based on the t-distribution with degrees of freedom equal to N/2− 1 = 7,

CI0.95
t(7) (τS) =

(
τ̂ − 2.365×

√
V̂pair (τ̂dif), τ̂ + 2.365×

√
V̂pair (τ̂dif)

)
= (2.5, 24.3).

(4)
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The Analysis of PRE:s from Neyman’s Repeated Sampling Perspective
Suppose we had done a CRE, and had the same assignment vector. In that case we
would have the same point estimate, namely τ̂dif = Y obs

t − Y obs
c = 13.4.

However, we would have a different estimate of the sampling variance. Using the
standard Neyman estimated sampling variance we get

s2
c = 1

Nc − 1
∑

i :Wi=0

(
Y obs
i − Y obs

c

)2
= 18.52, and s2

t = 12.22,

and
V̂neyman = s2

c
8 + s2

t
8 = 7.82.

As this is substantially larger than V̂pair = 4.62 in this application, the assignment to
pairs is effective, in the sense that it is based on factors that make the within-pair units
substantially more similar than randomly selected units, probably leading to
substantially more precise estimates.
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Regression-based Analysis of PRE
In the discussions of regression-based analyses in CRE and SRE, the basic outcome in
the analysis was Y obs

i , the observed outcome for unit i .

Here, instead, we use as the primary outcome in the regression analysis the within-pair
difference in observed outcomes of the treated and the control unit in the pair,

τ̂pair(j) = Y obs
j,t − Y obs

j,c ,

with the pair serving as the unit of analysis.

We take a population perspective, where the pairs of units are drawn randomly from a
large population, and one member of each pair is randomly assigned to the treatment
group, and the other to the control group.

The population average treatment effect is τSP = ESP[τ(j)], with the expectation
taken over the random sampling of the pairs.
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Pairwise Randomized Experiments

Regression-based Analysis of PRE

The standard estimator for the average treatment effect in a pairwise randomized
experiment is the simple average of the within-pair differences,

τ̂dif = 2
N

N/2∑
j=1

τ̂pair(j).

This estimator can also be interpreted as a regression estimator, where the regression
function is specified simply as a constant:

τ̂pair(j) = τSP + εj .

The more interesting question is how to include additional covariates, beyond the
implicit use of the pair indicators, into the regression function.
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Regression-based Analysis of PRE

The goal when including additional covariates is to improve the precision of the
estimator in cases where the covariates are strongly correlated with the
treatment-control differences in potential outcomes.

Before discussing particular specifications, we first define Xj,A and Xj,B to be the
covariate values for unit A and B respectively within pair j . Then define the
within-pair observed difference in covariates between the treated and control units:

∆X ,j = (Wj,A · (Xj,A − Xj,B) + (1−Wj,A) · (Xj,B − Xj,A)) ,

and the average covariate value within the pair:

X j = (Xj,A + Xj,B) /2.
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Regression-based Analysis of PRE

There are two leading approaches to including the covariates in the regression analysis.
1 include them in the form of the within-pair difference ∆X ,j .

This makes sense if Xi is associated with both potential outcomes Yi(0) and Yi(1)
to approximately equal degrees.

2 include the average value of the covariates X j .
This is a natural specification if one thinks the treatment effect, rather than the level
of the potential outcomes, is linear in Xi .

The most general version of the regression function we consider includes the covariates
both as within-pair differences and pair averages, where the latter is in deviations from
the overall covariate mean X :

τ̂pair(j) = τ + β ·∆X ,j + γ · (X j − X ) + εj ,
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Regression-based Analysis of PRE
Let (τ∗, β∗, γ∗) be the population values:

(τ∗, β∗, γ∗) = arg min
τ,β,γ

E
[(
τ̂pair(j)− τ − β ·∆X ,j − γ · (X j − µX )

)2
]
,

where µX = ESP(X ) is the super population mean of Xi .

Here we use again the convention that the expectation operator without subscript is
over both the randomization distribution and over the distribution induced by the
random sampling from the super population.

Also let (τ̂ols, β̂ols, γ̂ols) be the least squares estimators,

(τ̂ols, β̂ols, γ̂ols) = arg min
τ,β,γ

N∑
i=1

(
τ̂pair(j)− τ − β ·∆X ,j − γ · (X j − X )

)2
.
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Regression-based Analysis of PRE

Theorem
Suppose we conduct a pairwise randomized experiment in a sample of pairs drawn at
random from the super population. Then, (i)

τ∗ = τSP,

and (ii),
√

N ·
(
τ̂ols − τSP

) d−→ N
(
0,ESP

[(
τ̂pair(j)− τ∗ − β∗ ·∆X ,j − γ∗ · (X j − µX )

)2
])

.
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Regression-based Analysis of PRE

Now let us estimate the average treatment effect using 4 different specifications.
(1) τ̂ols = 2

N
∑N/2

j=1 τ̂
pair(j) = τ̂dif

(2) τ̂pair(j) = τ + β ·∆X ,j + εj .

(3) τ̂pair(j) = τ + γ · X j + εj .

(4) τ̂pair(j) = τ + β ·∆X ,j + γ · (X j − X ) + εj

Note that in (1) we do not directly include the treatment indicator, because the unit of
the least squares analysis here is the pair, not the individual unit, thus (1) is equal to
the estimator in Equation (1).
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Regression-based Analysis of PRE

Applying (1) leads to
τ̂ols = 13.4 (ŝ.e. 4.3),

(2) leads to
τ̂pair(j) = 9.0 + 5.4 × ∆X ,j ,

(1.5) (0.6)

(3) leads to
τ̂pair(j) = 13.4 + 3.9 × X j .

(3.5) (1.7)

(4) leads to
τ̂pair(j) = 8.5 + 5.9 × ∆X ,j −1.0 × X j ,

(1.5) (0.8) (0.7)
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Model-based Analysis of PRE

The analysis of PRE is little different from that for the case of SRE

In both cases the analysis is based on stratum membership, Gi .

The starting point is, again, a model for the joint distribution of the potential outcomes
given the covariates, including the pair indicators, in terms of an unknown parameter θ:

f (Y(0),Y(1)|X,G, θ),

in combination with a prior distribution on θ,p(θ).

In combination with the known assignment mechanism, this allow us to obtain the
joint distribution Ymis given the observed data (X,G,Yobs,W), and thus allow us to
obtain the posterior distribution of the estimand of interest, e.g., the average effect of
the treatment.
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Model-based Analysis of PRE

First we assume that, conditional on (X,G,W) and θ, the potential outcomes are
independent by the usual appeal to De Finetti’s theorem:

f (Y(0),Y(1)|X,G,W, θ) =
N∏
i=1

f (Yi(0),Yi(1)|Xi ,Gi , θ).

The specific model we consider has a hierarchical structure, with pair-specific mean
parameters µj , for j = 1, . . . , J , that is,(

Yi(0)
Yi(1)

) ∣∣∣∣∣ Gi = j ,Xi = x , µ1, . . . , µN/2, γ, β, σ
2
c , σ

2
t

∼ N
((

µj + x · β
µj + γ + x · β

)
,

(
σ2
c 0
0 σ2

t

))
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Model-based Analysis of PRE

Note that given this model, γ corresponds to the super population average treatment
effect, τSP.

However, in this discussion we focus on inference for τS, by multiple imputing the
missing potential outcomes. For that reason, the interpretation of the parameters in
the statistical model is incidental.

Next, we specify a model for the pair specific means µj : µ1
...

µN/2


∣∣∣∣∣∣∣G,X,W, γ, β, σ2

c , σ
2
t , µ ∼ N


 µ

...
µ

 ,
 σ2

µ . . . 0
... . . . ...
0 . . . σ2

µ


 .
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Model-based Analysis of PRE

Even in simple cases, there are no analytic expressions for the posterior distributions for
estimands of interest in such hierarchical models.

However, as we discussed in Chapter 8, this is of no intrinsic importance.

For the analysis of Childrens Television Workshop data we specify independent prior
distributions for µ, σ2

µ, σ2
c , σ2

t , γ, and β.

For µ, γ and β, we use normal prior distributions centered at zero, with variance 1002.

For the three variance parameters (σ2
µ, σ

2
c , σ

2
t ), we use, again, inverse gamma

distributions, here with parameters 1 and 1.
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Model-based Analysis of PRE

The posterior mean and variance for the average treatment effect are

E[τS|Yobs,W,X,G] = 8.4, V(τS|Yobs,W,X,G) = 1.72

These estimates are quite similar to those for the regression model with the covariate
equal to difference in pretreatment variables, where we estimated the average effect to
be 9.0 with a standard error of 1.5.

Table 10.4 we report posterior means and standard deviations for all parameters.
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Table 10.4: Posterior Moments and Quantiles
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