
Lecture notes for Tsingua Workshop

Alex Blumenthal

Lecture 3: Hyperbolic attractors

Our goal in this lecture is to describe a class of systems for which physical measures exist, and to
sketch proofs of this property. Although these results are interesting, the techniques used in their
proofs are perhaps more so: the concept of stable holonomy, defined below, is a crucial component
in modern approaches to decay of correlations and other statistical properties for deterministic
dynamical systems with some hyperbolicity.

0.1 Basic properties

Definition 1. Let f : U → Rd be a diffeomorphism onto its image, where U ⊂ Rd is open. We say
that an open V ⊂ U is a absorbing set if f(V ) ⊂ V .

Lemma 2. Let V be an absorbing set and assume V is compact. Then,

A =
⋂
n≥0

fn(V )

is compact, nonempty, f -invariant (i.e. f(A) = A) and has the property that for all x ∈ V ,

dist(fnx,A)→ 0 as n→∞ .

Proof. Compactness and nonemptyness of A follows from the finite-intersection property and the
fact that fn(V ) is a decreasing sequence of compact sets.

For f -invariance:

f(A) =
⋂
n≥0

fn+1(V ) =
⋂
n≥1

fn(V ) =
⋂
n≥0

fn(V ) = A .

Finally, let x ∈ V and assume there exists a sequence nk → ∞ so that dist(fnkx,A) ≥ ε > 0
for some ε > 0. By a compactness argument, refine {nk} so that fnkx converges to some x∗ ∈ V .
Then, x∗ /∈ A by our contradiction hypothesis, and yet x∗ ∈ A must hold by definition of A.

Exercise 3. Recall the Smale solenoid map defined in Example ??. Show that the domain X =
S1 ×D is an absorbing set. The corresponding attractor is itself often called the Smale solenoid.

Definition 4. If Λ is the attractor corresponding to some absorbing set V and is also uniformly
hyperbolic for f , then we call Λ a uniformly hyperbolic attractor.

The following important lemma describes the local structure of a uniformly hyperbolic attractor
as a union of unstable leaves.

Lemma 5. Let Λ be a uniformly hyperbolic attractor and let x ∈ Λ. Then, the global unstable leaf
W u
x is contained in Λ.
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Proof. Take ε > 0 small enough so Ŵ u
x,r ⊂ V for all x ∈ Λ. Since A = ∩nfn(V ) and W u

x =
∪n≥0f

nW u
f−nx,r is an increasing union, it follows that W u

x ⊂ Λ.

Likewise, V \ Λ is foliated by stable manifolds through points of Λ.

Lemma 6. We have V ⊂ ∪x∈ΛW
s
x .

Proof. This follows from the fact that there is a neighborhood Ṽ ⊃ Λ for which Ṽ ⊂ ∪x∈ΛW
s
x . To

check this, one uses the fact that (i) W u
x,ε ⊂ Λ for all x, and that x 7→ W s

x,ε varies continuously in
x ∈ Λ. Might add more.

0.2 Physical measures for hyperbolic attractors

Theorem 7. Let f : U →M be a diffeomorphism and let Λ ⊂ U be a uniformly hyperbolic attractor
for f with absorbing set V ⊂ U . Assume f |Λ is topologically transitive (i.e., for all open U1, U2 ⊂ Λ,
there is some n ≥ 0 so that f−n(U1)∩U2 6= ∅). Then, there exists an f -invariant, ergodic measure
µ for which

lim
N→∞

1

N

N∑
i=1

φ ◦ f i(x) =

∫
φdµ

for all continuous φ : M → R and for Leb-almost every x ∈ V .

That is, uniformly hyperbolic attractors admit physical measures. The physical measure itself
is characterized by a geometric property called the SRB property (for Sinai, Ruelle and Bowen,
who discovered these measures) or alternatively Gibbs u-states.

Before defining the SRB property, let us motivate it with a heuristic discussion. Imagine that
we are trying to build a physical measure. It would be very natural to start with a Lebesgue ‘blob’
ν supported on a small open set U contained in the absorbing set V , and to take a weak limit of
the measures 1

N

∑N
n=1 f

n
∗ ν. As we push forward, the measures fn∗ ν become concentrated near the

attractor Λ, and hyperbolicity kicks in: we see stretching along unstable directions and contracting
along stable directions. Expansion has a ‘smoothing’ effect on the density, smearing in a controlled
and uniform way along Eu directions, while in Es directions the density can become more irregular
and ‘bunched up’. Whatever the limiting measure is, then, should have some ‘smoothness’ along
unstable directions / leaves, while being quite irregular and ‘lumpy’ along stable directions.

Remark 8. Although we will not pursue this tack, an argument of this kind was made rigorous
by Ruelle.

Exercise 9. In this exercise, we will get a grip on how expansion can ‘smooth out’ a density, while
contraction leads to ‘bunching up’.

(a) Consider the doubling map f : S1 → S1, fx = 2x mod 1. Let ρ : S1 → R≥0 be a Lipschitz
continuous density, i.e.,

∫
ρ(x)dx = 1. Let Lf denote the transfer operator, defined so that

f∗(ρdx) = (Lfρ)dx.1

– Show that

Lfρ(x) =
∑

y∈f−1x

1

2
ρ(y) .

1Given a measure ν and a map f , we write f∗ν = ν ◦ f−1 for the pushforward of ν by f .
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– Show that Lf is a contraction in the Lipschitz seminorm [·]Lip defined by

[ρ]Lip = sup
x 6=y

|ρ(x)− ρ(y)|
d(x, y)

.

– Conclude that fn∗ (ρdx) converges weakly to uniform Lebesgue measure on S1 as n→∞.

– Generalize this to the setting where f : S1 → S1 is an expanding map of degree d, i.e.,
|f ′(x)| ≥ c > 1 for all x ∈ S1 and #f−1{x} = d for all x ∈ S1. What is the form for
Lfρ?

(b) Consider the halving map f : R→ R, fx = 1
2x. Let ρ : R→ R≥0 be a Lipschitz density.

– Show that with Lf denoting the corresponding transfer operator that

Lfρ(x) = 2ρ(f−1x) ,

hence [Lfρ]Lip = 2[ρ]Lip.

– Conclude that the limit Lnfρ does not exist in the Lip norm. What is the weak limit of
fn∗ (ρdx)?

– Generalize this to the setting where f : R → R has a sink at 0 and the density ρ is
supported in the basin of attraction of 0.

0.3 Description of geometric SRB property:

Let us now set about making rigorous this idea of ‘smoothness’ along unstable directions.

Proposition 10 (Local structure of hyperbolic attractors). Let Λ be a uniformly hyperbolic attrac-
tor for f .

• Λ can be covered by a finite union of open sets N (in the subspace topology) which are home-
omorphic to

Σ×Bu ,

where Σ is a compact metric space, and Bu is the unit ball in RdimEu. Write Ψ : Σ×Bu → N
for this homeomorphism.

• For each fixed σ ∈ Σ, the set {Ψ(σ, v)}v∈Bu is a relatively open subset of a W u-leaf. Moreover,
σ 7→ Ψ(σ,Bu) varies continuously in the dH (Hausdorff) metric. Lastly, for σ ∈ Σ fixed, the
mapping v 7→ Ψ(σ, v) is a Cr diffeomorphism with Cr-norm bounded independently of σ.

An aside: disintegration measures

Let X be a Polish space, m a finite measure on X , and let P be a partition of X . For x ∈ X , define
P(x) to be the atom of P containing x.

Definition 11. We say that P is a measurable partition if

P =
∨
n

Pn

modulo m-null sets, where Pn is an increasing sequence (Pn-atoms are unions of Pn+1 atoms, i.e.,
Pn ≤ Pn+1) of finite partitions,

∨
denotes the join of partitions (for partitions ζ, η, we define

ζ ∨ η = {C ∩D : C ∈ ζ,D ∈ η}).
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Lemma 12. There is a measurable2 assignment x 7→ mx to each x ∈ X of a Borel probability
measure mx on X , with mx(P(x)) = 1, such that for all Borel K ⊂ X , we have that

m(K) =

∫
X
mx(K) dm(x) .

Remark 13. To wit, the measures (mx)x∈X are a version of the conditional probability measures
m(·|σ(P)), where σ(P) is the smallest σ-algebra containing the atoms of P, with the property that
mx actually charges P(x) with probability 1. It is not always possible to construct disintegration
measures (mx)– see ?? for counterexamples.

Lemma 14. For any Borel set K ⊂ X we have that

mx = lim
n→∞

m(K ∩Bn(x))

Bn(x)
= lim

n→∞
m(K|σ(Bn))(x)

for m-almost every x ∈ X . In particular, x 7→ m(·|σ(Bn))(x) converges weakly to x 7→ mx(·) for
m-almost every x ∈ X .

The proof is a nice exercise using the Martingale Convergence Theorem (for fixed Borel K, the
sequence of functions x 7→ m(K|σ(Bn))(x) is a martingale with respect to the filtration σ(Bn)).
See the notes of Viana, “Disintegration into conditional measures: Rokhlin’s theorem” for a proof.

Definition of the SRB property

Given a neighborhood N ⊂ Λ as above, let us write Ξ = ΞN for the partition of N into W u-leaves
of the form Ψ(σ,Bu). This partition is measurable, in the sense that it can be given as

Ξ =

∞∨
n=1

Ξn , (1)

pointwise where (Ξn) is a sequence of finite measurable partitions of N , and ∨ denotes the join of
partitions.

Exercise 15. Prove that (1) holds using the continuity of σ 7→ Ψ(σ,Bu) in the Hausdorff (dH)
metric, where each finite partition Ξn consists of full ξ-leaves.

Definition 16. Let µ be an invariant measure for f |Λ. We say that µ has the SRB property (or
that µ is an SRB measure, or Gibbs u-state for some authors) if for any neighborhood N as above,
we have the following:

Define µN = µ|N . Then, for µN -almost every x ∈ N ,

we have that (µN )x is equivalent to Lebesgue measure

νx on the u-leaf ξ(x) containing x.

0.4 Construction of SRB measures for uniformly hyperbolic attractors

Theorem 17. Assume f is C2. Let Λ be a uniformly hyperbolic attractor for f .

(a) There exists an SRB measure µ for f supported on Λ.

2Borel measurable with respect to the weak∗ topology on probability measures on X
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(b) If f is topologically transitive, then the SRB measure for f |Λ is unique. In particular, it is
ergodic.

Let us first establish existence as in part (a). Earlier we considered a heuristic argument (which
can be made rigorous) for constructing SRB measures by pushing forward Lebesgue. Here we
present a somewhat simpler argument.

Proposition 18. Let L = W u
x,ε for some x ∈ Λ. Let mL denote normalized Lebesgue measure on

L. Then, any weak∗ limit µ of the sequence mN := 1
N

∑N
n=1 f

n
∗mL is an f -invariant SRB measure

supported on Λ.

Exercise 19. Assume X is a compact metric space and F : X → X is a continuous mapping.
Let m be an arbitrary Borel probability measure on X. By Prokhorov’s theorem, the sequence
{ 1
N

∑N
n=1 f

n
∗m} is weak∗ compact. Show that any weak∗ limit µ is an F -invariant measure3.

Proof of Proposition 18

The primary tool is the following distortion estimate along unstable leaves.

Lemma 20 (Distortion estimate). There exists a constant C > 0 with the following property. For
all ε > 0 sufficiently small and all x ∈ Λ, we have that for any n ≥ 1 and y, y′ ∈W u

x,ε that

C−1 ≤
det(Df−nyf

n|Eu
f−ny

)

det(Df−ny′f
n|Eu

f−ny′
)
≤ C

Proof. Observe that TzW
u
x = Euz for z ∈ Λ. Define Jun (z) = det(Dzf

n|Euz ), Ju = Ju1 . Then,

(∗) =
det(Df−nyf

n|Eu
f−ny

)

det(Df−ny′f
n|Eu

f−ny′
)

=
Jun (f−ny)

Jun (f−ny′)
=

n∏
i=1

Ju(f−iy)

Ju(f−iy′)

and

|log(∗)| =
n∑
i=1

∣∣log Ju(f−iy)− log Ju(f−iy′)
∣∣

Now, since W u
z,ε are C1 embedded disks and f ∈ C2, it follows that z 7→ Ju(z) is Lipschitz along

fixed local W u-manifolds. Thus,

|log(∗)| ≤ C
n∑
i=1

dist(f−iy, f−iy′) (2)

≤ C ′
n∑
i=1

λi dist(y, y′) ≤ C ′′ dist(y, y′) (3)

where in the second line we use the backwards-time contraction estimate along W u-leaves as in
Theorem ??.

To continue, let µ be a weak∗ cluster point of the sequence mN , i.e.,

µ = ∗ − lim
k→∞

mNk

3This technique is called the Krylov-Bogoliubov method for producing invariant measures of a dynamical system.
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for some subsequence Nk → ∞. Fix an open set N ⊂ Λ and a homeomorphism Ψ : Σ × Bu → N
be fixed as in Proposition 10. Let Ξ be the partition into u-leaves Ψ(σ,Bu), σ ∈ Σ. Let Ξn be an
increasing sequence of finite partitions for which Ξ = ∨nΞn.

We will check the SRB property for µN = µ|N . Without loss, we can assume

(A1) µ(N ) > 0

(A2) µ(N ) = limkmNk(N )

(A3) For all C ∈ Ξn, n ≥ 1, we have µN (∂C) = 04; in particular,

µN (C) = lim
k→∞

mNk(C)

Exercise 21. Let mn → m we a weakly convergent sequence of Borel probabilities on a Polish
space. Prove that if m(∂C) = 0 for some Borel C, then limnmn(C) = m(C).

Exercise 22. Let X be a metric space and m a Borel measure on X. Show that for any x ∈ X
there is a sequence rn → 0 so that m(∂Brn(x)) = 0 for all n.

Exercise 23. Using Exercises 21 and 22, prove that we can always cover Λ by open setsN equipped
with finite approximating partitions (Ξn) = (ΞNn ) for which (A1) – (A3) hold.

Lemma 24. For n ≥ 1 define Ln = LNn ⊂ fn(L) to be the union over all ξ ∈ Ξ such that ξ ⊂ fn(L).
Then,

µN = lim
k→∞

mNk |N = lim
k→∞

mNk |N∩Ln

Proof. When dimEu = 1, L \ f−nLn consists of at most two sub-arcs of length . λn.

Exercise 25. Complete the proof of Lemma 24 when dimEu > 1. Hint: show that if ξ ∈ Ξ and
∅ ( ξ ∩ L ( ξ, then f−nξ is contained in a very small neighborhood of ∂L.

In the following lemma, for K ⊂ Bu we define CK = Ψ(Σ,K). Such sets are ‘cylindrical plugs’
cutting transversally through the W u-leaves comprising N .

Lemma 26. There is a constant C > 0 such that the following holds. Let n ≥ 1, ξ ∈ Ξ, and
assume ξ ⊂ Ln. Then,

C−1 LebBu(K) ≤ mn(ξ ∩ CK)

mn(ξ)
≤ C LebBu(K)

for all Borel K ⊂ Bu.

Completing the proof of Proposition 18. By Lemma 26, we have for Borel K ⊂ Bu that

C−1 LebBu(K) ≤ mN (CK |Ξn) ≤ C LebBu(K)

pointwise on N for all N , where mN (·|Ξn) is the conditional measure with respect to the (finite)
σ-algebra σ(Ξn) generated by the (finite) partition Ξn.

Assume now that µ(∂CK) = 0. With n fixed and taking N = Nk →∞, we conclude

C−1 LebBu(K) ≤ µ(CK |Ξn) ≤ C LebBu(K)

4We write ∂C = C \C◦, where C is the closure of C and C◦ the interior; all topology is in the subspace topology
of Λ ⊂ U .
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pointwise on x ∈ N , having used assumptions (A1) – (A3) (see also Exercise 21). Taking now
n→∞, by Lemma 14 we conclude for such K that

C−1 LebBu(K) ≤ µx(CK) ≤ C LebBu(K) .

Note that since u 7→ Ψ(σ, u) is a Cr embedding for all σ ∈ Σ fixed, we have

LebBu(K) ≈ Lebξ(x)(CK) ,

and so

µx(CK) ≈ Lebξ(x)(CK) (4)

holds for µ-a.e. x ∈ N whenever µ(∂CK) = 0.
To complete the proof, fix x as above. Let A ⊂ ξ(x) have Lebesgue measure zero, and con-

sider the uncountable family Br(A) = {y ∈ ξ(x) : distξ(x)(y,A) < r}, r > 0, observing that
Lebξ(x)(Br(A)) → 0 as r → 0. Let Kr ⊂ Bu be such that CKr ∩ ξ(x) = Br(A). Fix {rn}, rn → 0
for which µ(∂CKrn ) = 0 for all n (c.f. Exercise 22).

By (4), we conclude

µx(A) = lim
rn→0

µx(Brn(A)) = lim
rn→0

Lebξ(x)(CKrn ) = 0

hence µx � Lebξ(x). The converse follows similarly.

0.4.1 Remarks

In the definition of SRB measure, one might wonder whether one can replace ‘equivalence’ with
Lebesgue measure on unstable leaves with ‘absolute continuity’. A priori this might yield a new
class of invariant measures corresponding to attractors with ‘gaps’ along unstable leaves. Somewhat
surprisingly, this is not possible.

Proposition 27. Let µ have the property that its conditional measures on unstable leaves are
almost-surely absolutely continuous with respect to Lebesgue measure. Then, these conditional mea-
sures are actually equivalent to Lebesgue almost surely. In fact, fix a µ-typical x ∈ Λ and let
ρx : W u

x,ε → R≥0 denote the density function for the disintegration measure µx = µNx . Then,

ρx(y1)

ρx(y2)
= lim

n→∞

Jun (f−ny2)

Jun (f−ny1)
> 0

for all y1, y2 ∈W u
x,ε.

Note that in particular, the density y 7→ ρx(y) is Lipschitz continuous.

0.5 Local ergodicity and of SRB measures

Note that ergodicity was not assumed for SRB measures. Indeed, one can imagine simple scenarios
where SRB measures fail to be ergodic (take e.g. a disjoint union of uniformly hyperbolic attractors).
We address these issues here.

Proposition 28 (Local ergodicity of SRB measures). Let µ be an SRB measure supported on a
uniformly hyperbolic attractor. Then, Λ is covered by open sets N with the property that µ-almost
all x ∈ N are future generic to the same invariant ergodic measure ν.

7



Corollary 29. Assume f |Λ is topologically transitive. Then, Λ supports a unique SRB measure.

Proof. Topological transitivity and local ergodicity imply that µ-almost all x ∈ Λ are future generic
to the same ergodic invariant measure ν. The Birkhoff theorem implies µ = ν, and so µ-almost all
x ∈ X are future generic to µ. Exercise: show that this implies ergodicity of µ by applying the
Birkhoff ergodic theorem to φ = χA, where A ⊂ Λ is an f -invariant set.

Proof of local ergodicity: the Hopf argument

We start with the following corollary of the Birkhoff ergodic theorem for non-ergodic measures. Let
T : X → X be a measurable transformation of a space X preserving a probability m.

Definition 30. We say that x ∈ X is future generic to a probability measure ν on X if

lim
N→∞

1

N

N∑
n=1

φ(Tnx) =

∫
φdν

for all bounded measurable φ : X → R. If T inverts measurably, we say that x is past generic to ν
if it is future generic to ν with respect to T−1.

Corollary 31. Let T : X → X be a measurable transformation of a space X preserving a probability
m on X. Assume T inverts measurably. Then, we have that m-a.e. point x ∈ X is future and past
generic with respect to some ergodic invariant probability νx on X.

We are entitled to apply this corollary to f |Λ : Λ → Λ since fΛ is automatically a homeomor-
phism, hence measurably invertible (Exercise: check this!). Applied to the SRB measure µ of a
uniformly hyperbolic attractor Λ for f , we derive the following:

Lemma 32. Let µ be an SRB measure. Then, for µ-almost all x ∈ Λ, there is an ergodic invariant
measure ν = νx with the property that LebWu

x,ε
-almost every y ∈ W u

x,ε is future and past generic to
ν for ε > 0 sufficiently small.

Proof. Let Λ′ ⊂ Λ denote the full µ-measure set such that for each y ∈ Λ′, the conclusions of
Corollary 31 hold. Let N = Φ(Σ × Bu) be as in Proposition 10 and assume µ(N ) > 0. It follows
that for µ-a.e. x ∈ N , we have that µx-almost every y ∈ Ξ(x) belongs to Λ′, hence LebWu

x
-almost

every y ∈ Ξ(x) belongs to Λ′.
The key now is to show that νy = νx for Leb-almost all y ∈ Ξ(x). For this, we note that

all points in W u
x,ε share the same past, and so must be past generic to the same measure. More

precisely, if φ : Λ→ R is continuous, then∣∣∣∣∣ 1

N

N∑
n=1

φ(f−nx)− 1

N

N∑
n=1

φ(f−ny)

∣∣∣∣∣ ≤ n0

N
‖φ‖L∞ +

N − n0

N
ε .

Here, ε > 0 is fixed and arbitrary, and δ > 0 is such that |φ(x) − φ(y)| < ε if d(x, y) < δ. We
have taken n0 = n0(δ) sufficiently large so that d(f−nx, f−ny) ≤ Ĉλ̂n ≤ δ for all n > n0. Passing
N →∞, ε→ 0 and applying proves that∫

φdνx =

∫
φdνy (5)

for all continuous φ : Λ→ R.

Exercise 33. Complete the proof of Lemma 32 by checking that (5) implies νx = νy.
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0.6 Holonomy across stable leaves

We have seen that points connected by an ‘typical’ unstable manifold are past and future generic
with respect to the same ergodic measure ν. It is not hard to show that the same is true along
stable leaves.

Lemma 34. Let x ∈ Λ and assume x is future generic to a measure νx. Then, for any y ∈ W s
x ,

we have that y is also future generic to νx.

The proof is a time-reversal of that for Lemma 32 and is omitted.

This idea is at the heart of what is now called the Hopf chain argument. What it says is that if
a pair of points x, y ∈ Λ can be connected by a ‘chain’ of stable and unstable manifolds intersecting
each other, then x, y are future generic to the same measure.

Let us make use of this idea.

Definition 35. Let W ⊂ U be a dimEu-dimensional embedded disk. Recall that U is foliated
by W s-leaves and so each point x ∈ W is contained in a unique W s leaf W s

x . We say that W is
transversal to the W s foliation if

TxM = TxW ⊕ TxW s
x

for all x ∈W .

Definition 36. Let W,W ′ ⊂ U be embedded dimEu disks which are transversal to the W s

foliation. A stable holonomy between W and W ′ is a continuous map π : W →W ′, if defined, with
the property that for each x ∈W , we have π(x) ∈W ′ ∩W s

x .

Lemma 37. For any two transversals W,W ′ to the W s foliation which are C1 sufficiently close,
there is a relatively open set Ŵ ⊂W for which a stable holonomy π : Ŵ →W ′ is defined.

A crucial property of stable holonomies is absolute continuity with respect to Lebesgue measure.

Theorem 38. Assume W,W ′ ⊂ U are W s-transversals for which a stable holonomy π : W → W ′

is defined. Then, π∗(LebW ) is equivalent to LebW ′.

Remark 39. You might be thinking that Theorem 38 is ‘easy’, since it appears to follow from
Fubini’s theorem applied to the W s foliation. The problem here is that at this level of generality,
the W s foliation can only be assumed to vary Holder continuously, while the Fubini argument would
require the foliation to vary in a C1 way. Note that this is not about the regularity of individual
leaves, which are just as smooth as the map f , but rather about the way that the laves are packed
together in space.

Hopf’s original argument was to prove ergodicity of Liouville measure for geodesic flow on
surfaces of constant negative curvature. There, the stable foliation is in fact C1 and therefore the
stable holonomies, when defined, are absolutely continuous. The failure of the C1 property explains
the nearly 30 year gap between this and the proof of ergodicity geodesic flow on a surface of variable
negative curvature, for which Es, hence W s, is possibly strictly Holder.

0.7 Completing the proof of Proposition 28

For the rest of the proof of Proposition 28, let us fix an x ∈ Λ for which LebWu
x,ε

-almost all points
are future and past generic to νx as in Lemma 32. Let y ∈ Λ be close enough to x so that W u

x,ε

and W u
y,ε are C1 close, and assume that Leb-a.e. point in W u

y,ε are future and past generic to some
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νy. Applying Lemma 37, there is a defined stable holonomy π : Ŵ →W u
y,ε for some relatively open

Ŵ ⊂W u
x,ε.

By Theorem 38, the set Sx of points in Ŵ which are future and past generic to νx is carried
to a positive Lebesgue measure set π(Sx) by the stable holonomy. On the other hand, the set Sy
of points in W u

y,ε future and past generic to νy has full Leb-measure, and so π(Sx) ∩ Sy 6= ∅. By
Lemma 34, points in π(Sx) ∩ Sy are future generic to the same measure, and so we conclude that
νx = νy.

0.8 Physicality of SRB measures for uniformly hyperbolic attractors

The proof of physicality of SRB measures as in Theorem 7 follows from similar arguments, which
we now summarize.

It suffices to show that for µ-almost all x ∈ Λ, there is a small neighborhood Vx ⊂ U for which
Leb-almost all y ∈ Vx are future generic to the unique SRB measure µ. To start, by Theorem 17,
the SRB measure µ for f |Λ is ergodic, and so µ-almost every x has the property that LebWu

x
-almost

every z ∈W u
x,ε is future (and past) generic to µ.

Claim 40. Let ε > 0 be sufficeintly small. Then, there is an open neighborhood Vx ⊂ U foliated
by W s-transversals Wα, α ∈ A (packed together in a C1 way) with the property that for each α, a
stable holonomy πα : W u

x,ε →Wα is defined.

The claim is left as an exercise. If, for instance U ⊂ Rd, we can set A = Esx ∩ Bδ(0), δ > 0
sufficiently small, and Wα = α+W u

x,ε. We complete the proof by noting that from Theorem 38, the
full Lebesgue measure set Sx of points in W u

x,ε future generic to µ is carried by πα to a set πα(Sx)
of full Lebesgue measure on each Wα. We conclude that Leb-a.e. point in Vx is future generic to
µ by Fubini’s theorem.
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