Learning and Optimization in Multiagent Decision-Making Systems

Lecture Notes: Multiagent Opinion Dynamics

Instructor: Rasoul Etesami

Hegselmann-Krause Opinion Dynamics

In the Hegselmann-Krause model opinion dynamics, a finite number of agents frequently update their opinions based on the possible interactions among them. The opinion of each agent in this model is captured by a scalar quantity in one dimension or a vector in Euclidean space $\mathbb{R}^{d>1}$ in higher dimensions. In fact, because of the conservative nature of social entities, each agent in this model communicates only with those whose opinions are closer to him and lie within a certain level of his confidence (bound of confidence), where the distance between agents' opinions is measured by the Euclidian norm in the ambient space.

Let us assume that we have a set of n agents $[n] = \{1, ..., n\}$ and we want to model the interactions among their opinions. It is assumed that at each time t = 0, 1, 2, ..., the opinion of agent $i \in [n]$ can be represented by a vector $x_i(t) \in \mathbb{R}^d$ for some $d \ge 1$. According to that model, the evolution of opinion vectors can be modeled by the following discrete-time dynamics:

$$x(t+1) = A(t, x(t), \vec{\epsilon})x(t), \tag{24}$$

where $A(t,x(t),\vec{\epsilon})$ is an $n\times n$ row-stochastic matrix and x(t) is the $n\times d$ matrix such that its ith row contains the opinion of the ith agent at time $t=0,1,2,\ldots$, i.e., it is equal to $x_i(t)$. We refer to x(t) as the *opinion profile* at time t. The entries of $A(t,x(t),\vec{\epsilon})$ are functions of time step t, current profile x(t), confidence vector $\vec{\epsilon}=(\epsilon_1,\epsilon_2,\ldots,\epsilon_n)>0$ and an updating scheme. The parameters $\epsilon_i, i\in [n]$ are referred to as the *confidence bounds*. In the homogeneous case of the dynamics, we assume that $\epsilon_i=\epsilon, \ \forall i\in [n]$ for some $\epsilon>0$, while in the heterogeneous model, different agents may have different bounds of confidence. For the sake of simplicity of notation and for a fixed $x(0)\in \mathbb{R}^{n\times d}$, we drop the dependency of $A(t,x(t),\vec{\epsilon})$ on x(t) and ϵ and simply write A(t).

In the Hegselmann-Krause model, each agent i updates its value at time t = 0, 1, 2, ..., by averaging its own value and the values of all the other agents that are in its ϵ -neighborhood at time t. To be more specific, given a profile x(t) at time t, define the matrix A(t) in (24) by:

$$A_{ij}(t) = \begin{cases} \frac{1}{|\mathbb{N}_i(t)|} & \text{if } j \in \mathbb{N}_i(t), \\ 0 & \text{else,} \end{cases}$$
 (25)

where $\mathbb{N}_i(t)$ is the set of agents in the ϵ -neighborhood of agent i, i.e.,

$$\mathbb{N}_i(t) = \{j \in [n] \mid ||x_i(t) - x_j(t)|| \le \epsilon\}.$$

Definition 75. We say that a time instance t is a merging time for the dynamics if two agents with different opinions move to the same place.

Based on that definition, we can see that if two agents i and j merge at time instant t, then they will have the same opinion at time t+1 and onward, while their common opinion may vary with time. Moreover, prior to the termination time of the dynamics, we cannot have more than n merging times, since there are n agents in the model. In what follows next, we define the notions of termination time and communication graphs.

Definition 76. For every set of $n \ge 1$ agents we define the termination time T_n of the Hegselmann-Krause dynamics to be the maximum number of iterations before steady state is reached over all the initial profiles.

Definition 77. Given an opinion profile at time t, we associate with that opinion profile an undirected graph $\mathcal{G}(t) = ([n], \mathcal{E}(t))$ where the edge $(i, j) \in \mathcal{E}(t)$ if and only if $i \in \mathbb{N}_j(t)$. We refer to such a graph as the communication graph or communication topology of the dynamics at time step t. Furthermore, a connected component of the communication graph is called δ -trivial for some $\delta > 0$, if all the agents in that component lie within a distance of at most δ from each other.

Remark 18. From Definition 77, it is not hard to see that for any $\delta < \epsilon$, a δ -trivial component forms a complete component (clique) in the communication topology of the dynamics. In particular, if there is such a δ -trivial component at some time t, then in the next time step, all the agents in that component will merge to the same opinion.

Lemma 78. Let $V(t) = \sum_{i,j \in [n]} \min\{||x_i(t) - x_j(t)||^2, \epsilon^2\}$. Then V is non-increasing along the trajectory of the Hegselmann-Krause dynamics. In particular, we have

$$V(t) - V(t+1) \ge 4 \sum_{\ell=1}^{n} ||x_{\ell}(t+1) - x_{\ell}(t)||^{2}.$$

In the following theorem, we provide a lower bound for the amount of decrease of the above Lyapunov function as long as there exists one non- ϵ -trivial component in the dynamics, which in turn allows us to bound the termination time of the Hegslemann-Krause dynamics.

Lemma 79 (Rayleigh-Quotient). Let $\mathscr{G} = (\mathscr{V}, \mathscr{E})$ be a connected undirected graph and \mathscr{L} be the Laplacian of \mathscr{G} , i.e., the diagonal entries of \mathscr{L} equal to the degrees of the corresponding nodes, and $\mathscr{L}_{ij} = -1$ if $\{i,j\} \in \mathscr{E}$, and $\mathscr{L}_{ij} = 0$, otherwise. Then, the smallest eigenvalue of \mathscr{L} is $\lambda_1 = 0$ with multiplicity one and the corresponding eigenvector $v_1 = 1$. Moreover, the second smallest eigenvalue of \mathscr{L} is strictly positive and is given by

$$\lambda_2(\mathcal{L}) = \min_{\substack{\|x\|=1\\ x \mid 1}} x' \mathcal{L} x,$$

where $x \perp 1$ refers to all the vectors that are orthogonal to the vector of all ones, i.e., x'1 = 0.

Theorem 8o. The termination time of the Hegselmann-Krause dynamics in arbitrary finite dimensions is bounded from above by $T_n \le n^8 + n$.

Proof: Let us assume that the opinion profile $x(t) = (x_1(t), x_2(t), \dots, x_n(t))'$ is not an equilibrium point of the dynamics and that time t is not a merging time. Without loss of generality, we may assume that the communication graph at time t is connected with a non- ϵ -trivial component; otherwise, we can restrict ourselves to one of the non- ϵ -trivial components. (Note that such a non- ϵ -trivial component exists, because of Remark 18 and the fact that t is not a merging time.) By projecting each individual column of x(t) to the consensus vector 1 (i.e., vector of all ones) we can write

$$x(t) = \left[c_1 \mathbf{1} | c_2 \mathbf{1} | \dots | c_d \mathbf{1} \right] + \left[\bar{c}_1 \dot{\mathbf{1}}^{(1)} | \bar{c}_2 \dot{\mathbf{1}}^{(2)} | \dots | \bar{c}_d \dot{\mathbf{1}}^{(d)} \right], \tag{26}$$

where $\dot{\mathbf{1}}^{(k)}, k=1,\ldots,d$ are column vectors of unit size that are orthogonal to the consensus vector, i.e., $\mathbf{1}'\dot{\mathbf{1}}^{(k)}=0$, and $c_k,\bar{c}_k,k=1,\ldots,d$ are coefficients of projection of the kth column of x(t) on $\mathbf{1}$ and $\dot{\mathbf{1}}^{(k)}$, respectively.

Now we claim that $\sum_{k=1}^{d} \bar{c}_k^2 > \frac{\epsilon^2}{4}$. Otherwise, we show that every two agents $x_i(t)$ and $x_j(t)$ must lie within a distance of at most ϵ from each other, which is in contrast with the assumption that the component is a non- ϵ -trivial component. In fact, if $\sum_{k=1}^{d} \bar{c}_k^2 \leq \frac{\epsilon^2}{4}$, we can write,

$$||x_{i}(t) - x_{j}(t)||^{2} = \sum_{k=1}^{d} \bar{c}_{k}^{2} (\dot{\mathbf{I}}_{i}^{(k)} - \dot{\mathbf{I}}_{j}^{(k)})^{2} \le 2 \sum_{k=1}^{d} \bar{c}_{k}^{2} ((\dot{\mathbf{I}}_{i}^{(k)})^{2} + (\dot{\mathbf{I}}_{j}^{(k)})^{2})$$

$$\le 2 \sum_{k=1}^{d} \bar{c}_{k}^{2} (||\dot{\mathbf{I}}^{(k)}||^{2} + ||\dot{\mathbf{I}}^{(k)}||^{2}) = 4 \sum_{k=1}^{d} \bar{c}_{k}^{2} \le \epsilon^{2},$$
(27)

where the first equality is due to the decomposition given in (26) and the second equality is valid since the vectors $\mathbf{1}^{(k)}$, $k=1\ldots,d$, are of unit size. The contradiction shows that $\sum_{k=1}^{d} \bar{c}_k^2 > \frac{\epsilon^2}{4}$. Next, we notice that x(t+1) = A(t)x(t), where A(t) is the stochastic matrix defined in (25).

Next, we notice that x(t+1) = A(t)x(t), where A(t) is the stochastic matrix defined in (25). Using (26) we can write,

$$x(t) - x(t+1) = (I - A(t))x(t) = \left[\bar{c}_1(I - A(t))\dot{\mathbf{1}}^{(1)} | \dots | \bar{c}_d(I - A(t))\dot{\mathbf{1}}^{(d)}\right], \tag{28}$$

where the equality holds since 1 belongs to the null space of I - A(t). In particular, we have,

$$\sum_{\ell=1}^{n} \|x_{\ell}(t) - x_{\ell}(t+1)\|^{2} = \sum_{\ell=1}^{n} \sum_{k=1}^{d} \left(x_{\ell k}(t) - x_{\ell k}(t+1)\right)^{2}$$

$$= \sum_{k=1}^{d} \left(\sum_{\ell=1}^{n} \left(x_{\ell k}(t) - x_{\ell k}(t+1)\right)^{2}\right)$$

$$= \sum_{k=1}^{d} \bar{c}_{k}^{2} \|(I - A(t))\dot{\mathbf{I}}^{(k)}\|^{2}, \tag{29}$$

where in the last equality we have used (28). Let us assume that Q(t) = (I - A(t))'(I - A(t)). It is not hard to see that Q(t) is a positive semidefinite matrix. Moreover, 0 is an eigenvalue of Q with multiplicity one, corresponding to the eigenvector 1. To see that, let us assume that there exists another vector v, such that Q(t)v = 0. Multiplying that equality from the left by v', we get $||(I - A(t))v||^2 = 0$, and hence (I - A(t))v = 0. Since by Lemma 79, 1 is the only unit eigenvector of I - A(t) corresponding to eigenvalue 0, we conclude that $v = \alpha 1$ for some $\alpha \in \mathbb{R}$. In other words, 1 is the only unit eigenvector of Q(t) corresponding to eigenvalue 0. Moreover, Q(t) is a symmetric real-valued matrix and, hence, diagonalizable, where 1 is its only eigenvector corresponding to eigenvalue 0. That shows that the multiplicity of the eigenvalue 0 in Q(t) is exactly one.

Let us use $\lambda_2(Q(t))$ to denote the second smallest eigenvalue of Q(t). By the above argument, it must be strictly positive. Using Lemma 79, we get $\lambda_2(Q(t)) = \min_{\|y\|=1, y\perp 1} y'Q(t)y$. Now for every $k=1,\ldots,d$, we can write

$$||(I - A(t))\dot{\mathbf{I}}^{(k)}||^{2} = (\dot{\mathbf{I}}^{(k)})'(I - A(t))'(I - A(t))\dot{\mathbf{I}}^{(k)}$$

$$= (\dot{\mathbf{I}}^{(k)})'Q(t)\dot{\mathbf{I}}^{(k)} \ge \min_{\substack{\|y\|=1\\y \perp 1}} y'Q(t)y = \lambda_{2}(Q(t)), \tag{30}$$

where the inequality holds, since $\mathbf{1}'\mathbf{1}^{\downarrow^{(k)}} = 0$ and $\|\mathbf{1}^{\downarrow^{(k)}}\| = 1$. Substituting (30) in (29) we get

$$\sum_{\ell=1}^{n} \|x_{\ell}(t) - x_{\ell}(t+1)\|^{2} \ge \sum_{k=1}^{d} \lambda_{2}(Q(t))\bar{c}_{k}^{2} \ge \lambda_{2}(Q(t))\frac{\epsilon^{2}}{4}.$$
 (31)

Henceforth, we bound $\lambda_2(Q(t))$ from below based on a function of n. For that purpose, let us assume that $D(t) = diag(1 + d_1(t), 1 + d_2(t), \ldots, 1 + d_n(t))$, i.e., D(t) is a diagonal matrix with $D_{kk}(t) = 1 + d_k(t), k \in [n]$. Moreover, let $\mathcal{L}(t)$ denote the Laplacian matrix of the communication graph at time step t. By entry wise comparison of both sides, it is not hard to see that $I - A(t) = D(t)^{-1}\mathcal{L}(t)$. Now we can write,

$$\lambda_2(Q(t)) = \lambda_2((D(t)^{-1}\mathcal{L}(t))'(D(t)^{-1}\mathcal{L}(t))) = \lambda_2(\mathcal{L}(t)D(t)^{-2}\mathcal{L}(t)), \tag{32}$$

where the last equality is due to the fact that $\mathcal{L}(t)$ and D(t) are both symmetric matrices. Next, using the same argument as above, we notice that since $\mathcal{L}(t)D(t)^{-2}\mathcal{L}(t)$ is a symmetric and real-valued matrix, it is diagonalizable, and its zero eigenvalue corresponding to eigenvector 1 has multiplicity one. Therefore, using Lemma 79, we can write,

$$\lambda_{2}(\mathcal{L}(t)D(t)^{-2}\mathcal{L}(t)) = \min_{\substack{\|y\|=1\\y\perp 1}} y'\mathcal{L}(t)D(t)^{-2}\mathcal{L}(t)y$$

$$\geq \min_{\substack{\|y\|=1\\y\perp 1}} y'\mathcal{L}(t)(\frac{1}{n^{2}}I)\mathcal{L}(t)y$$

$$= \lambda_{2}(\mathcal{L}(t)(\frac{1}{n^{2}}I)\mathcal{L}(t))$$

$$= \frac{1}{n^{2}}\lambda_{2}(\mathcal{L}^{2}(t)) = \frac{1}{n^{2}}\lambda_{2}^{2}(\mathcal{L}(t)), \tag{33}$$

where the last equality is due to the fact that \mathcal{L} is diagonalizable (it is a symmetric and real-valued matrix) with an eigenvalue o of multiplicity 1. Substituting (33) in (32) we get $\lambda_2(Q(t)) \geq \frac{1}{n^2} \lambda_2^2(\mathcal{L}(t))$. Finally, since $\mathcal{L}(t)$ is the Laplacian of a connected graph, it is known that $\lambda_2(\mathcal{L}(t))$ from below by $\frac{2}{n^2}$. Putting it all together, we have,

$$\lambda_2(Q(t)) \ge \frac{1}{n^2} \lambda_2^2 \left(\mathcal{L}(t) \right) \ge \frac{4}{n^6}. \tag{34}$$

Finally, combining (34) with (31), we conclude that the amount of decrease in the quadratic Lyapunov function if there is a non- ϵ -trivial component is at least $\frac{\epsilon^2}{n^6}$. In other words, if t is not a merging time, we have $V(t) - V(t+1) \ge \frac{\epsilon^2}{n^6}$. Since by definition $V(\cdot)$ is always a nonnegative quantity with $V(0) \le \epsilon^2 n^2$ and the number of merging times can be at most n, we conclude that the termination time is bounded from above by $n^8 + n$.