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Hegselmann-Krause Opinion Dynamics

In the Hegselmann-Krause model opinion dynamics, a finite number of agents frequently update
their opinions based on the possible interactions among them. The opinion of each agent in this
model is captured by a scalar quantity in one dimension or a vector in Euclidean space Rd>1 in
higher dimensions. In fact, because of the conservative nature of social entities, each agent in this
model communicates only with those whose opinions are closer to him and lie within a certain
level of his confidence (bound of confidence), where the distance between agents’ opinions is
measured by the Euclidian norm in the ambient space.

Let us assume that we have a set of n agents [n] = {1, . . . , n} and we want to model the
interactions among their opinions. It is assumed that at each time t = 0, 1,2, . . ., the opinion of
agent i ∈ [n] can be represented by a vector x i(t) ∈ Rd for some d ≥ 1. According to that model,
the evolution of opinion vectors can be modeled by the following discrete-time dynamics:

x(t + 1) = A(t, x(t), ε⃗)x(t), (24)

where A(t, x(t), ε⃗) is an n× n row-stochastic matrix and x(t) is the n× d matrix such that its
ith row contains the opinion of the ith agent at time t = 0,1, 2, . . ., i.e., it is equal to x i(t). We
refer to x(t) as the opinion profile at time t. The entries of A(t, x(t), ε⃗) are functions of time step
t, current profile x(t), confidence vector ε⃗= (ε1,ε2, . . . ,εn)> 0 and an updating scheme. The
parameters εi , i ∈ [n] are referred to as the confidence bounds. In the homogeneous case of the
dynamics, we assume that εi = ε, ∀i ∈ [n] for some ε > 0, while in the heterogeneous model,
different agents may have different bounds of confidence. For the sake of simplicity of notation
and for a fixed x(0) ∈ Rn×d , we drop the dependency of A(t, x(t), ε⃗) on x(t) and ε and simply
write A(t).

In the Hegselmann-Krause model, each agent i updates its value at time t = 0,1, 2, . . ., by
averaging its own value and the values of all the other agents that are in its ε-neighborhood at
time t. To be more specific, given a profile x(t) at time t, define the matrix A(t) in (24) by:

Ai j(t) =

¨

1
|Ni(t)|

if j ∈ Ni(t),

0 else,
(25)

where Ni(t) is the set of agents in the ε-neighborhood of agent i, i.e.,

Ni(t) = { j ∈ [n] | ∥x i(t)− x j(t)∥ ≤ ε}.

Definition 75. We say that a time instance t is a merging time for the dynamics if two agents
with different opinions move to the same place.

Based on that definition, we can see that if two agents i and j merge at time instant t, then
they will have the same opinion at time t + 1 and onward, while their common opinion may vary
with time. Moreover, prior to the termination time of the dynamics, we cannot have more than n
merging times, since there are n agents in the model. In what follows next, we define the notions
of termination time and communication graphs.
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Definition 76. For every set of n≥ 1 agents we define the termination time Tn of the Hegselmann-
Krause dynamics to be the maximum number of iterations before steady state is reached over all
the initial profiles.

Definition 77. Given an opinion profile at time t, we associate with that opinion profile an
undirected graph G (t) = ([n],E (t)) where the edge (i, j) ∈ E (t) if and only if i ∈ N j(t). We
refer to such a graph as the communication graph or communication topology of the dynamics at
time step t. Furthermore, a connected component of the communication graph is called δ-trivial
for some δ > 0, if all the agents in that component lie within a distance of at most δ from each
other.

Remark 18. From Definition 77, it is not hard to see that for any δ < ε, a δ-trivial component
forms a complete component (clique) in the communication topology of the dynamics. In
particular, if there is such a δ-trivial component at some time t, then in the next time step, all
the agents in that component will merge to the same opinion.

Lemma 78. Let V (t)=
∑

i, j∈[n]min{∥x i(t)− x j(t)∥2,ε2}. Then V is non-increasing along the
trajectory of the Hegselmann-Krause dynamics. In particular, we have

V (t)− V (t + 1)≥ 4
n
∑

ℓ=1

∥xℓ(t + 1)− xℓ(t)∥2.

In the following theorem, we provide a lower bound for the amount of decrease of the above
Lyapunov function as long as there exists one non-ε-trivial component in the dynamics, which in
turn allows us to bound the termination time of the Hegslemann-Krause dynamics.

Lemma 79 (Rayleigh-Quotient). Let G = (V ,E ) be a connected undirected graph and L be
the Laplacian of G , i.e., the diagonal entries of L equal to the degrees of the corresponding
nodes, and Li j = −1 if {i, j} ∈ E , and Li j = 0, otherwise. Then, the smallest eigenvalue of L is
λ1 = 0 with multiplicity one and the corresponding eigenvector v1 = 1. Moreover, the second
smallest eigenvalue of L is strictly positive and is given by

λ2(L ) = min
∥x∥=1

x⊥1

x ′L x ,

where x⊥1 refers to all the vectors that are orthogonal to the vector of all ones, i.e., x ′1= 0.

Theorem 80. The termination time of the Hegselmann-Krause dynamics in arbitrary finite
dimensions is bounded from above by Tn ≤ n8 + n.

Proof: Let us assume that the opinion profile x(t) = (x1(t), x2(t), . . . , xn(t))′ is not an equilib-
rium point of the dynamics and that time t is not a merging time. Without loss of generality, we
may assume that the communication graph at time t is connected with a non-ε-trivial component;
otherwise, we can restrict ourselves to one of the non-ε-trivial components. (Note that such a
non-ε-trivial component exists, because of Remark 18 and the fact that t is not a merging time.)
By projecting each individual column of x(t) to the consensus vector 1 (i.e., vector of all ones)
we can write

x(t) =
�

c11|c21| . . . |cd1
�

+
�

c̄11
⊥(1)
|c̄21

⊥(2)
| . . . |c̄d1

⊥(d)�

, (26)
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where 1
⊥(k)

, k = 1, . . . , d are column vectors of unit size that are orthogonal to the consensus
vector, i.e., 1′1

⊥(k)
= 0, and ck, c̄k, k = 1, . . . , d are coefficients of projection of the kth column of

x(t) on 1 and 1
⊥(k)

, respectively.
Now we claim that

∑d
k=1 c̄2

k >
ε2

4 . Otherwise, we show that every two agents x i(t) and x j(t)
must lie within a distance of at most ε from each other, which is in contrast with the assumption
that the component is a non-ε-trivial component. In fact, if

∑d
k=1 c̄2

k ≤
ε2

4 , we can write,

∥x i(t)− x j(t)∥2 =
d
∑

k=1

c̄2
k

�

1
⊥(k)

i − 1
⊥(k)

j

�2 ≤ 2
d
∑

k=1

c̄2
k

�

(1
⊥(k)

i )
2 + (1

⊥(k)

j )
2
�

≤ 2
d
∑

k=1

c̄2
k

�

∥1
⊥(k)
∥2 + ∥1

⊥(k)
∥2
�

= 4
d
∑

k=1

c̄2
k ≤ ε

2, (27)

where the first equality is due to the decomposition given in (26) and the second equality is valid
since the vectors 1

⊥(k)
, k = 1 . . . , d, are of unit size. The contradiction shows that

∑d
k=1 c̄2

k >
ε2

4 .
Next, we notice that x(t + 1) = A(t)x(t), where A(t) is the stochastic matrix defined in (25).

Using (26) we can write,

x(t)− x(t + 1) = (I − A(t))x(t) =
�

c̄1(I − A(t))1
⊥(1)
| . . . |c̄d(I − A(t))1

⊥(d)�

, (28)

where the equality holds since 1 belongs to the null space of I − A(t). In particular, we have,

n
∑

ℓ=1

∥xℓ(t)− xℓ(t+1)∥2 =
n
∑

ℓ=1

d
∑

k=1

�

xℓk(t)− xℓk(t+1)
�2

=
d
∑

k=1

�

n
∑

ℓ=1

�

xℓk(t)− xℓk(t+1)
�2�

=
d
∑

k=1

c̄2
k∥(I − A(t))1

⊥(k)
∥2, (29)

where in the last equality we have used (28). Let us assume that Q(t) = (I − A(t))′(I − A(t)).
It is not hard to see that Q(t) is a positive semidefinite matrix. Moreover, 0 is an eigenvalue
of Q with multiplicity one, corresponding to the eigenvector 1. To see that, let us assume that
there exists another vector v, such that Q(t)v = 0. Multiplying that equality from the left by
v′, we get ∥(I − A(t))v∥2 = 0, and hence (I − A(t))v = 0. Since by Lemma 79, 1 is the only unit
eigenvector of I − A(t) corresponding to eigenvalue 0, we conclude that v = α1 for some α ∈ R.
In other words, 1 is the only unit eigenvector of Q(t) corresponding to eigenvalue 0. Moreover,
Q(t) is a symmetric real-valued matrix and, hence, diagonalizable, where 1 is its only eigenvector
corresponding to eigenvalue 0. That shows that the multiplicity of the eigenvalue 0 in Q(t) is
exactly one.

Let us use λ2(Q(t)) to denote the second smallest eigenvalue of Q(t). By the above argument,
it must be strictly positive. Using Lemma 79, we get λ2(Q(t)) =min∥y∥=1,y⊥1 y ′Q(t)y . Now for
every k = 1, . . . , d, we can write

∥(I − A(t))1
⊥(k)
∥2 = (1

⊥(k)
)′(I − A(t))′(I − A(t))1

⊥(k)

= (1
⊥(k)
)′Q(t)1

⊥(k)
≥ min
∥y∥=1

y⊥1

y ′Q(t)y = λ2(Q(t)), (30)
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where the inequality holds, since 1′1
⊥(k)
= 0 and ∥1

⊥(k)
∥= 1. Substituting (30) in (29) we get

n
∑

ℓ=1

∥xℓ(t)− xℓ(t + 1)∥2 ≥
d
∑

k=1

λ2(Q(t))c̄
2
k ≥ λ2(Q(t))

ε2

4
. (31)

Henceforth, we bound λ2(Q(t)) from below based on a function of n. For that purpose,
let us assume that D(t) = diag

�

1 + d1(t), 1 + d2(t), . . . , 1 + dn(t)
�

, i.e., D(t) is a diagonal
matrix with Dkk(t) = 1+ dk(t), k ∈ [n]. Moreover, let L (t) denote the Laplacian matrix of the
communication graph at time step t. By entry wise comparison of both sides, it is not hard to see
that I − A(t) = D(t)−1L (t). Now we can write,

λ2(Q(t)) = λ2((D(t)
−1L (t))′(D(t)−1L (t))) = λ2(L (t)D(t)−2L (t)), (32)

where the last equality is due to the fact that L (t) and D(t) are both symmetric matrices. Next,
using the same argument as above, we notice that since L (t)D(t)−2L (t) is a symmetric and
real-valued matrix, it is diagonalizable, and its zero eigenvalue corresponding to eigenvector 1
has multiplicity one. Therefore, using Lemma 79, we can write,

λ2

�

L (t)D(t)−2L (t)
�

= min
∥y∥=1

y⊥1

y ′L (t)D(t)−2L (t)y

≥ min
∥y∥=1

y⊥1

y ′L (t)(
1
n2

I)L (t)y

=λ2

�

L (t)(
1
n2

I)L (t)
�

=
1
n2
λ2

�

L 2(t)
�

=
1
n2
λ2

2

�

L (t)
�

, (33)

where the last equality is due to the fact that L is diagonalizable (it is a symmetric and
real-valued matrix) with an eigenvalue 0 of multiplicity 1. Substituting (33) in (32) we get
λ2(Q(t))≥

1
n2λ

2
2

�

L (t)
�

. Finally, since L (t) is the Laplacian of a connected graph, it is known
that λ2

�

L (t)
�

from below by 2
n2 . Putting it all together, we have,

λ2(Q(t))≥
1
n2
λ2

2

�

L (t)
�

≥
4
n6

. (34)

Finally, combining (34) with (31), we conclude that the amount of decrease in the quadratic
Lyapunov function if there is a non-ε-trivial component is at least ε

2

n6 . In other words, if t is not a
merging time, we have V (t)− V (t + 1) ≥ ε2

n6 . Since by definition V (·) is always a nonnegative
quantity with V (0)≤ ε2n2 and the number of merging times can be at most n, we conclude that
the termination time is bounded from above by n8 + n. □
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