
ARTIFICIALLY AUGMENTED SAMPLES, SHRINKAGE, MSE REDUCTION

AND

PITMAN’S CLOSENESS CRITERION (PCC)

Based on papers: by YY (2006) and Gerard Biau and YY (2012)

Summary

• An inequality is provided that determines when shrinkage reduces the mean squared error

(MSE) of an unbiased estimate.

• Artificially augmented samples are then used to obtain, among others, shrinkage estimates

of the population’s variance and covariance, which improve the unbiased estimates for all pa-

rameter values and for all probability models with marginals having finite second moments,

and alternative jackknife estimates that complement the usual jackknife estimates in reducing

the MSE.

• Results extended in GB &YY (2012). For a large class of distributions and large samples,

it is shown that estimates of the variance σ2 and of the standard deviation σ are more often Pit-

man closer to their target than the corresponding shrinkage estimates which improve the mean

squared error. Our results indicate that Pitman closeness criterion, despite its controversial na-

ture, should be regarded as a useful and complementary tool for the evaluation of estimates of

σ2 and of σ.

• You will get an idea about the “politics” in the Statistics field: decision theorists against

Pitman’s closeness criterion.

KEYWORDS: Augmented samples; Bias; Jackknife; Mean squared error; Multiple im-

putation; Pitman closeness; Shrinkage; U-statistics; Variance estimation; Standard deviation

estimation.
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1 Estimation Tools

Observe data Xn = (X1, . . . , Xn), with X1, . . . , Xn independent, identically distributed (i.i.d.)

random variables (r.vs) from a model/density f(x, θ) with the parameter θ(∈ Θ), θ = θ(f)

unknown.

• Sn = S(Xn) : estimate of interest for θ.

• Tn : a generic estimate of θ.

• Tn is unbiased estimate of θ if ETn = θ, ∀ θ ∈ Θ.

• Kernel: For a model f with parameter θ = θ(f), a function h : Eh(X1, . . . , Xm) = θ ∀ θ ∈

Θ is called a “kernel”. W.l.o.g assume h is symmetric; otherwise it can be replaced by the

symmetric kernel

1

m!

∑
Pm

h(xi1 , . . . , xim)

with Pm the m! permutations (i1, . . . , im) of (1, . . . ,m);m is the order of the kernel.

• U -statistic: For any kernel h for θ = θ(f) the corresponding U -statistic for estimating θ using

sample X1, . . . , Xn, with size n ≥ m is obtained by averaging h “symmetrically” over all the

observations,

Un = U(X1, . . . , Xn) =
1(
n
m

)∑
c

h(Xi1 , . . . , Xim) = E[h(X1, . . . , Xm)|X(1), . . . , X(n)], (1)

where
∑

c denotes summation over all
(
n
m

)
combinations of m distinct elements {i1, . . . , im}

from {1, . . . , n}, X(1), . . . , X(n) is the order statistic.

Clearly, Un is unbiased for θ since h is unbiased.

• If Sn = S(X1, . . . , Xn) is unbiased for θ then it can be used as kernel.

Reference: Serfling, R. J. (1980 or more recent) Approximation Theorems of Mathematical

Statistics. Wiley
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Examples

a) Let X1, . . . , Xn be i.i.d. r.vs with θ = EX1, the mean. For the kernel h(x) = x with

m = 1, the corresponding U -statistic for θ is

Un =
1(
n
1

) n∑
i=1

h(Xi) = X̄n.

b) Let X1, . . . , Xn be i.i.d. r.vs with θ = V ar(X1), the variance. For the kernel of σ2,

h(x1, x2) =
x2
1 + x2

2 − 2x1x2

2
=

(x1 − x2)
2

2

the U -statistic for θ is

Un =
1(
n
2

)∑ ∑
1≤i<j≤n

h(Xi, Xj) =
1

n− 1
(

n∑
i=1

X2
i − nX̄n)

2 = s2n.

c) Let X1, . . . , Xn be i.i.d. r.vs, with θ = F (x0) = P (X1 ≤ x0). For the kernel h(x) =

I(x ≤ x0), I taking the value 1 if x ≤ x0 and zero otherwise, the U -statistic for θ is

Un =
1(
n
1

) n∑
i=1

I(Xi ≤ x0) = F̂n(x0).

d) Recall from Neyman-Scott (Le Cam version) for X1, Y1, that X1 − Y1 has mean 0 and

variance 2σ2 and therefore E(X1 − Y1)
2 = 2σ2. Using this result for iid X1, . . . , Xn with

variance θ = σ2,

h1(x1, x2) =
(x1 − x2)

2

2

is a kernel from σ2. Write the corresponding U -statistic for σ2 based on X1, . . . , Xn and h1.

e) Independent, identically distributed vectors (X1, Y1), . . . , (Xn, Yn) are observed with θ =

Cov(X1, Y1), the covariance of X1, Y1.. Let

h2((x1, y1), (x2, y2)) =
(x1 − x2)(y1 − y2)

2
.

Then, since (X1, Y1) is independent of (X2, Y2),

Eh2((X1, Y1), (X2, Y2)) = .5[EX1Y1 − EX1Y2 − EX2Y1 + EX2Y2]
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= .5[2EX1Y1 − 2EX1EY1] = Cov(X1, Y1).

Thus h2 is a kernel for the Covariance of X1, Y1. Write the corresponding U -statistic for the

Covariance of (X1, Y1) using h2 and the sample.

• R(Tn, θ) : the cost (called “Risk”) in estimating θ with Tn, calculated under f.

R(x, y) is a distance-measure with properties: i) R(x, x) = 0,

ii) R(x, y) = R(y, x), for every x, y in the domain of R.

Example: R(Tn, θ) = E(Tn − θ)2 with the expected value taken under f.

E(Tn − θ)2 is the Mean Square(d) Error of Tn.

Question: If E(Sn − θ)2 < E(Tn − θ)2 do you think

P [|Sn − θ| < |Tn − θ|] > 1

2
or <

1

2
?

To be seen ...

Definition 1.1 Estimate Sn is inadmissible for θ ∈ Θ with Risk function R if there an estimate

S̃n such that

R(S̃n, θ) ≤ R(Sn, θ) ∀ θ ∈ Θ (2)

and there is θ0 ∈ Θ for which (2) is strict.

To solve a statistical problem when R-risk is the criterion of interest, attention should be

restricted in admissible estimates.

Theorem 1.1 Let Sn = S(X1, . . . , Xn) be unbiased for θ = θ(f). Then, the corresponding

U -statistic, Un, with kernel

h =
1

n!

∑
P

S(xi1 , . . . , xin)

is unbiased and

V ar(Un) ≤ V ar(Sn). (3)
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Proof: Since Un is unbiased it is enough to prove

EU2
n ≤ ES2

n.

Since Un = E(Sn|X(1), . . . , X(n)),

EU2
n = E[(E(Sn|X(1), . . . , X(n)))

2] ≤ E[(E(S2
n|X(1), . . . , X(n))] = ES2

n.

with equality if and only if P (Un = Sn) = 1.

Note: X(1), . . . , X(n) is sufficient therefore E(Sn|X(1), . . . , X(n)) is independent of θ so an

estimate.

• Therefore, if interested in the MSE of unbiased estimates of θ, we restrict attention to

U -statistics for θ.

Definition 1.2 Let Sn be an estimate of θ ∈ Θ. Then, c · Sn is a shrinkage estimate of θ, 0 <

c < 1.

• Stein (1964) showed inadmissibility of the usual estimator n−1
n+1

s2n for the variance σ2 of a

normal distribution with unknown mean (Goodman, 1953, “A Simple Method for Improving

some Estimators”), by providing a shrinkage estimate improving its MSE; sample X1, . . . , Xn

has mean X̄n,

s2n =
1

n− 1

n∑
i=1

(Xi − X̄)2.

• We will show inadmissibility of the unbiased estimate s2n of σ2 for all distributions having

finite second moment. Similar results are proved for other unbiased estimates. The approach

seems more interesting than the result.
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Briefly:

1) An inequality is provided that determines when shrinkage reduces the mean squared error

(MSE) of an unbiased estimate and a Lemma encourages the use of artificially augmented

samples.

2) Artificially augmented samples (i.e. pseudo-values) are then used to obtain, among others,

shrinkage estimates of the population’s variance and covariance, which improve the unbiased

estimates for all parameter values and for all probability models with marginals having finite

second moments. A similar approach is used for U -statistics.

3) Alternative jackknife estimates are presented that complement the usual jackknife estimates

in reducing the MSE.

Tools used: Augmented samples; Jackknife Estimates; Shrinkage Estimates; U-statistics.

Notation: We present first YY(2005). Lower case letters will be used to denote estimates,

i.e. tn is used instead of Tn.

2 Introduction (YY, 2006)

The estimation of a population’s variance, σ2, and covariance, σX,Y , is the stuff of statistical

folkore. Often the unbiased estimate, s2n of σ2 is used, but for some probability models, shrink-

age estimates, cs2n reduce the mean squared error (MSE) of s2n for every σ, 0 < c < 1, with n

the sample size.

So far, there is no shrinkage estimate with a smaller MSE than s2n that applies universally,

for all values of σ, for all probability models and every sample size n (Stein 1964; Brown 1968;

Arnold 1970; Lehmann 1983, p. 113). Such an estimate will be provided in these lectures. A

similar situation holds for the unbiased estimate of σX,Y .

For an unbiased estimate, tn, of a parameter θ with real values, an increase in the sam-
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ple size n has usually the same effect as a successful shrinkage; both decrease the MSE.

Questions arise as to whether by artificially augmenting the sample, an estimate t̃n can be

obtained with a smaller MSE than tn for every θ value, and as to whether t̃n is a shrinkage

estimate.

In these lectures it is seen that for some parameters, this is indeed so, and that even more

is true. t̃kn, the average of the values of tn+k on artificially augmented samples, turns out to

be a shrinkage estimate that has a smaller MSE than tn not only for all θ values, but also for

all probability models, 1 ≤ k < n.

In particular, in variance estimation, the average of s2n+1(X1, . . . , Xn, Xi), i = 1, . . . , n,

turns out to be a shrinkage estimate because for the U -statistic kernel h(x1, x2), which de-

termines σ2 and s2n,h(x,x) = 0. The obtained estimate, (n+2)(n−1)
n(n+1)

s2n, has a smaller MSE than

s2n for all values of σ, n ≥ 2 and for all probability models with finite second moments.

The same shrinkage coefficient, (n+2)(n−1)
n(n+1)

is obtained when averaging the values

tn+1,2(X1, ..., Xn, Xi), i = 1, . . . , n, of a U -statistic tn,2 with symmetric kernel of order m = 2

vanishing at the diagonal, like, for example, those determined by σX,Y , Kendall’s τ , and

Gini’s index g. The shrinkage estimate of σX,Y also has a smaller MSE than the corresponding

U -statistic for all covariance values, n ≥ 2 and for all probability models with marginals having

finite second moments. However, additional assumptions are needed for a similar result to hold

when estimating either τ or g.

The results are presented for a U -statistic tn,m with a symmetric kernel of order m ≥ 2 that

vanishes when two arguments are repeated, and the shrinkage coefficients cδn,k,m
are obtained

using (n + k) artificially augmented samples, 1 ≤ k < n, where δn is a positive number that

can be chosen to increase with n. For n large, our analysis suggests that shrinkage coefficients

are to be obtained from (n + kn)-augmented samples for the bias and the MSE improvement
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to slowly decrease to 0 as n increases. Shrinkage coefficients are also obtained that are used to

reduce the MSE of some other unbiased estimates.

An alternative (n+1) jackknife estimate, t̃Jn, is also provided, which together with the usual

(n − 1) jackknife estimate, tJn, has the potential to reduce the MSE of a biased estimate, tn,

of θ. This is contrary to results on unaugmented jackkknife procedures (Shao and Tu 1995,

sec. 2.5, p. 70, l. 3–5). For example, when the population’s mean is unknown, the esti-

mate t̃Jn = n−1
n+1

s2n of σ2 improves tJn = s2n and tn = n−1
n
s2n for various models. When tn is

smooth and n is large, conditions are provided that determine when t̃Jn, t
J
n and t̃1n [the average

of tn+1(X1, . . . , Xn, Xi), i = 1, ..., n] have smaller MSE than tn. It is expected that similar

results will hold for (n+ k) jackknife estimates. In Section 2 a sufficient condition is provided

for a shrinkage estimate to reduce the MSE of an unbiased estimate, tn, of θ for all θ values

and a family, F , of probability models. In Section 3 the basis of the motivation to use (n+ k)-

artificially augmented samples and t̃kn is presented. In Section 4, t̃kn is used to obtain shrinkage

estimates that improve the MSE of some U -statistics and other unbiased estimates. Finally, in

Section 5, the alternative (n+ 1) jackknife estimate t̃Jn is proposed and studied.

3 Shrinkage and MSE Reduction

Let X1, . . . , Xn be a sample from an unknown cumulative distribution function F in a known

class F of models, and let tn(X1, ..., Xn) be an unbiased estimate of the unknown model pa-

rameter θ ∈ Θ(⊆ R) with finite second moment; θ may be, for example, the mean of F. The

MSE, EF (cntn − θ)2, of the shrinkage estimate cntn, 0 < cn < 1, is minimized when

cn(θ, F ) =
θ2

Et2n
= (1 +

var(tn)

θ2
)−1. (4)
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Because cn(θ, F ) often depends on θ and F, this approach does not yield a universal shrinkage

coefficient cn that minimizes the MSE of tn for every θ ∈ Θ, and for every F ∈ F when F

consists of more than one model. An alternative goal is to determine shrinkage coefficients that

reduce the MSE of tn for every θ ∈ Θ and for every F ∈ F .

These coefficients are selected from the set [supΘ,F cn(θ, F ), 1) that is nonempty if infΘ,F
var(tn)

θ2
>

0 because

sup
Θ,F

cn(θ, F ) = (1 + infΘ,F
var(tn)

θ2
)−1;

supΘ,F (resp. inf supΘ,F) denotes supθ∈Θ,F∈F (resp. infθ∈Θ,F∈F ).

We now characterize the shrinkage coefficients that reduce the MSE of tn for a given θ and

F.

Lemma 3.1

E(cntn − θ)2 < E(tn − θ)2 = var(tn) ⇐⇒ 1− cn
1 + cn

<
var(tn)

θ2
. (5)

Proof. Use the relation

E(cntn − θ)2 = c2nvar(tn) + (1− cn)
2θ2. 2

From (5), it follows that when F is the true model, the unbiased estimate tn can be improved

with shrinkage for every θ ∈ Θ if infθ∈Θ
var(tn)

θ2
is bounded below by some known positive

constant LF that depends on F and n. This occurs when, for example, the Fisher information

IX1(θ) = M/θ2,M > 0, and the Cramer–Rao inequality holds for tn at the model F. tn can

be improved with shrinkage for every θ ∈ Θ and for every F ∈ F if infΘ,F
var(tn)

θ2
is bounded

below by some known positive constant L that depends on n.

In (5) the lower bound 1−cn
1+cn

is a decreasing function of cn that should be suitably chosen; it

should be large enough to cause moderate bias and for (5) to hold for every θ ∈ Θ and every
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F ∈ F , with the corresponding MSE reduction to slowly decrease to 0 as n increases.

The estimate ĉn = (1+ V̂n

t2n
)−1 of cn(θ, F ) will not reduce the MSE of tn for each n and each

F, because V̂n may not be a satisfactory estimate of var(tn) for all models F. This can be seen

in examples for large samples, appearing at the end of the corresponding section in the section

(YY, 2005).

4 Estimates based on artificially augmented samples

Pseudovalues of an estimate tn of θ are used to, for example, estimate its variance or to

obtain a new estimate with reduced bias or when data are missing. These pseudovalues are

usually obtained by evaluating either tn on B bootstrap samples (Efron 1979), tn−k on (n −

k)-reduced samples (Quenouille 1956), or tn on samples obtained with multiple-imputation

methods (Rubin 1987).

The class An,k of the (n+k) artificially augmented samples consists of the samples

X = Xn+k = (X1, . . . , Xn, Xn+1 = Xj1 , . . . , Xn+k = Xjk), 1 ≤ j1 < < jk ≤ n,

and the pseudovalues tn+k(X),X ∈ An,k, are used to define the estimate

t̃kn =

(
n

k

)−1 ∑
X∈An,k

tn+k(X), 1 ≤ k ≤ n. (6)

An,k, tn+k(X),X ∈ An,k and t̃kn can all be thought of in terms of multiple imputation for a

sample with size (n+ k) and k missing observations.

The proposition that follows encourages the use both of (n+ k)-augmented samples and of

the estimate t̃kn in (6). The use of B bootstrap (n + k)-augmented samples is discouraged due

to the additional randomization introduced by finite resampling (Yatracos 2002).
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Definition 4.1 For n independent, identically distributed random variables X1, . . . , Xn, their

empirical cumulative distribution function

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x), x ∈ R,

I(Xi ≤ x) = 1 if Xi ≤ x and 0 otherwise.

Proposition 4.1 . Let F̂n, F̂n−k,i1,...,ik and F̂n+k,i1,...,ik denote, respectively, the empirical cu-

mulative distributions of the original sample {X1, . . . , Xn}, {X1, . . . , Xn} − {Xi1 , . . . , Xik}

and {X1, . . . , Xn, Xi1 , . . . , Xik}, 1 ≤ k < n, 1 ≤ il ̸= im ≤ n. Then, for every x it holds that

|F̂n+k,i1,...,ik(x)− F̂n(x)| < |F̂n−k,i1,...,ik(x)− F̂n(x)|. (7)

Thus, for any x, F̂n+k,i1,...,ik(x) is closer than F̂n−k,i1,...,ik(x) to F̂n(x) that contains all the

information.

Proof. Let I denote the indicator function. Then, (7) follows from the relations

F̂n+k,i1,...,ik(x) =
n

n+ k
F̂n(x)+

1

n+ k

k∑
j=1

I(Xij ≤ x) = F̂n(x)+
1

n+ k

k∑
j=1

[I(Xij ≤ x)−F̂n(x)]

and

F̂n−k,i1,...,ik(x) =
n

n+ k
F̂n(x)−

1

n− k

k∑
j=1

I(Xij ≤ x) = F̂n(x)−
1

n− k

k∑
j=1

[I(Xij ≤ x)−F̂n(x)]

and (7) follows moving F̂n(x) to the left side of the last two equations and taking absolute

values. 2

5 Shrinkage of U -Statistics

5.1 U -Statistics and Augmented Samples

For a symmetric kernel h(x1, x2, ..., xm) of degree m, such that

Eh(X1, X2, . . . , Xm) = θ,
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the U -statistic of θ and the (n+ k)-augmented sample estimate (6) are

tn,m =

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim) (8)

and

t̃kn,m =

(
n

k

)−1(
n+ k

m

)−1

·
∑

X∈An,k

∑
1≤i1<...<im≤n

h(Xi1 , . . . , Xim) (9)

5.2 Shrinkage Estimates

Let Vm denote the class of symmetric kernels of degree m ≥ 2 that vanish when two of the

arguments in the kernel are repeated. When h ∈ Vm, t̃
k
n,m turns out to be a shrinkage estimate

of tn,m; the shrinkage coefficients are obtained in the next Proposition.

Proposition 5.1 Let tn,m be as in (8) ) with h ∈ Vm, l = min{k,m}.

a) The (n +k)-augmented sample estimate is

t̃kn,m = cn,k,mtn,m =

[(
n+ k

m

)−1 l∑
j=0

(
k

j

)(
n− j

m− j

)]
tn,m. (10)

b) The (n+ 1)-augmented sample estimate is

t̃1n,m = cn,1,mtn,m =

[
1− m2 −m

n(n+ 1)

]
· tn,m, (11)

and the corresponding lower bound in (5) is

1− cn,1,m
1 + cn,1,m

=
m2 −m

2n(n+ 1)−m2 +m
, (12)

and it holds that

cn,1,m ≤ cn,1,2, m ≥ 2. (13)

c) When m = 2, the (n+ k)-augmented sample estimate is

t̃kn,2 = cn,k,2tn,2 =

[
1− 2k

(n+ k)(n+ k − 1)

]
tn,2, (14)
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the corresponding lower bound in (5) is

1− cn,k,2
1 + cn,k,2

=
k

(n+ k)(n+ k − 1)− k
, (15)

and it holds for the coefficients that

0 < cn,k,2 ≤ cn,k−1,2 ≤ cn,1,2 2 ≤ k < n. (16)

Proof: To Prove a), let

∆n,k,m =
l∑

j=0

(
k

l

)(
n− j

m− j

)
.

In (8),
(
n
k

)(
n+k
m

)
t̃kn,m has ∆n,k,m

(
n
k

)
nonvanishing terms and equals(

n

k

)
∆n,k,m(

n
m

) ∑
1≤i1<i2<...<im≤n

h(Xi1 , Xi2 , . . . , Xim). (17)

(9) follows from (8) and (17).

Proofs for b) and c) follow from the proof of part a). 2

Remark 1

a) To get a feeling for estimate (9), note for example that when n = 3,m = 2, k = 2 and

l = 2, then t̃23,2 = .8t3,2.

b) Equation (16) and Section 2 explain why cn,1,2 is used when m = 2. From (14), it follows

that, for n large, the bias and the MSE reduction decrease more slowly to 0 when using cn,kn,2

with kn increasing (see also Sec. 5.4, Remark 5).

For 1 ≤ j ≤ m, let

hj(x1, . . . , xj) = E[h(X1, . . . , Xm)|X1 = x1, . . . , Xj = xj], ζj = var[hj(X1, . . . , Xj)].

Then, it holds that (see, e.g., Serfling 1980, p. 183)(
n

m

)
var(tn,m) =

m∑
j=1

(
m

j

)(
n−m

m− j

)
ζj, (18)

and

0 ≤ ζ1 ≤ ζ2 ≤ . . . ≤ ζm = var[h(X1, . . . , Xm)]. (19)
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Proposition 5.2 Let tn,m be as in (8) with h ∈ Vm.

a) The following statements are each sufficient for the shrinkage estimate cδn,1,mtn,m to have

smaller MSE than tn,m for every θ ∈ Θ; δn is determined by (22) and can be chosen to increase

with n.

1. There is a known constant LF > 0 such that(
n

m

)
inf
θ∈Θ

var(tn,m)

θ2
> LF (20)

2. There is a known constant LF > 0 and j0, 1 ≤ j0 ≤ m, such that

inf
θ∈Θ

ζj0
θ2

> LF . (21)

b) When m = 2, either (20) or (21) is sufficient for the shrinkage estimate cδn,k,2
tn,2 to have

smaller MSE than tn,2 for every θ ∈ Θ; δn is determined by (23) and can be chosen to increase

with n.

Proof: For part a) 1, use (5) and choose an increasing sequence δn such that for every n, it

holds that (
n

m

)
1− cδn,1,m
1 + cδn,1,m

=

(
n

m

)
m2 −m

2δ2n + 2δn −m2 +m
< LF . (22)

The proof of part a) 2 follows from part a) 1, because from (18) and (19) it holds that(
n

m

)
var(tn,m) ≥ ζm ≥ . . . ≥ ζ1.

For part b) to prove sufficiency of (20), use (5) and choose an increasing sequence δn such that

for every n, it holds that(
n

2

)
1− cδn,k,2
1 + cδn,k,2

=

(
n

2

)
k

(δn + k)(δn + k − 1)− k
< LF . (23)

Sufficiency of (21) follows as for part a) 1. 2

Remark 2.

When (21) holds for j0 ≤ m− 1, (19) implies that it also holds for j0 = m.
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Corollary 5.1 If L = infF∈F LF is positive, then the estimate cδn,1,mtn,m (resp. cδn,k,2
tn,2)

obtained using L instead of LF in (22) [resp. (23)] has smaller MSE than tn,m (resp. tn,2) for

all θ’s and for all models F ∈ F .

5.3 Applications

The kernels for the population variance and covariance, Kendall’s τ and Gini’s index are, re-

spectively,

(x1 − x2)
2

2
,

(x1 − x2)(y1 − y2)

2
, sign((x1 − x2)(y1 − y2)), |x1 − x2|γ, γ > 0;

sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and vanishes when x = 0. The ordering of

the coefficients cn,k,2 in Proposition 5.1 c) and (5) suggest using (n + 1)-augmented sample

estimates when n is small; δn = nr is used herein.

The Population Variance σ2
X and the Population Covariance σXY .

Let (X1, Y1), . . . , (Xn, Yn) be a two-dimensional sample with joint cumulative distribution

function F ;µX = EX1, µY = EY1, σ
2
X = var(X1), σ

2
Y = var(Y1), σXY = E(X1 − µX)(Y1 −

µY ) and µ2,2 = E(X1 − µX)
2(Y1 − µY )

2.

Let tn,2 = 1
n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ ) be the U -statistic estimating σXY ; X̄, Ȳ are the

averages of the X’s and of the Y ’s. It holds that (Lee 1990, p. 14)

var(tn,2) =
µ2.2

n
−

(n− 2)σ2
X,Y − σ2

Xσ
2
Y

n(n− 1)
=

(n− 1)(µ2,2 − σ2
X,Y ) + σ2

X,Y + σ2
Xσ

2
Y

n(n− 1)
(24)

and because

n(n− 1)
1− cn,1,2
1 + cn,1,2

=
n2 − n

n2 + n− 1
< 1 <

(n− 1)(µ2,2 − σ2
X,Y ) + σ2

X,Y + σ2
Xσ

2
Y

σ2
X,Y

(25)

it follows from Corollary 5.1 that t̃1n,2 = cn,1,2tn,2 has a smaller MSE than tn,2 for all values of

σX,Y and for any model F with EFX
2
1 < +∞ and EFY

2
1 < +∞, n ≥ 2.
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When µX is unknown, σ2
X is usually estimated by s2n = 1

n−1

∑n
i=1(Xi − X̄)2 even though

n−1
n+1

s2n has a smaller MSE for normal populations but is not admissible (Stein, 1964). For

nonnormal populations, s2n may have smaller MSE than either n−1
n+1

s2n or σ̂2 = n−1
n
s2n. Using

(24) and (25), it follows that

s̃2n = cn,1,2s
2
n =

(n+ 2)(n− 1)

n(n+ 1)
s2n, (26)

has smaller MSE that tn,2 = s2n for all values of σ and for any model F with finite fourth

moment and n ≥ 2.

Kendall’s τ

Let

tn,2 =
2

n(n− 1)

∑
1≤i<j≤n

sign((Xi −Xj)(Yi − Yj))

be the U -statistic estimating

τ = P [(X2 −X1)(Y2 − Y1) > 0]− P [(X2 −X1)(Y2 − Y1) < 0],

τ ∈ [−1 + ϵ, 1− ϵ], 0 < ϵ < 1.

Then, there is positive integer r = r(ϵ) such that t̃1n,2 = cnr,1,2tn has a smaller MSE than tn

for n ≥ 2. This follows from Proposition 5.2 a), because it holds that (Lee 1990, p. 14)

var(tn,2) =
2

n(n− 1)
· [2(n− 2)var(E[sign(X1−X2)(Y1−Y2)|X1 = x1, Y1 = y1])+1− τ 2]

and that

n(n− 1)

2
· var(tn,2)

τ 2
>

n(n− 1)

2
· var(tn,2) > 1− τ 2 > 1− (1− ϵ)2.

Gini’s Index, g.

Let

tn,2 =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj|γ

16



be the U -statistic estimating g = E|X1 −X2|γ ∈ G, γ > 0. Assume that

inf
g∈G

var|X1 −X2|γ

g2
> LF > 0.

Then, there is a positive integer r = r(LF ) such that

t̃1n,2 = cnr,1,2tn,2

has a smaller MSE than tn for n ≥ 2. This follows from Proposition 5.2 a), as in the previous

example, because it holds that (Serfling 1980, p. 183)

var(tn,2) =
2

n(n− 1)
[2(n− 2)varE(|X1 −X2|γ|X1 = x1) + var|X1 −X2|γ].

5.4 Additional Remarks

Remark 3

Equation (5), Proposition 5.2 and the results in the Applications Section 5.3 motivate the

use of the shrinkage coefficient cnr,1,2 for any unbiased estimate tn of θ for which

nm inf
θ∈Θ

var(tn)

θ2
> LF > 0,

with LF known. r satisfies the inequality

1

n2r−m + nr−m − n−m
< LF ,

for n ≥ 2 and t̃n = cnr,1,2tn dominates tn for all θ values, n ≥ 2.

When LF is not known, the shrinkage estimate asymptotically improves the unbiased es-

timate. For example, when estimating the mean µ of a distribution with X̄ and the variance

σ2 is unknown, it follows from (5) and (15) with k = 1 that (n−1)(n+2)
n(n+1)

X̄ dominates X̄ if

µ2

σ2 < n2+n−1
n

, that is, if µ2

σ2 is not “very large,” which holds for n large.

Remark 4
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When cnr,1,2tn is used instead of tn, the amount of MSE reduction increases as the vari-

ance of tn increases, and can be substantial irrespective of the sample size n. For example, in

variance estimation for normal models, it holds that (Lehmann 1983, p. 113)

E

[
c̃

n∑
i=1

(Xi − x̄)2 − σ2

]2
= σ4[(n2 − 1)c̃2 − 2(n− 1)c̃+ 1] (27)

and therefore the MSE reduction due to shrinkage is proportional to σ, which can take any

positive value.

Remark 5

Rather than using (n + k)-augmented samples to obtain a shrinkage coefficient for tn,m, a

referee suggested finding L > 0 such that infΘ,F
var(tn,m)

θ2
> L holds, then solve the equation

1−c
1+c

= L to obtain the shrinkage estimate ctn,m that dominates tn,m for all F ∈ F . However,

the determination of a lower bound L is not straightforward, and the MSE reduction achieved

with ctn,m may rapidly decrease to 0 as nincreases. For example, in covariance estimation, it

follows from (24) that for each model F, it holds that

var(tn,2)

σ2
X,Y

=
1

n(n− 1)
+ g(F, σX,Y , n),

and it is not clear whether

inf
Θ,F

g(F, σX,Y , n) > 0

such that one can choose L = 1
n(n−1)

. In variance estimation, for the normal model with un-

known mean, it holds that infΘ,F
var(s2n)

σ4 > 2
n(n−1)

and one can choose Lj = j
n(n−1)

, j = 1, 2.

The solution of the equation 1−c
1+c

= Lj is cj,n = n2−n−j
n2−n+j

, j = 1, 2, but observe that c2,2 = 0.

In YY(2005), for sample sizes n = 5, 10, 15, 20 and for various c values, the corresponding

value of L = 1−c
1+c

and the MSE of the shrinkage estimate cs2n are presented when σ2 = 1.

As n increases, the bias of cs2n and the associated MSE improvement both decrease fast to

0, c ∈ {cn,k,2, cj,n; k = 1, . . . , 4, j = 1, 2}. From (14), 1 − cn,k,2 ∼ 2k
n2 and thus, for n large,
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larger bias and MSE reduction can be achieved using coefficients cn,kn,2. One may choose, for

example, kn = γn, 0 < γ < 1, to obtain

var(s2n)− E(cn,kn,2s
2
n − σ2)2

var(s2n)
∼ 2

n

γ

(1 + γ)2
[2− γ

(1 + γ)2
].

6 Augmented Samples and the Jackknife

6.1 Jackknife Estimates and Pseudovalues

The (n− 1) jackknife estimate tJn (Quenouille, 1956) aims to reduce the bias of the estimate

tn of θ, and is the average of the pseudovalues ntn − (n− 1)tn−1,i, i = 1, ..., n,

tJn = ntn −
1

n

n∑
i=1

(n− 1)tn−1,i = tn + (n− 1)(tn −
∑n

i=1 tn−1,i

n
); (28)

tn−1,i = t(X1, . . . , Xi−1, Xi+1, . . . , Xn), i = 1, . . . , n.

Practice: Find the Jackknife estimate of the unbiased estimate of the variance, s2n, and of

n−1
n
s2n.

Equation (7) suggests using (n+ 1)-augmented samples to obtain the pseudo values

tn + (n+ 1)(tn+1,i − tn) = (n+ 1)tn+1,i − ntn, (29)

whose average

t̃Jn = n−1

n∑
i=1

[(n+ 1)tn+1,i − ntn] = tn + (n+ 1)

(∑n
i=1 tn+1,i

n
− tn

)
, (30)

is an alternative (n+ 1) jackknife estimate; tn+1,i = tn+1(X1, . . . , Xn, Xi), i = 1, . . . , n.

Note that in (28) and (30), the tn corrections (n−1)(tn−
∑n

i=1 tn−1,j

n
) and (n+1)(

∑n
i=1 tn+1,j

n
−

tn) may have opposite signs and thus t̃Jn may increase the bias of tn.

It should be mentioned that Hinkley (1978) and Beran (1984) used (n + k)-augmented

samples, k = 1, 2, to study the properties of tJn but not for the purpose of deriving estimates.
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Cabrera and Fernholz (1999) proposed a“target” estimate that, under model regularity condi-

tions, has smaller bias and MSE than tn.

6.2 MSE Reduction with tJn and t̃Jn

From (28) [resp. (30)], it follows that tJn (resp. t̃Jn) has a smaller MSE than tn iff

E(tJn − tn)
2 + 2(n− 1)E(tn − θ)

(
tn −

∑n
i=1 tn−1,i

n

)
< 0 (31)

[
resp. E(t̃Jn − tn)

2 + 2(n+ 1)E(tn − θ)

(∑n
i=1 tn+1,i

n
− tn

)
< 0

]
. (32)

Because

E(tn − θ)

(
tn −

∑n
i=1 tn−1,i

n

)
and E(tn − θ)

(∑n
i=1 tn+1,i

n
− tn

)
(33)

may have opposite signs, only one of (31) and (32) may hold. This is confirmed in the following

example and for smooth functionals in Section 6.4.

Example. Let X1, . . . , Xn be a sample from a normal distribution with unknown mean

µ and variance σ2, θ = σ2 and tn = σ̂2, the maximum likelihood estimate. Because tn has

smaller MSE than s2n for every σ, (31) does not hold; s2n is also the “target” estimate of σ2

(Cabrera and Fernholz, 1999, sec. 4.1, p. 1093, l. 6 and 7). Among all estimates of σ2 with

form c
∑n

i=1(Xi − X̄)2, that with c = (n + 1)−1 minimizes the MSE (Goodman, 1953) and is

the minimum risk-equivariant estimate (Lehmann 1983, p. 113). Because

t̃Jn =
1

n+ 1

n∑
i=1

(Xi − X̄)2,

(32) holds.

Indeed, for any sample X1, . . . , Xn, Xn+1, it holds that

X̄n+1 − X̄n =
1

n
(Xn+1 − X̄n),
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implying that

(n+ 1)tn+1 = ntn +
n

n+ 1
(Xn+1 − X̄n)

2, (34)

For the (n+ 1)-augmented sample, X1, . . . , Xn, Xn+1 = Xi, it follows from (34) that

(n+ 1)tn+1,i = ntn +
n

n+ 1
(Xi − X̄n)

2,

and therefore,

t̃Jn =
1

n

n∑
i=1

[(n+ 1)tn+1,i − ntn] =
1

n+ 1

n∑
i=1

(Xi − X̄n)
2.

t̃Jn has a larger bias than tn, because Etn = σ2 − σ2

n
and Et̃Jn = σ2 − 2σ2

n+1

For the variance σ2 = m
m−2

of the Tm distribution, estimates of the MSE based on 1,000 sim-

ulations indicate that t̃Jn has a smaller MSE than both tn and tJn, 3 ≤ n ≤ 30,m = 3, 10, 20, 30,

and that (31) does not hold. The graph of the results is presented in Figure 1 and Remark 7 in

the last section (in YY 2005) provides the explanation.

Remark 6. The jackknife covariance estimate obtained with (n+ 1)-augmented samples is

1

n+ 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ).

In the rest of YY2005, tn, tJn, t̃
J
n are examined asymptotically and conditions are given under

which the augmented (n+ 1)-Jackknife t̃Jn improves the other estimates.

6.3 Von Mises Differentiable Statistical Functionals

Statistical Problem: X1, . . . , Xn are i.i.d, f(x|θ), with c.d.f. F (x, θ). Let θ = T (F ) be the

parameter of interest and θ̂n its estimate. Assume θ̂n = T (F̂n), where F̂n is the empirical c.d.f.

of X1, . . . , Xn.

Example 6.1 Mean θ(F ) = µ(F ) = T (F ) =
∫
R
xdF (x), therefore

T (F̂n) =

∫
R

xdF̂n(x) =
1

n

n∑
i=1

Xi = X̄n
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since dF̂n(x) =
1
n

when x = Xi and is zero otherwise.

Example 6.2 Variance θ(F ) = T (F ) =
∫
R
(x− µ(F ))2dF (x), therefore

T (F̂n) =

∫
R

(x− µ(F̂n))
2dF̂n(x) =

1

n

n∑
i=1

(Xi − X̄n)
2.

Example 6.3 p-th Quantile of F = T (F ) = F−1(p) therefore

T (F̂n) = F̂−1
n (p) = p th sample quantile.

Recall a Taylor Expansion:

f(x)− f(a) = (x− a)f ′(a) +
(x− a)2

2!
f (2)(a) + . . .+

(x− a)m

m!
f (m)(a) +Rm,

where Rm is the Remainder.

We can have a similar expansion for T (F̂n) :

T (F̂n)− T (F ) = Wmn +Rmn =
m∑
j=1

dj(F ; F̂n − F )

j!
+Rmn,

where dj indicates the j-th derivative to be determined and Rmn the stochastic Remainder that

depends also on the sample size. Then we study T (F̂n)−T (F ) via Wmn and Rmn. For example,

to show asymptotic normality of T (F̂n)− T (F ) we may use V1n if it can be written as sum of

i.i.d. r.vs. and for the remainder it holds, as n increases to infinity,

n1/2R1n
P→ 0.

Informal Proposition (Von Mises) The type of asymptotic distribution of a differentiable

statistical functional Tn = T (F̂n) depends upon which is the first nonvanishing term in the

Taylor development of the functional at the distribution F of the observations. If it is the linear

term (the first), the limit distribution is normal under the usual assumptions for the Central

Limit theorem. If the first non vanishing term is the one of order m, then the random variable

nm/2[T (F̂n)− T (F )] converges in distribution to a random variable with finite variance.

The basic method of differentiation of a functional T (F ) is now described.
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Definition 6.1 Let F be a space of distribution functions that includes the distribution func-

tions {(1 − ϵ)F + ϵG;F ∈ F , G ∈ F ; 0 ≤ ϵ ≤ 1. Consider a functional T defined on

(1− ϵ)F + ϵG for all sufficiently small ϵ > 0. If the limit

d1T (F ;G− F ) = lim
ϵ→0+

T [F + ϵ(G− F )]− T (F )

ϵ

exists, it is called the Gateax differential of T at F in the direction of G (or (G− F )).

Note that d1T (F ;G− F ) is the usual derivative of ϵ from the right of zero, of the function

Q(ϵ) = T [F + ϵ(G− F )].

In general, the k-th order Gateaux differential of T at F in the direction G (or G− F ) is

dkT (F ;G− F )) =
dk

dϵk
{T [F + ϵ(G− F )]− T (F )}|ϵ=0+.

Example 6.4 Let T (F ) =
∫
R
xdF (x), u ∈ R,G = Gδu is the distribution of the Dirac function

δu at u, observe that T is linear and

d1T (F ;Gδu − F ) = lim
ϵ→0+

T [F + ϵ(Gδu − F )]− T (F )

ϵ
= lim

ϵ→0+

ϵT (Gδu − F )

ϵ
= u− µ.

a1(u) = u − µ is the Influence Function for the mean, measuring the influence of u (or Gδu)

used in a small perturbation of F.

An alternative approach to define a differential stronger than the Gateaux derivative follows

the approach of differential in Rk with partial derivatives giving the directional derivatives. Let

D be the linear space generated by the differences G−H of members of the family of c.d.f F ,

equipped with a norm || · ||. D can be represented as

D = {D = c(G−H);G,H ∈ F , c ∈ R}.

Definition 6.2 The functional T defined on F is said to have a differential at F ∈ F with

respect to norm || · || if there exists functional T (F ;D) defined on D ∈ D linear in D :

T (G)− T (F )− T (F ;G− F ) = o(||G− F ||)

23



as ||G− F || → 0. T (F ;D) is the differential.

Remark 6.1 Linearity of T (F ;D) implies,

T (F ;
k∑

i=1

aiDi) =
k∑

i=1

aiT (F ;Di);

ai ∈ R,Di ∈ D, i = 1, . . . , k.

Remark 6.2 With the differential approach T (F̂n) − T (F ) is approximated by the random

variable T (F ; F̂n − F ) that will become a sum from previous Remark.

A proposition follows relating the differential T (F ;G − F ) with the Gateaux derivative

d1T (F ;G− F ).

Proposition 6.1 If T has a differential T (F ;D) exists, then for any G the Gateaux derivative

d1T (F ;G− F ) exists and

d1T (F ;G− F ) = T (F ;G− F ).

Proof: Given G, observe that

(1− ϵ)F + ϵG− F = ϵ(G− F ).

Then, by linearity of T and since ||ϵ(G− F )|| → 0 as ϵ decreases to zero,

T [(1− ϵ)F + ϵG]− T (F ) = ϵT (F ;G− F ) + o(ϵ||G− F ||).

Therefore,

lim
ϵ→0

T [(1− ϵ)F + ϵG]− T (F )

ϵ
= lim

ϵ→0

ϵT (F ;G− F ) + ϵo(1)

ϵ
= T (F ;G− F ).

The differential T (F ;G− F ) can be used to handle also the Remainder R1n. More details

in Serfling’s book, Chapter on Von Mises differentiable statistical functions.
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7 Pitman Closeness Criterion and Shrinkage

Given two estimates θ̂1 and θ̂2 of an unknown parameter θ, Pitman (1937) suggested that θ̂1

should be regarded as a “closer” estimate of θ if

P
(
|θ̂2 − θ| > |θ̂1 − θ|

)
> 1/2.

This criterion, which is often called Pitman closeness, has an intuitive appeal and is in accor-

dance with statistical tradition that preference should be expressed on a probability scale.

Much attention has been given to Pitman closeness criterion (PCC) properties in the 90’s.

It has been sharply criticized by some and vigorously defended by others on various counts. A

good illustration of the debate is the paper by Robert, Hwang, and Strawderman (1993) and the

subsequent discussion by Blyth; Casella and Wells; Ghosh, Keating, and Sen; Peddada; and

Rao; in which different views in PCC’s favor or against it are presented.

Leaving the controversy behind, the object of this communication (by Gerard Biau and

YY) is to compare PCC with the familiar concept of mean squared error for variance esti-

mation purposes. For a large class of distributions and large samples, it is shown herein that

estimates of the variance σ2 and of the standard deviation σ are more often “closer” to their

target than the corresponding shrinkage estimates which improve the mean squared error. The

same phenomenon is also observed for small and moderate sample sizes.

Our results indicate that PCC should be regarded as a useful and complementary tool for

the evaluation of estimates of σ2 and of σ, in agreement with Professor C. R. Rao’s comment

(in Robert et al 1993):

“I believe that the performance of an estimator should be examined under different criteria

to understand the nature of the estimator and possibly to provide information to the decision-

maker. I would include PCC in my list of criteria, except perhaps in the rare case where the

25



customer has a definite loss function”.

To go straight to the point, suppose that X1, . . . , Xn (n ≥ 2) are independent, identically

distributed (i.i.d.) real-valued random variables, with unknown mean and unknown finite posi-

tive variance σ2. We consider here the estimation problem of the variance σ2. Set

X̄n =
1

n

n∑
i=1

Xi.

The sample variance estimate

S2
SV,n =

1

n

n∑
i=1

(
Xi − X̄n

)2
and the unbiased estimate

S2
U,n =

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
are both standard statistical procedures to estimate σ2.

However, assuming squared error loss, more general estimates of the form

δn

n∑
i=1

(
Xi − X̄n

)2
,

where (δn)n is a positive sequence, are often preferred. For example, if X1, . . . , Xn are sampled

from a normal distribution, Goodman (1953) proved that we can improve upon S2
SV,n and S2

U,n

uniformly by taking δn = 1/(n+ 1). This means, setting

S2
M,n =

1

n+ 1

n∑
i=1

(
Xi − X̄n

)2
,

that for all n and all values of the parameter,

E
[
S2

M,n − σ2
]2

< E
[
S2

SV,n − σ2
]2 and E

[
S2

M,n − σ2
]2

< E
[
S2

U,n − σ2
]2
.

To see this, it suffices to note that, in the normal setting,

E

[
δn

n∑
i=1

(
Xi − X̄n

)2 − σ2

]2
= σ4

[(
n2 − 1

)
δ2n − 2(n− 1)δn + 1

]
, (35)
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and that the right-hand side is uniformly minimized by δ⋆n = 1/(n+ 1) (Lehmann and Casella,

1998, Chapter 2).

Since the values δn = 1/n and δn = 1/(n−1), corresponding to S2
SV,n and S2

U,n, respectively,

lie on the same side of 1/(n+ 1), it is often referred to S2
M,n as a shrinked version of S2

SV,n and

S2
U,n, respectively. Put differently, S2

M,n = cnS
2
SV,n (respectively, S2

M,n = c̃nS
2
U,n) where, for each

n, cn (respectively, c̃n) belongs to (0, 1).

Under different models and assumptions, inadmissibility results in variance and standard

deviation estimation were proved using such estimates, among others, by Goodman (1953,1960),

Stein (1964), Brown (1968), Arnold (1970) and Rukhin (1987) For a review of the topic, we re-

fer the reader to Maatta and Casella (1999), who trace the history of the problem of estimating

the variance based on a random sample from a normal distribution with unknown mean.

More recently, Yatracos (2005) provided shrinkage estimates of U -statistics based on arti-

ficially augmented samples and generalized, in particular, the variance shrinkage approach to

non-normal populations by proving that, for all probability models with finite second moment,

all values of σ2 and all sample sizes n ≥ 2, the estimate

S2
Y,n =

n+ 2

n(n+ 1)

n∑
i=1

(
Xi − X̄n

)2
ameliorates the mean squared error of S2

U,n. [Note that S2
Y,n = cnS

2
U,n for some cn ∈ (0, 1), so

that S2
Y,n is in fact a shrinked version of S2

U,n.]

Nevertheless, the variance shrinkage approach, which is intended to improve the mean

squared error of estimates, should be carefully considered when performing point estimation.

The rationale behind this observation is that the mean squared error is the average of the pa-

rameter estimation error over all samples whereas, in practice, we use an estimate’s value based

on one sample only and we care for the distance from its target.

To understand this remark, just consider the following example, due to Yatracos (2011).
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Suppose again that X1, . . . , Xn are independently normally distributed, with finite variance σ2.

Then, an easy calculation reveals that

P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

U,n − σ2
∣∣) = P

(
χ2
n−1 < n− 1

n

)
, (36)

where χ2
n−1 is a (central) chi-squared random variable with n − 1 degrees of freedom (for a

rigorous proof of this equality, see Lemma 10.1 in Section 10).

Figure 1 depicts the values of probability (36) for sample sizes ranging from 2 to 200. It

is seen on this example that the probability slowly decreases towards the value 1/2, and that it

may be significantly larger than 1/2 for small and even for moderate values of n.

Thus, Figure 1 indicates that, for a normal population, the standard unbiased estimate S2
U,n

is Pitman closer to the target σ2 than the shrinkage estimate S2
M,n, despite the fact that, for all n,

E
[
S2

M,n − σ2
]2

< E
[
S2

U,n − σ2
]2
.

Moreover, the advantage of S2
U,n with this respect becomes prominent for smaller values of n,

and a similar phenomenon may be observed by comparing the probability performance of S2
SV,n

vs S2
M,n. In fact, our main Theorem 8.1 reveals (in the particular case of normal distribution)

that

P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

U,n − σ2
∣∣) = 1

2
+

5

6
√
πn

+ o
(

1√
n

)
and

P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

SV,n − σ2
∣∣) = 1

2
+

13

12
√
πn

+ o
(

1√
n

)
,

that is, S2
U,n and S2

SV,n are both asymptotically Pitman closer to σ2 than S2
M,n. It is therefore

clear, at least on these Gaussian examples, that we should be cautious when choosing to shrink

the variance for point estimation purposes.

In the present paper, we generalize this discussion to a large class of distributions. Taking a

more general point of view, we let X1, . . . , Xn be a sample drawn according to some unknown
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distribution with finite variance σ2, and consider two candidates to estimate σ2, namely

S2
1,n = αn

n∑
i=1

(
Xi − X̄n

)2 and S2
2,n = βn

n∑
i=1

(
Xi − X̄n

)2
.

Assuming mild moment conditions on the sample distribution, our main result (Theorem 8.1)

offers an asymptotic development of the form

P
(∣∣S2

2,n − σ2
∣∣ ≥ ∣∣S2

1,n − σ2
∣∣) = 1

2
+

∆√
n
+ o

(
1√
n

)
,

where the quantity ∆ depends both on the moments of the distribution and the ratio of the

sequences (αn)n and (βn)n. It is our belief that this probability should be reported in priority

before deciding whether to use S2
2,n instead of S2

1,n, depending on the sign and values of ∆.

Standard distribution examples together with classical variance estimates are discussed, and

similar results pertaining to the estimation of the standard deviation σ are also reported.

8 Main results

As for now, we let X1, . . . , Xn (n ≥ 2) be independent and identically distributed real-

valued random variables, with unknown finite variance σ2 > 0. Throughout the document, we

let X be a generic random variable distributed as X1 and make the following assumption on

the distribution of X:

Assumption [A] Let m = EX . Then

(i) EX6 < ∞ and τ > 0, where

τ 2 = E

[
X −m

σ

]4
− 1,

(ii) and

lim sup
|u|+|v|→∞

∣∣E exp
(
iuX + ivX2

)∣∣ < 1.
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The latter restriction, often called Cramér’s condition, holds if the distribution of X is

nonsingular or, equivalently, if that distribution has a nondegenerate absolutely continuous

component—in particular, if X has a proper density function. A proof of this fact is given

in Hall (1992, Chapter 2).

On the basis of the given sample X1, . . . , Xn, we wish to estimate σ2. In this context,

suppose that we are given two estimates S2
1,n and S2

2,n, respectively defined by

S2
1,n = αn

n∑
i=1

(
Xi − X̄n

)2 and S2
2,n = βn

n∑
i=1

(
Xi − X̄n

)2
, (37)

where (αn)n and (βn)n are two positive sequences. Examples of such sequences have already

been reported in the introduction section, and various additional illustrations will be discussed

below. As a leading example, the reader should keep in mind the normal case, with αn =

1/(n− 1) (unbiased estimate) and βn = 1/(n+1) (minimum quadratic risk estimate). We first

state our main result, whose proof relies on the technique of Edgeworth expansion (see, e.g.,

Hall, 1992, Chapter 2).

Theorem 8.1 Assume that Assumption [A] is satisfied, and that the sequences (αn)n and (βn)n

in (37) satisfy the constraints

(i) βn < αn and (ii)
2

αn + βn

= n+ a+ o(1) as n → ∞,

where a ∈ R. Then, for the estimates S2
1,n and S2

2,n in (37),

P
(∣∣S2

2,n − σ2
∣∣ ≥ ∣∣S2

1,n − σ2
∣∣) = 1

2
+

1√
2πn

[
a+ 1

τ
− 1

τ 3

(
γ2 − λ

6

)]
+ o

(
1√
n

)
as n → ∞, where

γ = E

[
X −m

σ

]3
and λ = E

[(
X −m

σ

)2

− 1

]3
.

Some comments are in order to explain the meaning of the requirements of Theorem 8.1. Con-

dition (i) may be interpreted by considering that S2
2,n is a shrinked version of S2

1,n. For example,
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in the normal population context, we typically have the ordering

1

n+ 1
<

1

n
<

1

n− 1
,

which corresponds to the successive shrinked estimates S2
M,n, S2

SV,n and S2
U,n. To understand

condition (ii), it is enough to note that an estimate of σ2 of the form δn
∑n

i=1(Xi − X̄n)
2 is

(weakly or strongly) consistent if, and only if, δn ∼ 1/n as n → ∞. Therefore, for consis-

tent estimates S2
1,n and S2

2,n, it holds 2/(αn + βn) ∼ n, and condition (ii) just specifies this

asymptotic development.

Finally, it is noteworthy to mention that all presented results may be adapted without too

much effort to the known mean case, by replacing
∑n

i=1(Xi − X̄n)
2 by

∑n
i=1(Xi −m)2 in the

corresponding estimates. To see this, it suffices to observe that the proof of Theorem 8.1 starts

with the following asymptotic normality result (see Proposition 10.1):

√
n

1
n

∑n
i=1(Zi − Z̄n)

2 − 1

τ

D→ N (0, 1) as n → ∞, (38)

where

Zi =
Xi −m

σ
and τ 2 = E

[
X −m

σ

]4
− 1.

When the mean m is known, (38) has to be replaced by

√
n

1
n

∑n
i=1 Z

2
i − 1

τ

D→ N (0, 1) as n → ∞,

and the subsequent developments are similar. We leave the interested reader the opportunity to

adapt the results to this less interesting situation.

We are now in a position to discuss some application examples.

Example 1 Suppose that X1, . . . , Xn are independently normally distributed with unknown

positive variance σ2. Elementary calculations show that, in this setting, τ 2 = 2, γ = 0 and

λ = 8.
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The sample variance (maximum likelihood) S2
SV,n has αn = 1/n, whereas the unbiased

(jacknife) estimate S2
U,n has αn = 1/(n−1). The minimum risk estimate S2

M,n, which minimizes

the mean squared error uniformly in n and σ2, has βn = 1/(n+1) (Lehmann and Casella (1998,

Chapter 2). Thus, S2
M,n is a shrinked version of both S2

SV,n and S2
U,n (that is, βn < αn), with

2

αn + βn

=
2n2 + 2n

2n+ 1
= n+

1

2
+ o(1) for S2

M,n vs S2
SV,n, (39)

and

2

αn + βn

=
n2 − 1

n
= n− 1

n
for S2

M,n vs S2
U,n. (40)

Therefore, in this context, Theorem 8.1 asserts that

P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

SV,n − σ2
∣∣) = 1

2
+

13

12
√
πn

+ o
(

1√
n

)
and

P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

U,n − σ2
∣∣) = 1

2
+

5

6
√
πn

+ o
(

1√
n

)
.

Put differently, S2
SV,n and S2

U,n are both asymptotically Pitman closer to σ2 than SM,n. It is

also interesting to note that, according to (35), the maximum likelihood estimate has uniformly

smaller risk than the unbiased estimate, i.e., for all n and all values of the parameter,

E
[
S2

SV,n − σ2
]2

< E
[
S2

U,n − σ2
]2
.

Clearly, S2
SV,n may be regarded as a shrinkage estimate of S2

U,n and, with αn = 1/(n − 1) and

βn = 1/n, we obtain

2

αn + βn

=
2n2 − 2n

2n− 1
= n− 1

2
+ o(1),

so that

P
(∣∣S2

SV,n − σ2
∣∣ > ∣∣S2

U,n − σ2
∣∣) = 1

2
+

7

12
√
πn

+ o
(

1√
n

)
.

The take-home message here is that even if shrinkage improves the risk of squared error loss, it

should nevertheless be carefully considered from a point estimation perspective. In particular,
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the unbiased estimate S2
U,n is asymptotically Pitman closer to the target σ2 than the shrinked

(and mean squared optimal) estimate S2
M,n. We have indeed

lim
n→∞

√
n

[
P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

U,n − σ2
∣∣)− 1

2

]
=

5

6
√
π
,

despite the fact that, for all n,

E
[
S2

M,n − σ2
]2

< E
[
S2

U,n − σ2
]2
.

This clearly indicates a potential weakness for any estimate obtained by minimizing a risk

function, because extreme estimate’s values that have small probability can drastically increase

the risk function’s value.

To continue the discussion, we may denote by ℓ a real number less than 1 and consider

variance estimates of the general form

S2
ℓ,n =

1

n+ ℓ

n∑
i=1

(Xi − X̄n)
2, n > −ℓ. (41)

Clearly, S2
M,n is a shrinked version of S2

ℓ,n and, in the normal setting, for all n > −ℓ,

E
[
S2

M,n − σ2
]2

< E
[
S2
ℓ,n − σ2

]2
.

Next, applying Theorem 8.1 with

αn =
1

n+ ℓ
and βn =

1

n+ 1
,

we may write

2

αn + βn

= n+
ℓ+ 1

2
+ o(1)

and, consequently,

P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

ℓ,n − σ2
∣∣) = 1

2
+

1

4
√
πn

(
ℓ+

13

3

)
+ o

(
1√
n

)
.

The multiplier of the 1/
√
n term is positive for all ℓ > −13/3 ≈ −4.33. Thus, for ℓ ∈

(−13/3, 1), the estimate (41) is asymptotically Pitman closer to σ2 than S2
M,n, the minimum
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quadratic risk estimate. Note that this result is in accordance with Pitman’s observation that, in

the Gaussian case, the best variance estimate with respect to PCC should have approximately

αn ≈ 1/(n− 5/3) (Pitman, 1937, Paragraph 6).

Example 2 If X1, . . . , Xn follow a Student’s t-distribution with ν > 6 degrees of freedom

and unknown variance σ2, then it is known (see, e.g., Yatracos, 2005, Remark 7) that S2
M,n

improves both S2
SV,n and S2

U,n in terms of quadratic error. In this case, m = 0, γ = 0, whereas,

for 0 < k < ν, even,

EXk = νk/2

k/2∏
j=1

2j − 1

ν − 2j
.

Therefore,

σ2 =
ν

ν − 2
, EX4 =

3ν2

(ν − 2)(ν − 4)
and EX6 =

15ν3

(ν − 2)(ν − 4)(ν − 6)
.

Consequently,

τ 2 =

(
ν − 2

ν

)2

× 3ν2

(ν − 2)(ν − 4)
− 1 =

2ν − 2

ν − 4

and

λ =

(
ν − 2

ν

)3

× 15ν3

(ν − 2)(ν − 4)(ν − 6)
− 3

(
ν − 2

ν

)2

× 3ν2

(ν − 2)(ν − 4)
+ 2

=
8ν(ν − 1)

(ν − 4)(ν − 6)
.

Hence, using identities (39)-(40), Theorem 8.1 takes the form

P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

SV,n − σ2
∣∣) = 1

2
+

1

6
√
πn

(
ν − 4

ν − 1

)1/2(
13ν/2− 27

ν − 6

)
+ o

(
1√
n

)
and

P
(∣∣S2

M,n − σ2
∣∣ > ∣∣S2

U,n − σ2
∣∣) = 1

2
+

1

6
√
πn

(
ν − 4

ν − 1

)1/2(
5ν − 18

ν − 6

)
+ o

(
1√
n

)
.

We see that all the constants in front of the 1/
√
n terms are positive for ν > 6, despite the fact

that

E
[
S2

M,n − σ2
]2

< E
[
S2

SV,n − σ2
]2 and E

[
S2

M,n − σ2
]2

< E
[
S2

U,n − σ2
]2
.
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Example 3 For non-normal populations, S2
U,n may have a smaller mean squared error than

either S2
SV,n or S2

M,n. In this general context, Yatracos (2005) proved that the estimate

S2
Y,n =

n+ 2

n(n+ 1)

n∑
i=1

(
Xi − X̄n

)2
ameliorates the mean squared error of S2

U,n for all probability models with finite second mo-

ment, all values of σ2 and all sample sizes n ≥ 2. Here,

αn =
1

n− 1
and βn =

n+ 2

n(n+ 1)
,

so that, for all n ≥ 2, βn/αn < 1 and

2

αn + βn

=
n3 − n

n2 + n− 1
= n− 1 + o(1).

It follows, assuming that Assumption [A] is satisfied, that

P
(∣∣S2

Y,n − σ2
∣∣ ≥ ∣∣S2

U,n − σ2
∣∣) = 1

2
+

1√
2πn

[
− 1

τ 3

(
γ2 − λ

6

)]
+ o

(
1√
n

)
.

For example, if X follows a normal distribution,

P
(∣∣S2

Y,n − σ2
∣∣ > ∣∣S2

U,n − σ2
∣∣) = 1

2
+

1

3
√
πn

+ o
(

1√
n

)
.

9 Standard deviation shrinkage

The previous section was concerned with the shrinkage estimation problem of the variance

σ2. Estimating the standard deviation σ is more involved, since, for example, it is not possi-

ble to find an estimate of σ which is unbiased for all population distributions (Lehmann and

Casella, 1998, Chapter 2). Nevertheless, interesting results may still be reported when the

sample observations X1, . . . , Xn follow a normal distribution N (m,σ2).
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The most common estimates used to assess the standard deviation parameter σ typically

have the form√
S2

SV,n =
1√
n

[
n∑

i=1

(Xi − X̄n)
2

]1/2
or
√

S2
U,n =

1√
n− 1

[
n∑

i=1

(Xi − X̄n)
2

]1/2
.

In all generality, both
√

S2
SV,n and

√
S2

U,n are biased estimates of σ. However, when the random

variable X is normally distributed, a minor correction exists to eliminate the bias. To derive

the correction, just note that, according to Cochran’s theorem,
∑n

i=1(Xi − X̄n)
2/σ2 has a chi-

squared distribution with n − 1 degrees of freedom. Consequently, [
∑n

i=1(Xi − X̄n)
2]1/2/σ

has a chi distribution with n − 1 degrees of freedom (Johnson, Kotz, and Balakrishnan, 1994,

Chapter 18) whence

E

[
n∑

i=1

(Xi − X̄n)
2

]1/2
=

√
2 Γ
(
n
2

)
Γ
(
n−1
2

) σ,

where Γ(.) is the gamma function. It follows that the quantity

σ̂U,n =
Γ
(
n−1
2

)
√
2 Γ
(
n
2

) [ n∑
i=1

(Xi − X̄n)
2

]1/2
is an unbiased estimate of σ. Besides, still assuming normality and letting (δn)n be some

generic positive normalization sequence, we may write

E

δn [ n∑
i=1

(
Xi − X̄n

)2]1/2 − σ

2

= δ2nE

[
n∑

i=1

(Xi − X̄n)
2

]
−2σδnE

[
n∑

i=1

(Xi − X̄n)
2

]1/2
+σ2,

hence

E

δn [ n∑
i=1

(
Xi − X̄n

)2]1/2 − σ

2

= σ2

[
(n− 1)δ2n − 2δn

√
2 Γ
(
n
2

)
Γ
(
n−1
2

) + 1

]
.

Solving this quadratic equation in δn, we see that the right-hand side is uniformly minimized

for the choice

δ⋆n =

√
2 Γ
(
n
2

)
(n− 1)Γ

(
n−1
2

) =
Γ
(
n
2

)
√
2 Γ
(
n+1
2

) .
(see Goodman, 1953). Put differently, the estimate

σ̂M,n =
Γ
(
n
2

)
√
2 Γ
(
n+1
2

) [ n∑
i=1

(Xi − X̄n)
2

]1/2

36



improves uniformly upon
√

S2
SV,n,

√
S2

U,n and σ̂U,n, which have, respectively,

δn =
1√
n
, δn =

1√
n− 1

and δn =
Γ
(
n−1
2

)
√
2 Γ
(
n
2

) .
Using the expansion

Γ
(
n+1
2

)
Γ
(
n
2

) =

√
n

2

[
1− 1

4n
+ o

(
1

n

)]
,

we may write

Γ
(
n
2

)
√
2 Γ
(
n+1
2

) =
1√
n

[
1 +

1

4n
+ o

(
1

n

)]
(42)

and

Γ
(
n−1
2

)
√
2 Γ
(
n
2

) =

√
2 Γ
(
n+1
2

)
(n− 1)Γ

(
n
2

) =
1√
n− 1

[
1 +

1

4n
+ o

(
1

n

)]
. (43)

The relative positions of the estimates
√

S2
SV,n, σ̂M,n,

√
S2

U,n and σ̂U,n together with their coeffi-

cients are shown in Figure 2.

Theorem 9.1 below is the standard deviation counterpart of Theorem 8.1 for normal popu-

lations. Let

σ̂2
1,n = αn

[
n∑

i=1

(
Xi − X̄n

)2]1/2 and σ̂2
2,n = βn

[
n∑

i=1

(
Xi − X̄n

)2]1/2 (44)

be two candidates to the estimation of σ.

Theorem 9.1 Assume that X has a normal distribution, and that the sequences (αn)n and

(βn)n in (44) satisfy the constraints

(i) βn < αn and (ii)

[
2

αn + βn

]2
= n+ b+ o(1) as n → ∞,

where b ∈ R. Then, for the estimates σ̂1,n and σ̂2,n in (44)

P (|σ̂2,n − σ| > |σ̂1,n − σ|) = 1

2
+

1

2
√
πn

(
b+

5

3

)
+ o

(
1√
n

)

as n → ∞.
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As expressed by Figure 2, σ̂M,n is a shrinked version of both
√
S2

U,n and σ̂U,n. Thus, contin-

uing our discussion, we may first compare the performance, in terms of Pitman closeness, of

σ̂U,n vs σ̂M,n. These estimates have, respectively,

αn =
Γ
(
n−1
2

)
√
2 Γ
(
n
2

) and βn =
Γ
(
n
2

)
√
2 Γ
(
n+1
2

) .
Using (42) and (43), we easily obtain[

2

αn + βn

]2
= n− 1 + o(1),

so that

P (|σ̂M,n − σ| > |σ̂U,n − σ|) = 1

2
+

1

3
√
πn

+ o
(

1√
n

)
.

Similarly, with

αn =
1√
n− 1

and βn =
Γ
(
n
2

)
√
2 Γ
(
n+1
2

) ,
we conclude

P
(
|σ̂M,n − σ| >

∣∣∣√S2
U,n − σ

∣∣∣) =
1

2
+

11

24
√
πn

+ o
(

1√
n

)
.

Remark 1 The methodology developed in the present paper can serve as a basis for analyzing

other types of estimates. Suppose, for example, that X1, . . . , Xn (n ≥ 2) are independent iden-

tically distributed random variables with common density f(x;µ, σ) = σ−1e−(x−µ)/σ (x > µ),

where −∞ < µ < ∞ and σ > 0. On the basis of the given sample we wish to estimate the stan-

dard deviation σ. Denoting the order statistics associated with X1, . . . , Xn by X(1), . . . , X(n),

one may write the maximum likelihood estimate of σ (which turns out to be minimum variance

unbiased) in the form

TML,n =
1

n− 1

n∑
i=2

(X(i) −X(1)).

By sacrificing unbiasedness, we can consider as well the estimate

TM,n =
1

n

n∑
i=2

(X(i) −X(1))
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which improves upon TML,n uniformly (Arnold, 1970) in terms of mean squared error. TM,n is a

shrinkage estimate of TML,n and, by an application of Lemma 10.1, we have

P (|TM,n − σ| > |TML,n − σ|) = P

(
Γn−1 <

2n(n− 1)

2n− 1

)
,

since
∑n

i=2(X(i) − X(1))/σ is distributed as a gamma random variable with n − 1 degrees of

freedom, denoted Γn−1. Recalling that Γn−1 ∼
∑n−1

i=1 Yi, where Y1, . . . , Yn−1 are indepen-

dent standard exponential random variables, we easily obtain, using the same Edgeworth-based

methodology as was used to prove Theorem 8.1,

P (|TM,n − σ| > |TML,n − σ|) = 1

2
+

5

6
√
2πn

+ o
(
1

n

)
.

10 Proofs

10.1 Some preliminary results

Recall that X1, . . . , Xn (n ≥ 2) denote independent real-valued random variables, distributed

as a generic random variable X with finite variance σ2 > 0. Let Φ(x) be the cumulative

distribution function of the standard normal distribution, that is, for all x ∈ R,

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2du.

We start by stating the following lemma, which is but a special case of Proposition 2.1 in

Yatracos (2011)

Lemma 10.1 Let T be a P -a.s. nonnegative real-valued random variable, and let (θ, c) ∈

R+ × (−1, 1) be two real numbers. Then

P (|cT − θ| ≥ |T − θ|) = P

(
T ≤ 2θ

1 + c

)
.
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Proof of Lemma 10.1 Just observe that

P (|cT − θ| ≥ |T − θ|) = P
(
(cT − θ)2 ≥ (T − θ)2

)
= P ([(1 + c)T − 2θ] (c− 1)T ≥ 0)

= P ((1 + c)T − 2θ ≤ 0)

(since T is P -a.s. nonnegative, c < 1 and θ ≥ 0)

= P

(
T ≤ 2θ

1 + c

)
(since c > −1).

Proposition 10.1 Assume that Assumption [A] is satisfied. Then, as n → ∞,

P

(
n∑

i=1

(Xi − X̄n)
2 ≤ (n+ t)σ2

)
= Φ

(
t

τ
√
n

)
+

1√
2πn

p1

(
t

τ
√
n

)
e−

t2

2τ2n + o
(

1√
n

)
,

uniformly in t ∈ R, where

p1(x) =
1

τ
+

1

τ 3

(
γ2 − λ

6

)
(x2 − 1),

with

γ = E

[
X −m

σ

]3
and λ = E

[(
X −m

σ

)2

− 1

]3
.

Proof of Proposition 10.1 Set

Z =
X −m

σ
and Zi =

Xi −m

σ
, i = 1, . . . , n,

and observe that, by the central limit theorem and Slutsky’s lemma (van der Vaart, 1999, Chap-

ter 2)

√
n

1
n

∑n
i=1(Zi − Z̄n)

2 − 1

τ

D→ N (0, 1) as n → ∞,

where

Z̄n =
1

n

n∑
i=1

Zi and τ 2 = VarZ2 = E

[
X −m

σ

]4
− 1.
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The result will be proved by making this limit more precise using an Edgeworth expansion

(see, e.g., Hall, 1992, Chapter 2). To this aim, we first need some additional notation. Set

Z = (Z,Z2), m = EZ = (0, 1) and, for z = (z(1), z(2)) ∈ R2, let

A(z) =
z(2) − (z(1))2 − 1

τ
.

Clearly, A(m) = 0 and

√
n

1
n

∑n
i=1(Zi − Z̄n)

2 − 1

τ
=

√
nA(Z̄n).

For j ≥ 1 and ij ∈ {1, 2}, put

ai1...ij =
∂jA(z)

∂z(i1) . . . ∂z(ij)
|z=m.

For example,

a2 =
∂1A(z)

∂z(2)
|z=m =

1

τ

and

a11 =
∂2A(z)

∂z(1)∂z(1)
|z=m = −2

τ
.

Let also

µi1...ij = E
[
(Z−m)(i1) . . . (Z−m)(ij)

]
,

where (Z−m)(i) denotes the i-th component of the vector (Z−m). Thus, with this notation,

according to Hall (1992, Theorem 2.2), under the condition

lim sup
|u|+|v|→∞

∣∣E exp
(
iuX + ivX2

)∣∣ < 1,

we may write, as n → ∞,

P
(√

nA(Z̄n) ≤ x
)
= Φ(x) +

1√
2πn

p1(x)e
−x2/2 + o

(
1√
n

)
,

uniformly in x ∈ R, where

p1(x) = −A1 −
1

6
A2(x

2 − 1).
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The coefficients A1 and A2 in the polynomial p1 are respectively given by the formulae

A1 =
1

2

2∑
i=1

2∑
j=1

aijµij

and

A2 =
2∑

i=1

2∑
j=1

2∑
k=1

aiajakµijk + 3
2∑

i=1

2∑
j=1

2∑
k=1

2∑
ℓ=1

aiajakℓµikµjℓ.

Elementary calculations show that

a2 = τ−1, a11 = −2τ−1, and a1 = a22 = a12 = a21 = 0.

Similarly,

µ11 = 1, µ22 = τ 2, µ12 = µ21 = E[X −m]3σ−3, and

µ222 = E
[
(X −m)2σ−2 − 1

]3
.

Consequently,

A1 = −1

τ
and A2 =

1

τ 3
(
λ− 6γ2

)
,

with

λ = E

[(
X −m

σ

)2

− 1

]3
and γ = E

[
X −m

σ

]3
.

Therefore

p1(x) =
1

τ
+

1

τ 3

(
γ2 − λ

6

)
(x2 − 1).

The conclusion follows by observing that, for all t ∈ R,

P

(
n∑

i=1

(Xi − X̄n)
2 ≤ (n+ t)σ2

)
= P

(√
nA(Z̄n) ≤

t

τ
√
n

)
.
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10.2 Proof of Theorem 8.1

Observe that S2
2,n = cnS

2
1,n, where cn = βn/αn ∈ (0, 1) by assumption (i). Consequently, by

Lemma 10.1,

P
(∣∣S2

2,n − σ2
∣∣ ≥ ∣∣S2

1,n − σ2
∣∣) = P

(
S2
1,n ≤ 2σ2

1 + βn/αn

)
= P

(
n∑

i=1

(Xi − X̄n)
2 ≤ 2σ2

αn + βn

)

= P

(
n∑

i=1

(Xi − X̄n)
2 ≤ (n+ a+ ζn)σ

2

)

(by assumption (ii)),

where ζn → 0 as n → ∞. Let Φ(x) be the cumulative distribution function of the standard

normal distribution, that is, for all x ∈ R,

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2du.

Thus, assuming [A] and using Proposition 10.1, we may write

P
(∣∣S2

2,n − σ2
∣∣ ≥ ∣∣S2

1,n − σ2
∣∣) = Φ

(
a+ ζn
τ
√
n

)
+

1√
2πn

p1

(
a+ ζn
τ
√
n

)
e−

(a+ζn)2

2τ2n + o
(

1√
n

)
,

where

p1(x) =
1

τ
+

1

τ 3

(
γ2 − λ

6

)
(x2 − 1),

with

τ 2 = E

[
X −m

σ

]4
− 1,

γ = E

[
X −m

σ

]3
and λ = E

[(
X −m

σ

)2

− 1

]3
.

Using finally the Taylor series expansions, valid as x → 0,

Φ(x) =
1

2
+

1√
2π

(
x+ o(x2)

)
and ex = 1 + o(1),
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we obtain

P
(∣∣S2

2,n − σ2
∣∣ ≥ ∣∣S2

1,n − σ2
∣∣) = 1

2
+

1√
2πn

[
a+ 1

τ
− 1

τ 3

(
γ2 − λ

6

)]
+ o

(
1√
n

)
,

as desired.

10.3 Proof of Theorem 9.1

By assumption (i), we may write σ̂2,n = cnσ̂1,n, where cn = βn/αn ∈ (0, 1). Consequently, by

Lemma 10.1,

P (|σ̂2,n − σ| > |σ̂1,n − σ|) = P (|σ̂2,n − σ| ≥ |σ̂1,n − σ|)

= P

(
σ̂1,n ≤ 2σ

1 + βn/αn

)

= P

[ n∑
i=1

(Xi − X̄n)
2

]1/2
≤ 2σ

αn + βn


= P

(
n∑

i=1

(Xi − X̄n)
2 ≤ (n+ b+ ζn)σ

2

)

(by assumption (ii)),

where ζn → 0 as n → ∞. The end of the proof is similar to the one of Theorem 8.1, recalling

that, in the Gaussian setting, τ 2 = 2, γ = 0 and λ = 8.
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