Asymptotics of analytic torsion

Weiping Zhang

(Joint with Jean-Michel Bismut and Xiaonan Ma)

Chern Institute of Mathematics

April 4, 2024 Tsinghua University

de Rham theorem

- \blacktriangleright M a compact smooth manifold
- ▶ $(F, \nabla^F) \to M$ a flat vector bundle : $(\nabla^F)^2 = 0$
- de Rham complex with coefficient F:

$$(\Omega^*(M,F), d^F): 0 \to \Omega^0(M,F) \to \dots \to \Omega^{\dim M}(M,F) \to 0$$

► de Rham cohomology :

$$H^{q}(M,F) \simeq \frac{\ker(d^{F}|_{\Omega^{q}(M,F)})}{\operatorname{Im}(d^{F}|_{\Omega^{q-1}(M,F)})}$$

Ray-Singer analytic torsion

Hodge theorem

• Given
$$g^{TM}, g^F$$

$$\blacktriangleright \ d^{F,*}: \Omega^*(M,F) \to \Omega^*(M,F) \text{ adjoint of } d^F$$

$$\blacktriangleright \ \square_q^F = (d^F + d^{F,*})^2 : \Omega^q(M,F) \to \Omega^q(M,F)$$

► Hodge theorem :

$$H^q(M,F) \simeq \ker(\Box_q^F)$$

Ray-Singer analytic torsion

Ray-Singer analytic torsion

For simplicity, we assume $H^q(M, F) = 0$ for any $q \ge 0$. Then each \Box_q^F is invertible

For
$$s \in \mathbf{C}$$
, $\operatorname{Re}(s) > \frac{\dim M}{2}$, set

$$\theta^F(s) = -\frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \sum_{q=0}^{\dim M} (-1)^q q \operatorname{Tr}\left[\exp(-t\Box_q^F)\right] dt.$$

► (real) Ray-Singer analytic torsion :

$$T(M, g^{TM}, g^F) = \exp\left(\frac{1}{2}\frac{\partial\theta^F}{\partial s}(0)\right).$$

Ray-Singer analytic torsion

Ray-Singer analytic torsion

► Tautologically

$$T(M, g^{TM}, g^F) = \prod_{q=0}^{\dim M} \left(\det \left(\Box_q^F \right) \right)^{q(-1)^q/2}$$

Smooth invariance : If dim M is odd, then $T(M, g^{TM}, g^F)$ does not depend on (g^{TM}, g^F) !

• Denoted simply by
$$T^{RS}(M, F)$$

Ray-Singer conjecture

• **Ray-Singer conjecture :** If there is g^F such that $\nabla^F g^F = 0$ (orthogonal flat bundle), then

$$T^{RS}(M,F) = T^R(M,F)$$

where $T^{\mathbb{R}}(M, F)$ is the classical Reidemeister torsion

- Proved by J. Cheeger and W. Müller independenly (1978)
- ▶ Both use essentially the surgery method in topology
- Müller (1992) : Case of $\nabla^F(\text{vol}(g^F)) = 0$ (unimodular flat bundle)

Ray-Singer conjecture : the general case

- ▶ Bismut-Zhang (1992) : Case of general flat vector bundles : g^F arbitrary
- ▶ $f: M \to \mathbf{R}$ a Morse function.
- ▶ ∇f the gradient of f, Thom-Smale complex
- One can define Milnor torsion $T^{\mathcal{M}}(M, \nabla f, g^F)$ which may depend on g^F (but equal to $T^R(M, F)$ when $\nabla^F(\operatorname{vol}(g^F)) = 0$)
- ∇TM the Levi-Civita connection of gTM
 Euler form e(TM, ∇TM) : χ(M) = ∫_M e(TM, ∇TM)

Ray-Singer conjecture : the general case

• $\psi(TM, \nabla^{TM})$ the Mathai-Quillen current on TM:

$$d\psi(TM,\nabla^{TM}) = \pi^* e(TM,\nabla^{TM}) - \delta_M$$

▶ Bismut-Zhang (1992) :

(1)
$$\log\left(\frac{T^{RS}(M,F)}{T^{\mathcal{M}}(M,\nabla f,g^{F})}\right)$$
$$= -\frac{1}{2}\int_{M} \operatorname{tr}\left[\left(g^{F}\right)^{-1}\nabla^{F}g^{F}\right](\nabla f)^{*}\psi(TM,\nabla^{TM}).$$

 $\blacktriangleright \frac{\text{Purely analytic proof}}{\text{using the Witten deformation } e^{-Tf}d^Fe^{Tf} = d^F + Tdf}$

Line bundle on general manifold

- \blacktriangleright F real line bundle on a closed manifold M
- ▶ $\nabla = d + \omega$ with ω real closed 1-form, <u>nowhere zero</u> on M
- F_p with connection $\nabla = d + p \omega$
- If p >> 0, then $H^*(M, F_p) = 0$.
- ► Asymptotic formula for analytic torsion :

$$\lim_{p \to +\infty} \frac{T^{RS}(M, F_p)}{p} = \frac{1}{4} \int_M \omega \, e(TM/[\omega])$$

Müller's formula for hyperbolic 3-manifolds

- $M = \Gamma \setminus \mathbf{H}^3$ closed hyperbolic 3-manifold $\Gamma \subset SL(2, \mathbf{C})$ discrete, torsion free, cocompact.
- ► $\rho: SL(2, \mathbb{C}) \to GL(\mathbb{C}^2)$ canonical representation induces : $\rho_{\Gamma}: \Gamma \to GL(\mathbb{C}^2)$

• $\rho_{\Gamma,p} = \operatorname{Sym}^p(\rho_{\Gamma}) p$ -th symmetric power $F_p \to M$ associated (unimodular) flat vector bundle

Müller's formula for hyperbolic 3-manifolds

• For any
$$p > 0$$
, $H^*(M, F_p) = 0$

▶ $T^{RS}(M, F_p)$ equals to the Reidemeister torsion

▶ Müller (2010) :

$$\lim_{p \to +\infty} \frac{\log(T^{RS}(M, F_p))}{p^2} = \frac{\operatorname{vol}(M)}{4\pi}$$

▶ Müller's proof : Selberg trace formula

▶ Reidemeister torsion determines hyperbolic volume

Geometric setting Asymptotic torsion formula Final comments

Flat vector bundles from complex geometry

- In view of Bismut-Zhang, seeking more geometric inperpretation of Müller's result/proof and try to get generalizations
- Complex geometry enters : F Hermitian vector space, $L_F \to P_{\mathbf{C}}(F)$ canonical line bundle, then

$$H^{0,0}(P_{\mathbf{C}}(F), L_F^p) = \operatorname{Sym}^p(F)$$

▶ This motivates the following construction

Geometric setting Asymptotic torsion formula Final comments

Flat vector bundles from complex geometry

- $\blacktriangleright \ L \to N$ positive line bundle L over Kähler manifold N
- ▶ $q: P_G \to M$ principal bundle with <u>flat connection</u>, fiber G Lie Group
- G acts holomorphically on (N, L)
- ▶ p >> 0, get flat vector bundle F_p (via Kodaira vanishing and Hirzebruch-Riemann-Roch) :

$$P_G \times_G H^{0,0}(N, L^p) \to M$$

• Study asymptotic behavior of $T^{RS}(M, F_p)$ as p >> 0

Geometric setting Asymptotic torsion formula Final comments

Asymptotic torsion formula

$$q: \mathcal{N} = P_G \times_G N \to M T\mathcal{N} = T^H \mathcal{N} \oplus T^V \mathcal{N} \text{ with } T^H \mathcal{N} \simeq q^*(TM)$$

• $\omega(L, g^L) \in \Gamma(q^*(T^*M))$ defined by $\omega(L, g^L)(U) = (g^L)^{-1}L_{q^*U}g^L$ for $U \in \Gamma(TM)$

- ▶ Nondegenerate condition : $\omega(L, g^L)$ nowhere zero
- ▶ **Bismut-Ma-Zhang** : Under nondegenerate condition,

(i)
$$H^*(M, F_p) = 0$$
, when $p >> 0$

(ii)
$$\lim_{p \to +\infty} \frac{\log(T^{RS}(M, F_p))}{p^{\dim N+1}} = \int_M W$$

Geometric setting Asymptotic torsion formula Final comments

Asymptotic torsion formula

► Bismut-Ma-Zhang :

$$\lim_{p \to +\infty} \frac{\log(T^{RS}(M, F_p))}{p^{\dim N + 1}} = \int_M W$$

• W locally defined form : let θ be the one form on \mathcal{N} ,

$$\theta = -\frac{\omega(L, g^L)}{2} \in \Gamma(q^*(T^*M))$$

• View θ as a map $\sigma_{\theta} : \mathcal{N} \to T^*M \simeq TM$

▶ **Bismut-Ma-Zhang** : $q: P_G \times_G N \to M$,

$$W = \int_{N} \theta \wedge \sigma_{\theta}^{*} \psi(TM, \nabla^{TM}) \wedge \exp(c_{1}(L, g^{L})) \in \Omega^{*}(M)$$

($\psi(TM, \nabla^{TM})$ Mathai-Quillen current on TM)

Weiping Zhang

Geometric setting Asymptotic torsion formula Final comments

Asymptotic torsion formula

- Method of proof : local index theory (more flexible than the Selberg trace formula)
- ▶ When apply to locally symmetric space,

$$\int_M W = C \cdot \operatorname{vol}(M)$$

Geometric setting Asymptotic torsion formula Final comments

Hyperbolic 3-manifold revisited

$$\blacktriangleright M = \Gamma \setminus \mathbf{H}^3, \, \rho_{\Gamma} : \Gamma \to GL(\mathbf{C}^2), \, \overline{\rho}_{\Gamma} : \Gamma \to GL(\overline{\mathbf{C}}^2)$$

For any
$$a, b \ge 0, p > 0,$$

 $F_p = \mathbf{H}^3 \times_{\rho_{\Gamma}} \left(\operatorname{Sym}^{pa}(\mathbf{C}^2) \otimes \operatorname{Sym}^{pb}(\overline{\mathbf{C}}^2) \right)$

▶ **Bismut-Ma-Zhang** : If a > b > 0,

$$\lim_{p \to +\infty} \frac{\log(T^{RS}(M, F_p))}{p^3} = \frac{(3a^2b - b^3)}{12\pi} \operatorname{vol}(M)$$

• Müller (2010) : If a > 0, b = 0,

$$\lim_{p \to +\infty} \frac{\log(T^{RS}(M, F_p))}{p^2} = \frac{a^2}{4\pi} \operatorname{vol}(M)$$

Geometric setting Asymptotic torsion formula Final comments

Outline of proof : Toeplitz operators

• Consider the flat vector bundle $F_p \to M, g^{F_p}$

$$\omega(F_p, g^{F_p}) = (g^{F_p})^{-1} \nabla^{F_p} g^{F_p}$$

$$\nabla^{F_p, u} = \nabla^{F_p} + \frac{\omega(F_p, g^{F_p})}{2}, \text{ unitary connection on } F_p$$

$$d^{F_p} + d^{F_p, *} = \sum_{i=1}^{\dim M} c(e_i) \nabla^u_{e_i} - \frac{\widehat{c}(\omega(F_p, g^{F_p}))}{2}$$

$$= D^u - \frac{\widehat{c}(\omega(F_p, g^{F_p}))}{2}$$

(Compare with the Witten deformation $d_{Tf} + d_{Tf}^* = D + T\hat{c}(\nabla f)$)

Geometric setting Asymptotic torsion formula Final comments

Outline of proof : Toeplitz operators

$$\square^{F_p} = (D^u)^2 - \frac{1}{2} [D^u, \omega(F_p, g^{F_p})] + \frac{1}{4} \widehat{c}(\omega(F_p, g^{F_p}))^2$$

► When acting fiberwise, one meets Toeplitz operators $P^{L^p}[D^u, \omega(F_p, g^{F_p})]P^{L^p}$ and $P^{L^p}\widehat{c}(\omega(F_p, g^{F_p}))^2P^{L^p}$ with $P^{L^p}: \Omega^{0,*}(N, L^p) \to H^{0,0}(N, L^p)$

Geometric setting Asymptotic torsion formula Final comments

Outline of proof : Toeplitz operators

- The analysis of the asymptotics of such Toeplitz operators goes back to
- ▶ The Thesis of Gang Tian, which was supervised by Professor Yau
- ▶ where one studies the asymptotics of the Bergman kernel of $P^{L^p}: \Omega^{0,*}(N, L^p) \to H^{0,0}(N, L^p)$, as p >> 0
- For a modern systematic treatment, see the comprehensive book of Xiaonan Ma and Marinescu : Bergman Kernels and Holomorphic Morse inequalities

Geometric setting Asymptotic torsion formula Final comments

Outline of proof : Toeplitz operators

▶ Back to the Toeplitz operators

 $P^{L^{p}}[D^{u}, \omega(F_{p}, g^{F_{p}})]P^{L^{p}}$ and $P^{L^{p}}\widehat{c}(\omega(F_{p}, g^{F_{p}}))^{2}P^{L^{p}}$ with $P^{L^{p}}: \Omega^{0,*}(N, L^{p}) \to H^{0,0}(N, L^{p})$

• Easy :
$$P^{L^p}[D^u, \omega(F_p, g^{F_p})]P^{L^p} = O(p)$$
 as $p >> 0$

▶ By nondegenerate condition and analysis of Toeplitz operators, there is c > 0 such that

$$P^{L^p}\widehat{c}(\omega(F_p, g^{F_p}))^2 P^{L^p} \ge c \, p^2 \quad \text{when} \quad p >> 0$$

Geometric setting Asymptotic torsion formula Final comments

Outline of proof : Toeplitz operators

• When
$$p >> 0$$
,

$$\Box^{F_p} \ge (D^u)^2 + \frac{c \, p^2}{2} \ge \frac{c \, p^2}{2}$$

Immediately implies

$$H^*(M, F_p) = 0 \quad \text{when} \quad p >> 0$$

- $\blacktriangleright \text{ Local index techniques + Toeplitz operator analysis} \\ \text{identify local contributions, leading to the } W\text{-invariant}$
- ▶ Q.E.D.

Geometric setting Asymptotic torsion formula Final comments

Possible relation with the volume conjecture

- ▶ Reidemeister torsion <u>determines</u> hyperbolic volume
- In 3-manifold or knot theory, Reidemeister torsion is twisted Alexander polynomial
- (Twisted) Alexander polynomials determine hyperbolic volume
- ► Volume conjecture : Colored Jones polynomials determine hyperbolic volume
- ► Naive question : any possible relations ?
- Complex geometry will play more roles in knot theory

A polytic torgion	Geometric setting
Asymptotic torsion	Asymptotic torsion formula
nsymptotic torsion	Final comments

Happy Birthday to Professor Yau!

Weiping Zhang (Joint with Jean-Michel Bis Asymptotics of analytic torsion