2019 Summer School on Modern Dynamics

Introduction to Dynamics on Moduli Spaces

1. Dani Correspondence

- 1. Let μ be an invariant Borel probability measure such that $\mu(U) > 0$ for every nonempty open subset U. Show that the forward orbit of any point that is generic with respect to μ is dense.
- 2. Show that any bounded orbit of a map $T : \mathbf{Z} \to \mathbf{Z}$ is periodic.
- 3. Show that any smooth vector field on a closed manifold is complete.
- 4. Show that a periodic orbit of an action by **R** on a Hausdorff space is closed.
- 5. Show that the map T(x, y) = (x + y, x + 2y) on $\mathbb{R}^2/\mathbb{Z}^2$
 - (i) has a dense set of periodic orbits
 - (ii) has orbits with finite ω -limit sets
 - (iii) has a full measure set of points with dense orbits.
- 6. Show that the g_t -orbit of $\begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \mathbf{Z}^2$ is closed. (Here, $g_t = \operatorname{diag}(e^t, e^{-t})$ and $\phi = \tan^{-1}(\sqrt{5} 1)/2$.)
- 7. Show that a discrete subgroup of \mathbf{R}^n is finitely generated.
- 8. Show that the volume of a fundamental parallelopiped for a lattice $\Lambda \subset \mathbf{R}^n$ is independent of the representation $\Lambda = \mathbf{Z}u_1 + \cdots + \mathbf{Z}u_n$. (Such a set of generators is called an *integral* basis.)
- 9. Show that if $|\text{Re } \tau| > 1/2$ then $\mathbf{Z} + \mathbf{Z}\tau$ contains an element that is shorter and not real.
- 10. Show that the Möbius action on the upper half plane leaves $\frac{|dz|}{y}$ invariant, but not $\frac{dz}{y}$.
- 11. Show that $e^t i$ and $x_0 + R \tanh(t t_0) + iR \operatorname{sech}(t t_0)$ are unit speed geodesics with respect to the hyperbolic metric $g = \frac{dx^2 + dy^2}{y^2}$.
- 12. Compute the hyperbolic area of $\Delta = \{\tau \in \mathbb{H} : |\tau| \ge 1, |\text{Re }\tau| \le 1/2\}$ by two methods: (i) directly by multiple integration, and (ii) using Gauss-Bonnet theorem.
- 13. Show that the euclidean systole is given by $sys_2(\tau) = \frac{1}{\sqrt{Im\tau}}$.
- 14. Verify that the systole defines a proper function on $SL(2, \mathbf{R})/SL(2, \mathbf{Z})$.