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A Statistical Problem

Statistical population (F ), i.e. measurements, in box # 1.
Unknown parameter θ : population’s mean, variance etc
Draw sample X1, . . . ,Xn from box # 1 and use it to
construct Sn, an estimate of θ. Sn will change values
depending on the sample. Thus, there is variability in Sn.

Interested in the quality of Sn : its variability around θ, i.e.
its bias and variance, or its distribution (Fn) to calculate,
e.g., the probability P[1 < |Sn − θ| < 2], θ ∈ R.
Denote the quantity of interest by αn(G, θ), G = F , Fn.

When αn(G, θ) is not easy to obtain,the Bootstrap is used.
Question: Do we prefer Sn to be more variable or less
variable? Sn’s variability will depend also on the variability
of the population in box # 1.
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The Bootstrap Method

Introduced by Efron (1979) to determine either the
accuracy of Sn or related quantity αn(G, θ), G = F , Fn.

Sample X1, . . . ,Xn, in box # 2, is a mini-population.
Compute the characteristic of Sn that is of interest by
drawing B Bootstrap samples from box # 2 and plugging
each in Sn to obtain S∗n,1, . . . ,S

∗
n,B; “∗′′ denotes estimates

from Bootstrap samples.
What are the sources of variability in S∗n,1, . . . ,S

∗
n,B?

Variability from box # 1 AND from box # 2!!
How do you feel about the additional variability
introduced by finite resampling?
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An Example where Bootstrap is used

Example 1: Sample Xn = (X1, . . . ,Xn), independent, real
Xi ∼ F (or Fθ), θ ∈ Rk . Estimate: Sn = S(Xn). Interested in
θ = ζn = Var(Sn).

Take B Bootstrap samples X ∗n,1, . . . ,X ∗n,B of size mn = n.
How each of the B samples is drawn?
Either with replacement from box # 2, OR by estimating θ̂n
and drawing samples from Fθ̂n

.
Let S∗n,1 = S(X ∗n,1), . . . ,S∗n,B = S(X ∗n,B) and estimate
ζn = Var(Sn) by

ζ̂∗n,B =
1

B − 1

B∑
b=1

(S∗n,b − S̄∗n,B)2, S̄∗n,B =
1
B

B∑
b=1

S∗n,b.
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Example 2: Xn = (X1, . . . ,Xn), independent, real
Xi ∼ Fθ, θ = EX1,1 ≤ i ≤ n.
Interested in the law of Sn =

√
n(X̄n − θ).

The Bootstrap approach: approximate it by the law of√
n(X̄ ∗n − x̄n), using B bootstrap samples; x̄n is the

observed sample mean.

Extending Bootstrap’s use: The variance of Sn or its
distribution are two of its possible characteristics to be
estimated using the Bootstrap methodology.
The method is now a “general purpose tool” (Young, 1994),
an extension of the maximum likelihood “plug-in principle”
(Efron and Tibshirani, 1993, denoted by E&T).
CLAIM: ... if n ≥ N1 and B ≥ N2 one can estimate well a
variance or ...; N1,N2 are predetermined.
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Disturbing Bootstrap results

Most theoretical assessments of Bootstrap methodology
ignore the fact that (in practice) the number B of bootstrap
samples is fixed. This is what is examined in the sequel.

VERY RECENT Stanford Statistics Seminar, 11/1/2019
Speaker: Larry Wasserman, Carnegie Mellon University
Title: Model Free Predictive Inference
Abstract: ... We start with high-dimensional regression.
First we show that the bootstrap is very inaccurate,
which motivates moving away from the usual focus ...

Bootstrap Claims in Asymptotics, with n ↑ ∞
“The approximation of distributions using the Bootstrap
methodology is asymptotically valid in many cases. ”
“The distribution of T (X1, . . . ,Xn,F ) ≈ distribution of
T (X ∗1 , . . . ,X

∗
n , F̂n)”.
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Disturbing Bootstrap results

• Counter-example (Bickel and Freedman, 1981) X1, . . . ,Xn
i .i .d . U(0, θ), then for the asymptotic distribution of
X(n) = max{X1, . . . ,Xn}

n(θ − X(n))

θ

D→ Exponential distribution

BUT, the conditional distribution of

n(X(n) − X ∗(n))

X(n)

does not have a weak limit almost surely.
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Disturbing Bootstrap results

Bootstraping regression models: (Bickel and Freedman,
1981) “The Bootstrap fails quite generally when the
number of parameters is too large”.

Liu (1988) and Mammen (1993) proposed and justified the
use of “Wild Bootstrap” with better results than the
Bootstrap when the errors are heteroscedastic.

(Mammen, 1993) ‘ “The Bootstrap does not work in a
satisfactory way because it has to mimic a complex
stochastic structure of high dimensional distributions”

Haerdle and Mammen (1990) provided Examples where
Efron’s Bootstrap is not consistent but Wild Bootstrap is.

Yannis G. Yatracos Yau Mathematical Sciences Center Tsinghua UniversityASSESSING THE QUALITY OF BOOTSTRAP SAMPLES AND ESTIMATES OBTAINED WITH FINITE RESAMPLING



Disturbing Results for Finite n, B

• (Devroye 1996, 2019) For convex loss L(. , .), and risk
R(Tn, θ) = EL(Tn, θ),

inf
Tn

R(Tn(X ∗n ), θ) ≥ inf
Sn

R(Sn(Xn), θ).

•We will examine questions a practitioner may ask when the
dimension d of the observations or that of Sn is large.
• To what extent can the Bootstrap user be sure of “hitting” ζ (or
ζn) (Young, 1994)?
•What are measures for the loss in accuracy of the
bootstrap estimate?
• Is the precision of the Bootstrap estimate ζ∗n,B influenced by
the nature of ζn?
• How much can we learn from the bootstrap samples about the
population F (or Fθ) and/or the distribution Fn,θ (or Fn) of Sn?
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• Heuristics for the Examples, Geometries and Propositions:

a) d fixed: B bootstrap samples provide the Statistical
Experiment with additional randomisation. Thus, ζ̂∗n,B is not the
function of a sufficient statistic and can be improved by
conditioning on the sufficient statistic.

b) d increases: i) the additional randomisation and its effect are
increasing.

ii) The distance between Fn,θ (resp. Fn) and Fn,θ̂n
(resp. F̂n) will

increase, and asymptotically (in d) these distributions become
singular. Thus, when d is large, the chance to obtain a
bootstrap sample from Fn,θ̂n

(or F̂n) “near” Fn,θ(resp Fn) and a
“good” bootstrap estimate of a location parameter is small.

A similar situation occurs when the dimension of Sn is large.
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• The effect of the additional randomisation on ζ̂∗n,B : d
finite, or ↑ ∞, ||θ|| ↑ ∞. Recall that for random variables U, V ,

Var(U) = Var E(U|V ) + EVar(U|V ). (1)

Let U = ζ̂∗n,B, V = Xn the sample, ζ̂n = E(ζ̂∗n,B|Xn) which is an
estimate, then

Var(ζ̂∗n,B) = Var(ζ̂n) + E [Var(ζ̂∗n,B|Xn)].

Since E ζ̂∗n,B = E ζ̂n and Var(ζ̂∗n,B) > Var(ζ̂n), the Mean Squared
Error (MSE) of ζ̂∗n,B exceeds the MSE of ζ̂n by the cushion-error
E [Var(ζ̂∗n,B|Xn)], thus ζ̂∗n,B is inadmissible.
• By letting B increase to infinity before n, E [Var(ζ̂∗n,B|Xn)]
vanishes. However, this is not in accordance with the bootstrap
methodology.
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Example 3: Let X = (X1, . . . ,Xd ) : Xi ∼ N(i ,1), i = 1, . . . ,d
with the X ’s independent. Take n i .i .d . copies of X : X̄i is the
i-th column average, Xn = {X1, . . . ,Xn}. Interest in:

ζ1,n = (Var(X̄1), . . . ,Var(X̄d )) = (
1
n
, . . . ,

1
n

);

ζ2,n = (Var(
1
n

n∑
i=1

X 2
i,1), . . . ,Var(

1
n

n∑
i=1

X 2
i,d ))

= (
6
n
, . . . ,

2 + 4j2

n
, . . . ,

2 + 4d2

n
).

A difference: ζ1,n is bounded but ζ2,n increases with d .

In simulations, ζ̂1,n, ζ̂2,n are the usual estimates of ζ1,n, ζ2,n;

ζ̂∗1,n,B, ζ̂
∗
2,n,B are Bootstrap estimates of ζ1,n, ζ2,n, using the

function “bootstrap” from Statlib suggested in E&T (1993).
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We use n = m = 20, due to the cushion error w.l.o.g. B = 50,
we have 100 repeats and d = 1,5,10,20,200. Similar
phenomena were observed for n = m = 50 and B = 500.
In simulations, for each of the 100 repeats calculate:

Dn,1 = ||ζ̂1,n − ζ1,n||2 − ||ζ̂∗1,n,B − ζ1,n||2

Dn,2 = ||ζ̂2,n − ζ2,n||2 − ||ζ̂∗2,n,B − ζ2,n||2.

• If Dn,j > 0, ζ̂∗j,n,B is more accurate and also reflects the quality
of the bootstrap sample, j = 1,2.
• The proportion of positive differences indicates how often
good bootstrap samples and estimates are obtained.
• The size of the differences gives an idea about the expected
estimation precision and the effect of the parameter values.

Fig. 1: odd numbered plots concern ζ1,n, even numbered, ζ2,n.
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The best situation for Bootstrap: d = 1; ζ̂∗n,B, is better than
ζ̂n roughly 50% of the time (see proposition 2(i)).
For large d , ζ̂∗n,B ’s error is dramatically larger than that of ζ̂n
depending on the parameter values; compare plots 9, 10.
The proportion of dots sliding through the line at zero, with
negative values, increases with d ; compare plots 1,3,5,7,9.
The cushion-error is “lying” below the line at zero and is
clearly observed in plots 9 and 10.

Fig. 2: simulations when d = 1 only, for Dk , k = 1,2,
n = m = 20,B = 50, σ2 = 1. To show the dependence of
the cushion-error on the size of the parameter values, the
means are 10j ; j = 0,2,4,6,8.
The effect of the increase in E [Var(ζ̂∗n,B,2|Xn)] is clear, from
the range of the values in plots 2, 4, 6, 8, 10.
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For the target ζn(∈ Rd ) one is interested in the probability

P[||ζ̂∗n,B − ζn||2 ≤ ||ζ̂n − ζn||2],

especially when d ↑ ∞. You may ask what is ζ̂n? There are
competing estimates, e.g. Jackknife estimates. We use:

ζ̂n = E [ζ̂∗n,B|Xn].

It will be shown that

lim
d→∞

P[||ζ̂∗n,B − ζn||2 ≤ ||ζ̂n − ζn||2 + Cd ] = 0,

with Cd ↑ ∞, Cd > 0.
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Proposition 1. Let ζ̂∗n,i,B be a Bootstrap estimate of ζn,i(∈ R)

and let ζ̂n,i = E(ζ∗n,i,B|Xn), i = 1, . . . ,d ; ζn, ζ̂n, ζ̂
∗
n,B are the

corresponding d-vectors. Then,
a) ζ̂∗n,B is inadmissible:

E ||ζ̂∗n,B − ζn||2 = E ||ζ̂n − ζn||2 +
d∑

i=1

EVar(ζ̂∗n,i,B|Xn).

b) If the estimates ζ̂∗n,i,B are independent, have uniformly
bounded fourth moments and 0 < σ2 < Var(ζ̂∗n,i,B|Xn) for
i = 1, . . . ,d , then for any 0 < α < 1,

P[||ζ̂∗n,B − ζn||2 ≤ ||ζ̂n − ζn||2 + α

d∑
i=1

Var(ζ̂∗n,i,B|Xn)]

≤
max{E(ζ̂∗n,i,B − ζn,i)

4; i = 1, . . . ,d}
d(1− α)2σ4 .
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The probability that ζ̂∗n,B is better than ζ̂n in estimating ζn
decreases to 0 as d increases. In the context of Example 1,

lim
d→∞

P[||ζ̂∗n,B − ζn||2 ≤ ||ζ̂n − ζn||2 + α

d∑
i=1

Var(ζ̂∗n,i,B|Xn)] = 0.

Both ζ̂n and ζ̂∗n,B are affected by the curse of dimensionality but
for the latter there is in excess the cushion error.
Remark 1. The term α

∑d
i=1 Var(ζ̂∗n,i,B|Xn) in Proposition 1 may

be replaced by its expected value. Assuming that
0 < σ2 < EVar(ζ̂∗n,i,B|Xn), i = 1, . . . ,d ,

P[||ζ̂∗n,B − ζn||2 ≤ ||ζ̂n − ζn||2 + α

d∑
i=1

EVar(ζ̂∗n,i,B|Xn)]

≤
Var [||ζ̂∗n,B − ζn||2] + Var [

∑d
i=1 Var(ζ∗n,i,B|Xn)]

(1− α)2d2σ2 .
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Remark 2. Proposition 1 holds also with θ,E(θ̂∗n,B|Xn), θ̂∗n,B
instead of ζn, ζ̂n, ζ̂

∗
n,B; θ̂∗n,B reflects the quality of the bootstrap

sample, which deteriorates as d increases. In many
applications of the bootstrap, one is more interested in
comparing ||θ̂∗n,B − θ̂n|| with ||θ̂n − θ||. From the Proposition 1 it
is expected that ||θ̂∗n,B − θ̂n|| would be large at least when
θ̂n = E(θ̂∗n,B|Xn) and either d or the parameter values are large.

Question: Population density f . Assume we are interested in
Ef X or Varf X . How well can one hit a target related with f using
a sample from another density g? And if g is far from f ?

The Bootstrap analogue: Obtain X ∗n,1, . . . ,X ∗n,B from fθ̂n
. How

much can tell us about fθ? It will depend on the distance
between the distributions of these samples and fθ.
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Hellinger Distance

Definition: Let f , g be densities on Y(⊂ Rn). The Hellinger
distance H(f ,g) is:

0 ≤ H2(f ,g) =

∫
Y

(
√

f (y)−
√

g(y))2dy = 2[1− ρ(f ,g)] ≤ 2,

the affinity ρ(f ,g) =

∫
Y

√
f (y)g(y)dy .

Notation: If F , G are respectively c.d.fs. of f ,g we may use
H(F ,G) instead of H(f ,g).

H2(f ,g) = 2 for f ,g with supports that do not intersect:
“f , g are separated.”
Draw a graph of f ,g with intersecting supports: ...
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Property of H : For Πn
i=1f , Πn

i=1g, that corresponds to
X1, . . . ,Xn i .i .d . either f or g,

H2(Πn
i=1f ,Πn

i=1g) = 2[1− ρn(f ,g)] −→
n→∞

2;

“asymptotically in n the densities separate” and we can
distinguish if either f or g is true.

Example 4: fθ1 ∼ N(θ1, I), fθ2 ∼ N(θ2, I). Then,

H2(fθ1 , fθ2) = 2(1− e−
||θ1−θ2||

2

8 )

which behaves like ||θ1 − θ2||2 when ||θ1 − θ2|| is small.
Thus, the H-geometry for {fθ, θ ∈ Rk} is Euclidean
Geometry in Rk and small neighborhoods around fθ are
like spheres.
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Bootstrap Geometry

Let X1, . . . ,Xn be i .i .d . N(θ, I), θ ∈ R2, Xn = {X1, . . . ,Xn}.
Estimate θ by θ̂n and obtain B Bootstrap samples X ∗n,i , each
from N(θ̂n, I) and θ̂∗n,i = θ̂n(X ∗n,i), 1 ≤ i ≤ B.

In Figure 3: Fθ = N(θ, I), Fθ̂n
= N(θ̂n, I), ∗ = N(θ̂∗n,i , I).

We examine heuristically what the bootstrap samples can tell
about the model Fθ (or Fn,θ).

• H(Fθ,Fθ̂∗n,i
), i = 1, . . . ,B, reflect the quality of the bootstrap

samples used to estimate ζn = α(Fn,θ) and indirectly Fθ and θ.

• Among H(Fθ,Fθ̂∗n,i
), i = 1, . . . ,B, those smaller than

H(Fθ,Fθ̂n
) determine, at least in some situations, the better

Bootstrap samples.

Yannis G. Yatracos Yau Mathematical Sciences Center Tsinghua UniversityASSESSING THE QUALITY OF BOOTSTRAP SAMPLES AND ESTIMATES OBTAINED WITH FINITE RESAMPLING



• For several other distributions, ||θ − η|| ≈ H(Fn,θ,Fn,η) and the
proportion of better Bootstrap samples,

P[H(Fθ,Fθ̂∗n ) ≤ H(Fθ,Fθ̂n
)] ≈ P(||θ̂∗n − θ|| ≤ ||θ̂n − θ||).

• The H-“sphere” with centre Fθ and radius H(Fθ,Fθ̂n
) includes,

for estimation purposes, the most informative part of the
Bootstrap World.
• For a large class of models, the proportion of Bootstrap
samples in this sphere is less than or equal to 50%. For the
Uniform in (0, θ), θ ∈ Rk , this circle is almost surely empty when
θ̂n = max{X1, . . . ,Xn} is used to obtain Bootstrap samples.
• In a version of Figure 3 for high dimensional parameters, the
ratio of the volumes of the small sphere with center Fθ and the
sphere with centre Fθ̂n

tends to zero when the dimension
increases, as Proposition 1 suggests.
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• To study the effect of Fθ( resp.F ) in the accuracy of ζ∗n,B
several θ-values are considered, and d or the dimension of Sn
may increase to infinity; w.l.o.g. B is fixed, since
E [Var(ζ̂∗n,B|Xn)] increases to infnity for selected θ-values and it
is decreasing as B increases.

• The findings “at the limit” provide an idea about the effects of
the model and the large dimension. Some results are proved
assuming independence of the coordinate vectors and are not
expected to improve under dependence.
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Example 5. Let X = (X1, . . . ,Xd ) : Xi ∼ N (µi ,1), i = 1, . . . ,d ,
with the X ’s independent. Let X1, . . . ,Xn be a sample of size n.
Bootstrap samples are obtained using the MLE of the means.
We are interested in a functional T (X̄1, . . . , X̄d ).

• The conditional distribution of (X̄ ∗1 , . . . , X̄
∗
d ) and that of

(X̄1, . . . , X̄d ) are compared. Φ is the c.d.f. of N (0,1).
X̄i ∼ N (µi ,n−1), conditionally on X̄i = x̄i , X̄ ∗i ∼ N (x̄i ,n−1) and
ai = x̄i − µi is a realization of Ai ; i = 1, . . . ,d . It is hoped that
the law Nd of (X̄1, . . . , X̄d ) is not far from the conditional law N ∗d
of (X̄ ∗1 , . . . , X̄

∗
d ).

For the infinite X-vectors and their distributions,
N = Π∞i=1Φ[d(n.5(yi − µi)] and N ∗ = Π∞i=1Φ[d(n.5(yi − x̄i)],

H2(N ,N ∗) = 2(1− exp{−n
8

∞∑
i=1

a2
i }).
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For any c(> 0), the probability P(|X̄i − µi | > cn−0.5) = pn > 0,
therefore

∑∞
i=1 P(|X̄i − µi | > cn−0.5) =∞. Independence of the

coordinates of (X̄1, . . . , X̄d , . . .) and Borel-Cantelli Lemma imply
that |X̄i − µi | > cn−0.5 infinitely often, thus,

∑∞
i=1 A2

i =∞ and
a.s. H2(N ,N ∗) = 2.

• N and N ∗ are singular when the size of the bootstrap sample
remains the same in each coordinate of the observation-vector.
Thus, for a large but fixed d , the supports of Nd and N ∗d are
quite different, explaining partially the problems of the bootstrap
when the target depends on location parameters, as in
Example 3 with ζ2,n.

Does this result hold only for the Normal model? NO!
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• It is shown for location models that, as in Example 5, the
Bootstrap world consisting of {X ∗n } and the statistician’s original
{Xn}-world become more distinct as d increases, and the
bootstrap sample size remains the same in each coordinate of
the observation-vector; the same holds for the distribution of ζ̂n
and the conditional distribution of ζ̂∗n,B given ζ̂n.

It is also confirmed that as seen in Fig. 1 and the Bootstrap
Geometry, the percentage of better bootstrap samples for
estimation purposes is no more than 50%. A result in Shepp
(1965) for location families is used in the proof.
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Proposition 2. Let X = (X1,X2, . . . ,Xd , . . .) be a vector with
independent components, Xi has distribution F (xi − θi) and
θi ∈ R for all i . Consider n independent copies of X and let θ̂n,i
be an estimate of θi . Draw a bootstrap sample of size n from
Π∞i=1F (xi − θ̂n,i)and let θ̂∗n,i be the corresponding Bootstrap
estimate. Denote by θ, θ̂n and θ̂∗n the infinite vectors. Then,
(i) If the conditional distribution of θ̂∗n is symmetric around
θ̂n then, for all θ,

P(||θ̂∗n − θ|| ≤ ||θ̂n − θ||) ≤ 0.5;

for several models, this probability is equal to
P[H(Fn,θ̂∗n

,Fn,θ) ≤ H(Fn,θ̂n
,Fn,θ)].
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Assume that, for any positive constant c, as i increases, the
sequence of probabilities {P(nβ|θ̂n,i − θi | > c)} does not
converge to zero, β > 0. Let Q = Π∞i=1F{dyi} be the distribution
when all θi are equal to zero, let Qθ = Π∞i=1F{d(yi − θi)} be the
distribution of X, and let Qθ̂n be the conditional distribution of X∗

given X. Then,
(ii) When θ1 = θ2 = . . . = θd = . . . = θ0, the distributions Qθ̂n

and and Qθ are singular, θ = (θ0, . . . , θ0, . . .).

(iii) If H2(Qθ,Q0) is a function of
∑∞

i=1 θ
2
i then Qθ̂n and Qθ are

singular for any θ.
Remark 3. If the distributions of ζ̂n and ζ̂∗n,B are respectively
Π∞i=1f (yi − ζi),Π

∞
i=1f (yi − ζ̂n,i) the latter is symmetric around ζ̂n

and the sequence {P(nβ|ζ̂n,i − ζi | > c)} does not converge to
zero, then Proposition 2 holds for Qζ ,Qζ̂n and
||ζ̂∗n,B − ζn||, ||ζ̂n − ζn||.
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Discussion

• The results indicate that rules of thumb in the choice of B
should be used with caution. Also, that the bootstrap samples
and ζ̂∗n,B cannot often provide more information than the original
sample Xn and ζ̂n and suggestions are given how to stay
respectively near each other. Then, the chance to obtain better
ζ̂∗n,B increases, but the potential of substantial inadmissibility
remains.

• The most serious of the observed problems is due to finite
resampling (B <∞), which is inherent in the bootstrap
methodology. The results suggest to keep the bootstrap sample
and ζ̂∗n,B as near as possible, respectively, to the original
sample Xn and E(ζ̂∗n,B|Xn).
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• The explicit calculation of E [Var(ζ∗n,B|Xn)] and its estimation
will help to determine a B-value that will bring ζ∗n,B closer to
E(ζ∗n,B|Xn) and reduce the loss in accuracy. When E(ζ∗n,B|Xn) is
unbounded, the suggested B-value may be extremely large.
For example, using Jackknife, Bn = n, mn = n − 1 and and all
samples of size n − 1 are considered.

• Selecting better bootstrap samples by comparison with Xn is
suggested. Any additional information on Fn,θ (resp. Fn) should
be used as in Hall and Presnell (1997), where the Bootstrap
samples near Xn are only used. Proposition 2 suggests
increasing the size mn of the Bootstrap samples with the model
dimension. This sampling is against the (traditional) Bootstrap
philosophy, and may not always provide a pertinent estimate.
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Schepp’s Theorem

Theorem (Shepp, 1965, p. 1108). Let W = (W1,W2, . . .) be a
vector of i .i .d . random variables with probability distribution
F = F{dw} on R and let a = {a1,a2, . . .} be a numerical
sequence. Let Q = Π∞i=1F{dyi} and Qa = Π∞i=1F{d(yi − ai)} be
the distributions of W and W + a, respectively.
(i) If

∑∞
i=1 a2

i =∞, then Q and Qa are singular.
(ii) Assume that the Fisher information I(F ) <∞, then Q and
Qa are singular if

∑∞
i=1 a2

i =∞, and Q and Qa are equivalent if∑∞
i=1 a2

i <∞.
(iii) If Q and Qa are equivalent for all a with

∑∞
i=1 a2

i <∞, then
I(F ) <∞.
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