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Lecture 2: Hyperbolic dynamics

From here on, we will specialize to the case when f is a smooth diffeomorphism. To avoid doing
any real geometry, we will always assume f acts on either the flat torus M = Td or as a mapping
f : U → Rd where U ⊂ Rd is an open and bounded set. In either case, all tangent spaces can
be identified with the same copy of Rd using the flat connection. Below and throughout, we write
Dxf : TxM → TfxM for the total derivative of f .

Our goal for today is to describe an infinitesimal mechanism, hyperbolicity, which causes dy-
namical systems to ‘randomize’ and produce chaotic and seemingly random behavior.

Definition 1. Let f be a C1 diffeomorphism. Let Λ be a compact, f -invariant set (i.e., f(Λ) = Λ).
We say that f |Λ is uniformly hyperbolic if there exist constants C ≥ 1, λ ∈ (0, 1), and for each x ∈ Λ

there exists a splitting of tangent space TxM = Eux ⊕Esx into complementary subspaces E
u/s
x , such

that for all n ≥ 0,

‖Dxf
n|Es

x
‖TxM→TfnxM ≤ Cλ

n ,

‖Dxf
−n|Eu

x
‖TxM→Tf−nxM

≤ Cλn .

If Λ = M (that is, the entire domain is uniformly hyperoblic) then f is called an Anosov diffeo-
morphism.

Notice that the second line implies that Dxf
n|Eu

x
strongly expands the vectors in Eux .

Example 2. Let f : Rd → Rd be a C1 diffeomorphism for which 0 is a saddle equilibrium (i.e.,
the spectrum of D0f is disjoint from the unit circle and contains eigenvalues with absolute value
both > 1 and < 1). It is easy to check that f |Λ with Λ = {0} is uniformly hyperbolic, where Eu

is the direct sum of the unstable (|λ| > 0) eigenspaces and Es is the sum of the stable (|λ| < 1)
eigenspaces.

Exercise 3. Show that if f |Λ is uniformly hyperbolic, then Dxf(E
u/s
x ) = E

u/s
fx holds for all x ∈ Λ.

Exercise 4. Let f : Td → Td. Show that if f |Λ is uniformly hyperbolic with respect to the flat
metric on Td, then it is uniformly hyperbolic with respect to any C1 Riemannian metric on Td.

We call Eux , E
s
x, respectively, the unstable and stable subspaces for f at x. The presence of

hyperbolicity indicates that at the infinitesimal level near each orbit initiated in Λ, there is some
stretching and contracting in different directions that accumulates over time. Notice that points
in Λ need not be equilibria themselves, so this stretching / contracting is occurring in the moving
frame along each orbit {fnx}n∈Z, x ∈ Λ.

Exercise 5. Show that the CAT map as defined in Example ?? is Anosov, i.e., uniformly hyperbolic
on Λ = T2. What are Eux , E

s
x?
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0.1 Continuity properties of x 7→ E
u/s
x

Below, dH denotes the Hausdorff distance on subspaces of Rd, defined by

dH(E,E′) = ‖PE − PE′‖ ,

where PE , PE′ denote the orthogonal projections onto E,E′, respectively.

Lemma 6. The mapping x 7→ E
u/s
x various Holder continuously in dH as x varies in Λ.

Proof. Let us prove continuity of x 7→ Esx; that for Eux is a time-reversal of the argument we given.
Holder continuity is more involved– see e.g. Brin and Stuck.

Let xn → x be a convergent sequence, and assume for the sake of contradiction that there is
a sequence of unit vectors vn ∈ Esxn for which lim supn→∞ dist(vn, E

s
x) > 0. Refining the sequence

and using compactness, assume that the vectors vn converge to some limiting unit vector v /∈ Esx.
With v defined, let N be sufficiently large so that ‖Dxf

mv‖ ≥ 2 for all m ≥ N (this step is
justified in Exercise 8 below). Now,

‖Dxf
mv‖ ≤ ‖Dxf

m −Dxnf
m‖+ ‖Dxnf

m‖ · ‖v − vn‖+ ‖Dxnf
m(vn)‖ .

Fix m ≥ N large enough so that the third term is ≤ Cλm ≤ 1
2 . With m fixed, take n large enough

so that the first and second terms are each ≤ 1
4 . Since m ≥ N , the LHS is ≥ 2 but the RHS is ≤ 1.

This is a contradiction.

Remark 7. In fact, it can be shown that x 7→ E
s/u
x varies Holder continuously in x. This is the

most regularity one can hope for in general uniformly hyperbolic systems, even when f is C∞ or
analytic: see Brin & Stuck for for a proof of Holder continuity and see Hasselblatt & Katok for
more information on optimality of Holder continuity. This fact is a source of significant technical
difficulty in hyperbolic dynamics.

Exercise 8. Let f |Λ be uniformly hyperbolic and x ∈ Λ. Let v ∈ Rd \ Esx. Show that there is a
constant c(v) > 0 for which ‖Dxf

nv‖ ≥ c(v)λ−n for all n. What is c(v) in terms of v,Esx, and the
other parameters in the system? What happens to c(v) as v gets closer to Esx?

Corollary 9. Assume f |Λ is topologically transitive, i.e., for any open U, V ⊂ Λ (in the subspace

topology), we have that there exists an n ≥ 0 for which fn(U)∩V 6= ∅. Then, dimE
u/s
x is constant

in x.

Exercise 10. Prove Corollary 9. Hint: A useful step is to show that if E,E′ ⊂ Rd are subspaces
with dimE < dimE′, then dH(E,E′) = 1.

0.2 Equivalent formulation: cones conditions

It is often easier to work with the following cones formulation of hyperbolicity. Below, given a
subspace E ⊂ TxM and α ∈ (0, π/2), define

C(E,α) = {0} ∪ {v ∈ TxM \ {0} : ∠(v,E) ≤ α} .

Here, ∠(v,E) is the minimal angle between v and E, and satisfies the formula

sin∠(v,E) =
‖(I − PE)v‖
‖v‖

,

where PE is the orthogonal projection onto E.
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Proposition 11. We have that f |Λ is uniformly hyperbolic if and only if the following holds.
There are (1) constants α ∈ (0, π/2), C̃ ≥ 1, λ̃ ∈ (0, 1) and (2) continuously-varying assignments
x 7→ Ẽsx, Ẽ

u
x of subspaces of TxM (not necessarily Df -invariant) such that

• Dxf(C(Ẽux , α)) ⊂ C(Ẽufx, α),

• Dxf
−1(C(Ẽsx, α)) ⊂ C(Ẽsf−1x, α), and

• we have

‖Dxf
nv‖ ≥ C̃−1λ̃−n‖v‖ , v ∈ C(Ẽux , α) ,

‖Dxf
−nv‖ ≥ C̃−1λ̃−n‖v‖ , v ∈ C(Ẽsx, α) .

Exercise 12. Prove that the Smale Solenoid is uniformly hyperbolic on its attractor A by checking
that the cones condition in Proposition 11 holds. Hint: take Ẽux to be parallel to the S1 factor, and
take Ẽsx to be parallel to the D factor.

0.3 Stable and unstable manifolds theory

As you probably learned in an ODE class, hyperbolic equilibria admit stable/unstable manifolds
which are the local nonlinear representatives of the subspaces Eu, Es along which stretching/ con-
tracting occurs. Since a given orbit in a hyperbolic set can be thought of as as saddle in a moving
frame, it should come as no surprise then that we can obtain ‘moving frame’ stable/unstable man-
ifolds along such orbits.

Theorem 13. Assume f |Λ is hyperbolic. Then, for all sufficiently small ε > 0 and all x ∈ Λ, the
set

W s
x,ε := {y ∈ Bε(x) : d(fnx, fny) ≤ ε for all n}

is a dimEsx-dimensional embedded disk passing through x and tangent to Esx at x. Moreover, for
any p, q ∈W s

x,ε, we have dist(fnp, fnq) ≤ Ĉλn, where Ĉ ≥ 1 is a constant.
Analogously, we have

W u
x,ε := {y ∈ Bε(x) : d(f−nx, f−ny) ≤ ε for all n}

is a dimEux -dimensional embedded disk passing through x and tangent to Eux at x, as well as the
analogous contraction estimate dist(f−np, f−nq) ≤ Ĉλn for p, q ∈W u

x,ε.

Lastly, if f is Cr-smooth, then W
u/s
x,ε are each Cr smooth.

Definition 14. The global stable/unstable manifolds at x ∈ Λ are defined by

W s
x =

⋃
n≥0

f−n(W s
fnx,ε)

W u
x =

⋃
n≥0

fn(W u
f−nx,ε)

Remark 15. After seeing the proof of (part of) Theorem 13, you will be able to check that the
above definitions do not depend on the precise value of ε. See Exercise 27 below.

Exercise 16. Show that

W s
x = {y ∈M : d(fnx, fny)→ 0 as n→∞} .

Conclude that if W s
x ∩W s

y 6= ∅ for some x, y ∈ Λ, then W s
x = W s

y .
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That is, distinct (un)stable leaves may not cross each other. On the other hand, stable and
unstable leaves may cross each other (obviously W s

x ∩ W u
x ⊃ {x}). See Remark 18 for more

information.
Since x 7→ E

u/s
x various continuously, it stands to reason that the nonlinear analogues W

u/s
x,ε

should vary continuously as well. Below, given two compact sets A,B, we define the symmetric
Hausdorff distance dH between them by

dH(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)} .

Corollary 17. Let ε > 0 be sufficiently small. Then, x 7→ W
u/s
x,ε varies continuously in the

Hausdorff metric dH .

The proof is left as an exercise. It proceeds along similar lines to the proof of Lemma 6.

Remark 18. Local stable manifolds are nice, embedded disks of the correct dimension. The
corresponding global stable manifolds are not nice, and generally speaking are immersed subman-
ifolds (e.g., they may accumulate on themselves). This phenomenon occurs in under very natural
conditions (e.g. homoclinic transversal intersections) and is a mechanism for deterministic chaos
(discovered first by Poincaré). See Chapter V of Brin and Stuck for more details.

0.4 Adapted charts

The goal for the rest of this lecture is to sketch a proof of the (un)stable manifold theorem using
adapted charts and so-called graph transforms, which will be defined below. This is sometimes
called the ‘Hadamard’ method, in contrast with the ‘Perron’ method which is more analytical in
nature.

To describe the local nonlinear behavior along hyperbolic trajectories, it makes sense to pass
into a moving frame and consider a chart ‘adapted’ to the nature of the hyperoblicity, i.e., for which
hyperoblicity occurs in a single timestep. These constructions are very useful in the proof of the
(un)stable manifold theorem (Theorem 13) which we will sketch. Notation: let 〈·, ·〉x denote the
Riemannian metric on TxM at x ∈M .

Let δ0 > 0 be fixed, δ0 � | log λ|. Given x ∈ Λ, u, u1, u2 ∈ Eux , v, v1, v2 ∈ Esx, define

〈〈u1, u2〉〉x =

∞∑
n=0

〈Dxf
nu1, Dxf

nu2〉fnx
(eδ0λ)2n

〈〈v1, v2〉〉x =

∞∑
n=0

〈Dxf
nv1, Dxf

nv2〉fnx
(eδ0λ)2n

〈〈u, v〉〉x = 0

Exercise 19. Define ‖ · ‖′x to be the norm on TxM corresponding to 〈〈, 〉〉x. Using continuity of

x 7→ E
u/s
x , show that ‖·‖′x is equivalent, up to a constant independent of x, to the norm ‖ · ‖x

induced by the Riemannian metric 〈, 〉x on TxM .

Exercise 20. Assume M = Td (for simplicity). Show that the inner products 〈〈, 〉〉x vary continu-
ously in x, in the sense that

x 7→ 〈〈v1, v2〉〉x, v1, v2 ∈ Rd fixed and arbitrary

varies continuously in x.
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Define λ0 = eδ0λ ∈ (0, 1). As one easily checks, for u ∈ Eux , v ∈ Esx, we have

‖Dxfu‖′fx ≥ λ−1
0 ‖u‖

′
x , ‖Dxfv‖′fx ≤ λ0‖v‖′x .

We now turn to defining connecting maps and our desired adapted charts system. The purpose of
doing this is to study the dynamics in the moving frame along a given orbit {fnx}n∈Z by mapping
that moving frame to the fixed model space Ru ⊕ Rs, where Ru = RdimEu

and Rs = RdimEs
,

equipped with the standard inner product (·, ·) with norm | · |.
For this, we fix for each x ∈ Λ linear maps Lx : Ru⊕Rs → TxM which send (·, ·) to 〈〈·, ·〉〉x. We

now define the connecting mapss
fx = (Φfx)−1 ◦ f ◦ Φx ,

and iterates

fnx =

{
ffn−1x ◦ · · · ◦ fx n ≥ 0

(ff−1x ◦ · · · ◦ ffnx)−1 n < 0

Here, we have set
Φx = expx ◦Lx ,

where expx : TxM → M is the (geodesic) exponential map (on M = Rd or Td, this is given by
expx(v) = x+ v; if M = Td this equation is meant to be taken mod 1 in each coordinate).

We will consider these connecting maps as acting fx : B(r)→ Ru ⊕ Rs, where

B(r) = Bu(r) +Bs(r)

and Bu/s(r) denotes the r-ball in Ru/s, respectively. Here the parameter r > 0 is chosen sufficiently
small so that the (nonlinear) fx is sufficiently close to its linearization D0fx = L−1

fx ◦Dxf ◦Lx. The
following summarizes the properties of this construction.

Lemma 21. Let r be sufficiently small. Then, the chart map Φx = expx ◦Lx : B(r)→M satisfies

C−1 dist(Φx(v),Φx(w)) ≤ |v − w| ≤ C dist(Φx(v),Φx(w))

for v, w ∈ B(r), where C > 0 is a constant.
Moreover, let fx : B(r)→ Ru⊕Rs denote the connecting map as above. Write fx = D0fx +Fx.

Then, the following holds.

• We have D0fxRu/s = Ru/s, and for u ∈ Ru, v ∈ Rs we have that |D0fxu| ≥ λ−1
0 |u| and

|D0fxv| ≤ λ0|v|.

• Let δ > 0 be arbitrary. By taking r small enough, we can ensure the nonlinearity Fx satisfies:

– Fx(0) = 0

– Lip(Fx) ≤ δ, and

– Lip(DFx) ≤ C where C > 0 is a constant.

Exercise 22. Assume M = Td for simplicity, and regard each Lx as above as a mapping Ru⊕Rs →
Rd. Show that x 7→ Lx can be made to vary continuously in x (c.f. Exercise 20). Conclude that
the chart maps Φx can be constructed so as to vary continuously in x.
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0.5 Graph transforms; the ‘Hadamard’ proof of the (un)stable manifold theo-
rem

In this section we will summarize a proof of part of the (un)stable manifold theorem:

Proposition 23. Let ε > 0 be sufficiently small, x ∈ Λ. Then, the set

W u
x,ε = {y ∈ Bε(x) : d(f−nx, f−ny)→ 0 as n→∞}

is contained in a set of the form
Φx graph gx

where gx : Bu(r) → Rs, gx(0) = 0 is a Lipshcitz-continuous mapping with Lip(gx) ≤ 1/10 (in the
| · | norm on mappings Bu(r)→ Rs).

A corresponding statement for W s
x,ε can be proved by a time-reversal of the following arguments.

Details are left as an exercise.
Proving that W u

x,ε is in fact as smooth as the mapping f requires more work and falls outside
the scope of these notes. Unfortunately this does not follow a naive argument, e.g., by showing
that the graph transform is a contraction in a norm compatible with the Cr topology on graph
mappings. Alternative arguments are needed using, e.g., implicit function theorems on appropriate
spaces of mappings (following the Perron approach) or the Fiber Contraction Principle. See, e.g.,
the book of Pugh and Shub for details.

Proof of Proposition 23

We begin with the following highly useful geometric cones lemma describing how cones invariance
for the linearization D0fx translates to invariance of the cone for the (nonlinear) connecting map
fx itself.

Some terminology: Let zi = (ui, vi) ∈ B(r), i = 1, 2. Let us say that z1, z2 are unstably related
if |v1 − v2| ≤ 1

10 |u1 − u2|, equivalently, if z1 − z2 belongs to the cone Cu = {(u, v) : |v| ≤ 1
10 |u|}.

Lemma 24. Let r > 0 be sufficiently small. Let zi ∈ B(r), i = 1, 2 be unstably related. Then,

• fx(z1), fx(z2) are also unstably related; and

• |fx(z1)− fx(z2)| ≥ (λ0 − δ)|z1 − z2|.

The graph transform

For g : Bu(r) → Rs, we define graph g = {(u, g(u)) : u ∈ Bu(r)}. The graph transform of g is
defined to be the mapping Γxg : Bu(r)→ Rs with the property that

fx(graph g) ∩B(r) = graph Γxg

Define

W = {g : Bu(r)→ B(r) Lipschitz continuous : graph g ⊂ B(r) and Lip(g) ≤ 1/10} .

Lemma 25.

(a) If g ∈ W, then the graph transform Γxg exists and belongs to W.
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(b) The mapping Γx : W → W is a contraction mapping in the uniform norm on C(Bu(r),Rs)
with a uniform (x-independent) contraction constant.

Exercise 26. In this exercise, we will sketch a proof of Lemma 25. Below, PrRu/s denotes the
orthogonal projection Ru ⊕ Rs → Ru/s, respectively.

(1) Given g ∈ W, define φu : Bu(r)→ Ru by φu(u) = PrRu (fx(u, g(u))). Clearly φu is continuous.
Show that (φu)−1 can be uniquely defined Bu(r) by checking (a) and (b) below:

(a) For all u′ ∈ φu(∂Bu(r)), we have |u| > r.

(b) For all u1, u2 ∈ Bu(r), we have |φu(u1)− φu(u2)| ≥ (λ0 − δ)|u1 − u2|.

Conclude from (a) that the image of Bu(r) under φu contains Bu(r), and from (b) that
φu : Bu(r) → Ru is injective. Now apply the following criterion: Let φ : X → Y be a
continuous and injective mapping of topological spaces X,Y , where X and Y are metric
spaces and X is compact. Then, φ is a homeomorphism from X onto its image φ(X). (If this
is new to you, try to prove it yourself.)

(2) The graph transform Γxg : Bu(r)→ Rs is now defined by

Γxg(u′) = PrRs(fx(u, g(u)))

where u′ = φu(u) ∈ Bu(r). Check that fx(graph g) ⊃ graph Γxg.

(3) Carry out the contraction estimate on |Γxg1(u′)− Γxg2(u′)| for g1, g2 ∈ W for u′ ∈ Bu(r).

Proposition 23 now follows by defining gx, x ∈ Λ so that

{gx} =
⋂
n≥0

Γf−1x ◦ · · · ◦ Γf−nx(W) ,

noting that the limit exists and is unique since

diam
(
Γf−1x ◦ · · · ◦ Γf−nx(W)

)
→ 0 as n→∞

by Lemma 25(b).

Slight re-definition of local unstable manifolds

Moving forward, it is technically extremely convenient to work with the following slightly re-defined
local (un)stable manifolds:

Ŵ u
x,r = Φx(graph gx)

where r > 0 is as above.

Exercise 27.

(a) Show that with this convention, we have that

f(Ŵ u
x,r) ⊃ Ŵ u

fx,r , f(Ŵ s
x,r) ⊂ Ŵ s

fx,r .

(b) Show that the global (un)stable manifolds W
u/s
x are given by

W u
x = ∪n≥0f

n(Ŵ u
f−nx,r) , W s

x = ∪n≥0f
−n(Ŵ s

fnx,r)

and that these are both increasing unions. In particular, show that these are independent of
the parameter r > 0.
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