
HOEFFDING’S INEQUALITY, MINIMUM DISTANCE ESTIMATION,

KOLMOGOROV ENTROPY, RATES OF CONVERGENCE AND MATCHING

1 Probability Inequalities

•Markov Inequality: If X is a positive random variable (r.v.), EX <∞, ε > 0,

P (X > ε) ≤ EX

ε
.

Proof: (for continuous r.v.’s) Let fX be the density of X.

EX =

∫ ∞
0

xfX(x)dx ≥
∫ ∞
ε

x

ε
· εfX(x)dx ≥ ε

∫ ∞
ε

1 · fX(x)dx = εP (X ≥ ε).

• Chebychev Inequality: Let X be r.v. with EX2 <∞, then

P [|X − EX| > ε] ≤ V ar(X)

ε2
.

• Cauchy-Schwartz inequality: If U and V are r.vs, EU2 <∞, EV 2 <∞,

a)

|EUV | ≤ [E(U2)]1/2[E(V 2)]1/2, (1)

b) for U = |X|, V = |Y |,

E|X| · |Y | ≤ [E(X2)]1/2[E(Y 2)]1/2.

Proof: 0 ≤ E(U − aV )2 = E(U2) + a2E(V 2)− 2aEUV which is minimized at a = EUV
E(V 2)

→ 0 ≤ E(U2)+
(EUV )2

E(V 2)
−2

(EUV )2

E(V 2)
= E(U)2− (EUV )2

E(V 2)
→ |EUV | ≤ [E(U2)]1/2[E(V 2)]1/2.

Definition 1.1 Let f(x) be a real valued function defined on the interval I = [a, b]. f is convex if

for every x1, x2 ∈ [a, b] and 0 ≤ λ ≤ 1,

f [λx1 + (1− λ)x2] ≤ λf(x1) + (1− λ)f(x2). (2)
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Proposition 1.1 (Jensen’s Inequality) Let X be a r.v. with domain the real line and with expected

value EX. Let f be a convex function with domain the range of the values of X. Then,

f(EX) ≤ Ef(X). (3)

Note: If you want to see the Proof for Jensen’s inequality, please let me know.

2 Hoeffding’s Inequality

Recall from Probability Chebychev’s inequality: Let X1, . . . , Xn be i.i.d. r.vs with mean µ and

variance σ2, X̄n denotes the average of the X’s. Then, for every ε > 0,

P [|X̄n − µ| > ε] ≤ σ2

nε2
.

Observe that the upper probability bound converges to zero as n ↑ ∞ at rate 1
n
.

We would prefer an upper bound that tends in probability to zero at faster rate.

A sharper inequality is Hoeffding’s inequality, with the upper bound decreasing exponentially

to zero. A lemma will be used to prove it.

Lemma 2.1 Let X be a r.v. with mean 0, a ≤ X ≤ b, a < 0 < b. Then, for any t > 0,

MX(t) = EetX ≤ et
2(b−a)2/8. (4)

Proof: Since t > 0, the function etx is convex. Consider x ∈ [a, b], then

x = λb+ (1− λ)a

with

λ =
x− a
b− a

, 1− λ =
b− x
b− a

.

Then, by convexity of g(x) = etx when t > 0,

etx = eλtb+(1−λ)ta ≤ λetb + (1− λ)eta =
x− a
b− a

etb +
b− x
b− a

eta,
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and since by assumption EX = 0,

=⇒ EetX =
b

b− a
eta − a

b− a
etb and taking ln in both sides

lnMX(t) = ln(
b

b− a
eta − a

b− a
etb) = ta+ ln(

b

b− a
− a

b− a
et(b−a)).

Let u = t(b− a)→ ta = a
b−au, then

lnMX(t) =
a

b− a
u+ ln(

b

b− a
− a

b− a
eu) = f(u),

observe that f(0) = 0,

f ′(u) =
a

b− a
+

1
b

b−a −
a
b−ae

u
· −a
b− a

eu =
a

b− a
− aeu

b− aeu
→ f ′(0) = 0,

f ′′(u) = −ae
u(b− aeu) + a2e2u

(b− aeu)2
= − abeu

(b− aeu)2
.

To show:

f ′′(u) ≤ 1

4
⇐⇒ −4abeu ≤ b2 − 2abeu + a2e2u ⇐⇒ 0 ≤ b2 + 2abeu + a2e2u = (b+ aeu)2,

which holds. It the follows that,

lnMX(t) = f(u) = f(0) + f ′(0)u+ f ′′(u0)
u2

2
≤ u2

8
=
t2(b− a)2

8
→MX(t) ≤ e

t2(b−a)2
8 .

(1963)

Proposition 2.1 (Hoeffding’s inequality-One of several versions) Let X1, . . . , Xn be indepen-

dent, centered random variables, EXi = 0, ai ≤ Xi ≤ bi, ai < 0 < bi, i = 1, . . . , n, Sn =∑n
i=1 Xi. Then, for any ε > 0,

P (Sn > ε) ≤ e−2ε2/
∑n
i=1(bi−ai)2 . (5)

Using (5) for −X1, . . . ,−Xn it follows that

P (−Sn > ε) = P (Sn < −ε) ≤ e−2ε2/
∑n
i=1(bi−ai)2 (6)

and

P (|Sn| > ε) ≤ 2 · e−2ε2/
∑n
i=1(bi−ai)2 . (7)
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Proof: For any t > 0, use Markov Inequality for etSn ,

P (Sn > ε) = P (etSn > etε) ≤ e−εtEetSn = e−εtΠn
i=1MXi(t)

From Lemma 2.1, MXi(t) ≤ et
2(bi−ai)2/8, i = 1, . . . , n, and the quadratic t2

∑n
i=1(b−a)2

8
− εt in the

probability bound is minimized at t = 4ε/
∑n

i=1(bi − ai)2, thus

P (Sn > ε) ≤ e−2ε2/
∑n
i=1(bi−ai)2 .

Remark 2.1 a) For a sample of i.i.d. Bernoulli(p) random variables, X1, . . . , Xn compare the

Chebychev and Hoeffding bounds for P (|X̄n − p| > ε) for your choice of ε, n; X̄n = n−1(X1 +

. . .+Xn), Xi = 1, with probability p and Xi = 0 otherwise, i = 1, . . . , n.

b) Let A be a measurable set in R, i.e. for which we can calculate the probability P (A) and

X1, . . . , Xn are i.i.d. P. Let IA(Xi) = 1, when Xi take value in A and otherwise IA(Xi) = 0.

Then, IA(X1), . . . , IA(Xn) are i.i.d. Bernoulli random variables with probability P (A) of taking

the value 1. Obtain Hoeffding’s bound for P [| 1
n

∑n
i=1 IA(Xi)− P (A)| > kn].

3 Distances and deviations between probability measures/densities

Let P,Q measures on a space X with a σ-field A. Assume the measures have densities p and

q respectively, with respect to dominating measure µ : dP
dµ

= p, dQ
dµ

= q. You can think of µ as

Lebesgue measure, i.e. µ(dx) = dx.

• L1-distance (or Total Variation distance) between P,Q :

||P −Q||1 = 2 sup
A∈A
|P (A)−Q(A)|. (8)

• Show that
∫
X |p(x)− q(x)|µ(dx) = ||P −Q||1 denoted also ||p− q||1.

•Draw the graph of two normal densities, e.g. N (2, 1),N (4, 1) on the real line and see graphically

what their L1-distance is; use ||p− q||1.
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• Hellinger distance h(P,Q) between P,Q :

h2(P,Q) = h2(p, q) =

∫
X

(
√
p(x)−

√
q(x))2µ(dx) = 2[1−

∫
X

√
p(x)

√
q(x)µ(dx)] = 2[1−ρ(p, q)],

(9)

ρ(p, q) =

∫
X

√
p(x)

√
q(x)µ(dx).

ρ(p, q) was called by Le Cam the affinity of P,Q and it holds from (9) and via Cauchy-Schwartz

inequality

0 ≤ ρ(p, q) = 1− 1

2
h2(P,Q) ≤ 1. (10)

(Indeed:
∫
X

√
p(x)

√
q(x)µ(dx) =

∫
X q(x)

√
p(x)
q(x)

µ(dx) ≤ [
∫
X q(x)p(x)

q(x)
µ(dx)]1/2 = 1.)

• It follows that 0 ≤ h(P,Q) ≤
√

2.

• For N (θ1, 1),N (θ2, 1), θ1 < θ2, calculate their Hellinger distance and their L1-distance.

Remark 3.1 Express the L1-distance like the last equality in (9). What will be the corresponding

affinity in L1-distance?

Exercise:

a) ||P −Q||1 = 2[P (x : p(x) > q(x))−Q(x : p(x) > q(x))]. (11)

In the proof you may use the integral version in (8).

b) ||P−Q||1 =

∫
X
|p(x)−q(x)|dx = 2[1−

∫
X
p(x)∧q(x)dx] = 2[

∫
X
p(x)∨q(x)dx−1] (12)

Proof of b): Use the notation p > q for the set {x : p(x) > q(x)}.

2 =

∫
p>q

p(x)dx+

∫
p<q

p(x)dx+

∫
q>p

q(x)dx+

∫
q<p

q(x)dx (13)

and observing for the second and the fourth integrals in (13)∫
p<q

p(x)dx+

∫
q<p

q(x)dx =

∫
X
p(x) ∧ q(x)dx

it follows for the sum of first and third integrals

→
∫
p>q

p(x)dx+

∫
q>p

q(x)dx = 2−
∫
X
p(x) ∧ q(x)dx
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→ P (p > q)−Q(p > q) = 1−
∫
X
p(x) ∧ q(x)dx→ ||P −Q||1 = 2[1−

∫
X
p(x) ∧ q(x)dx].

Note that the first equality above is easily seen drawing the graphs of densities p, q.

Also, (13) can be rewritten

2 =

∫
X
p(x) ∨ q(x)dx+

∫
X
p(x) ∧ q(x)dx→ 2 =

∫
p(x) ∨ q(x)dx+ (1− 1

2
||P −Q||1)

→
∫
p(x) ∨ q(x)dx = 1 +

1

2
||P −Q||1.

• Kullback-Leibler non-distance (WHY?) between P,Q :

dKL(P,Q) = dKL(p, q) =

∫
X
p(x) log

p(x)

q(x)
µ(dx)

Observe: dKL(P,Q) =
∫
X p(x) log p(x)

q(x)
µ(dx) = −

∫
X p(x) log q(x)

p(x)
µ(dx) = EP [ - log q(X)

p(X)
]

≥ − logEP
q(X)
p(X)

= − log(1) = 0.

• Lr-distances for densities, r ≥ 1: ||p− q||r = [
∫
X p(x)− q(x)|rdx]1/r.

• Kolmogorov distance, dK , between c.d.fs For c.d.fs F,G in Rd,

dk(F,G) = sup
x∈Rd
|F (x)−G(x)| ;

it is also called Kolmogorov-Smirnov distance.

Inequalities for distances

• h2(P,Q) ≤ ||P −Q||1 ≤ h(P,Q)
√

4− h2(P,Q) ≤ 2h(P,Q)

Proof:
∫
X |p(x)− q(x)|µ(dx) =

∫
X |

√
p(x)−

√
q(x)| · |

√
p(x) +

√
q(x)|µ(dx) ≥ h2(P,Q),∫

X
|p(x)− q(x)|µ(dx) =

∫
X
p(x)|1− q(x)

p(x)
|µ(dx) =

∫
X
p(x)|1−

√
q(x)√
p(x)
| · |1 +

√
q(x)√
p(x)
|µ(dx)

≤ [

∫
X
p(x)(1−

√
q(x)√
p(x)

)2µ(dx)]1/2·[
∫
X
p(x)(1+

√
q(x)√
p(x)

)2µ(dx)]1/2 = h(P,Q)[

∫
X
|
√
p(x)+

√
q(x)|2µ(dx)]1/2

= h(P,Q) · (2 + 2ρ(p, q))1/2 = h(P,Q) · (4− h2(P,Q))1/2 ≤ 2h(P,Q)
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Lemma 3.1 Let 0 ≤ ui ≤ 1, i = 1, . . . , n. Show that

1− Πn
i=1(1− ui) ≤

n∑
i=1

ui. (14)

Proof: By induction: for i = 1, indeed it holds 1− (1− u1) ≤ u1. We do it also for i = 2 to get a

feeling for the general case:

1− (1− u1)(1− u2) ≤ u1 + u2 ⇐⇒ 1− [1− u2 − u1 + u1u2] ≤ u1 + u2 ⇐⇒ −u1u2 ≤ 0.

Assume that for n = k (14) holds,

1− Πk
i=1(1− ui) ≤

k∑
i=1

ui.

To show it also holds for n = k + 1,

1−Πk+1
i=1 (1−ui) = 1−Πk

i=1(1−ui)(1−uk+1) = 1−Πk
i=1(1−ui)+uk+1Πk

i=1(1−ui) ≤
k∑
i=1

ui+uk+1

Proposition 3.1 a) If Xi, i = 1, . . . , n are independent r.v. with probabilities either Pi, i =

1, . . . , n or Qi, i = 1, . . . , n with densities pi, qi, i = 1, . . . , n, then (X1, . . . , Xn) will have as

joint probability the probabiliy defined by P1x . . . xPn (notation, well defined by products) or

Q1x . . . xQn and densities either p1 · p2 . . . pn or q1 · q2 . . . qn. Then,

h2(P1xP2x . . . xPn, Q1xQ2x . . . xQn) = 2[1− Πn
i=1ρ(pi, qi)] ≤

n∑
i=1

h2(Pi, Qi). (15)

b) When P1 = . . . = Pn = P, Q1 = . . . = Qn = Q then for the corresponding n-product

probabilities P (n) and Q(n) it holds

h2(P (n), Q(n)) = 2[1− ρn(p, q)] ≤ n · h2(P,Q). (16)

Observe: From the equality in the middle of (16), the distance h2(P (n), Q(n)) increases to 2 with

n, i.e. the probabilities (P (n), Q(n)) separate and are easier to distinguish in estimation and testing!

Proof:

h2(P1xP2x . . . Pn, Q1xQ2x . . . Qn) = 2[1− Πn
i=1ρ(pi, qi)] = 2[1− Πn

i=1(1− 1

2
h2(pi, qi))]
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Suffices to show that

1− Πn
i=1(1− 1

2
h2(pi, qi))] ≤

1

2

n∑
i=1

h2(Pi, Qi).

Recall that

0 ≤ ui =
1

2
h2(pi, qi) ≤ 1, i = 1, . . . , n

thus the result follows from (14).

• When P1 = . . . = Pn = P, Q1 = . . . = Qn = Q then for the corresponding n-product

probabilities P (n) and Q(n) it holds

h2(P (n), Q(n)) = 2[1− ρn(p, q)] ≤ n · h2(P,Q).

• ||P −Q||21 ≤ 2 · dKL(p, q)

Proof: A set that determines the L1-distance between P and Q is: A = {x : p(x) > q(x)}. A

will be used to prove the inequality by splitting the integral in dKL in two parts, over A and its

complement Ac.

Note that IA(x) = 1, if x ∈ A, and 0 otherwise, and that q(x)IA(x)/
∫
A
q(x)dx is a density over

the whole space where p, q are defined.

The convex function f(y) = y log y, y > 0, is used and Jensen’s inequality after creating f for

y = p(x)
q(x)

> 0. For convexity note: f ′(y) = log y + 1, f ′′(y) = 1/y > 0 when y > 0.∫
A

p(x) log
p(x)

q(x)
dx =

∫
IA(x)q(x)∫
A
q(x)dx

· {p(x)

q(x)
log

p(x)

q(x)
}dx ·

∫
A

q(x)dx

≥ f(

∫
IA(x)q(x)∫
A
q(x)dx

p(x)

q(x)
dx) ·

∫
A

q(x)dx =

∫
IA(x)p(x)∫
A
q(x)dx

dx · log[

∫
IA(x)p(x)∫
A
q(x)dx

dx] ·
∫
A

q(x)dx

= P (A) log
P (A)

Q(A)
.

Similarly, since the nature of A was not used to obtain the inequality, it also holds∫
Ax
p(x) log

p(x)

q(x)
dx ≥ P (Ac) log

P (Ac)

Q(Ac)
= [1− P (A)] log

1− P (A)

1−Q(A)
.

Therefore,

dKL(p, q) ≥ P (A) log
P (A)

Q(A)
+ [1− P (A)] log

1− P (A)

1−Q(A)
. (17)
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Let p̃ = P (A), q̃ = Q(A). Recall A = {x : p(x) > q(x)} which implies P (A) > Q(A). Then,

(17) can be written denoting the lower bound H(p̃, q̃) as

dKL(P,Q) ≥ H(p̃, q̃) = p̃ log
p̃

q̃
+ (1− p̃) log

1− p̃
1− q̃

.

Let p̃ = q̃ + r. Then,

r = P (A)−Q(A) =
1

2
||P −Q||1,

H(p̃, q̃) = H(q̃ + r, q̃) = (q̃ + r) log(1 +
r

q̃
) + (1− q̃ − r) log(1− r

1− q̃
).

We now bound H(q̃ + r, q̃) using Taylor expansion. For H ′ the first derivative of H with respect

to r we get:

H ′(q̃ + r, q̃) = log(1 +
r

q̃
) + (q̃ + r)

q̃

q̃ + r
· 1
q̃
− log(1− r

1− q̃
) + (1− q̃ − r) 1− q̃

1− q̃ − r
· ( −1

1− q̃
)

= log(1 +
r

q̃
)− log(1− r

1− q̃
),

H ′′(q̃ + r, q̃) =
q̃

q̃ + r
· 1
q̃
− 1− q̃

1− q̃ − r
· ( −1

1− q̃
) =

1

q̃ + r
+

1

1− q̃ − r
=

1

(q̃ + r)(1− q̃ − r)
≥ 4,

∀ r : 0 < r < 1− q̃.

Observe that H(q̃, q̃) = H ′(q̃, q̃) = 0 then from a Taylor expansion with a remainder term

dKL(P,Q) ≥ H(q̃ + r, q̃) ≥ 4
r2

2
= 2r2 =

1

2
||P −Q||21.

Exercise: Show that ||P − Q||1 ≤ 2
√

1− exp{−dKL(P,Q)}. (Hint: log q(x)
p(x)

= log( q(x)
p(x)
∧ 1) +

log( q(x)
p(x)
∨ 1).)

Proof of Exercise: Sometimes we write log but we mean ln .

−dKL(P,Q) = −
∫
p(x) log

p(x)

q(x)
dx =

∫
p(x)[log(

q(x)

p(x)
∧ 1) + log(

q(x)

p(x)
∨ 1)]

≤ log[

∫
q(x) ∧ p(x)dx] + log[

∫
q(x) ∨ p(x)dx]

→ exp{−dKL(P,Q)} ≤
∫
q(x)∧p(x)dx

∫
q(x)∨p(x)dx = [1− 1

2
||P −Q||1] · [1+

1

2
||P −Q||1]

→ exp{−dKL(P,Q)} ≤ 1− 1

4
||P −Q||21 → ||P −Q||21 ≤ 4[1− exp{−dKL(P,Q)}].
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4 Characterizing the dimension of a space

Examples from compact subsets in Rd.

N1(a) = # of intervals of length a needed to cover(0, 1) ∼ 1
a

N2(a) = # of rectangles, side length a needed to cover(0, 1)2 ∼ 1
a2

Nd(a) = # of rectangles, side length a needed to cover(0, 1)d ∼ 1
ad

Observe: logNd(a)/ log( 1
a
) ∼ d, the dimension of the space where [0, 1]d lives.

Definition 4.1 Let (F , ρ) be a metric space. For a > 0, let

N(a) = minimum # of ρ-balls of radius a needed to cover F .

Then, log2N(a) is Kolmogorov entropy of the space (F , ρ).

N(a) is useful in determining the dimension of a space, in particular of a space of functions

metrized with a distance.

Examples

Notation: If x = (x1, . . . , xd) ∈ Rd, a ∈ R and s = (s1, . . . , sd) is a d-tuple of non-negative

integers,

xs = (xs11 , . . . , x
sd
d ), xs = x1s1 + . . .+ xdsd, ax = (ax1, . . . , axd), [s] = s1 + . . .+ sd;

for y ∈ Rd,

|x− y| = max{|xi − yi|, i = 1, . . . , d}.

For a real valued function g defined inRd let g(s)(x0) denote the [s]-th order mixed partial derivative

of g at x0, i.e.

g(s)(x0) =
∂[s]g(x0)

∂xs11 . . . ∂xsdd
.

a) q-smooth functions defined on a compact in Rd
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Let X = [0, 1]d, the uniformly bounded functions in sup-norm F = {f : [0, 1]d −→ R+}, such

that each f has p-derivatives and the p-th derivative satisfies a Lipschitz condition with parameters

0 < α < 1, L > 0,

|f (p)(x)− f (p)(y)| ≤ L · |x− y|α, q = p+ α.

Note: In the literature you may see exponents αi, i = 1, . . . , d, for each of the components of

|x− y|. Then, min{αi; i = 1, . . . , d},max{αi; i = 1, . . . , d} play different roles in estimation. In

the sequel we use the “isotropic” case, with all αi’s equal to α.

Kolmogorov and Tikhomirov (1959) have shown that F metrized with the sup-norm,

||f − g||∞ = supx|f(x)− g(x)|

is totally bounded and that for every a > 0 for the smallest number N∞(a) of || · ||∞-balls of radius

a needed to cover F it holds

C1 · 2( 1
a

)d/q ≤ N∞(a) ≤ C2 · 2( 1
a

)d/q , 0 < C1 < C2. (18)

Clements (1966) showed that when F is metrized by the L1-distance then inequalities similar to

(18) with the same bounds in terms of a modulo the constants.

b) Functions with uniformly bounded modulus of continuity

Let X = [0, 1], F = {f : [0, 1]→ R+ : ωf (ε) = sup |f(x+ h)− f(x)|;x ∈ (0, 1), |h| < ε} ≤

ω(ε)}. By Lorentz (1966), F metrized with || · ||∞ is totally bounded,

N∞(a) ≤ K

δ(γ · a)
,

for K, γ fixed constant s and δ = δ(a) any root of the equation ω(δ) = a.

5 Statistical Experiments-The estimation problem

Definition 5.1 A Statistical Experiment, (X ,A,P), consists of sample space X with σ-field A,

the parameter space Θ with distance dΘ and probability measures P = {Pθ∗ ; θ∗ ∈ Θ}; see e.g.

Le Cam (1986), Le Cam and Yang(2000).
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The problem: X ∈ X is observed from Pθ, θ unknown and the aim is to estimate θ and study

properties of the estimate, e.g. its rate of convergence to θ with respect to dΘ.

Note: X could be a sample X1, . . . , Xn with each Xi from Pθ.X could be seen as vector in Rn

and then in the Statistical Experiment X is indeed X n = Rn, and the corresponding P includes

product probabilities, or joint densities each indexed by θ ∈ Θ.

Instead of P one can use the corresponding c.d.fs FΘ = {Fθ∗ , θ∗ ∈ Θ} with generic distance

d̃ used also for functionals T (Fθ∗), θ∗ ∈ Θ, and assume identifiability i.e. Fθ1 = Fθ2 implies

θ1 = θ2. We will use FΘ to denote c.d.fs or the corresponding densities.

6 Upper Rates of Convergence in Probability

Our goal is to define the upper rate of convergence of an estimate to a parameter in Probability.

If X1, . . . , Xn is i.i.d. sample with unknown mean µ and finite variance σ2 = 1, we want kn ↓ 0

such that

lim
n→∞

P [|X̄n − µ| > kn] = 0. (19)

We hear X̄n (or the MLE) converge at rate n−1/2. Can we use kn = n−1/2 in (19)?

From CLT, n1/2(X̄n−µ) has asymptotic distribution the Normal. Is kn = C√
n
, C > 0? Observe

that

P [|X̄n − µ| >
C√
n

] ≈ P [Z > C] 6= 0, (20)

and for this probability to converge to 0 we need C = Cn ↑ ∞, Cn = o(n−1/2).

We complete (19) in view of (20): for every ε > 0 there are Cε, n(ε) :

P [|X̄n − µ| > Cεkn] < ε (21)

for every n ≥ n(ε). For n < n(ε) there will be another constant that depends on ε that will make

(21) hold for 1 ≤ n < n(ε). Thus, there is Cε for which (21) holds for n ≥ 1. We would prefer

that the rate is the same for all µ, i.e. uniform, so we will add in front of the probability in (21) the
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supµ,

sup
µ
P [|X̄n − µ| > Cεkn] < ε, n ≥ 1. (22)

Note also that (22) can be written

lim
C→∞

sup
µ
P [|X̄n − µ| > Ckn] = 0, n ≥ 1. (23)

Definition 6.1 Let X1, . . . , Xn be a sample of d-dimensional vectors from unknown probability

Pθ, element of a known family of probabilities P , θ element of a metric space (Θ, ρ). A sequence

θ̂n of estimates of θ is uniformly consistent estimate for θ in probability, with upper rate of conver-

gence δn with respect to ρ if for every ε > 0 there is C(ε)(> 1 w.l.o.g.) such that

sup
θ∈Θ

P
(n)
θ [ρ(θ̂n, θ) > C(ε)δn] ≤ ε, ∀ n ≥ 1. (24)

(24) is briefly denoted “θ̂n has upper ρ-error rate, δn, in probability.” It is expected δn converges to

zero. P (n)
θ in (24) denotes the joint probability of the sample.

7 Wolfowitz’s Minimum Distance Estimates

Wolfowitz introduced Minimum Distance Estimation/Estimates (MDE) in a series of papers in

the 50’s (e.g. 1957) using as tools the empirical cumulative distribution of the sample, Kolmogorov

distance dK and Dvoretzky-Kiefer-Wolfowitz inequality (1956) for iid r.vs that was extended also

for i.i.d. random vectors in Rd.

Kolmogorov distance, dK , between c.d.fs: For c.d.fs F,G in Rd,

dk(F,G) = sup
x∈Rd
|F (x)−G(x)| ;

it is also called Kolmogorov-Smirnov distance.

Definition 7.1 For any n-size sample Y = (Y1, . . . , Yn) of random vectors in Rd, nF̂n(y) denotes

the number of Yi’s with all their components smaller or equal to the corresponding components of

y. F̂n is the empirical c.d.f. of Y, denoted also F̂Y.
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Theorem 7.1 (Dvoretzky, Kiefer and Wolfowitz, 1956, and the tight upper bound by Massart,

1990) Let F̂n denote the empirical c.d.f of the size n sample Y of i.i.d. random variables obtained

from cumulative distribution F. Then, for any ε > 0,

P [dK(F̂n, F ) > ε] ≤ UDKWM = 2e−2nε2 (25)

Inequality (80) implies that F̂n converges in probability to F with respect to Kolmogorov distance.

For example check that with εn =
√

lnn√
n

an upper rate of convergencein probability is obtained.

Generalizations of (80) in Rd have been obtained, at least, by Kiefer and Wolfowitz (1958),

Kiefer (1961) and Devroye (1977); d > 1. The differences in upper bound U in (80) are in the

multiplicative constant, in the exponent of the exponential and on the sample size for which the

exponential bound holds which may also depend on ε. The constants used are not determined ex-

cept for Devroye (1977).

i) In Kiefer and Wolfowitz (1958), the upper bound in (80) UKW = C1(d)e−C2(d)nε2 .

ii) In Kiefer (1961), the upper bound in (80) UK = C3(b, d)e−(2−b)nε2 , for every b ∈ (0, 2).

iii) In Devroye (1977), with the upper bound in (80) UDe = 2e2(2n)de−2nε2 valid for nε2 ≥ d2.

There are also exponential bounds under weak dependence and for non-exponential bounds for

linear time series. I can provide the reference if you need it.

Definition 7.2 For sample X having unknown c.d.f Fθ ∈ FΘ, the Minimum Distance Estimate,

θ̃MDE, of θ is defined such that:

dK(Fθ̃MDE
, F̂n) ≤ inf

θ∗∈Θ
dK(Fθ∗ , F̂n) + γn, (26)

with the user’s choice of γn ↓ 0 as n ↑ ∞, when γn = 0 cannot be used.

The infimum in (42) may not be achievable and by including γn > 0, θ̃MDE is element of

Θ̃n = {θ̃1, . . . , θ̃mn , . . .} (27)
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satisfying (42). Thus, dK(F̂θ̃MDE
, F̂n) is kept small for θ̃MDE ∈ Θ̃n.

Key inequality for proving consistency and the uniform convergence rate kn√
n

of Fθ̃MDE
to Fθ is:

dK(Fθ̃MDE
, Fθ) ≤ dK(Fθ̃MDE

, F̂n) + dK(F̂n, Fθ) ≤ 2 · dK(F̂n, Fθ) + γn, (28)

the Dvoretzky, Kiefer, Wolfowitz (DKW) (1956) inequality for dK(F̂n, Fθ) and controlled γn ≤
kn√
n
, kn = o(

√
n) increasing as slowly as we wish with n to infinity.

Convergence in Probability of θ̃MDE to θ from convergence of dK(Fθ̃MDE
, Fθ) to 0 in prob-

ability will hold when

dΘ(θ1, θ2) ≤ h[dK(Fθ1 , Fθ2)]

for every θ1, θ2 elements of Θ and h continuous at 0.

The MDE method can be used for any functional T (Fθ) for which consistent estimate Tn exists

with respect to distance d̃, by replacing in (42) dK , F̂n, Fθ∗ , respectively, by d̃, Tn, T (Fθ∗), to obtain

estimate T (Fθ̃MDE
) (e.g. Yatracos, 2019, Lemma 3.1).

8 L1-Estimate of a probability or density via MDE with upper

rates of convergence in Probability

Set-up: The observations Y1, . . . , Yn are i.i.d. random vectors from a distribution with unknown

parameter θ ∈ Θ.

Parametric estimation problems: Θ is finite dimensional, subset of Rk for some k ∈ N, e.g. for

a sample from a multivariate normal distribution with unknown vector of means, m and unknown

covariance matrix Σ and the space Θ of parameters θ = (m,Σ).

Nonparametric estimation problem: Θ is not subset of Rk for any k, e.g. when θ is either an

unknown density f ∈ Θ or an unknown probability P ∈ Θ with Θ infinite dimensional space.

Observe: when θ is a density with polynomial form of degree k then θ has at most k + 1

unknown parameters so it is a parametric problem. If Θ = F is the set of densities in [0, 1]k with
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p-continuous derivatives is infinite dimensional and the problem is nonparametric.

Estimation via discretization of the parameter space Θ

When we have n i.i.d. observations, Y1, . . . , Yn, we cannot estimate the unknown parameter

θ ∈ Θ without error. Thus, we cover metric space (Θ, d) with N(an) d-balls of radius an and their

centers, Θn, is a discretization of Θ. Then, we can choose one element of the discretization, Θn, as

the estimate of θ. This will motivate the family of pseudodistances approximating the L1-distance.

Nonparametric estimation of densities in Θ using its discretization Θn and tests of hypotheses

among the elements of Θn, with calculations of rates of convergence in Probability and in risk

were provided by Le Cam (1967, 1970, 1973) and Birgé (1983) for d Hellinger and Lp-distances,

p ≥ 1. We will present a Minimum Distance Estimate MDE) of the unknown parameter with

calculation of L1-upper convergence rates in probability to the true underlying θ, either probability

or density, uniformly in Θ. All these results assume the family of the underlying probabilities P to

be determined and known.

Under mild assumptions, similar results will be presented for the case P is either unknown or

the probabilities indexed by θ ∈ Θ are intractable, with calculation of rates of convergence to θ

using MDE for the Kolmogorov distance, dK .

Why not stay with Wolfowitz’s MDE and dK when P is known? For observations in Rd, the

L1-distance between probabilities P,Q is always greater than or equal to Kolmogorov distance, dK .

Therefore small L1 distance between two probabilities P,Q “means more” than small dK(P,Q).

Recall that if B is the underlying Borel σ-field, P = Q if P (A) = Q(A) for every A ∈ B.

Assumption: Θ = P = {Ps : s ∈ S}, a set of probability measures that is L1-totally bounded,

i.e. the cardinality N(an) of L1-balls of radius an needed to cover P is finite for each an > 0. The

n independent observations, Y1, . . . , Yn, follow an unknown probability P ∈ P .

MDE for L1-distance: Assume the probabilities in P are defined on the space Y with σ-field
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A. The tool used is the empirical measure,

µn(A) =
1

n

n∑
i=1

IA(Yi) =
#Yi ∈ A

n
, A ∈ A.

IA(Yi) = 1 if Yi ∈ A, and is 0 otherwise, i = 1, . . . , n.

Observe: If sets of the form (u1, . . . , un) ∈ A and the probabilities in P have continuous

densities, then for every Ps ∈ P

||µn − Ps||1 = 2 sup{|µn(A)− Ps(A)|;A ∈ A} = 2,

and cannot obtain MDE, Pθ̂MDE
.

Thus, a family of pseudo-distances, dn, should be determined, taking supremum over a sub-

class An of A such that

dn(Ps, Pt) ≤ ||Ps − Pt||1 ≤ dn(Ps, Pt) + δn, (29)

for every s, t in S, with δn ↓ 0 as n increases to infinity.

The pseudo-distance dn in (29) should be able to discriminate/separate measures equally well

as with the L1-distance at least for each an-discretization, Θn = Pn, of P , and then hopefully for

P ; an should play a role in the determination of δn in (29).

Since P is L1-totally bounded, denote the cardinality of the most economical Θn by N(an) and

if there are more than one candidates for Θn simply pick one,

Θn = {P1, . . . , PN(an)}. (30)

The sets determining the L1-distance of Probabilities Pi and Pj have been shown in (11) to be

Aij = {x : pi(x) > pj(x)} = {pi > pj}, i 6= j, (31)

where pi, pj are densities with respect to dominating measure µ which exists since P is L1-totally

bounded (Hint: There is an L1-countable dense subset of P). Therefore, densities exist for all

elements of Θn in (30) and since

||Pi − Pj||1 = 2[Pi(pj > pi)− Pj(pj > pi)]
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it is enough to use for the separation between each each Pi, Pj the set Aij = {pi > pj} in the

pseudodistance, therefore the pseudo-distance dn(Ps, Pt) for any Ps, Pt in P is

dn(Ps, Pt) = 2 sup{|Ps(A)− Pt(A)|, A ∈ An} (32)

with

An = {Aij; 1 ≤ i < j ≤ N(an)} = {{pi > pj}; 1 ≤ i < j ≤ N(an)}. (33)

A key Lemma is now provided.

Lemma 8.1 Let P = {Ps : s ∈ S} be L1-totally bounded family of probability measures on space

Y with σ-fieldA such that the smallest number of L1-balls of radius an covering P has cardinality

N(an). Then, for the class of sets An(⊂ A) in (33) with cardinality card(An) ≤ N2(an) it holds

for every s, t in S,

||Ps − Pt||1 ≤ 4an + 2 sup{|Ps(A)− Pt(A)|;A ∈ An} = 4an + 2dn(Ps, Pt), (34)

which has the form (29).

Proof: Let Ps, Pt be elements of P . For an > 0 let Pn be the centers of L1 balls covering P . Let

Pi and Pj be, respectively, the centers of the balls where Ps and Pt live, 1 ≤ i ≤ j ≤ N(an). From

the triangular inequality it follows that

||Ps − Pt||1 ≤ ||Ps − Pi||1 + ||Pi − Pj||1 + ||Pj − Pt||1 ≤ 2an + 2|Pi(Aij)− Pj(Aij)|

≤ 2an + 2|Pi(Aij)− Ps(Aij|+ 2|Ps(Aij)− Pt(Aij)|+ 2|Pt(Aij)− Pj(Aij)|

≤ 4an + 2 sup{|Ps(A)− Pt(A)|;A ∈ An} = 4an + dn(Ps, Pt).

MDE for L1-totally bounded P : The MDE Pθ̂MDE
of Pθ is such that

dn(µn, Pθ̂MDE
) = inf{dn(µn, Ps); s ∈ Θ)}. (35)

In (35) it is assumed the infimum is achieved. If not γn will be added as in (42). The infimum

could be taken instead over s ∈ Θn, the discretization of Θ.
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Proposition 8.1 Let Y1, . . . , Yn be i.i.d. random vectors with probability Pθ ∈ P , L1 totally

bounded with Kolmogorov entropyN(a), a > 0. Then, there is a uniformly consistent MDE, Pθ̂MDE

of Pθ with rate of convergence an :

an ∼ [
lnN(an)

n
]1/2, (36)

when an ↓ 0 in (36); an ∼ bn denotes C1bn ≤ an ≤ C2bn, 0 < C1 ≤ C2.

Proof: Pθ̂MDE
is defined in (35). We have then from (34),

||Pθ̂MDE
−Pθ||1 ≤ 4an+dn(Pθ̂MDE

, Pθ) ≤ 4an+dn(Pθ̂MDE
, µn)+dn(µn, Pθ) ≤ 4an+2dn(µn, Pθ).

(37)

From Hoeffding’s inequality, since Card(An) ≤ N2(an), P (∪mi=1Bi) ≤
∑m

i=1 P (Bi) and for

each A in An the corresponding Probability bound for |µn(A)− Pθ(A)| in dn(µn, Pθ) is uniform,

it follows that

P [dn(µn, Pθ] > kn) ≤ 2 ·N2(an) · e−2nk2n (38)

and the result follows taking kn = c[ lnN(an)
n

]1/2, with c > 0 such that the upper bound in (38)

converges to zero as n increases to infinity and kn is used to bound the last term in (37).

Exercise: Show that the upper convergence rate when P has densities the q-smooth functions

in [0, 1]d is n−
q

2q+d .

9 Learning about parameters with Matching

The evolution of Statistics to Data Science with the positive influence of Computer Science and

Big Data, motivates the search for new tools when the sample of size n, X(∈ Rnxd), is generated

fromM(θ), a quantile function or a sampler or a “black-box”,M, with input θ ∈ Θ; X is indexed

by θ,X(θ). In this Data-Generating Experiment (DGE), the goal is statistical inference for θ with

unknown statistical nature in the intractable or unavailable cumulative distribution function (c.d.f.),

Fθ, of each observation in X(θ).
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Matching and Fiducial Calibration ideas in Cochran and Rubin (1973) and in Rubin (1973,

1984, 2019) motivate, instead of calibrating θ’s estimates, to find the best match for the observed

x(θ) learning from generated X∗(θ∗), hence discovering the “best” parameter θ∗ matching θ.

Matching Estimation is model-free. The luxury of havingM allows using Nrep repeated X∗(θ∗)

for each θ∗ ∈ Θ. Since models for the Data are never accurate, Matching Comparisons as Learning

Tool for θ can have universal use. Matching estimation will improve with the evolution of com-

puting capabilities allowing for more prompt comparisons, thus making it a useful tool in Machine

Learning.

Matching measure is generic d̃-distance between empirical distributions F̂x(θ) and F̂X∗(θ∗) and

θ̂MMDE is the Minimum Matching Distance Estimate (MMDE), w.l.o.g

θ̂MMDE = arg{min
θ∗∈Θ

d̃(F̂X∗(θ∗), F̂x)}, (39)

extending the classical Minimum Distance Estimation method (e.g., Wolfowitz, 1957) used when

{Fθ∗ ; θ∗ ∈ Θ} are tractable.

For ε > 0, the Matching Support Proportion among the Nrep X∗(θ∗) for which

d̃(F̂X∗(θ∗), F̂x) ≤ ε, (40)

is calculated w.l.o.g. for each θ∗ ∈ Θ and the Maximum Matching Support Probability Estimate,

θ̂MMSPE, is obtained.

Motivation for MMSPE is that for several models, as θ∗ approaches θ the higher its Matching

Support Probability is, increasing to 1 (Propositions 15.2, 15.4, Remark 15.2 and Yatracos, 2020,

Proposition 5.2). MMSPE is a relative of noisy Approximate Bayesian Computation (ABC) MLE

(Dean et. al., 2014, Yildirim et al. 2015) and is more distant from Maximum Probability Estimator

(Weiss and Wolfowitz, 1967, 1974); see Remark 15.4.

The estimates are obtained using a discretization Θ∗ of Θ. Under mild conditions on the metric

space (Θ, dΘ) and the underlying family of c.d.fs {Fθ∗ , θ∗ ∈ Θ} which is either unavailable or

intractable and with d̃ the Kolmogorov distance dK , it is shown that the Matching Estimate, θ̃, is

uniformly consistent for θ; θ̃ = θ̂MMDE, θ̂MMSEP . The convergence rate for θ̃ to θ is obtained via
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that of the unavailable Fθ̃ to Fθ. The upper bounds on the dK-rate of convergence of Fθ̃ to Fθ and

on the dΘ-rate of θ̃ to θ depend on the Kolmogorov entropy either of (Θ, dΘ), or of increasing

sets Θk covering Θ, e.g. when Θ = Rm, with m either known or unknown;k ↑ ∞,m ≥ 1.

The rates are presented for i.i.d. Fθ vectors in Rd and remain valid under mixing conditions and

dependence when there is exponential bound on P [dK(F̂n, Fθ) > ε] similar to the Dvoretzky-

Kiefer-Wolfowitz-Massart bound; d ≥ 1, ε > 0. The rates often change in other situations of

dependence, as for example in Time Series where different probability bounds hold (see, e.g.,

Chen and Wu, 2018).

When Θ is a Euclidean space, the uniform upper dΘ-rate in Probability has often order at most
√

logn√
n

; see Example 15.1. The usual n−.5 parametric rate, e.g. of the MLE θ̂n, or of other estimates

from model-based estimation methods, is attained when models are tractable. Both Matching

Estimation methods apply for any Tn(X) estimate of T (θ), replacing in (39) and (40) F̂x by Tn(x)

and F̂X∗(θ) by Tn(X∗(θ∗)); d̃ is generic distance.

In Examples 14.1-14.3, matching distances and support probabilities are plotted over Θ(⊂

Rm,m = 1, 2) for several parametric models and have extremes pointing to the true parame-

ters. Thus, preliminary applications of the methods with a discretization over Θ will indicate a

compact, K, where θ lives, and then a finer discretization for K is used to reduce estimation bias.

Choosing a large K may be preferred than choosing various starting points when looking for a

global maximum, as in MLE. In Examples 14.4-14.6, averages of M = 50 Matching Estimates

are used successfully with the mixture of two normal densities and with the intractable Tukey’s

(a, b, g, h) and the (a, b, g, k)-models (respectively in Tukey, 1977, and Haynes et al., 1997).

In DGE, there is no indication about θ-identifiability or what n is needed to discriminate param-

eters’ values within the acceptable bias’ level. Thus, the Empirical Discrimination Index (EDI) is

introduced, to provide insight on the quality of θ’s estimates and/or compare DGEs. In Example

16.1, Tukey’s g-and-h parameter discrimination improves that of g-and-k model which is further

studied for local g-discrimination in Figures 7 and 8.

EDI’s use is justified from the literature. Rayner and MacGillivray (2002) indicated the diffi-

21



culty in samples to discriminate distributional shapes and parameters’ values for small and mod-

erate n, e.g. for the g-and-k and the generalized g-and-h models: “... computational Maximum

Likelihood procedures are very good for very large sample sizes, but they should not necessarily

be assumed to be safe for even moderately large sample sizes” (p. 58); also, “... with moder-

ately large positive (i.e. to the right) skewness, the MLE method fitting to the g-and-k distribution

cannot efficiently discriminate between moderate positive values and small negative values of the

kurtosis parameter.” (p.64). For Tukey’s asymmetric λ-distributions and Moments estimation it is

observed: “An additional difficulty with the use of this distribution when fitting through moments,

is that of nonuniqueness, where more than one member of the family may be realized when match-

ing the first four moments ... ” (Ramberg et al. 1979, Rayner and MacGillivray, 2002, p. 58).

Thus, Matching estimates in DGE should be examined at least locally with EDI.

Dean et al. (2014) prove consistency and asymptotic normality of ABC based maximum like-

lihood estimates. Yildirim et al. (2015) use sequential Monte Carlo to provide consistent and

asymptotically normal estimates for parameters in hidden Markov Models with intractable likeli-

hoods. Takafumi et. al. (2018) estimate parameters for simulator-based statistical models with

intractable likelihood using recursive application of kernel ABC and show consistency. Bernton

et al. (2019) provide Minimum Wasserstein distance estimates for intractable models, with their

rates of convergence and asymptotic distributions for real observations only (section 2, line 4)

using strong model assumptions some of which hold for the empirical c.d.f. and Kolmogorov dis-

tance, dK . The “empirical distribution”, µ̂n, in the Wasserstein distance denotes simply the data,

neither the empirical c.d.f., F̂n, nor the empirical measure, µn.

10 From Statistical Experiments to Data-Generating

Experiments (DGE)

A Statistical Experiment, (X ,A,P), consists of sample space X with σ-field A, the parameter

space Θ with distance dΘ and probability measures P = {Pθ∗ ; θ∗ ∈ Θ}; see e.g. Le Cam (1986),
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Le Cam and Yang(2000). X ∈ X is observed from Pθ and the aim is to estimate θ and study

properties of the estimate.

Instead of P one can use the corresponding c.d.fs FΘ = {Fθ∗ , θ∗ ∈ Θ} with generic distance

d̃ used also for functionals T (Fθ∗), θ∗ ∈ Θ, and assume identifiability i.e. Fθ1 = Fθ2 implies

θ1 = θ2.

Definition 10.1 A Data-Generating Experiment (DGE) consists of (X ,MX ,Θ,MΘ), with sam-

ple and parameter spaces, respectively, X and Θ, SamplersMΘ,MX , respectively, for random

Θ and for X given Θ = θ∗. Underlying structure includes σ-fields AX ,AΘ, prior π for Θ, c.d.f.

Fθ for generated X given Θ = θ, non-available or intractable c.d.fs FΘ = {Fθ∗ , θ∗ ∈ Θ} with

distance d̃, θ-identifiability, distance dΘ for Θ.

- X = X(θ) ∈ X is observed and the aim is to estimate θ.

- The user can select θ∗ ∈ Θ to draw one or more X∗(θ∗) viaMX (θ∗).

DGE examples include those where data is obtained via either a Quantile function, or a Sampler,

or a “Black-Box”.

In the sequel, for c.d.fs d̃ = dK , Kolmogorov distance.

Definition 10.2 For any two distribution functions F,G in Rd, d ≥ 1, their Kolmogorov distance

dK(F,G) = sup{|F (y)−G(y)|; y ∈ Rd}. (41)

11 The Minimum Distance Method for Statistical

Experiments

Wolfowitz introduced Minimum Distance Estimates (MDEs) in a series of papers in the 50’s

(e.g. 1957) using Kolmogorov distance dK and empirical c.d.f. F̂X of sample X representing data

D that is “matched” with a model from a pool of models.
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Definition 11.1 For any n-size sample Y = (Y1, . . . , Yn) of random vectors in Rd, nF̂Y(y) de-

notes the number of Yi’s with all their components smaller or equal to the corresponding compo-

nents of y. F̂Y is the empirical c.d.f. of Y.

For a Statistical Experiment with X having c.d.f Fθ ∈ FΘ, X = X(θ), θ̂MDE satisfies

dK(Fθ̂MDE
, F̂X(θ)) ≤ inf

θ∗∈Θ
dK(Fθ∗ , F̂X(θ)) + γn, (42)

with the user’s choice of γn ↓ 0 as n ↑ ∞, when γn = 0 cannot be used.

The infimum in (42) may not be achievable and by including γn > 0, θ̃MDE is element of

Θ̃n = {θ̃1, . . . , θ̃mn , . . .} (43)

satisfying (42). Thus, dK(F̂θ̂MDE
, F̂X(θ)) is kept small for θ̂MDE ∈ Θ̃n.

Tools for proving consistency and the uniform convergence rate kn√
n

of Fθ̂MDE
to Fθ are:

dK(Fθ̂MDE
, Fθ) ≤ dK(Fθ̂MDE

, F̂X(θ)) + dK(F̂X(θ), Fθ) ≤ 2 · dK(F̂X(θ), Fθ) + γn, (44)

the Dvoretzky, Kiefer, Wolfowitz (DKW) (1956) inequality for dK(F̂X(θ), Fθ) and controlled γn ≤
kn√
n
, kn = o(

√
n) increasing as slowly as we wish with n to infinity.

The MDE method can be used for any functional T (Fθ) for which consistent estimate Tn exists

with respect to distance d̃, by replacing in (42) dK , F̂X, Fθ∗ , respectively, by d̃, Tn, T (Fθ∗), to obtain

estimate T (Fθ̂MDE
) (e.g. Yatracos, 2019, Lemma 3.1).

12 The Minimum Matching Distance Method

In observational studies, Rubin (1973) matched data D with data D∗ from a big data reservoir

to reduce bias, using a mean matching method and nearest available pair-matching methods. In a

DGE, D = X = X(θ) is available generated by unknown θ to be estimated, and D∗ = X∗(θ∗)

become available viaMX , θ
∗ ∈ Θ. D and D∗ are replaced, respectively, by F̂X(θ), F̂X∗(θ∗).
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Definition 12.1 The Minimum Matching Distance Estimate (MMDE), θ̂MMDE, satisfies

dK(F̂X∗(θ̂MMDE), F̂X(θ)) ≤ inf
θ∗∈Θ

dK(F̂X∗(θ∗), F̂X(θ)) + γn, (45)

with γn = 0 or γn ↓ 0 as n ↑ ∞.

θ̂MMDE is not necessarily unique. γn appears in the upper rate of convergence of Fθ̂MMDE
to Fθ

and has rate smaller than the other additive components.

(D) Discretizations of (Θ, dΘ): Θ’s finite dΘ-discretization, Θ∗n, is used in (45) instead of

Θ, Θ∗n ↑ Θ, Card(Θ∗n) = Nn. θ
∗
ap,n(s) is the element of Θ∗n closest to s. When (Θ, dΘ) is totally

bounded, Θ∗n consists of the Nn = N(an) centers of the smallest number of dΘ-balls of radius an

covering Θ; an > 0, an ↓ 0 as n ↑ ∞.

The convergence rate for θ̂MMDE to θ is obtained via that of Fθ̂MMDE
to Fθ. The parallel, match-

ing inequality to (44) is

dK(Fθ̂MMDE
, Fθ) ≤ dK(Fθ̂MMDE

, F̂X∗(θ̂MMDE)) + dK(F̂X∗(θ̂MMDE), F̂X(θ)) + dK(F̂X(θ), Fθ). (46)

In a nutshell, dK(F̂X(θ), Fθ) decreases to 0 in Probability, bounded above by kn√
n
, kn = o(

√
n),

with kn ↑ ∞ with n as slowly as we wish. dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) is bounded above in Prob-

ability by
√

lnNn√
n

by Lemma 17.1 with θ̂MMDE one of Nn selected θ∗ ∈ Θ∗n,
lnNn
n
↓ 0, Nn ↑ ∞

as n ↑ ∞. The “matching term”, dK(F̂X∗(θ̂MMDE), F̂X(θ)), is bounded above in Probability by a

multiple of γn + kn√
n

+ dK(Fθ, Fθ∗ap,n(θ)) and depends on θ; kn as above. Under mild assumptions,

an upper bound in Probability is obtained for dΘ(θ̂MMDE, θ). Details are in Proposition 15.1 and

Corollary 15.1.

Remark 12.1 The advantage of having Sampler MX allows using Nrep(fixed) samples X∗(θ∗)

for each θ∗ ∈ Θ∗n. θ̂MMDE minimizing all the distances gives much weight to one sample. The

Mean Matching dK-distances, one for each θ∗, are also compared using their minimum to obtain

θ̂MMMDE, Minimum Mean Matching Distance estimate(s).

Remark 12.2 MMDE applies for any estimate, Tn(X), of T (θ) with generic distance d̃, replacing

in (45) F̂X(θ) by Tn(X(θ)) and F̂X∗(θ) by Tn(X∗(θ∗)).

25



13 The Maximum Matching Support Probability Method

Nrep X∗(θ∗) are used for θ∗ ∈ Θ.

Definition 13.1 For θ∗ ∈ Θ, Nrep samples X∗1(θ∗), . . . ,X∗Nrep(θ
∗) are drawn viaMX (θ∗) and for

ε > 0 those supporting ε-matching with X(θ) = x are:

Aε(θ
∗) = {X∗j(θ∗) : dK(F̂X∗

j (θ∗), F̂x(θ)) ≤ ε, j = 1, . . . , Nrep}. (47)

The ε-Matching Support Proportion for θ∗ is:

pε,match(θ
∗) =

Card[Aε(θ
∗)]

Nrep

> 0. (48)

The Maximum ε-Matching Support Probability Estimate (MMSPE) is

θ̂MMSPE = arg{max
θ∗∈Θ

pε,match(θ
∗)}. (49)

Observe that:

a) for large Nrep and n,

pε,match(θ
∗) estimates Pθ∗ [X∗(θ∗) : dK(F̂X∗(θ∗), Fθ) ≤ ε], (50)

b) for all s ∈ Θ and for all n by construction,

pε,match(θ̂MMSPE) ≥ pε,match(θ
∗
ap,n(s)). (51)

Small ε in (47) with pε,match(θ̂MMSPE) at least .7 is the goal in practice.

In MMDE, with Nrep X∗(θ∗) drawn for each θ∗ ∈ Θ∗n and several candidates to choose from

as θ̂MMDE, (48) is used with ε equal to the upper bound in (45) and generated data supports

arg{maxθ∗∈Θ̃pε,match(θ
∗)} as MMDE. The upper bound on the convergence rate in Proposition

15.1 holds for θ̂MMSPE which is also MMDE.

The convergence rate for θ̂MMSPE to θ is obtained via that of Fθ̂MMSPE
to Fθ. Inequalities to

determine the rate for Fθ̂MMSPE
, with pε,match(θ̂MMSPE) involved, are:

dK(F̂θ̂MMSPE
, Fθ) ≤ dK(Fθ̂MMSPEE

, F̂X∗(θ̂MMSPE)) + dK(Fθ̂MMSPEE
, Fθ)
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≤ dK(Fθ̂MMSPEE
, F̂X∗(θ̂MMSPE)) + dK(F̂X∗(θ̂MMSPE), F̂X(θ)) + dK(F̂X(θ), Fθ). (52)

The first and the last term in upper bound (52) have uniform upper bounds in Probability with

order, respectively,
√

lnNn√
n

and kn√
n
, kn = o(

√
n), as explained in the paragraph after (46); choose

kn ∼
√

lnNn. The middle “matching term” is bounded by ε in (47).

Lemma 13.1 For the Maximum ε-Matching Support Probability estimate, θ̂MMSPE, in (49), Θ =

Θ∗n with cardinality Nn,

dK(F̂θ̂MMSPE
, Fθ) ≤ C · [ε+

√
ln Nn√
n

] ≤ C ·max{ε,
√
ln Nn√
n
}, C > 0. (53)

From (53) the question arises, whether uniformly in θ the order of ε can be at most
√
lnNn√
n
, with

pε,match(θ̂MMSPE) ↑ 1 as n ↑ ∞. From (51), it seems clear the latter holds when there is θ∗ ∈ Θ∗n

such that dK(Fθ∗ , Fθ) < ε. In simulations with i.i.d. r.vs., small ε > 0, n,Nn, Nrep moderately

large, pε,match(θ̂MMSPE) is at least .70 for Normal, Cauchy, Weibull, Uniform, Poisson models

with one parameter unknown and θ̂MMSPE is near θ, competing well with MMDE. The results are

confirmed in Propositions 15.2, 15.4 for the probabilities and in Propositions 15.3, 15.5 for the

upper bounds on the convergence rates.

Remark 13.1 When any of θ̂MMDE, θ̂MMMDE, θ̂MMSPE takes more than one values, the average

is reported as the corresponding estimate.

14 Matching Estimation Examples

The Examples have two goals. In parametric models, readers to compare the values of Matching

Estimates and mainly observe how plots of matching Kolmogorov distances and matching support

probabilities over Θ point to the parameters and can provide indications for a compact K in Rd

where θ lives via preliminary Matching Estimation. The second goal is for readers to observe

the performance of Matching Estimates with intractable models: Tukey’s g-and-h model (Tukey,

1977), the g-k model (Haynes et al., 1997) and the mixtures of two normal distributions. M

27



repeated estimates are obtained with each method and their average is used with its estimated

standard deviation, providing density plots for the estimates of each parameter.

In Figures 1-3, observe for several parametric models the “path” towards the unknown parame-

ter(s) with the mean matching distances of Nrep X∗(θ∗) getting smaller and the matching support

probabilities larger along the θ∗-values, confirmed by the results in Section 15; see Propositions

15.2, 15.4 and Remark 15.2. Preliminary Matching Estimation with distant θ∗ over Rd will pro-

vide paths to determine the large compact K. Alternatively, increasing compacts covering Rd can

be used and K is determined concurrently with the Matching estimates.

In Examples 14.1-14.3, θ ∈ R for the exponential, normal and Poisson models and θ ∈ R2,

either with equal coordinates for the Weibull, Cauchy and normal models or with different coordi-

nates for the normal model. For MMSPE, the choice of ε is crucial. To determine ε one may use

Empirical Quantiles of Kolmogorov distance between F̂X and F̂X∗ (Yatracos, 2020, Section 3.1,

Table 1). In the Examples, ε = .13 is used which is the 90th Empirical quantile for the Kolmogorov

distance of F̂X(0) and F̂X∗(0) from a normal distribution with mean zero and variance 1. Alterna-

tively, ε can be chosen by trial with a satisfactory matching support probability and avoiding very

many MMSEP candidates, starting with ε-value C ·
√

lnn√
n

; .5 ≤ C ≤ 1.5 is preferred for small

d. When more than one elements of discretization Θ∗ satisfy a method’s criterion, the reported

estimate is their average.

Example 14.1 The observed X consists of n = 100 i.i.d. r.vs from the exponential and Poisson

models, each with parameter 5 , and from normal model with mean 5 and assumed known standard

deviation σ = 1. It is assumed the unknown θ (i.e. 5) is in the compact [3, 8], divided in 49 equal

sub-intervals with their end-points elements of discretization Θ∗, N = 50. Nrep = 100 samples of

size n are obtained using each element of Θ∗ and the value ε = .13 is used for MMSPE. Estimates

appear in Table 11 and, most important, plots pointing to the parameters are in Figure 1.

1Standard deviations of estimates for intractable models appear after Example 14.3.
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Figure 1: Row-wise, Exponential, Poisson with parameters 5, Normal mean 5, known σ = 1. Plots

along Θ with optima pointing to the parameters.
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MATCHING ESTIMATES

Model MMDE MMMDE MMSPE pε,match

Exponential 5.11 4.53 5.14 0.75

Poisson 5.48 5.45 5.35 0.95

Normal 4.84 4.94 4.94 0.88

Table 1: Matching Estimation for one parameter with value 5

Example 14.2 The observed X consists of n = 100 i.i.d. r.vs from the Weibull, Cauchy and the

normal models, with both parameters equal to 5. For Matching estimation it is assumed known that

these parameters are equal and only the discretization of [3, 8] is used. The rest is as in Example

14.1. Results appear in Table 2 and plots pointing to the parameters are in Figure 2.

MATCHING ESTIMATES

Model MMDE MMMDE MMSPE pε,match

Weibull 5.14 5.14 5.14 0.85

Cauchy 4.79 4.94 4.84 0.92

Normal 5.16 4.94 4.84 0.75

Table 2: Matching Estimation for two equal parameters with value 5
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Figure 2: Row-wise, Weibull, Cauchy, Normal Both Parameters 5. Plots along Θ with optima

pointing to the parameters.

31



Example 14.3 The observed X consists of n = 100 i.i.d. r.vs from the Normal model with mean

µ = 5 and standard deviation σ = 2. It is assumed for θ = (µ, σ) that Θ = [3, 8]x[.5, 4.5],

discretized by dividing each interval in 49 equal sub-intervals with their end-points elements of

discretization Θ∗, N = 2, 500. Nrep = 100 samples of size n are obtained using each element of

Θ∗ and ε = .13 is used. Estimates appear in Table 3 and the plot pointing to the parameters in

Figure 3.

MATCHING ESTIMATES FOR THE NORMAL MODEL

Parameters MMDE MMMDE MMSPE, pε,match = .9

µ 5 5.04 4.94

σ 2.1 2.05 2.13

Table 3: Matching Estimation for parameter θ = (5, 2)

Examples 14.4-14.6 present Matching estimates for intractable models. The estimation is re-

peated M = 50 times and MMDE, MMMDE and MMSEP are the averages accompanied by their

standard deviation in (·), all in Tables 4-6.

Example 14.4 The observed X consists of n = 200 i.i.d. r.vs, X1, . . . , Xn, from Tukey’s g-and-h

model (see, e.g., Tukey, 1977, or Yan and Genton, 2019) which accommodates data with non-

Gaussian distribution, with g real-valued controlling skewness, non-negative h controlling tail

heaviness and with location and scale parameters a ∈ R, b > 0. Standard normal Z1, . . . , Zn are

used, a = 3, b = 4, g = 3.5, h = 2.5 and

Xi = a+ b
egZi − 1

g
e.5hZ

2
i , i = 1, . . . , n. (54)

Parameter spaces Θg,Θh,Θa,Θb are each the interval [2, 5], divided in 10 equal sub-intervals with

the 11 end-points used to obtain for Θ = ΘaxΘbxΘgxΘh discretization Θ∗ with cardinality N =

114. Nrep = 100 samples of size n are obtained using each element of Θ∗ for Matching Estimation

with ε = .13. The process is repeated M = 50 times and the average Matching estimates and their

estimated standard deviations are in Table 4. The distributions of the M = 50 obtained estimates

for each of g, h, a, b are in Figure 4.
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MEAN MATCHING ESTIMATES FOR TUKEY’S g-and-h MODEL

Parameters MMDE & SD MMMDE & SD MMSPE & SD

a = 3 2.98 (.03) 3.04 (.04) 3.03 (.04)

b = 4 3.91 (.08) 4.06 (.12) 3.77 (.09)

g = 3.5 3.42 (.08) 3.52 (.09) 3.52 (0.07)

h = 2.5 2.72 (.05) 2.57 (.07) 2.93 (0.05)

Table 4: Matching Estimates with independent observations, n=200.

Example 14.5 The observed X consists of n = 50 dependent r.vs, X1, . . . , Xn, from g-and-k

model (Haynes et al., 1997), with g real-valued controlling skewness, k > −.5 controlling kurtosis

and with location and scale parameters a ∈ R, b > 0. The g-and-k distributions accommodate dis-

tributions with more negative kurtosis than the normal distribution and some bimodal distributions

(Rayner and MacGillivray, 2002, p. 58). Standard normal Z1, . . . , Zn are used and

Xi = a+ b[1 + c · 1− e−gZi
1 + e−gZi

](1 + Z2
i )kZi, i = 1, . . . , n; (55)

c is a parameter used to make the sample correspond to a density; usually c = .8. The normal

variables used have covariance .5 and are obtained using R as one vector of size n from a multi-

variate normal. The parameters in (55) are: a = 3, b = 4, g = 3.5, h = 2.5; c = .8. Parameter

spaces Θg,Θk,Θa,Θb, the discretization of Θ and ε are as in Example 14.4 and Matching Estima-

tion follows. The process is repeated M = 50 times and the average Matching estimates and their

estimated standard deviations are in Table 5. The distributions of the M = 50 obtained estimates

for each of g, k, a, b are in Figure 5.
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MEAN MATCHING ESTIMATES FOR g-and-k MODEL

Parameters MMDE & SD MMMDE & SD MMSPE & SD

a = 3 2.96 (.07) 3.31 (.15) 3.09 (.1)

b = 4 3.66 (.07) 3.81 (.14) 3.98 (.09)

g = 3.5 3.35 (.05 ) 3.54 (.12) 3.36 (.1)

k = 2.5 2.98 (.06) 3.08 (.12) 2.78 (.08)

Table 5: Matching Estimates with dependent observations, n=50.

Example 14.6 The observed X consists of n = 200 independent r.vs, from a Normal mixture with

two components, means µ1 = 1, µ2 = 6, standard deviations σ1 = 1, σ2 = 1.5 and weights,

respectively, p = p1 = .3, p2 = 1 − p = .7. Parameter spaces Θp = [0, 1],Θµ1 = [.5, 3.5],Θµ2 =

[3.5, 6.5],Θσ1 = Θσ2 = [.5, 2], are divided each in 10 equal sub-intervals with the 11 end-points

used to obtain for Θ = ΘpxΘµ1xΘσ1xΘµ2xΘσ2 discretization Θ∗ with cardinality N = 115.

Nrep = 100 samples of size n are obtained using each element of Θ∗ for Matching Estimation with

ε = .13. The process is repeated M = 50 times and the average Matching estimates and their

estimated standard deviations are in Table 6. The distributions of the M = 50 obtained estimates

for each of p, µ1, σ1, µ2, σ2, are in Figure 6, using for the means m1,m2 and for the standard

deviations s1, s2.

MEAN MATCHING ESTIMATES FOR pN(µ1, σ1) + (1− p)N(µ2, σ2)

Parameters MMDE & SD MMMDE & SD MMSPE & SD

p = .3 .31 (.002) .32 (.006) .34 (.002)

µ1 = 1 1.06 (.03) 1.14 (.04) 1.26 (.016)

σ1 = 1 1.11 (.03) 1.15 (.05) 1.33 (.006)

µ2 = 6 6 (.02) 6.06 (.03) 6.12 (.02)

σ2 = 1.5 1.51 (0.02) 1.43 (.03) 1.41 (.02)

Table 6: Matching Estimates with independent observations, n=200.
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15 Rates of Convergence for Matching Estimates

15.1 Assumptions and Results

Notation: an has order bn, an ∼ bn : for large n, C1bn ≤ an ≤ C2bn, 0 < C1 ≤ C2;

an ≈ bn ⇐⇒ limn→∞
an
bn

= 1.

Assumptions used in MMDE and MMSPE

(A1) Continuity of Fθ: ∀ θ, θn ∈ Θ, limn→∞ dΘ(θn, θ) = 0→ limn→∞ dK(Fθn , Fθ) = 0.

(A2) Dimension of Θ : there are an → 0 such that lnN(an)
n
→ 0, N(an) ↑ ∞ as n ↑ ∞.

(A3) From Fθ to θ : w is continuous, increasing function defined on R+ with w(0) = 0 and

dK(Fθ1 , Fθ2) ∼ w(dΘ(θ1, θ2)), ∀ θ1, θ2 ∈ Θ, (56)

or for small neighborhoods of Fθ1 .

(A1) holds for most parametric models in Rd. (A2) holds for sets Θ = [−L
2
, L

2
]d ⊂ Rd, L > 0,

with an ∼ n−k, k > 0, but also for families of functions, e.g. densities in a compact inRd that have

p mixed partial derivatives and the p-th derivative satisfying a Lipschitz condition with parameter,

e.g. α ∈ (0, 1). Observe that (A3) implies (A1). (A3) holds for several parametric families in R

with bounded densities, at least locally using the mean value theorem. (A3) provides the upper

bound on the error rate for θ from the error rate for Fθ.

Uniform consistency of Fθ̂MMDE
, Fθ̂MMSPE

to Fθ and upper bounds on the dK-rates of conver-

gence in Probability are initially established when (Θ, dΘ) is totally bounded or is the union of

increasing totally bounded sets. Under (A1), (A2), the upper bound in Probability, ε∗n, for the

matching estimate Fθ̃, θ̃ = θ̂MMDE, θ̂MMSPE, of Fθ is

dK(Fθ̃, Fθ) ≤ ε∗n ∼ max{sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

√
lnN(an)√

n
};

see (59), (71), (77). When, in addition (A3) holds,

ε∗n ∼
√

lnN(an)√
n

∼ w(an);
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see (60), (72), (78). The upper bound on the dΘ-rate for θ̂MMDE, θ̂MMSPE to θ depends on the

relation between dK(Fθ1 , Fθ2) and dΘ(θ1, θ2) determined by (A3). The results are obtained for

i.i.d. vectors in Rd and it is indicated how the results are extended under dependence, e.g. see

Roussas and Yatracos (1997).

15.2 Upper bound on the rates of convergence for MMDE

We find instructive the reader to observe the passage from the data to the parameters via the

empirical c.d.fs and the intractable or unavailable models.

Proposition 15.1 In a DGE, let X = (X1, . . . , Xn) consist of i.i.d. r.vs with c.d.f. Fθ ∈ FΘ. As-

sume that (Θ, dΘ) is totally bounded with discretization Θ∗n and associated notation an, N(an), θ∗ap,n(θ)

in (D), section 4. X∗(θ∗) are drawn via MX (θ∗) for θ∗ ∈ Θ∗n. Obtain θ̂MMDE in (45) with

Θ = Θ∗n.

a) For any εn > 0, an ↓ 0,

P [dK(F̂θ̂MMDE
, Fθ) > εn] ≤ 6 ·N(an) · exp{− n

18
(εn − dK(Fθ∗ap,n(θ), Fθ)− γn)2}. (57)

When

εn = εn(θ) = dK(Fθ∗ap,n(θ), Fθ) + 6

√
lnN(an)√

n
+ γn, (58)

the upper bound in (57) is 6
N(an)

and converges to zero as n increases to infinity.

b) Under assumptions (A1), (A2), εn in (58) decreases to zero in probability:

b1) The uniform upper dK-rate of convergence, ε∗n, for F̂θ̂MMDE
to Fθ is:

ε∗n ∼ max{sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

√
lnN(an)√

n
}. (59)

b2) Using the upper bound of (56) in (A3), the uniform upper rate of convergence for dK(F̂θ̂MMDE
, Fθ)

in Probability to zero is:

ε∗n ∼
√

lnN(an)√
n

∼ w(an). (60)
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b3) Under (A3), from ε∗n in (60) the uniform upper rate of convergence for dΘ(θ̂MMDE, θ) in Prob-

ability to zero is w−1(ε∗n).

c) Under (A2), (A3),with an = w−1(n−1/2), an upper rate in b2) is un =
√

lnN(w−1(n−1/2))/
√
n

and in b3) is w−1(un).

Similar results hold when Θ is union of increasing sequence of totally bounded sets.

Corollary 15.1 Under the assumptions of Proposition 15.1, with Θ = ∪∞k=1Θk, Θk ⊆ Θk+1,

Θk dΘ-totally bounded, Nk(a) the smallest number of dΘ-balls of radius a covering Θk, for every

θ ∈ Θk the uniform upper dK-rate of convergence, ε∗n, for F̂θ̂MMDE
to Fθ is:

ε∗n ∼
√

lnNk(an)√
n

∼ w(an). (61)

For each θ ∈ Θ, eventually in n, upper rates of convergence for dK(F̂θ̂MMDE
, Fθ) and dΘ(θ̂MMDE, θ)

are as in Proposition 15.1, b3), c) with k = k(n) ↑ ∞ as n ↑ ∞.

Remark 15.1 The MMDE rates of convergence in Proposition 15.1 and Corollary 15.1 hold with

observations in Rd, d > 1, using Lemma 17.1 with probability bound (80) UKW in Remark 17.1.

Similar rates hold under dependence, with the upper bound in (80) and therefore (57)-(59) all

including mixing coefficient φ (Roussas and Yatracos, 1997, page 339, equations (8),(30)-(33)).

The rates change, e.g. in Linear Time Series, using an upper probability bound in Chen and Wu

(2018, p. 3, equation (8)): for z ≥
√
n log(n)

P [sup
t∈R
|

n∑
i=1

I(Xi ≤ t)− F (t)| > z] ≤ C1
n

zqβ logr0(z)
,

β is dependence parameter, with larger β indicating weaker dependence, q, r0 are parameters

measuring tail heaviness, q > 1 and r0 > 1; I is indicator function, C1 constant. The upper

probability bound is sharp.

Example 15.1 Use the assumptions of Proposition 15.1, with Θ = Rm,m ≥ 1, dΘ the sup-norm,

w(a) = a, a ≥ 0.
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a) When θ ∈ (−L/2, L/2)m, L ≥ 1,m known, for an > 0

NL(an) = (
L

an
)m. (62)

From (60), the upper rate of convergence in probability for dK(Fθ̂MMDE
, Fθ), θ ∈ [−L/2, L/2]m,

ε∗n ∼
m1/2(lnL− ln an)1/2

n1/2
∼ an (63)

and with an = 1√
n

the rate of convergence is

m1/2 (lnL+ .5 lnn)1/2

n1/2
∼
√

lnn√
n
.

Since dK(Fθ1 , Fθ2) ∼ dΘ(θ1, θ2) for all θ1, θ2 ∈ Θ,

dΘ(θ̂MMDE, θ) ≤ C ·
√

lnn√
n
, C > 0.

b) When θ ∈ Rm = ∪∞n=1(Ln
2
, Ln

2
)m,m known and an > 0, there is n∗ such that θ ∈ (−Ln∗

2
, Ln∗

2
)m.

Then , for n ≥ n∗, from (63), the upper rate of convergence in probability for dK(Fθ̂MMDE
, Fθ) is

ε∗n ∼
m1/2(lnLn − ln an)1/2

n1/2
∼ an. (64)

When an = 1√
n

and Ln ≤
√
n, for each θ ∈ Rm, eventually in n,

dΘ(θ̂MMDE, θ) ∼ dK(Fθ̂MMDE
, Fθ) ≤ C ·

√
lnn√
n
, C > 0.

In a Statistical Experiment, with θ ∈ Rm and Fθ known but possibly inaccurate, the order of

convergence in probability of an estimate to θ is often kn√
n
, kn = o(

√
n) with kn ↑ ∞ as desired

with n.

c) When m is unknown in a) and b), it is replaced by mn in (63) and (64) and the rate for the upper

bound is
√
mn·lnn√

n
, with mn increasing to infinity as slow as desired.

15.3 Upper bound on the rates of convergence for MMSPE

Confirmation that pε,match(θ̂MMSPE) ↑ 1 as n ↑ ∞, follows for real observations, under condi-

tions holding for mentioned models and several other parametric families, namely that dK(Fs, Fθ) =
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∆(> 0) is achieved at single xs,θ ∈ R,where the difference of densities fs(x)−fθ(x) changes sign.

Tools in the proof are limiting distributions of Kolmogorov-Smirnov type statistics for one and two

samples under the Alternative (Raghavachari, 1973). By Glivenko-Cantelli theorem, w.l.o.g. F̂x(θ)

is replaced by Fθ in the middle matching term of (52), suggested also by the inequality preceding

(52), and the result for one sample is used.

Proposition 15.2 In a DGE, let FΘ be a family of continuous c.d.fs in R and for s 6= θ,

∆(s, θ) = dK(Fs, Fθ), (65)

K1 = {x : Fs(x)− Fθ(x) = ∆(s, θ)}, K2 = {x : Fs(x)− Fθ(x) = −∆(s, θ)}. (66)

(A4) One of K1, K2 in (66) is singleton and the other empty, w.l.o.g.

K1 = {xs,θ}, K2 = ∅. (67)

Assume (A1) holds and fix θ ∈ Θ, ε > 0. Then, for large n there is s∗ ∈ Θ, such that

∆(s∗, θ) ≤ ε− k∗n√
n
, k∗n = o(

√
n), k∗n ↑ ∞ with n. (68)

If X∗(s∗) is a vector of n i.i.d. Fs∗ observations obtained viaMX (s∗),

Ps∗ [dK(F̂X∗(s∗), Fθ) ≤ ε] ≥ Φ(2 · k∗n)) ↑ 1, as n ↑ ∞; (69)

Φ is the c.d.f. of standard normal. The lower bound in (69) is independent of θ, therefore it holds

uniformly in θ.

Upper bounds follow on the rate of convergence of estimates for real observations and Θ ⊆ R.

Proposition 15.3 In a DGE with the assumptions (A1) and (A4) in Proposition 15.2, let the

observed X(θ) = (X1, . . . , Xn) consist of i.i.d. r.vs with unknown c.d.f. Fθ ∈ FΘ, Θ ⊆ R, dΘ =

| · |.

a) Assume (Θ, | · |) is totally bounded, w.l.o.g. (−L
2
, L

2
), with discretization Θ∗n and notation

an, N(an), θ∗ap,n(s) in (D), section 4. For every θ∗ ∈ Θ∗n, Nrep X∗(θ∗) are drawn viaMX (θ∗).
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Obtain θ̂MMSPE in (49) with Θ = Θ∗n and in (47)

ε = εn = sup
s∈Θ

dK(Fθ∗ap,n(s), Fs) +

√
lnN(an)√

n
. (70)

a1) The rate of the uniform upper bound in (53) is:

ε̃∗n ∼ max{sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

√
lnN(an)√

n
}. (71)

a2) Under (A3), with an ↓ 0 as n ↑ ∞, ε̃∗n converges to zero,

ε̃∗n ∼
√
− ln an√
n

∼ w(an). (72)

For s∗ = θ∗ap,n(θ), n large, (69) holds, and the uniform upper rate of of convergence for dK(Fθ̂MMSPE
, Fθ)

in Probability to 0 is ε̃∗n in (72).

a3) Under (A3), the uniform upper rate of convergence for |θ̂MMSPE − θ| in Probability to 0 is

w−1(ε̃∗n), with ε̃∗n in (72).

b) Assume (A3) holds and Θ = R = ∪∞n=1(−k(n)
2
, k(n)

2
). Then, eventually in n, the upper rate

of convergence in probability for dK(Fθ̂MMSPEE
, Fθ),

ε̃∗n ∼
√

ln k(n)− ln an√
n

∼ w(an), (73)

and for dΘ(θ̂MMSPEE, θ) is w−1(ε̃∗n).

c) Assume (A3) holds and an = w−1(n−1/2). Then, an upper rate in a2) is un =
√
− ln(w−1(n−1/2))/

√
n

and in a3) isw−1(un). In b) the upper rates are, respectively, ũn = max(
√

ln k(n),
√
− ln(w−1(n−1/2)))/

√
n

and w−1(ũn).

Proposition 15.2 is extended for i.i.d. observations in Rd.

Proposition 15.4 For θ ∈ Θ,Θ∗n discretization of Θ, θ∗ap,n(θ) the element of Θ∗n closest to θ and

n i.i.d. random vectors in Rd with c.d.f. Fθ∗ap,n(θ), n large:

Pθ∗ap,n(θ)[dK(F̂X∗(θ∗ap,n(θ)), Fθ) ≤ εn] ≥ 1−C1(d) · exp{−C2(d) · n · [εn − sup
s∈Θ

dK(Fθ∗ap,n(s), Fs)]
2};

(74)
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C1(d), C2(d) are positive constants.

Lower bound (74) is uniform in θ and increases to 1 as n increases to infinity when

n · [εn − sup
s∈Θ

dK(Fθ∗ap,n(s), Fs)]
2 ↑ ∞ with n. (75)

Remark 15.2 (A3) with (68), (69), (74) and (75) confirm that when s∗ approaches θ pε,match(s∗)

increases, as seen in Figures 1 and 2. Preliminary simulations indicate a large compact where θ

lives.

Proposition 15.3 is extended for i.i.d. observations in Rd. Similar results hold under mixing

conditions, as for MMDE, and when Θ is union of increasing sequence of totally bounded sets, as

in Corollary 15.1.

Proposition 15.5 In a DGE, let the observed X(θ) = (X1, . . . , Xn) consist of i.i.d. random vec-

tors inRd with unknown c.d.f. Fθ ∈ FΘ. Assume that (Θ, dΘ) is totally bounded with discretization

Θ∗n and notation an, N(an), θ∗ap,n(s) in (D), section 4. Nrep X∗(θ∗) are drawn via MX (θ∗) for

every θ∗ ∈ Θ∗n.

Obtain θ̂MMSPE in (49) with Θ = Θ∗n and in (47)

ε = εn = sup
s∈Θ

dK(Fθ∗ap,n(s), Fs) +

√
logN(an)√

n
. (76)

a) The rate of the uniform upper bound in (53) is:

ε̃∗n ∼ max{sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

√
lnN(an)√

n
}. (77)

b) Under (A2), (A3), ε̃∗n converges to zero with Probability increasing to 1 uniformly in θ ∈ Θ,

ε̃∗n ∼
√

lnN(an)√
n

∼ w(an). (78)

c) Under (A2), (A3), the uniform upper rate of convergence for dΘ(θ̂MMSPE, θ) in Probability to

zero is w−1(ε∗n), with ε∗n in (78).

d) Under (A2), (A3), with an = w−1(n−1/2), an upper rate in b) is un =
√

lnN(w−1(n−1/2))/
√
n

and in c) is w−1(un).

41



Remark 15.3 pε,match(θ
∗) in (48) has been introduced in F-ABC (Yatracos, 2020), an alternative

to ABC with Nrep X∗(θ∗) drawn for each θ∗ to reduce the variation effect of a single X∗(θ∗) in the

selection of θ∗. pε,match(θ∗) is used in the approximate posterior of θ if θ∗ is selected.

Remark 15.4 MMSPE is a relative of ABC MLE (Dean et. al., 2014, Yildirim et. al. 2015)

where an ε-neighborhood like that in (47) is used, but in ABC MLE an approximate likelihood is

maximized, constructed assuming a Hidden Markov Model. MMSPE is less related with Maximum

Probability Estimator (MPE) Zn (Weiss and Wolfowitz, 1967). The reason for calling Zn MPE

is that if θ can be estimated with increasing accuracy as n increases, then MPE maximizes the

asymptotic value of the expected 0 − 1 gain at each point in Θ among a class of decision rules

(Weiss, 1983, p. 268). With f(x|θ) the conditional density of X given θ, MPE Zn is d maximizing∫
{θ:dΘ(d,θ)≤ε/

√
n}
f(x|θ)dθ, (79)

(Weiss and Wolfowitz, 1974, p. 15), which is expected to be an average of f(x|θ) in a θ-neighborhood

of the MLE: (79) is not a probability, it is defined via a neighborhood in Θ and does not have the

frequentist interpretation (48) of pε,match(θ∗) for a particular θ∗.

Remark 15.5 Rates (60), (61), (72), (73) and (78) have the form of the upper convergence rate in

estimation of a density and a regression type function via Kolmogorov entropy, logN(an), of the

corresponding space of functions that is an-discretized and w(an) = an (see, e.g., Yatracos, 1983,

1989, 2019).

16 Empirical Discrimination of DGE

In Rayner and MacGillivray (2002) it is indicated that there is plethora among Tukey’s asymmetric-

λ and g-and-h models and the g-and-k model that have shapes affected concurrently by more than

one parameters and valid ML estimation requires a very large sample but Moments’ estimation

cannot discriminate between parameters.
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Related information on θ-discrimination is missing with DGEs, since the underlying model is

unknown or intractable and the “discrimination” of parameters, dΘ(θ, θ∗), cannot be associated

with models’ shapes via plots or their distance, e.g., dK(Fθ, Fθ∗).

The alternative is to use the data: estimate empirically dK(Fθ, Fθ∗) by drawing X(θ) and

X∗(θ∗), calculate dK(F̂X(θ), F̂X∗(θ∗)) and compare it with dΘ(θ, θ∗). If D̃ is the θ-discrimination

tolerance, it is desired that when dΘ(θ, θ∗) exceeds D̃ then dK(F̂X(θ), F̂X∗(θ∗)) is large enough,

discriminating Fθ and Fθ∗ . The distance between the empirical c.d.fs is random and its size is re-

flected in the P -value of a two-sided test of hypotheses under the null, i.e. models’ equality. This

leads to the DGE’s Empirical Discrimination Index.

Whenm = 1, the P -value for the Kolmogorov-Smirnov two-sample test of Fθ against Fθ∗ is cal-

culated under the null repeatedly with M samples, X(θ) and X∗(θ∗), and the average of P -values

is the Empirical Discrimination Index, EDI(θ, θ∗;DGE, n,M). EDI-values denoting significance

indicate discrimination of models Fθ, Fθ∗ . For m = 2 and m > 2, the approaches in Peacock

(1983) and Polonik (1999) can be used to obtain P -values.

EDI can be used to evaluate locally each coordinate of the estimate θ̃ = (θ̃1, . . . , θ̃m) by cal-

culating EDI(θ̃, (θ̃1, . . . , θ̃i + D̃i + δi, θ̃i+1, ..., θ̃m);DGE, n,M ), where D̃i is the tolerance for

θi, δi > 0, i = 1, . . . ,m.

EDI can be used to compare DGEs. Tukey’s g-and-h model (DGE 1) and the g-and-k model

(DGE 2) are now compared g-locally with EDI. The same normal sample is used to obtain the i-th

samples from DGE 1 and 2 and DGE with the minimum P -value is identified, i = 1, . . . ,M.

Example 16.1 Samples X1(g1, h),X∗1(g2, h) of size n are generated from Tukey’s g-and-h model

(DGE 1) with g1 = 5, g2 = 3, h = 2.5 and with the same standard normal variables X2(g1, k),X∗2(g2, k)

are generated from the g-and-k model (DGE 2), with k = h. The corresponding P -values are ob-

tained. The experiments are repeatedM = 1000 times for n = 50, 100, 200, 500, 1000, 1500, 2500, 5000

and the EDIs for DGE 1 and DGE 2 are calculated for each n, with Tukey’s g-and-h model hav-

ing better θ-discrimination. This is confirmed by the number of times P-value(g-and-k) is smaller

than or equal to the P-value(g-and-h), which decreases as n increases; similar observation for
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M = 10000 including also n = 10000 with the results available but not presented. The results

appear in Table 7.

g-LOCAL DISCRIMINATION: TUKEY’S g-and-h AND g-and-k

n EDI (g-and-h) EDI (g-and-k) # PV(g-and-k)≤ # PV(g-and-h)

50 8.9 e-01 9.52 e-01 369

100 7.95 e-01 8.98 e-01 291

200 6.11 e-01 7.59 e-01 248

500 2.69 e-01 3.95 e-01 221

1000 7.29 e-02 1.29 e-01 174

1500 1.99 e-02 4.21 e-02 149

2500 1.82 e-03 5.15 e-03 144

5000 4.26 e-06 2.61 e-05 77

Table 7: Model parameters: g1 = 5, g2 = 3, h = k = 2.5. EDI-values for g based on M=1000

repeats, PV=P-value.

The results in Example 16.1 for the g-and-k model suggest comparing also estimated density

plots using the data. Plots appear in Figures 7 and 8, respectively, with g = 5 and g = 3.5 and

also for g = 5 and g = 4.5, with the corresponding sample size, n, and P -value for discriminating

the corresponding models; k = 2.5. The results are in agreement with the findings in Rayner and

MacGillivray (2002) but the problem seems to be the family of distributions and not the estimation

methods.

17 Appendix

Theorem 17.1 (Dvoretzky, Kiefer and Wolfowitz, 1956, and Massart, 1990, providing the tight

constant) Let F̂Y denote the empirical c.d.f of the size n sample Y of i.i.d. random variables
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obtained from cumulative distribution F. Then, for any ε > 0,

P [dK(F̂Y, F ) > ε] ≤ UDKWM = 2e−2nε2 (80)

Lemma 17.1 Let X be a sample of i.i.d. Fθ r.vs, with θ ∈ Θ = Θ∗n = {θ∗1, . . . , θ∗Nn}. For any

ζ > 0 it holds for θ̂MMDE in (45),

P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) > ζ] ≤ 2 ·Nn · e−2nζ2 . (81)

When ζ =
√

lnNn√
n
, the upper bound in (81) is 2

Nn
and converges to zero as Nn increases to infinity

with n.

Proof of Lemma 17.1:

P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) > ζ] =

Nn∑
i=1

P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) > ζ & θ̂MMDE = θ∗i ]

≤
Nn∑
i=1

P
(n)
θ∗i

[dK(Fθ∗i , F̂X∗(θ∗i )) > ζ] ≤ 2 ·Nn · e−2nζ2 ,

with the last inequality by Theorem 17.1. When ζ =
√

lnNn√
n

the upper bound is 2
Nn
. 2

Remark 17.1 Extensions of Theorem 17.1 inRd, d > 1, appeared at least by Kiefer and Wolfowitz

(1958), Kiefer (1961) and Devroye (1977) with corresponding upper bounds U in (80): UKW =

C1(d)e−C2(d)nε2 , UK = C3(b, d)e−(2−b)nε2 for every b ∈ (0, 2), and UDe = 2e2(2n)de−2nε2 valid for

nε2 ≥ d2. Thus, Lemma 17.1 holds in Rd at least when using UKW and different constants.

Proof of Lemma 13.1: The first and the last term in upper bound (52) have uniform upper

bounds in Probability with order, respectively,
√

lnNn√
n

(from Lemma 17.1) and kn√
n
, kn = o(

√
n)

from (80); choose kn ∼
√

lnNn. 2

Proof of Proposition 15.1: a) From (45), with Θ∗n instead of Θ, the “matching term”

dK(F̂X∗(θ̂MMDE), F̂X(θ)) ≤ inf
θ∗∈Θ∗

n

dK(F̂X∗(θ∗), F̂X(θ)) + γn ≤ dK(F̂X∗(θ∗ap,n(θ)), F̂X(θ)) + γn
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≤ dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + dK(Fθ∗ap,n(θ), Fθ) + dK(Fθ, F̂X(θ)) + γn. (82)

From (46) and (82),

dK(Fθ̂MMDE
, Fθ)

≤ dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE))+dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ))+dK(Fθ∗ap,n(θ), Fθ)+2dK(Fθ, F̂X(θ))+γn.

(83)

Using (83), Lemma 17.1, the Dvoretzky-Kiefer-Wilfowitz-Massart inequality (80) and

ε̃ = εn − dK(Fθ∗ap,n(θ), Fθ)− γn, (84)

P [dK(F̂θ̂MMDE
, Fθ) > εn]

≤ P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE))+dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ))+dK(Fθap,n(θ), Fθ)+2·dK(Fθ, F̂X(θ))+γn > εn]

= P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) + dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + 2 · dK(Fθ, F̂X(θ)) > ε̃]

≤ P [dK(Fθ̂MMDE
, F̂X∗(θ̂MMDE)) >

ε̃

3
]+P [dK(F̂X∗(θ∗ap,n(θ)), Fθ∗

ap,n(θ)
) >

ε̃

3
]+P [dK(Fθ, F̂X(θ)) >

ε̃

6
]

≤ 2·N(an)·e−2nε̃2/9+2·e−2nε̃2/9+2·e−2nε̃2/36 = 2·[N(an)+1]e−2nε̃2/9+2·e−nε̃2/18 ≤ [2N(an)+4]e−nε̃
2/18

≤ 6 ·N(an) · e−nε̃2/18. (85)

From (58) and (84),

ε̃ = εn − dK(Fθ∗ap,n(θ), Fθ)− γn = 6

√
lnN(an)√

n

and upper bound (85) becomes.

6 ·N(an) · e−nε̃2/18 = 6 ·N(an) · e−2 lnN(an) =
6

N(an)
.

b1) (59) follows from (58) since γn can be of smaller order than the other terms.

b2) Since dΘ(θ∗ap,n(s), s) ≤ an and w is increasing, from (58)

εn ≤ C · w(an) + 6

√
lnN(an)√

n
+ γn, 1 ≤ C, (86)

and the uniform upper rate of convergence (60) follows ignoring γn.

b3) Follows from (60) and the properties of w.

46



c) For b2), un follows from (86) with an = w−1(n−1/2) and (A3) implies the rate for b3). 2

Proof of Corollary 15.1: (61) follows from (60). Let k = k(n) ↑ ∞ as n ↑ ∞. Then, for each

θ ∈ Θ there is k∗ = k(n∗) : θ ∈ Θk(n) for n ≥ n∗. Then for θ (61) holds, with k = k(n), n ≥ n∗.

Rates follow taking an = w−1(n−1/2) as in Proposition 15.1, b3), c), replacing N by Nk. 2

Proof of Proposition 15.2: Under (A4) and a result in Raghavachari (1973, Theorem 2, p. 68,

or Serfling, 1980, p. 112), for the given θ, any other s ∈ Θ and X∗(s) i.i.d sample of size m from

Fs, δ ∈ R,

lim
m→∞

Ps[
√
m(dK(F̂X∗(s), Fθ)−∆(s, θ) ≤ δ] = Φ(

δ√
Fs(xs,θ)(1− Fs(xs,θ)

). (87)

When δ > 0,

Φ(
δ√

Fs(xs,θ)(1− Fs(xs,θ)
) ≥ Φ(2 · δ). (88)

From (87), for the given ε, θ and large m,

Ps[dK(F̂X∗(s), Fθ) ≤ ε] ≈ Φ(

√
m(ε−∆(s, θ))√

Fs(xs,θ)(1− Fs(xs,θ)
), (89)

with “≈” denoting asymptotic equality.

From (A1), for large n there is s∗ ∈ Θ :

∆(s∗, θ) ≤ ε− k∗n√
n
, k∗n = o(

√
n), k∗n ↑ ∞ with n. (90)

For s = s∗,m = n in (89) and from (88),

Ps∗ [dK(F̂X∗(s∗), Fθ) ≤ ε] ≈ Φ(

√
n · (ε−∆(s∗, θ))√

Fs∗(xs∗,θ)(1− Fs∗(xs∗,θ))
≥ Φ(2·

√
n·(ε−∆(s∗, θ)) ≥ Φ(2·k∗n). 2.

(91)

Proof of Proposition 15.3: a1) ε̃∗n follows from (53), with ε = εn in (70), Nn = N(an).

a2) Since an ↓ 0 as n ↑ ∞, from (A1) and (A3), ε̃∗n decreases to zero as n increases and (72)

follows from (62) with d = 1. For θ∗ap,n(θ),

∆(θ∗ap,n(θ), θ) ≤ sup
s∈Θ

dK(Fθ∗ap,n(s), Fs) ≤ εn −
.5 ·

√
lnN(an)√
n

,
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with the last inequality due to (70). Then, for large n, (90) (same with (68)) holds with s∗ =

θ∗ap,n(θ) and k∗n = .5 ·
√

lnN(an). Hence, from (91) for large n,

Pθ∗ap,n(θ)[dK(F̂X∗(θ∗ap,n(θ)), Fθ) ≤ εn] ≥ Φ(2 ·
√
n ·(εn−∆(θ∗ap,n(θ), θ)) ≥ Φ(2 ·k∗n) ↑ 1 with n ↑ ∞.

Convergence in Probability for θ̂MMSPE follows from its construction and (50), (51).

a3) Follows from (A2), (A3), (72) and the properties of w.

b) When Θ = R = ∪∞n=1(−k(n)
2
, k(n)

2
), there is n∗ such that θ ∈ (−k(n∗)

2
, k(n∗)

2
) and for n ≥ n∗,

from (62), the upper rate of convergence in probability for dK(Fθ̂MMSPEE
, Fθ)

ε∗n ∼
(ln k(n)− ln an)1/2

n1/2
∼ w(an).

c) Replace an = w−1(n−1/2) in (72) and (73) to obtain the upper rates un and ũn for dK(Fθ̂MMSPE
, Fθ).

Their images for w−1 are upper rates for |θ̂MMSPE − θ|. 2

Proof of Proposition 15.4: Since

dK(F̂X∗(θ∗ap,n(θ)), Fθ) ≤ dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + dK(Fθ∗ap,n(θ), Fθ)

≤ dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + sup
s∈Θ

dK(Fθ∗ap,n(s), Fs),

P [dK(F̂X∗(θ∗ap,n(θ)), Fθ) > εn] ≤ P [dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) + sup
s∈Θ

dK(Fθ∗ap,n(s), Fs) > ε]

= P [dK(F̂X∗(θ∗ap,n(θ)), Fθ∗ap,n(θ)) > εn − sup
s∈Θ

dK(Fθ∗ap,n(s), Fs)]

≤ C1(d) · exp{−C2(d) · n · [εn − sup
s∈Θ

dK(Fθ∗ap,n(s), Fs)]
2},

with the last inequality obtained using UKW in the upper bound (80) as suggested in Remark 17.1.

(74) and (75) follow. 2

Proof of Proposition 15.5: a) ε̃∗n follows from (53), with ε = εn in (76), Nn = N(an).

b) Follows from assumptions (A2), (A3), (74), (75) The result for θ̂MMSPE follows from its con-

struction and (50), (51).

c) Follows from (A2), (A3), (78) and the properties of w.

d) For b), un follows from (78) with an = w−1(n−1/2) and (A3) implies the rate for c). 2
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Figure 3: Parameter space Θ = [3, 8]x[0.5, 4.5], Model Parameter θ = (µ = 5, σ = 2). Plot along

Θ with optimum pointing to the parameters.
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Figure 4: Density plots for the 50 estimates of Tukey’s g-and-h model with independent samples,

n = 200. The parameters are a = 3, b = 4, g = 3.5, h = 2.5.
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Figure 5: Density plots for 50 estimates of g-and-k model with dependent samples, n = 50. The

parameters are a = 3, b = 4, g = 3.5, k = 2.5
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Figure 6: Density plots for the 50 estimates of the normal mixture with independent samples,

n = 200; the parameters are p=.3, µ1=m1=1, σ1=s1=1, µ2=m2=6, σ2=s2=1.5.
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Figure 7: Visual comparison of estimated density plots for g-and-k data and Kolmogorov-Smirnov

P-values.
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Figure 8: Visual comparison of estimated density plots for g-and-k data and Kolmogorov-Smirnov

P-values.
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