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Random hyperbolic and flat surfaces
(Riemann surfaces seen without glasses)

Lecture 5. Train tracks. Integral measured laminations. Id ea of the proof
of Mirzakhani’s count of simple closed geodesics

minicourse by Kasra Rafi and Anton Zorich

YCMS, Tsinghua University

November 18, 2025



2 / 33



Suggestions for reading before bed

3 / 33

Anton Zorich → Teaching → Course ”Geometry and dynamics in moduli

spaces” given in 2023 → last line: Suggestions for reading before bed

https://webusers.imj-prg.fr/ anton.zorich/ReadingGeometryAndDynamics2023.html

Geometry of flat surfaces of large genus

1. Howard Masur, Kasra Rafi, Anja Randecker,

Lengths of saddle connections on random translation surfaces of large genus,
https://arxiv.org/abs/2412.08727, Commentarii Math Helvetici (to

appear).

2. Howard Masur, Kasra Rafi, Anja Randecker,

Expected covering radius of a translation surface,

https://arxiv.org/abs/1809.10769, International Mathematics

Research Notices, Volume 2022, Issue 10, May 2022, Pages 7967–8002

https://doi.org/10.1093/imrn/rnaa385
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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.
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We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.
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Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.
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Working with simple closed curves it is convenient to encode them (following

Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere S0,4 which we represent as a three-punctured

plane.
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We can progressively deform the simple closed curve as on the left picture in

transverse direction pushing it to the train track as on the right picture.

Recording the number of strands projected to each segment of the train track τ
we keep all homotopic information about the simple closed curve.

Each edge of the graph τ is the smooth image of an interval; at each vertex of
τ (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.

Note that the two weights in red uniquely determine all other weights.
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Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:
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By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.



Four basic train tracks on S0,4

6 / 33

Up to isotopy, any simple closed curve in S0,4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.

Each connected component of the intersection of γ with the corresponding

square is now one of the six types of arcs shown at the right picture. Since γ is
essential, it cannot use both types of horizontal segments. Since the other two

types of arcs in the middle square intersect, γ can use at most one of those.

Conclusion: there are four types of simple closed curves in S0,4, depending on

which of each of the two pairs of arcs they use in the middle square. This is the

same as saying that any simple closed curve is carried by one of the following

four train tracks:
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The four train tracks τ1, τ2, τ3, τ4 give four coordinate charts on the set of

isotopy classes of simple closed curves in S0,4. Each coordinate patch

corresponding to a train track τi is given by the weights (x, y) of two chosen

edges of τi. If we allow the coordinates x and y to be arbitrary nonnegative

real numbers, then we obtain for each τi a closed quadrant in R
2. Arbitrary

points in this quadrant are measured train tracks.
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Weight zero on an edge of a train track tells that such edge can be deleted.
This implies that pairs of quadrants should be identified along their edges.
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This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. We do not have the structure of a

vector space on this R2, but we have a structure of a polyhedral cone. The

integral points in this R2 correspond to isotopy classes of multicurves in S0,4.
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Weight zero on an edge of a train track tells that such edge can be deleted.

This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R
2. We do not have the structure of a

vector space on this R2, but we have a structure of a polyhedral cone. The

integral points in this R2 correspond to isotopy classes of multicurves in S0,4.
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Thurston suggested to consider simple closed multicurves as integral points in

the piecewise-linear space of measured laminations. All integral multicurves

are partitioned in orbits under action of the mapping class group.

A general multicurve ρ:

the canonical representative γ = 3γ1 + γ2 + 2γ3 in its orbit Mod2 · ρ under

the action of the mapping class group and the associated reduced multicurve.

γ = 3γ1 + γ2 + 2γ3 γreduced = γ1 + γ2 + γ3

γ1

γ2

γ3
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In train-tracks piecewise-linear coordinates, integral multicurves

are represented by integer points of a polyhedral cone (like inte-

gral homology cycles are represented by lattice points in a vector
space). Colors illustrate distinct orbits of the mapping class

group. Integral multicurves are represented by

lattice points on faces. This allows to define

a natural Thurston measure on the space

of measured laminations MLg,n.
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One can give sense not only to integer or rational, but to all points of the

corresponding polyhedral cone and, following Bill Thurston, define a space of

measured laminations MLg,n. Train track charts define piecewise linear

structure on MLg,n. Integral multicurves define an integral lattice MLg,n(Z)
in MLg,n. This lattice is defined independently of coordinates. The lattice
MLg,n(Z) provides canonical normalization of the linear volume form µTh on

MLg,n in which the fundamental domain of the lattice has unit volume.

One can check that the action of Modg,n on MLg,n is piecewise-linear. It

clearly sends multi-curves to multi-curves. Integral points in MLg,n are in a
one-to-one correspondence with the set of integral multi-curves. Hence, the

action of Modg,n on MLg,n preserves the “integral lattice” MLg,n(Z).
Hence, it preserves the Thurston’s measure µTh.
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structure on MLg,n. Integral multicurves define an integral lattice MLg,n(Z)
in MLg,n. This lattice is defined independently of coordinates. The lattice
MLg,n(Z) provides canonical normalization of the linear volume form µTh on

MLg,n in which the fundamental domain of the lattice has unit volume.

One can check that the action of Modg,n on MLg,n is piecewise-linear. It

clearly sends multi-curves to multi-curves. Integral points in MLg,n are in a
one-to-one correspondence with the set of integral multi-curves. Hence, the

action of Modg,n on MLg,n preserves the “integral lattice” MLg,n(Z).
Hence, it preserves the Thurston’s measure µTh.

Theorem (H. Masur’85). The action of Modg,n on MLg,n is ergodic with

respect to the Lebesgue measure class (i.e. any measurable subset of MLg,n

invariant under Modg,n has measure zero or its complement has measure

zero). Any Modg,n-invariant measure in the Lebesgue measure class is just

Thurston measure rescaled by some constant factor.
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By definition, the

Lebesgue measure

µ(U) of a set U ⊂ R
n

is defined as the limit of

the normalized number
of points of the ε-grid

which get to U :

µ(U) := lim
ε→0

εn·card(U∩εZn) .
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Finally, instead of using the entire lattice Z
n we can use any sublattice

L
n ⊂ Z

n having some positive uniform density in Z
n.

For example, the set of coprime integral points in Z
2 has density

6

π2
and can

be also used to define the Lebesgue measure (scaled by the factor
6

π2
) in any

of the two ways discussed above.
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Choose some integral multicurve γ, say, a simple closed curve on Sg,n. The

subset Oγ := Modg,n ·γ can be seen as an analog of coprime integral points in MLg,n

The insight of Mirzakhani was to realize that replacing the discrete set MLg,n(Z)
with the subset Oγ we get a new measure on MLg,n which is proportional to the

Thurston measure µTh with coefficient depending only on the homotopy type of γ.
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More formally: the Thurston measure of a subset U ⊂ MLg,n is defined as

µTh(U) := lim
L→+∞

card{L · U ∩MLg,n(Z)}

L6g−6+2n
.

Mirzakhani defines a new measure µγ as

µγ(U) := lim
L→+∞

card{L · U ∩ Oγ}

L6g−6+2n
.

(More accurately: using compactness of the space of measures, we get a weak

convergence for sequences {Li}.) For any U we have µγ(U) ≤ µTh(U)
since Oγ ⊂ MLg,n(Z), so µγ belongs to the Lebesgue measure class of

Thurston’s measure. By construction µγ is Modg,n-invariant. Ergodicity of µTh

implies that µγ = kγ · µTh where kγ = const ; it does not depend on U .

It remains to prove, however, that kγ , which formally depends on a
subsequence of scales {Li}i, is one and the same for all subsequences; that

kγ > 0 for any topological type of a multicurve; and to compute kγ .
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The hyperbolic length ℓγ(X) of a simple closed geodesic γ on a hyperbolic

surface X ∈ Tg,n determines a real analytic function on the Teichmüller space.

One can extend the length function to simple closed multicurves

ℓ∑ aiγi =
∑

aiℓγi(X) by linearity. By homogeneity and continuity the length

function can be further extended to MLg,n. By construction
ℓt·λ(X) = t · ℓλ(X).

Each hyperbolic metric X defines its own “unit ball” BX in MLg,n:

BX := {λ ∈ MLg,n | ℓλ(X) ≤ 1} .

By definition of µTh, the Thurston volume of the unit ball is equal to the

normalized number of integral points in a “ball of radius L” associated to X :

µTh(BX) = lim
L→+∞

card{λ ∈ MLg,n(Z) | ℓλ(X) ≤ L}

L6g−6+2n
.

Denote by bg,n =

∫

Mg,n

µTh(BX) dX the average of Thurston volume of unit balls.
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• X — a hyperbolic surface in Mg,n.

• sX(L, γ) — the number of geodesic multicurves on X of topological type

[γ] and of hyperbolic length at most L.

• P (L , γ) :=
∫

Mg,n
sX(L, γ) dX — the polynomial in L providing the

average number of geodesic multicurves of topological type [γ] and of
hyperbolic length at most L over all hyperbolic surfaces X ∈ Mg,n.

• c(γ) — the coefficient of the leading term L6g−6+2n of the polynomial

P (L , γ).

• B(X) — “Unit ball” in MLg,n defined by means of the length function
ℓX(α), where α ∈ MLg,n.

• µTh(B(X)) := limL→+∞

card{L ·BX ∩ML(Z)}

L6g−6+2n
is the Thurston

measure of the unit ball B(X)

• µγ(B(X)) := limL→+∞

card{L ·BX ∩Modg,n·γ}

L6g−6+2n
is the Mirzakhani

measure of the unit ball B(X) defined by the sublattice Modg,n·γ ⊂ ML(Z).
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Theorem (M. Mirzakhani’08). For any rational multi-curve γ and any hyperbolic

surface X in Mg,n one has

sX(L, γ) ∼ µTh(BX) ·
c(γ)

bg,n
· L6g−6+2n as L → +∞ .

Here the quantity µTh(BX) depends only on the hyperbolic metric X (it is the

Thurstom measure of the unit ball BX in the metric X); bg,n is a global

constant depending only on g and n (the average value of BX over Mg,n);

c(γ) depends only on the topological type of γ. M. Mirzakhani expressed c(γ)
in terms of the Witten–Kontsevich correlators.



Idea of the proof and a notion of a “random multicurve”
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Changing the hyperbolic metric X we change the length

function ℓγ(X) and the domain ℓγ(X) ≤ L, but we do

not change the densities of different orbits:

they are defined topologically!



Idea of the proof and a notion of a “random multicurve”

22 / 33

Changing the hyperbolic metric X we change the length

function ℓγ(X) and the domain ℓγ(X) ≤ L, but we do

not change the densities of different orbits:

they are defined topologically!

———————————————————–
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Recall that sX(L, γ) denotes the number of simple closed geodesic multicurves

on X of topological type [γ] and of hyperbolic length at most L. Applying the

definition of µγ to the “unit ball” BX associated to hyperbolic metric X (instead

of an abstract set B) and using proportionality of measures µγ = kγ · µTh we get

lim
L→+∞

sX(L, γ)

L6g−6+2n
= lim

L→+∞

card{L ·BX ∩Modg,n ·γ}

L6g−6+2n
= µγ(BX) = kγ ·µTh(BX) .



Proof and computation of kγ

23 / 33

Recall that sX(L, γ) denotes the number of simple closed geodesic multicurves

on X of topological type [γ] and of hyperbolic length at most L. Applying the

definition of µγ to the “unit ball” BX associated to hyperbolic metric X (instead

of an abstract set B) and using proportionality of measures µγ = kγ · µTh we get

lim
L→+∞

sX(L, γ)

L6g−6+2n
= lim

L→+∞

card{L ·BX ∩Modg,n ·γ}

L6g−6+2n
= µγ(BX) = kγ ·µTh(BX) .

Finally, Mirzakhani computes the scaling factor kγ as follows:

kγ · bg,n =

∫

Mg,n

kγ · µTh(BX) dX =

∫

Mg,n

µγ(BX) dX =

=

∫

Mg,n

lim
L→+∞

card{L ·BX ∩Modg,n·γ}

L6g−6+2n
dX =

∫

Mg,n

lim
L→+∞

sX(L, γ)

L6g−6+2n
dX=

= lim
L→+∞

1

L6g−6+2n

∫

Mg,n

sX(L, γ) dX = lim
L→+∞

P (L, γ)

L6g−6+2n
= c(γ) ,

so kγ = c(γ)/bg,n. Interchanging the integral and the limit we used the

estimate of Mirzakhani sX(L,γ)
L6g−6+2n ≤ F (X), where F is integrable over Mg,n.
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The set of coprime points (p, q) ∈ Z⊕ Z ⊂ R
2 such that pgcd(p, q) = 1 is

an SL(2,Z) orbit of (1, 0). In train-track coordiantes it can be identified with

the mapping class group orbit Mod1,1 ·[γ] of a simple closed curve γ in

ML1,1. We have proved that this subset has nonzero uniform density

k1 =
c(γ)
b1,1

in the ambient lattice of all integral measured laminations.
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The set of points (p, q) ∈ Z⊕ Z ⊂ R
2 such that pgcd(p, q) = 2 is an

SL(2,Z) orbit of (2, 0). It can be obtained from the orbit of (1, 0) by

proportional dilatation with coefficient 2. Thus, this new subset also has

nonzero uniform density k2 =
1
22

· k1.
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The set of points (p, q) ∈ Z⊕ Z ⊂ R
2 such that pgcd(p, q) = 3 is an

SL(2,Z) orbit of (3, 0). It can be obtained from the orbit of (1, 0) by

proportional dilatation with coefficient 3. Thus, this new subset also has

nonzero uniform density k3 =
1
22

· k1.
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The disjoint union of all these orbits gives all the lattice

⊔∞
n=1 SL(2,Z) · (n, 0) = Z⊕ Z .

Thus the sum of the densities gives the full density, k1 + k2 + · · · = 1. Since

kn = 1
n2 · k1, we get

k1(1 +
1

22
+

1

32
+ . . . ) = 1

and, hence, k1 =
1

ζ(2) =
6
π2 .
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Note that though we can measure the Lebesgue measure of a set by counting

the number of coprime points inside its dilatations (which is the definition of a

uniform density ), it is known that going exponentially far from the origin, i.e. at
the distance of the order eR or more one can find islands of radius R without a

single coprime point, where R is any positive number.
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Exercise. Prove that all curves presented at the picture are separating.

Hint: choose an appropriate basis of cycles and verify that intersection

numbers of each curve with all basic cycles are zero.

The picture is taken from the book of B. Farb and D. Margalit “A Primer on Mapping Class Groups”.

Exercise. Detect which curves are essential and which essential curves belong

to the same orbit of the mapping class group.
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Select all simple closed curves in the picture below which might be isotopic to

simple closed hyperbolic geodesics on a twice-punctured surface of genus two.

How many distinct orbits of Mod2,2 they represent? Indicate which curves

correspond to which orbit.
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Which of the given train-tracks τ1, τ2, τ3 might carry a simple closed hyperbolic

geodesic? Indicate some legitimate weights if you claim that the train track

carries a simple closed hyperbolic geodesic.

τ1
τ2

τ3
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Which of the given train-tracks τ1, τ2, τ3 might carry a simple closed hyperbolic

geodesic? Indicate some legitimate weights if you claim that the train track

carries a simple closed hyperbolic geodesic.

τ1
τ2

τ3

Can any of the given train-tracks τ1, τ2, τ3 carry different simple closed

hyperbolic geodesic? Indicate the corresponding different legitimate collections

of weights if you claim that.
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