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Suggestions for reading before bed

Anton Zorich — Teaching — Course "Geometry and dynamics in moduli
spaces” given in 2023 —> last line: Suggestions for reading before bed

https://webusers.imj-prg.fr/ anton.zorich/ReadingGeometryAndDynamics2023.html

Geometry of flat surfaces of large genus

1. Howard Masur, Kasra Rafi, Anja Randecker,
Lengths of saddle connections on random translation surfaces of large genus,
https://arxiv.org/abs/2412.08727, Commentarii Math Helvetici (to

appear).

2. Howard Masur, Kasra Rafi, Anja Randecker,

Expected covering radius of a translation surface,
https://arxiv.org/abs/1809.10769, International Mathematics
Research Notices, Volume 2022, Issue 10, May 2022, Pages 7967-8002
https://doi.org/10.1093/imrn/rnaa385
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Train tracks carrying simple closed curves

Working with simple closed curves it is convenient to encode them (following
Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere Sy 4 which we represent as a three-punctured
plane.
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Working with simple closed curves it is convenient to encode them (following
Thurston) by train tracks. Following Farb and Margalit we consider the model
case of four-punctured sphere Sy 4 which we represent as a three-punctured

plane.
2 4 6

1 2 3

We can progressively deform the simple closed curve as on the left picture in
transverse direction pushing it to the train track as on the right picture.
Recording the number of strands projected to each segment of the train track 7
we keep all homotopic information about the simple closed curve.
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We can progressively deform the simple closed curve as on the left picture in
transverse direction pushing it to the train track as on the right picture.
Recording the number of strands projected to each segment of the train track 7
we keep all homotopic information about the simple closed curve.
Each edge of the graph 7 is the smooth image of an interval; at each vertex of
7 (called “switch”) there is a well-defined tangent line; the integer weights

(recording the number of strands) satisfy the switch condition at each switch:
the sums of the weights on each side of the switch are equal to each other.
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Working with simple closed curves it is convenient to encode them (following
Thurston) by train tracks. Following Farb and Margalit we consider the model

case of four-punctured sphere Sy 4 which we represent as a three-punctured
plane.

2 4 6
(o
1 2 3
We can progressively deform the simple closed curve as on the left picture in
transverse direction pushing it to the train track as on the right picture.
Recording the number of strands projected to each segment of the train track 7
we keep all homotopic information about the simple closed curve.
Each edge of the graph 7 is the smooth image of an interval; at each vertex of
7 (called “switch”) there is a well-defined tangent line; the integer weights
(recording the number of strands) satisfy the switch condition at each switch:

the sums of the weights on each side of the switch are equal to each other.
Note that the two weights in red uniquely determine all other weights.
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Four basic train tracks on  Sp 4

Up to isotopy, any simple closed curve in Sp 4 can be drawn inside the three squares:
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By further isotopy, we eliminate bigons with the vertical edges of the three squares.
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Four basic train tracks on  Sp 4

Up to isotopy, any simple closed curve in Sp 4 can be drawn inside the three squares:

By further isotopy, we eliminate bigons with the vertical edges of the three squares.
Each connected component of the intersection of v with the corresponding
square Is now one of the six types of arcs shown at the right picture. Since 7y is

essential, it cannot use both types of horizontal segments. Since the other two
types of arcs in the middle square intersect, v can use at most one of those.
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Four basic train tracks on  Sp 4

Up to isotopy, any simple closed curve in Sp 4 can be drawn inside the three squares:

A 1|
By further isotopy, we eliminate bigons with the vertical edges of the three squares.
Each connected component of the intersection of v with the corresponding

square Is now one of the six types of arcs shown at the right picture. Since 7y is
essential, it cannot use both types of horizontal segments. Since the other two
types of arcs in the middle square intersect, v can use at most one of those.
Conclusion: there are four types of simple closed curves in Sp 4, depending on

which of each of the two pairs of arcs they use in the middle square. This is the
same as saying that any simple closed curve is carried by one of the following

four train tracks: q 9 ’ ‘ q p
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The four train tracks 71, 7o, 73, T4 give four coordinate charts on the set of
isotopy classes of simple closed curves in Sp 4. Each coordinate patch
corresponding to a train track 7; is given by the weights (z, y) of two chosen
edges of 7;. If we allow the coordinates x and y to be arbitrary nonnegative
real numbers, then we obtain for each 7; a closed quadrant in R?. Arbitrary
points in this quadrant are measured train tracks.
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Weight zero on an edge of a train track tells that such edge can be deleted.
This implies that pairs of quadrants should be identified along their edges.
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Weight zero on an edge of a train track tells that such edge can be deleted.
This implies that pairs of quadrants should be identified along their edges.

The resulting space is homeomorphic to R?. We do not have the structure of a
vector space on this R?, but we have a structure of a polyhedral cone. The
integral points in this R? correspond to isotopy classes of multicurves in Sg 4.
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Orbits of multicurves

Thurston suggested to consider simple closed multicurves as integral points in
the piecewise-linear space of measured laminations. All integral multicurves
are partitioned in orbits under action of the mapping class group.

A general multicurve p:

the canonical representative v = 31 + 2 + 273 in its orbit Mods - p under
the action of the mapping class group and the associated reduced multicurve.

v =371+ 2+ 273 Vreduced = Y1 + Y2 + V3




Space of multicurves

In train-tracks piecewise-linear coordinates, integral multicurves
are represented by integer points of a polyhedral cone (like inte-
gral homology cycles are represented by lattice points in a vector
space). Colors illustrate distinct orbits of the mapping class
group. Integral multicurves are represented by
lattice points on faces. This allows to define
a natural Thurston measure on the space
of measured laminations ML, ,,.




Thurston measure on ML, ,

One can give sense not only to integer or rational, but to all points of the
corresponding polyhedral cone and, following Bill Thurston, define a space of
measured laminations ML, ,,. Train track charts define piecewise linear
structure on ML, ,,. Integral multicurves define an integral lattice ML, ,,(Z)
in ML, ,,. This lattice is defined independently of coordinates. The lattice
Mﬁg,n(Z) provides canonical normalization of the linear volume form g1y on
/\/l[,g,n in which the fundamental domain of the lattice has unit volume.

One can check that the action of Mod, ,, on ML, ,, is piecewise-linear. It
clearly sends multi-curves to multi-curves. Integral points in ML, ,, are in a
one-to-one correspondence with the set of integral multi-curves. Hence, the
action of Mod, ,, on ML, ,, preserves the “integral lattice” ML, ,(Z).
Hence, it preserves the Thurston’s measure fTy,.
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One can give sense not only to integer or rational, but to all points of the
corresponding polyhedral cone and, following Bill Thurston, define a space of
measured laminations ML, ,,. Train track charts define piecewise linear
structure on ML, ,,. Integral multicurves define an integral lattice ML, ,,(Z)
in ML, ,,. This lattice is defined independently of coordinates. The lattice
Mﬁg,n(Z) provides canonical normalization of the linear volume form g1y on
/\/l[,g,n in which the fundamental domain of the lattice has unit volume.

One can check that the action of Mod, ,, on ML, ,, is piecewise-linear. It
clearly sends multi-curves to multi-curves. Integral points in ML, ,, are in a
one-to-one correspondence with the set of integral multi-curves. Hence, the
action of Mod, ,, on ML, ,, preserves the “integral lattice” ML, ,(Z).
Hence, it preserves the Thurston’s measure fTy,.

Theorem (H. Masur'85). The action of Mod, , on ML, ,, is ergodic with
respect to the Lebesgue measure class (i.e. any measurable subset of ML, ,,
invariant under Mod, 5, has measure zero or its complement has measure
zero). Any Mod, ,,-invariant measure in the Lebesgue measure class is just
Thurston measure rescaled by some constant factor.
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Lebesgue measure of a set A

By  definition, the
Lebesgue measure
uw(U) ofasetU C R”
Is defined as the limit of
the normalized number
of points of the e-grid
which get to U’:

p(U) := lim e"-card(UNeZ") .

e—0
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We get identically the same count when we fix the lattice and scale U':

|
card(U N eZ™) = card (EU N Z"’)
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Lebesgue measure of a set

Finally, instead of using the entire lattice Z" we can use any sublattice
L™ C Z" having some positive uniform density in Z™.

For example, the set of coprime integral points in 72 has density —5 and can
T

be also used to define the Lebesgue measure (scaled by the factor —2) In any
s

of the two ways discussed above.
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Mirzakhani's measures on ML, ,

Choose some integral multicurve 7y, say, a simple closed curve on Sg,n. The

subset (97 := Mod, 5, -y can be seen as an analog of coprime integral points in ML, ,
The insight of Mirzakhani was to realize that replacing the discrete set ML, ,,(Z)

with the subset 07 we get a new measure on ML, ,, which is proportional to the
Thurston measure 1y, with coefficient depending only on the homotopy type of .
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Mirzakhani’s measureson ML, ,

More formally: the Thurston measure of a subset U C ML, ,, is defined as

. card{L-UNML,,(Z)}
prh(U) = Ll_lgloo [69—6+2n '

Mirzakhani defines a new measure (i~ as

. card{L-UNO,}
y(U) = Ll_lﬁloo [69—6+2n

(More accurately: using compactness of the space of measures, we get a weak
convergence for sequences {L;}.) For any U we have i (U) < prh(U)
since O, C ML, ,,(Z), so i1, belongs to the Lebesgue measure class of
Thurston’s measure. By construction fi is Modg,n-invariant. Ergodicity of prn
implies that pt, = k- - puTn Where k., = const; it does not depend on U.

It remains to prove, however, that k-, which formally depends on a
subsequence of scales {L,,J}Z IS one and the same for all subsequences; that
k~ > 0 for any topological type of a multicurve; and to compute £.,.
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Length function and unit ball

The hyperbolic length KW(X) of a simple closed geodesic v on a hyperbolic
surface X € 7, determines a real analytic function on the Teichmidiller space.
One can extend the length function to simple closed multicurves

U5~ 0~ = 2 @il (X) by linearity. By homogeneity and continuity the length
function can be further extended to ML, ,,. By construction

lea(X) =t 05 (X).

Each hyperbolic metric X defines its own “unit ball” Bx in ML, ,:
Bx :={ e ML, , | \(X) <1}.

By definition of py,, the Thurston volume of the unit ball is equal to the
normalized number of integral points in a “ball of radius L” associated to X :

. card{A e ML, (Z) | lx(X) < L}
prn(Bx) = Ll_lf[loo [,69—6+2n '

Denote by b, , = / puth(Bx ) dX the average of Thurston volume of unit balls.

Mg,n I
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Summary of notations

e X — ahyperbolic surface in M, .

e sx(L,~y)— the number of geodesic multicurves on X of topological type
7] and of hyperbolic length at most L.

e P(L,v):= fMg ) sx(L,~)dX — the polynomial in L providing the
average number 6f geodesic multicurves of topological type || and of
hyperbolic length at most L over all hyperbolic surfaces X € M, ,,.

e ¢(7y) — the coefficient of the leading term L69=6+27 of the polynomial
P(L,7).

e B(X)—“Unitball"in ML, , defined by means of the length function
Ix (), where « € ML, .

card{L - Bxy N ML(Z
e uTh(B(X)):=limp 1o t L6g)_(6+2n (2)} is the Thurston

measure of the unit ball B(X)

card{L - Bx N Mod, -
e ~y(B(X)):=limp 1o t L69X_6+2n onY) is the Mirzakhani

measure of the unit ball B(.X') defined by the sublattice Mod, ,,-v C ML(Z).
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Theorem which we aim to prove

Theorem (M. Mirzakhani’08). For any rational multi-curve ~ and any hyperbolic
surface X in M, ,, one has

C
Sx(L,’y) ~ ,uTh(BX) ° (fY) L [09702n ae T +00 .

Here the quantity p11, (Bx ) depends only on the hyperbolic metric X (it is the
Thurstom measure of the unit ball Bx in the metric X); b, ,, is a global
constant depending only on g and n (the average value of Bx over M, ,,);
c(y) depends only on the topological type of «v. M. Mirzakhani expressed c(7)
In terms of the Witten—Kontsevich correlators.
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ldea of the proof and a notion of a “random multicurve

Changing the hyperbolic metric X we change the length
function £, (X ) and the domain £~ (X) < L, but we do
not change the densities of different orbits:
they are defined topologically!
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Changing the hyperbolic metric X we change the length

function £, (X ) and the domain £~ (X) < L, but we do .
not change the densities of different orbits:
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Proof and computation of &,

Recall that sx (L, ) denotes the number of simple closed geodesic multicurves
on X of topological type |y] and of hyperbolic length at most L. Applying the
definition of 1, to the “unit ball” Bx associated to hyperbolic metric X (instead
of an abstract set B) and using proportionality of measures 1 = k- - un we get

. sx(L,y) _ . card{L-Bx NModgn v}
lim — lim ,
L——+o00 1,69—6+2n L—+00 [,69—6+2n

— MW(BX) — kv’MTh(BX) -
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Proof and computation of &,

Recall that sx (L, ) denotes the number of simple closed geodesic multicurves
on X of topological type |y] and of hyperbolic length at most L. Applying the
definition of 1, to the “unit ball” Bx associated to hyperbolic metric X (instead
of an abstract set B) and using proportionality of measures 1 = k- - un we get

sx(L,y) .. card{L-Bx NModgy v}
hm — hm )
L—+o0 L6g 6+2n L—400 L6g—6—|—2n

— MW(BX) — kv’MTh(BX) -

Finally, Mirzakhani computes the scaling factor k., as follows:

Ky - bgn = / ky - prn(Bx) dX = :LL’Y(BX) dX =
Myg,n Myg,n
B . card{L - Bx NMod, v} sx(L,7)
_/Mg,n L1—1>I—I|—loo [69—6+2n dX = / L—>—|—oo L6 —6-+2n dX=
1 ( ,Y)
B L1—1>Ifoo yE /M (L7 ,Y) X = L1—1>Ifoo L69—6+2n B C(,Y) 7
g,n

so ko = c(v)/bg.n- Interchanging the integral and the limit we used the

estimate of Mirzakhani L6g(6+2)n < F'(X), where F'is integrable over M, ,,.
]
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Uniform density of coprime integer points

® < g g g g < g < g ® . ® ® ® ® ® ® ® ® ® ‘>

The set of coprime points (p, ¢) € Z & Z C R? such that pged(p, ) = 1is
an SL(2,Z) orbit of (1,0). In train-track coordiantes it can be identified with
the mapping class group orbit Mod; 1 [fy] of a simple closed curve -y in

ML 1. We have proved that this subset has nonzero uniform density

ki1 = clv) In the ambient lattice of all integral measured laminations.

b1,1
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Uniform density of coprime integer points

® » © 6 06 6 - 06 06 06 ? 006 0606 - 0 0 0 0 -0
® o ® °» & ° & ¢ & ° &6 ¢ &6 ° 0 ° 0 ° O O -0
® & « © &6 ¢ 6 - 06 ? © 06 - 06 - 00 - 0 0
® o ® °» & ° & ¢ & ° 6 &6 ° 06 ° 0 ° O O -0
® 6 6 06 06 06 0 0 0 06 06 0 6 0 06 06 0 0 0 00 0 0 o
*—0o—0—0—0—0—0—0—0—0— [ —,—————————————¢ ‘>
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® o ® °» & ° & ¢ & ° 6 &6 ° 06 ° 0 ° O O 0O
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® o ® °» & ° & ¢ & ° &6 &6 ° 0 ° 0 O O -0
® » © 6 6 6 - 0606 6 6 ? 606 606 - 0 0 0 0 - 0

The set of coprime points (p, ¢) € Z & Z C R? such that pged(p, ) = 1is
an SL(2,Z) orbit of (1,0). In train-track coordiantes it can be identified with
the mapping class group orbit Mod; 1 -|v] of a simple closed curve 7 in

ML 1. We have proved that this subset has nonzero uniform density

ki1 = clv) In the ambient lattice of all integral measured laminations.

b1,1
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Uniform density of coprime integer points
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The set of points (p, q¢) € Z & Z C R? such that pged(p, ¢) = 2 is an
SL(2,7Z) orbit of (2,0). It can be obtained from the orbit of (1, 0) by
proportional dilatation with coefficient 2. Thus, this new subset also has

nonzero uniform density ko = 2% - k1.
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Uniform density of coprime integer points
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The set of points (p, q¢) € Z & Z C R? such that pged(p, ¢) = 2 is an
SL(2,7Z) orbit of (2,0). It can be obtained from the orbit of (1, 0) by
proportional dilatation with coefficient 2. Thus, this new subset also has

nonzero uniform density ko = 2% - k1.
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Uniform density of coprime integer points
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The set of points (p, q) € Z @ Z C R? such that pged(p, ¢) = 3 is an
SL.(2,7Z) orbit of (3, 0). It can be obtained from the orbit of (1, 0) by
proportional dilatation with coefficient 3. Thus, this new subset also has

nonzero uniform density k3 = 2% k.
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Uniform density of coprime integer points
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SL.(2,7Z) orbit of (3, 0). It can be obtained from the orbit of (1, 0) by
proportional dilatation with coefficient 3. Thus, this new subset also has

nonzero uniform density k3 = 2% k.
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Uniform density of coprime integer points

The disjoint union of all these orbits gives all the lattice

U®  SL(2,Z) - (n,0) =Z B Z.

Thus the sum of the densities gives the full density, k1 + ko + -

k, = #-kl,weget

and, hence, k1 = ﬁ —

— 1. Since
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Uniform density of coprime integer points
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Note that though we can measure the Lebesgue measure of a set by counting
the number of coprime points inside its dilatations (which is the definition of a
uniform density), it is known that going exponentially far from the origin, i.e. at
the distance of the order ef* or more one can find islands of radius R without a
single coprime point, where R is any positive number.

29/33 "



Uniform density of coprime integer points
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® Suggestions for
reading before bed

Space of multicurves

Thurston’s and
Mirzakhani’'s measures

on ML, n

Proof of the main result

Uniform density of
coprime integer points

Exercises

® Separating curves
e Orbits of the mapping
class group

e Train-tracks

Exercises
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Separating curves

Exercise. Prove that all curves presented at the picture are separating.

Hint: choose an appropriate basis of cycles and verify that intersection
numbers of each curve with all basic cycles are zero.

The picture is taken from the book of B. Farb and D. Margalit “A Primer on Mapping Class Groups”.

Exercise. Detect which curves are essential and which essential curves belong
to the same orbit of the mapping class group.
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Orbits of the mapping class group

Select all simple closed curves in the picture below which might be isotopic to
simple closed hyperbolic geodesics on a twice-punctured surface of genus two.

How many distinct orbits of Mods 2 they represent? Indicate which curves
correspond to which orbit.

(ARSI =) ‘,!!!QA'@ Ny S TR
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Train-tracks

Which of the given train-tracks 71, 7o, 73 might carry a simple closed hyperbolic
geodesic? Indicate some legitimate weights if you claim that the train track
carries a simple closed hyperbolic geodesic.

T3
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Train-tracks

Which of the given train-tracks 71, 7o, 73 might carry a simple closed hyperbolic
geodesic? Indicate some legitimate weights if you claim that the train track
carries a simple closed hyperbolic geodesic.

T3

Can any of the given train-tracks 71, 72, 73 carry different simple closed
hyperbolic geodesic? Indicate the corresponding different legitimate collections
of weights if you claim that.
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