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BASICS ON STOCHASTIC PROCESSES

• A stochastic process {Xt, t ∈ T} is a collection of random variables Xt, indexed
by a set T , defined on a sample space Ω, endowed with a σ-algebra F and a
base probability measure P, and taking values in a common measurable space S
endowed with an appropriate σ-algebra

• T set of

– times ⇒ temporal stochastic process

– spatial coordinates ⇒ spatial process

– both time and spatial coordinates ⇒ spatio-temporal process

• T discrete ⇒ process in discrete time, represented through {Xn, n = 0,1,2, ..}

• T continuous ⇒ process in continuous time, e.g. T = [0,∞)

• Values taken by process ⇒ states of the process, belonging to the state space S,
which may be either discrete or continuous
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BASICS ON STOCHASTIC PROCESSES
{Xt, t ∈ T} stochastic process

• Mean function: µX(t) = E[Xt]

• Autocorrelation function: RX(t1, t2) = E[Xt1Xt2]

• {Xt, t ∈ T} strictly stationary if (Xt1, . . . , Xtn) and (Xt1+τ , . . . , Xtn+τ) have the same
distribution for any n, t1, t2, . . . , tn and τ

– n = 1 ⇒ Xt’s have the same distribution

– n = 2 ⇒ joint distribution depends on difference between times and not the
times themselves, i.e. FXt1,Xt2

(x1, x2) = FX0,Xt2−t1
(x1, x2)

• {Xt, t ∈ T} weakly stationary if

– Constant mean function: µX(t) = µX, ∀t

– Autocorrelation function depends on time differences: RX(t1, t2) = R(t2 − t1)
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DISCRETE TIME MARKOV CHAINS

• A stochastic process {Xn}, discrete in time and with a countable/finite state space,
is a Markov chain if, for any n > n1 > · · · > nk, and j, i1, . . . , ink

, we have

P (Xn = j | Xn1 = i1, Xn2 = i2, ..., Xnk
= ink) =

P (Xn = j | Xn1 = i1) = p(n1,n)
i1j

.

• One step transition probability: p(m,m+1)
ij = P (Xm+1 = j | Xm = i)

• p(m,m+1)
ij independent of m ⇒ stationary process and time homogeneous chain

• n-step transition probability matrix defined as P(n), with elements pnij

• Matrices P(n) characterize the transition behavior of an homogeneous Markov chain

• When n = 1, we refer to the transition matrix instead of the one step transition
matrix and write P instead of P(1)
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INFERENCE FOR FINITE, TIME HOMOGENEOUS
MARKOV CHAINS

• Transition matrix P = (pij) where pij = P (Xn = j|Xn−1 = i), for states i, j ∈
{1, . . . ,K}

• If it exists, stationary distribution π unique solution of π = πP, πi ≥ 0,
∑

πi = 1

• We consider the simple experiment of observing m successive transitions of the
Markov chain, say X1 = x1, . . . , Xm = xm, given a known initial state X0 = x0

• Likelihood function l(P|x) =
∏K

i=1

∏K
j=1 p

nij

ij with nij ≥ 0 number of observed

transitions from state i to state j and
∑K

i=1

∑K
j=1 nij = m

• P̂ MLE for P, with p̂ij =
nij

ni·
, where ni· =

K∑
j=1

nij

• However, especially in chains with large K, there could be some p̂ij = 0
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BAYESIAN INFERENCE

• Dirichlet density: f (x1, . . . , xK;α1, . . . , αK) =
1

B(α)

K∏
i=1

xαi−1
i , with B(α) =

∏K
i=1Γ(αi)

Γ
(∑K

i=1 αi

)
• Conjugate prior for P defined by letting pi = (pi1, . . . , piK) ∼ Dir (αi), where

αi = (αi1, . . . , αiK) for i = 1, . . . ,K ⇒ matrix beta prior distribution

• ⇒ posterior pi|x ∼ Dir
(
α′

i

)
where α′

ij = αij + nij for i, j = 1, . . . ,K

• Jeffreys prior: matrix beta prior with αij = 1/2 for all i, j = 1, . . . ,K

• Other improper prior: f(pi) ∝
∏K

j=1
1
pij

, i.e. with αij → 0 for all i, j = 1, . . . ,K

– Posterior distribution pi|x ∼ Dir (ni1, . . . , nik) would imply a posterior mean
E[pij|x] = nij/ni· equal to MLE

– Improper posterior distribution if there are any nij = 0

• A proper Dirichlet prior
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SYDNEY BOTANIC GARDENS WEATHER CENTER
Rainfall levels (from weatherzone.com.au) illustrate occurrence (2) or non occurrence
(1) of rain between February 1st and March 20th 2008. The data are to be read con-
secutively from left to right. Thus, it rained on February 1st and did not rain on March
20th.

2 2 2 2 2 2 2 2 2 2
1 1 2 1 1 1 1 1 1 1
2 2 1 1 1 1 2 2 2 1
2 1 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1

The daily occurrence of rainfall is modeled as a Markov chain with transition matrix

P =

(
p11 1− p11

1− p22 p22

)
.

Given a Jeffreys prior, pii ∼ Be (1/2,1/2), for i = 1,2, then conditioning on the occur-
rence of rainfall on February 1st, the posterior distribution is

p11|x ∼ Be (25.5,5.5) p22|x ∼ Be (12.5,6.5).

The expectation of the transition matrix is E[P|x] =
(

0.823 0.177
0.342 0.658

)
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FORECASTING SHORT TERM BEHAVIOR
• Suppose that we wish to predict future values of the chain

• For example we can predict the next value of the chain, at time n+1, using

P (Xn+1 = j|x) =

∫
P (Xn+1 = j|x,P)f(P|x) dP

=

∫
pxnjf(P|x) dP =

αxnj + nxnj

αxn· + nxn·

where αi· =
∑K

j=1 αij.

• Prediction of state at t > 1 steps is slightly more complex. For small t, use

P (Xn+t = j|x) =

∫ (
Pt

)
xnj

f(P|x) dP

which gives a sum of Dirichlet expectation terms. However, as t increases, the
evaluation of this expression becomes computationally infeasible.

• A simple alternative is to use a Monte Carlo algorithm based on simulating future
values of the chain
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FORECASTING SHORT TERM BEHAVIOR

• For s = 1, . . . , S:

Generate P(s) from f(P|x).

Generate x(s)
n+1, . . . , x

(s)
n+t from the Markov chain with P(s) and initial

state xn.

• Then, P (Xn+t = j|x) ≈ 1
S

∑S
s=1 I

(
x(s)
n+t = j

)
where I(·) is an indicator function

and E[Xn+t|x] ≈ 1
S

∑S
s=1 x

(s)
n+t.

• Assume that it is now wished to predict the Sydney weather on the 21st and 22nd of March.
Given that it did not rain on the 20th March, then immediately, we have

P (no rain on 21st March|x) = E[p11|x] = 0.823,
P (no rain on 22nd March|x) = E

[
p211 + p12p21|x

]
= 0.742,

P (no rain on both) = E[p211|x] = 0.681.
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TIME SERIES

• Data in business, economics, engineering, environment, medicine, and other areas
of scientific investigations are often collected in the form of time series, that is, a se-
quence of observations taken at regular intervals of time such as hourly temperature
readings, daily stock prices, weekly traffic volume, monthly beer consumption, and
annual growth rates

• The main objectives of time series modeling and analysis are

– understanding the dynamic or time-dependent structure of the observations of a
single series (univariate time series analysis)

– ascertaining the leading, lagging, and feedback relationships among several se-
ries (multivariate time series analysis)

• Knowledge of the dynamic structure will help produce accurate forecasts of future
observations and design optimal control schemes

• We now present some plots about time series, briefly discussing some relevant fea-
tures
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TIME SERIES: DIFFERENT FEATURES

• Left: Yield of 70 consecutive batches of a chemical process

⇒ Stationary series since the behaviour of the series remains the same over time,
fluctuating about a fixed mean level with constant variance

• Right: Interest rates of 90-day U.S. Treasury bills (T-bills)

⇒ Nonstationary series since the series does not seem to have a mean level and
exhibits a drifting or wandering behaviour
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TIME SERIES: DIFFERENT FEATURES

• Left: Monthly international airline passenger totals

⇒ Seasonality as shown by the oscillations, repeated over time
⇒ Trend as shown by the increasing pattern

• Right: Weekly market share data of Crest toothpaste

⇒ Level shift in August 1960 due to the endorsement of Crest by the American
Dental Association
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TIME SERIES: DIFFERENT FEATURES

• Left: Monthly returns of value-weighted Standard and Poor 500 stocks

⇒ Variance changes or volatility (in Finance) as shown by some jumps away from
the zero mean every once in a while
[Return: (current month value - past month value)/past month value]

• Right: Seasonally adjusted quarterly U.S. unemployment rates

⇒ Asymmetry as shown by different behaviours in the rise and fall of the observa-
tions
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TIME SERIES: DIFFERENT FEATURES

• Input gas rate (Left) and output CO2 (Right) of a chemical reactor

⇒ Relation between series since when one goes up the other comes down (ac-
tually, the input series anticipates the output series by some periods and, therefore,
the former can be used to forecast the latter)
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TIME SERIES: DIFFERENT FEATURES
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• International air passengers (Left) and Australian electricity production (Right)

⇒ No causal relation between series despite the similarity between the two plots,
both showing an increasing trend and a seasonal cycle
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TIME SERIES: AR(1)

• xt = θxt−1 + wt, with wt ∼ N (0,1)

• What happens if I change θ?

• Try θ = 0.5,−0.5,0.9,−0.9,1,−1,2,−2

• θ plays a relevant role, as we will see later

x<-rnorm(100)
par(mfrow=c(2,1))
theta=0.5
z<-rep(0,101)
for (i in 1:100) {z[i+1]<-(theta*z[i]+x[i])}; plot(z,type=’l’)
theta=-theta
z<-rep(0,101)
for (i in 1:100) {z[i+1]<-(theta*z[i]+x[i])}; plot(z,type=’l’)
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TIME SERIES: AR(1)

• A time series {xt; t = 0,±1,±2, . . .} is an autoregressive moving average model
of order (p, q), ARMA(p, q) if it is stationary and

xt = ϕ1xt−1 + . . .+ ϕpxt−p + wt + θ1wt−1 + . . .+ θqwt−q,

with ϕp ̸= 0, θq ̸= 0, wt ∼ N (0, σ2) i.i.d. for all t and σ2 > 0. The parameters p
and q are called the autoregressive and the moving average orders, respectively

• We will consider one of the simplest models, AR(1), autoregressive of order 1

• ⇒ xt = θxt−1 + wt, with wt ∼ N (0, σ2)

• This is also a Markov chain since xt depends on the past only through xt−1

• θ plays a relevant role, as seen earlier when using R

– The time series is stationary if and only if |θ| < 1

– A random walk is obtained when θ = 1

– The correlation between xt and xt−h is θh, e.g. Corr(xt, xt−1) = θ
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TIME SERIES: AR(1)

• We suppose x0 known and consider a sample xt, . . . , x1

• We model the data with an AR(1) time series: xt = θxt−1 + wt, with |θ| < 1 and
wt ∼ N (0, σ2) i.i.d. for all t

• The parameters to be estimated are θ and σ2

• Likelihood

f(xt, . . . , x1|θ, σ2, x0) =
t∏

i=1

f(xi|xi−1, . . . , x1, θ, σ
2, x0)

=
t∏

i=1

f(xi|xi−1, θ, σ
2, x0)

=
t∏

i=1

1√
2πσ

exp{−
1

2σ2
(xi − θxi−1)

2}

∝
1

(σ2)t/2
exp

{
−

1

2σ2

[
t∑

i=1

x2
i − 2θ

t∑
i=1

xixi−1 + θ2
t∑

i=1

x2
i−1

]}
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TIME SERIES: AR(1)

• We are considering a stationary time series, with |θ| < 1, and Bayesians can impos-
ing such condition very easily through a prior constrained to the interval (−1,1)

• Priors: Uniform θ ∼ U(−1,1) and Inverse Gamma σ2 ∼ IG(a, b)

• Conditional posteriors:

– θ|xt, . . . , x0, σ2 ∼ N (

∑t
i=1 xixi−1∑t
i=1 x

2
i−1

,
σ2∑t

i=1 x
2
i−1

) truncated on (−1,1)

– σ2|xt, . . . , x0, θ ∼ IG(a+ t/2, b+
t∑

i=1

(xi − θxi−1)
2/2)

• A Gaussian distribution with cdf Φ(x|µ, τ2) and df ϕ(x|µ, τ2) has a density, when

truncated to the interval (a, b), given by
ϕ(x|µ, τ2)

Φ(b|µ, τ2)−Φ(a|µ, τ2)

• The parameters can be estimated by using Gibbs sampling
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POISSON PROCESS

• One of the simplest and most applied stochastic processes

• Used to model occurrences (and counts) of rare events in time and/or space, when
they are not affected by past history

• Applied to describe and forecast incoming telephone calls at a switchboard, arrival
of customers for service at a counter, occurrence of accidents at a given place,
visits to a website, earthquake occurrences and machine failures, to name but a few
applications

• Simple mathematical formulation and relatively straightforward statistical analysis
⇒ very practical, if approximate, model for describing and forecasting many random
events
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POISSON PROCESS

• Counting process N(t), t ≥ 0: stochastic process counting number of events oc-
curred up to time t

• N(s, t], s < t: number of events occurred in time interval (s, t]

• Poisson process with intensity function λ(t): counting process N(t), t ≥ 0, s.t.

1. N(0) = 0

2. Independent number of events in non-overlapping intervals

3. P (N(t, t+∆t] = 1) = λ(t)∆t+ o(∆t), as ∆t → 0

4. P (N(t, t+∆t] ≥ 2) = o(∆t), as ∆t → 0

• Definition ⇒ P (N(s, t] = n) =
(
∫ t

s
λ(x)dx)n

n!
e
−
∫ t

s
λ(x)dx

, for n ∈ Z+

⇒ N(s, t] ∼ P
(∫ t

s
λ(x)dx

)
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POISSON PROCESS

• Intensity function: λ(t) = lim
∆t→0

P (N(t, t+∆t] ≥ 1)

∆t

– HPP (homogeneous Poisson process): constant λ(t) = λ, ∀t

– NHPP (nonhomogeneous Poisson process): o.w.

• HPP with rate λ

– N(s, t] ∼ P (λ(t− s))

– Stationary increments (distribution dependent only on interval length)

– Interarrival times, and first arrival time, have an exponential distribution E (λ) (⇒
HPP renewal process)

– n-th arrival time, Tn, has a gamma distribution G (n, λ), for each n ≥ 1
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POISSON PROCESS

• Mean value function m(t) = E[N(t)], t ≥ 0

• m(s, t] = m(t)−m(s) expected number of events in (s, t]

• If m(t) differentiable, µ(t) = m′(t), t ≥ 0, Rate of Occurrence of Failures (ROCOF)

• P (N(t, t+∆t] ≥ 2) = o(∆t), as ∆t → 0
⇒ orderly process
⇒ λ(t) = µ(t) a.e.

• ⇒ m(t) =
∫ t

0 λ(x)dx and m(s, t] =
∫ t

s
λ(x)dx

• ⇒ m(t) = λt and m(s, t] = λ(t− s) for HPP with rate λ
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POISSON PROCESS
Poisson process N(t) with intensity function λ(t) and mean value function m(t)

• T1 < . . . < Tn: n arrival times in (0, T ] ⇒ P (T1, . . . , Tn) =
n∏

i=1

λ(Ti) · e−m(T )

⇒ likelihood

• ⇒ P (T1, . . . , Tn) = λne−λT for HPP with rate λ

• n events occur up to time t0 ⇒ distributed as order statistics from cdf m(t)/m(t0),
for 0 ≤ t ≤ t0 (uniform distribution for HPP)
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POISSON PROCESS: INFERENCE

• N(t) HPP with parameter λ

• n events observed in the interval (0, T ]

• Likelihood for two possible experiments

– Times T1, . . . , Tn available

Theorem on Poisson processes ⇒ l(λ|data) = λne−λT

– Only number n available

Properties of P (λT ) ⇒ l(λ|data) =
(λT )n

n!
e−λT

• Proportional likelihoods ⇒ same inferences (Likelihood Principle, Berger and Wolpert,
1988)

• In both cases, likelihood not dependent on the actual occurrence times but only on
their number
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POISSON PROCESS: INFERENCE

• Gamma priors conjugate w.r.t. λ in the HPP

• Prior G (α, β)

• ⇒ f(λ|n, T ) ∝ λne−λT · λα−1e−βλ

• ⇒ posterior G (α+ n, β + T )

• Posterior mean λ̂ =
α+ n

β + T

• Posterior mean combination of

– Prior mean λ̂P =
α

β

– MLE λ̂M =
n

T
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ACCIDENTS IN THE CONSTRUCTION SECTOR
Rı́os Insua et al (1999)

• Interest in number of accidents in some companies in the Spanish construction sec-
tor

• 75 accidents and an average number of workers of 364 in 1987 for one company

• Number of workers constant during the year

• Times of all accidents of each worker are recorded

• Accidents occur randomly ⇒ HPP model justified

• Each worker has the same propensity to have accidents ⇒

– HPP with same λ for all of them

– If one year corresponds to T = 1 ⇒ number of accidents for each worker
follows the same Poisson distribution P (λ)
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ACCIDENTS IN THE CONSTRUCTION SECTOR

• Accidents of different workers are independent

– Apply Superposition Theorem (⇒ total intensity as sum of individual intensities)

– ⇒ Number of accidents for all workers given by an HPP with rate 364λ

• Gamma prior G (1,1) on λ

– Likelihood l(λ|data) = (364λ)75e−364λ

– Posterior gamma G (76,365)

– Posterior mean 76/365 = 0.208

– Prior mean 1

– MLE 75/364 = 0.206

– Posterior mean closer to MLE
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ACCIDENTS IN THE CONSTRUCTION SECTOR

• Prior G (1,1) ⇒ mean 1 and variance 1

– large variance in this experiment

– ⇒ scarce confidence on the prior assessment of mean equal to 1

• Prior G (1000,1000) ⇒ mean 1 and variance 0.001

– Small variance in this experiment

– ⇒ strong confidence on the prior assessment of mean equal to 1

• ⇒ Posterior G (1075,1364)

• Posterior mean 1075/1364 = 0.79

• Prior mean 1

• MLE 75/364 = 0.21

• Posterior mean 10075/10364 = 0.97 for a G (10000,10000) prior
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POISSON PROCESS: INFERENCE

• Computation of quantities of interest

– analytically (e.g. posterior mean and mode)

– using basic statistical software (e.g. posterior median and credible intervals)

• Accidents in the construction sector

– Gamma prior G (100,100) for the rate λ

– Posterior mean: 175/464 = 0.377

– Posterior mode: 174/464 = 0.375

– Posterior median: 0.376

– [0.323,0.435]: 95% credible interval ⇒ quite concentrated distribution

– Posterior probability of interval [0.3,0.4]: 0.789
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IMPROPER PRIORS

• Improper priors

– Controversial, although rather common, choice, which might reflect lack of knowl-
edge

– Possible choices

∗ f(λ) ∝ 1: Uniform prior
⇒ posterior G (n+1, T )

∗ f(λ) ∝ 1/λ: Jeffreys prior given the experiment of observing times between
events
⇒ posterior G (n/2, T )

∗ f(λ) ∝ 1/
√
λ: Jeffreys prior given the experiment of observing the number

of events in a fixed period
⇒ posterior G (n+1/2, T )
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NON CONJUGATE ANALYSIS

• Given the meaning of λ (expected number of events in unit time interval or inverse
of mean interarrival time), it may often be considered that λ is bounded

• ⇒ Prior on a bounded set

• Uniform prior on the interval (0, L]

• ⇒ Posterior f(λ|n, T ) ∝ λne−λTI(0,L](λ)

• Normalizing constant γ(n + 1, LT )/T n+1, with γ(s, x) =
∫ x

0 ts−1e−tdt lower in-
complete gamma function

• Posterior mean λ̂ =
1

T

γ(n+2, LT )

γ(n+1, LT )
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FORECASTING

• n events observed in the interval (0, T ]

• Interest in forecasting number of events in next intervals: P (N(T, T + s] = m),

• For s > 0 and integer m

P (N(T, T + s] = m) =

∫ ∞

0
P (N(T, T + s] = m|λ) f(λ|n, T ) dλ

=

∫ ∞

0

(λs)m

m!
e−λs f(λ|n, T ) dλ

Posterior G (α+ n, β + T )

⇒ P (N(T, T + s] = m) =
sm

m!

(β + T )α+n

(β + T + s)α+n+m

Γ(α+ n+m)

Γ(α+ n)
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FORECASTING

• Expected number of events in the subsequent interval

E[N(T, T + s]] =

∫ ∞

0
E[N(T, T + s]|λ]f(λ|n, T )dλ

=

∫ ∞

0
λs f(λ|n, T )dλ

Posterior G (α+ n, β + T )

⇒ E[N(T, T + s]] = s
α+ n

β + T
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ACCIDENTS IN THE CONSTRUCTION SECTOR
• Gamma prior G (100,100) for the rate λ

• Posterior gamma G (175,464), having observed 75 accidents with 346 workers in
1987

• Interest in number of accidents during the first six months of 1988 (i.e. s = 0.5),
when the number of workers has increased to 400 (i.e. m = 400)

• T1987 denotes December, 31st, 1987

• ⇒ N(T1987, T1987 +0.5] ∼ P (400λ · 0.5)

• E[N(T1987, T1987 +0.5]] = 400 · 0.5
175

464
= 75.431

• Interested in probability of 100 accidents in the six months:

P (N(T1987, T1987 +0.5] = 100) =
200100

100!

464175

664275

Γ(275)

Γ(175)
= 0.003

• Probability of no accidents in the six months: (464/664)175 ≈ 0
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NONHOMOGENEOUS POISSON PROCESS

• NHPPs characterized by intensity function λ(t) varying over time

• ⇒ NHPPs useful to describe (rare) events whose rate of occurrence evolves over
time (e.g. gas escapes in steel pipelines)

– Life cycle of a new product

∗ initial elevated number of failures (infant mortality )

∗ almost steady rate of failures (useful life)

∗ increasing number of failures (obsolescence)

⇒ NHPP with a bathtub intensity function

• NHPP has no stationary increments unlike the HPP

• Elicitation of priors raises similar issues as before
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INTENSITY FUNCTIONS
Many intensity functions λ(t) proposed in literature (see McCollin (ESQR, 2007))

• Different origins

– Polynomial transformations of HPP constant rate

∗ λ(t) = αt+ β (linear ROCOF model)

∗ λ(t) = αt2 + βt+ γ (quadratic ROCOF model)

– Actuarial studies (from hazard rates)

∗ λ(t) = αβt (Gompertz)

∗ λ(t) = αβt + γt+ δ

∗ λ(t) = eα+βt + eγ+δt

– Reliability studies

∗ λ(t) = α+ βt+
γ

t+ δ
(quite close to bathtub for adequate values)

∗ λ(t) = αβ(αt)β−1 exp{αtβ} (Weibull software model)
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INTENSITY FUNCTIONS

• Different origins

– Logarithmic transformations

∗ λ(t) =
α

t
(⇒ logarithmic m(t))

∗ λ(t) = α log t+ α+ β

∗ λ(t) = α log (1 + βt) + γ

∗ λ(t) =
α log (1 + βt)

1 + βt
(Pievatolo et al, underground train failures)

– Associated to distribution functions

∗ λ(t) = αf(t;β), with f(·) density function
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NONHOMOGENEOUS POISSON PROCESS

• Different mathematical properties

– Increasing, decreasing, convex or concave

∗ λ(t) = Mβtβ−1, M,β > 0 (Power Law Process)

∗ Different behavior for different βs
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NONHOMOGENEOUS POISSON PROCESS

• Different mathematical properties

– Periodicity (Lewis)

∗ λ(t) = α exp{ρ cos(ωt+ φ)}

∗ Earthquake occurrences (Vere-Jones and Ozaki, 1982)

∗ Train doors’ failures (Pievatolo et al., 2003)

– Unimodal, starting at 0 and decreasing to 0 when t goes to infinity

∗ Ratio-logarithmic intensity

∗ λ(t) =
α log (1 + βt)

1 + βt

∗ Train doors’ failures (Pievatolo et al., 2003)
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NONHOMOGENEOUS POISSON PROCESS

• Properties of the system under consideration

– Processes subject to faster and faster (slower and slower) occurrence of events
⇒ increasing (decreasing) λ(t)

– Failures of doors in subway trains, with no initial problems, then subject to an
increasing sequence of failures, which later became more rare, possibly because
of an intervention by the manufacturer
⇒ ratio-logarithmic λ(t) (Pievatolo et al., 2003)

– New product ⇒ life cycle described by bathtub intensity

– Finite number of bugs to be detected during software testing
⇒ m(t) finite over an infinite horizon

– Unlimited number of death in a population
⇒ m(t) infinite over an infinite horizon (as a good approximation)
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NONHOMOGENEOUS POISSON PROCESS
N(t) Power Law process (PLP) (or Weibull process)

• Two parameterizations:

– λ(t|α, β) =
β

α

(
t

α

)β−1

and m(t;α, β) =

(
t

α

)β

, α, β, t > 0

– λ(t;M,β) = Mβtβ−1 and m(t;M,β) = Mtβ, M,β > 0

– Link: α−β = M

• Parameters interpretation

– β > 1 ⇒ reliability decay

– β < 1 ⇒ reliability growth

– β = 1 ⇒ constant reliability

– M = m(1) expected number of events up to time 1
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POWER LAW PROCESS
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FREQUENTIST ANALYSIS
Failures T = (T1, . . . , Tn) ⇒ likelihood

l(α, β | T ) = (β/α)n
n∏

i=1

(Ti/α)
β−1 e−(y/α)β

• Failure truncation ⇒ y = Tn

MLE: β̂ = n/

n−1∑
i=1

log(Tn/Ti) and α̂ = Tn/n
1/β̂

C.I. for β :
(
β̂χ2

γ/2(2n− 2)/(2n), β̂χ2
1−γ/2(2n− 2))/(2n)

)
• Time truncation ⇒ y = T

MLE: β̂ = n/

n∑
i=1

log(T/Ti) and α̂ = T/n1/β̂

C.I. for β :
(
β̂χ2

γ/2(2n)/(2n), β̂χ
2
1−γ/2(2n)/(2n)

)
Unbiased estimators, λ̂(t), approx. C.I., hypothesis testing, goodness-of-fit, etc.
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BAYESIAN ANALYSIS
Failure truncation ≡ Time truncation

l(α, β | T ) = (β/α)n
n∏

i=1

(Ti/α)
β−1 e−(y/α)β

• π(α, β) ∝ (αβγ)−1 α > 0, β > 0, γ = 0,1 ⇒ β|T ∼ β̂χ2
2(n−γ)/(2n)

– Posterior exists, except for γ = 0 and n = 1

– β̂ = n/
∑n

i=1 log(T/Ti)

– Posterior mean β̃ = (n− γ)/
∑n

i=1 log(T/Ti)

– Credible intervals easily obtained with standard statistical software
• π(α) ∝ α−1 and β ∼ U (β1, β2) ⇒ π(β|T ) ∝ βn−1

∏n
i=1 T

β
i I[β1,β2](β)

• π(α|β) ∝ βsaβα−aβ−1e−b(s/α)β a, b, s > 0 and β ∼ U (β1, β2)

⇒ π(β|T ) ∝ βn
n∏

i=1

(
Ti

s

)β [
(
Tn

s
)β + b

]−n−a

I[β1,β2](β)

• In all case α|T by simulation (but α|β, T inverse of a Weibull)
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BAYESIAN ANALYSIS
Other parametrization

• l(M,β | T1, . . . , Tn) = Mnβn
n∏

i=1

T β−1
i e−MT β

• Independent priors M ∼ G (α, δ) and β ∼ G (µ, ν)

• Possible dependent prior: M |β ∼ G
(
α, δβ

)
• ⇒ posterior conditionals (in red changes for dependent prior)

M |T1, . . . , Tnβ ∼ G
(
α+ n, δβ + T β

)
β|T1, . . . , TnM ∝ βµ+n−1 exp{β(

n∑
i=1

logTi − ν)−MT β−Mδβ}

• Sample from posterior applying Metropolis step within Gibbs sampler

Interest in posterior Eβ,P{β < 1}, modes, C.I.’s, EM (for λ(t) = Mβtβ−1)
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