
Recapitulation: Density operators

• One particle 𝑛 𝑟 =< σ𝑖 𝛿 𝑟 − 𝑟𝑖 >

• Two particle 𝑛 𝑟, 𝑟′ = < σ𝑖≠𝑗 𝛿(𝑟 − 𝑟𝑖)𝛿(𝑟′ − 𝑟𝑗)>,
the correlation of a particle with other particles.

• Pair correlation function g r, r′ =
𝑛 𝑟,𝑟′

𝑛 𝑟 𝑛 𝑟′

• A typical W is the Lennard-Jones (L J)potential:

• 𝑤 𝑟 = 𝑤0[ (
𝑟

𝜎
)12 − (

𝑟

𝜎
)6]

• ,



Recapitulation:  the compressibility 𝜒 and the 
equation of state:

𝑛 𝑘𝑇 𝜒 =
𝑘𝑇

𝜕𝑝/𝜕𝑛
= 1 + 𝑛න𝑑3𝑟(𝑔 − 1)

𝑃 = 𝑛𝑘𝑇 − 𝑛2න𝑑3𝑟 𝑔 𝑟 𝑟
𝜕𝑈 𝑟

𝜕𝑟
/6



Pair correlation function can be measured 
experimentally 

• Pair correlation function g r, r′ =
𝑛 𝑟,𝑟′

𝑛 𝑟 𝑛 𝑟′

• In scattering experiments, one can meassure

• 𝑆 𝑘 = σexp 𝑖𝑘 ∙ 𝑟𝑗𝑙 /𝑁

• 𝑆 𝑘 =


𝑑𝑟𝑑𝑟′

𝑁
< 𝑛 𝑟 𝑛 𝑟′ > 𝑒𝑖 𝑘 𝑟−𝑟′ = 1 + 𝑛 [𝛿 𝑘 + 𝑔) − 1)𝑒𝑖 𝑘 𝑟−𝑟′ ]

• The compressibility 𝑛 𝑘𝑇 𝜒 =
𝑘𝑇

𝜕𝑝/𝜕𝑛
= 1 + 𝑛 𝑑3𝑟(𝑔 − 1) can be realted to 

the zero q limit of S(q)!
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Statistical physics of scattering, correlation, and structure
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■ Let us now consider using scattering experiments to study a system
described by the 

H =

N
X

i=1

p2
i

2m
+

X

i<j

u(rij).
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■ Let us now consider using scattering experiments to study a system
described by the pair Hamiltonian

H =

N
X

i=1

p2
i

2m
+

X

i<j

u(rij).

■ We prepare a collimated beam of probe particles (neutrons, X-rays, etc.)

with probe coordinates ~rp and momenta ~~k.
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■ Let us now consider using scattering experiments to study a system
described by the pair Hamiltonian

H =

N
X

i=1

p2
i

2m
+

X

i<j

u(rij).

■ We prepare a collimated beam of probe particles (neutrons, X-rays, etc.)

with probe coordinates ~rp and momenta ~~k.

■ The incident beam is approximately in a plane-wave state exp(i~k · ~rp):

exp(i~k · ~rp)

exp(i~k′ · ~rp)

System

■ The scattered beam is in a different plane-wave state exp(i~k′ · ~rp), where

~~k′ is the final momentum of the scattered probe particles.
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■ The experiments measure  the static structure factor S(q~) 

S(~q) ≡
1

N
〈n̂1(~q)n̂1(−~q)〉 − Nδ~q,0,

in which the last term is introduced for later convenience (recall that the
scattered beam cannot be measured at exactly q~ = 0).

■  S(q~) is related to the pair distribution
function g(~r) for a continuous phase by

S(~q) − 1 =
N

V

Z

d3r [g(~r) − 1] exp(−i~q · ~r).

■ That is, S(~q) − 1 is the Fourier transform of n[g(~r) − 1].
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■ What do we expect to obtain from measurements of S(~q)?
■ Let us survey some typical results for gases, liquids, and crystals of

spherically symmetric atoms.
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■ What do we expect to obtain from measurements of S(~q)?
■ Let us survey some typical results for gases, liquids, and crystals of

spherically symmetric atoms.
■ In dilute gases, we can use a virial expansion to write

g(r) = exp[−βu(r)]{1 + ng1(r) + n2g2(r) + · · · }.
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■ What do we expect to obtain from measurements of S(~q)?
■ Let us survey some typical results for gases, liquids, and crystals of

spherically symmetric atoms.
■ In dilute gases, we can use a virial expansion to write

g(r) = exp[−βu(r)]{1 + ng1(r) + n2g2(r) + · · · }.

■ For hard spheres of diameter σ with no attractive interaction, the Fourier
transform can be evaluated exactly to obtain2

S(q) = 1 − 4πn

„

sin qσ − qσ cos qσ

q3

«

+ O(n2).
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■ What do we expect to obtain from measurements of S(~q)?
■ Let us survey some typical results for gases, liquids, and crystals of

spherically symmetric atoms.
■ In dilute gases, we can use a virial expansion to write

g(r) = exp[−βu(r)]{1 + ng1(r) + n2g2(r) + · · · }.

■ For hard spheres of diameter σ with no attractive interaction, the Fourier
transform can be evaluated exactly to obtain2

S(q) = 1 − 4πn

„

sin qσ − qσ cos qσ

q3

«

+ O(n2).

■ In the limit of an ideal gas (i.e., n → 0), we have

S(q) → 1.

■ Deviations of S(q) from 1 therefore give a measure of how far the system
deviates from an ideal gas.

2N. W. Ashcroft and N. H. March, Proc. Roy. Soc. London A 297, 336 (1967).



Dilute gas

Scattering experiment

Nature of experiment

Interaction between
probe and system

Interaction matrix
element

Fourier transform of v

One-particle density

Static structure factor

Typical forms of S(~q)

Dilute gas

Liquid structure factor

Distribution function

Critical point

Crystal structure factor

Reciprocal lattice

Temperature variation

Molecular dynamics

Range of correlations

Scattering divergence
near critical point

Compressibility rule

Derivation of
compressibility rule

One-particle density

Average values

Variance of N

Pair distribution function

Structure factor

Significance

Applications of statistical mechanics Scattering, correlation, and structure – 10 / 27

■ The structure factor of a dilute gas of hard spheres is compared with that
of an ideal gas in the figure below:

0 4 8 12 16

0

1

qσ

S

n = 0

n = 0.1σ−3

■ The structure factor of a dilute gas therefore drops below one for small
values of q.
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■ By contrast, the measured structure factor of a liquid differs quite
remarkably from that of an ideal gas:3
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0

1
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3

q (Å−1)

S
(q

)

Liquid Ar

T = 85K

■ The data shown here were taken far away from the critical point
(Tc = 151K, Pc = 48.1 atm).

3J. L. Yarnell, M. J. Katz, R. G. Wenzel, and S. H. Koenig, Phys. Rev. A 7, 2130 (1973).



Distribution function

Scattering experiment

Nature of experiment

Interaction between
probe and system

Interaction matrix
element

Fourier transform of v

One-particle density

Static structure factor

Typical forms of S(~q)

Dilute gas

Liquid structure factor

Distribution function

Critical point

Crystal structure factor

Reciprocal lattice

Temperature variation

Molecular dynamics

Range of correlations

Scattering divergence
near critical point

Compressibility rule

Derivation of
compressibility rule

One-particle density

Average values

Variance of N

Pair distribution function

Structure factor

Significance

Applications of statistical mechanics Scattering, correlation, and structure – 12 / 27

■ The corresponding pair distribution function (obtained by Fourier
transform) is shown below:

0 5 10 15 20 25

0
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3

Liquid Ar

T = 85K

r (Å)

g
(r

)

■ The sharp peak at r ≃ 3.7 Å shows that there is a strong tendency for
atoms to cluster together at this separation in liquid argon.

■ Subsidiary peaks at greater r show that the correlations extend beyond
nearest neighbors.
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■ For a liquid close to the critical
point, S(q) diverges near q =
0, becoming more divergent as
(T,P ) → (Tc, Pc).

a
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■ For a liquid close to the critical
point, S(q) diverges near q =
0, becoming more divergent as
(T,P ) → (Tc, Pc).

a

■ This says that the quantity

1

N
〈n̂1(~q)n̂1(−~q)〉

diverges as ~q → 0 and (T,P ) →
(Tc, Pc).

■ Can you think of a reason why
this would happen?

aP. G. Mikolaj and C. J. Pings, J. Chem.
Phys. 46, 1401 (1967).
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■ For an arbitrary direction of ~q, the structure factor of a crystal has the
smooth form sketched below (due to thermal diffuse scattering by 
lattice vibrations):
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q

S
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■ For an arbitrary direction of ~q, the structure factor of a crystal has the
smooth form sketched below (due to thermal diffuse scattering by
phonons):

0

1

q

S

■ However, for certain special directions of ~q, there are sharp peaks (of
order N):
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■ The special values of ~q where the peaks occur are those values satisfying

exp(i~q · ~R) = 1

for all lattice vectors ~R of the crystal lattice.
■ These values of ~q are just the reciprocal lattice vectors ~K.



Order parameter for solid

density 𝜌 𝑟 = σ𝑖 𝛿(𝑟 − 𝑟𝑖)
Fourier transform 

𝜌 𝑞 = න𝑑𝑟 𝜌 𝑟 𝑒𝑖𝑞∙𝑟/𝑁 =
𝑗
𝑒𝑖𝑞∙𝑟𝑗 /𝑁

For solids , there are vectors G so that 𝐺 ∙ 𝑅𝑗 = 2𝜋𝑛 for some integer n.

For example, in one dimension,  for 𝑅𝑗 = 𝑗𝑎, G= 2𝜋/𝑎

𝜌 𝐺 = σ𝑗 𝑒
𝑖𝐺∙𝑢𝑗 /𝑁 is a good order parameter.

𝜌 𝐺 =
𝑗
𝑒𝑖𝐺∙𝑢𝑗 /𝑁



Average of the order parameter

• < 𝜌 𝐺 > = σ𝑗 < 𝑒𝑖𝐺∙𝑢𝑗 >/𝑁

• Use cumulant expansion:

• < 𝑒𝑖𝑓 >≅ 𝑒−
<𝑓2>

2
+⋯ for any function f such that <f>=0.

• This can be seen by comparing the series expansion on both sides.

• < 𝜌 𝐺 > ≅ σ𝑗 𝑒
−<[𝐺∙𝑢𝑗]

2>/2/N.

• For fluids < 𝑢2 >= ∞, < 𝜌 𝐺 > = 0



Fluctuation of the order parameter

• < |𝜌 𝐺 |2 >= σ𝑗,𝑘 < 𝑒𝑖𝐺∙(𝑢𝑗−𝑢𝑘) >

• Use cumulant expansion:

• < 𝑒𝑖𝑓 >≅ 𝑒−
<𝑓2>

2
+⋯ for any function f such that <f>=0.

• This can be seen by comparing the series expansion on both sides.

• < |𝜌 𝐺 |2 > /𝑁2 ≅ σ𝑗 𝑒
−<[𝐺∙ 𝑢0−𝑢𝑗 ]2>/N
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■ The special values of ~q where the peaks occur are those values satisfying

exp(i~q · ~R) = 1

for all lattice vectors R~ of the crystal lattice.
■ These q~ are called the reciprocal lattice vectors K~ . of the crystal.
■ A cumulant expansion with the lattice vibration  gives the static structure 

lhas the form4

S(~q) = Ne−2W (~q)
X

~K

δ~q, ~K ,

where W is a smoothly varying function of ~q and T known as the
Debye–Waller factor.

4N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976), pp.
790–795.
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■ As the temperature increases, the peaks become broader:

0

1

q

S

Lower T
Higher T

■ This indicates a change in the motion of the system, but one that
preserves the crystal symmetry.
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■ As the temperature increases, the peaks become broader:

0

1

q

S

Lower T
Higher T

■ This indicates a change in the motion of the system, but one that
preserves the crystal symmetry.

■ When T finally exceeds the melting temperature, the O(N) peaks of the
crystal are reduced to the O(1) peaks of the liquid.

■ However, the liquid still shows significant order even though it is a
continuous phase.
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■ Molecular dynamics simulations based on a Lennard-Jones potential5 are
in excellent agreement with the measured g(r) of liquid argon:6
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■ The circles in the figure are Verlet’s simulation data for kBT = 0.719ǫ
and n = 0.850σ−3, where ǫ/kB = 119.8K and σ = 3.405 Å.

5L. Verlet, Phys. Rev. 165, 201 (1968).
6J. L. Yarnell, M. J. Katz, R. G. Wenzel, and S. H. Koenig, Phys. Rev. A 7, 2130 (1973).
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■ How well does the measured distribution function of a liquid agree with
the approximation g(r) ≈ exp[−βu(r)] valid for a dilute gas?
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3 Liquid Ar
T = 85 K

exp[−βu(r)]

u(r) = 4ǫ[(σ/r)12 − (σ/r)6]

ǫ/kB = 119.8K

σ = 3.405 Å

r (Å)

g
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)

■ Notice that the correlations in exp[−βu(r)] die out quickly for r > σ,
but those in the measured g(r) continue out to many σ.
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■ How can we understand the di-
vergence in scattering for a fluid
near the critical point?
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■ How can we understand the di-
vergence in scattering for a fluid
near the critical point?

■ We have proved the following the-
orem for the structure factor at
long wavelengths:

lim
q→0

S(q) = nkBT KT ,

where KT is the isothermal com-
pressibility

KT ≡ −
1

V

„

∂V

∂P

«

T

.

■ This is just the inverse of the
isothermal bulk modulus

BT ≡ −V

„

∂P

∂V

«

T

=
1

KT

.
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■ The compressibility rule can also be written as

lim
q→0

S(q) =
KT

K id
T

=
Bid

T

BT

,

where K id
T is the compressibility of an ideal gas at the same density n

and temperature T :

K id
T =

1

nkBT
.
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■ The compressibility rule can also be written as

lim
q→0

S(q) =
KT

K id
T

=
Bid

T

BT

,

where K id
T is the compressibility of an ideal gas at the same density n

and temperature T :

K id
T =

1

nkBT
.

■ In an ordinary liquid far from the critical point, the order of magnitude of
these quantities is

BT ∼ 30000 atm, Bid
T ∼ 1000 atm; ∴ lim

q→0
S(q) ∼ 0.03.
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■ The compressibility rule can also be written as

lim
q→0

S(q) =
KT

K id
T

=
Bid

T

BT

,

where K id
T is the compressibility of an ideal gas at the same density n

and temperature T :

K id
T =

1

nkBT
.

■ In an ordinary liquid far from the critical point, the order of magnitude of
these quantities is

BT ∼ 30000 atm, Bid
T ∼ 1000 atm; ∴ lim

q→0
S(q) ∼ 0.03.

■ However, at the critical point (Tc, Pc), we have ∂P/∂V = 0 and thus
BT = 0 (i.e., KT → ∞); consequently,

lim
q→0

S(q) = ∞.
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■ What is the significance of this result?

lim
q→0

S(q) =
KT

K id
T

■ On the left side, S(q) is a microscopic quantity describing the structural
order in a fluid.

■ On the right side are thermodynamic quantities.
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■ What is the significance of this result?

lim
q→0

S(q) =
KT

K id
T

■ On the left side, S(q) is a microscopic quantity describing the structural
order in a fluid.

■ On the right side are thermodynamic quantities.
■ In a typical liquid far from the critical point, the value of this ratio is

much less than one.
■ However, it diverges near the critical point, where KT → ∞.
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■ What is the significance of this result?

lim
q→0

S(q) =
KT

K id
T

■ On the left side, S(q) is a microscopic quantity describing the structural
order in a fluid.

■ On the right side are thermodynamic quantities.
■ In a typical liquid far from the critical point, the value of this ratio is

much less than one.
■ However, it diverges near the critical point, where KT → ∞.
■ Since S(q) − 1 is the Fourier transform of n[g(r) − 1], a divergence of

S(q) at long wavelengths

λ =
2π

q



Pair correlation function can be measured 
experimentally 

• Pair correlation function g r, r′ =
𝑛 𝑟,𝑟′

𝑛 𝑟 𝑛 𝑟′

• In scattering experiments, one can meassure

• 𝑆 𝑘 = σexp 𝑖𝑘 ∙ 𝑟𝑗𝑙 /𝑁

• 𝑆 𝑘 =


𝑑𝑟𝑑𝑟′

𝑁
< 𝑛 𝑟 𝑛 𝑟′ > 𝑒𝑖 𝑘 𝑟−𝑟′ = 1 + 𝑛 [𝛿 𝑘 + 𝑔) − 1)𝑒𝑖 𝑘 𝑟−𝑟′ ]

• The compressibility 𝑛 𝑘𝑇 𝜒 =
𝑘𝑇

𝜕𝑝/𝜕𝑛
= 1 + 𝑛 𝑑3𝑟(𝑔 − 1) can be realted to 

the zero q limit of S(q)!





• Current plan for the last two weeks in class.is to have students form 
groups by themselves, perform simulations with the computer 
programs I shall give them and present their results during class in 
either Chinese or English.



Do you know how to compile and run a computer 
program

• (1) Yes

• (2) No



Do you know the programming language

• (1) Fortran

• (2) C

• (3) others

• (4) no
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