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An inequality is provided that determines when shrinkage reduces the mean squared error (MSE) of an unbiased estimate. Artificially
augmented samples are then used to obtain, among others, shrinkage estimates of the population’s variance and covariance, which improve
the unbiased estimates for all parameter values and for all probability models with marginals having finite second moments, and alternative
jackknife estimates that complement the usual jackknife estimates in reducing the MSE.
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1. INTRODUCTION

The estimation of a population’s variance, σ 2, and covari-
ance, σX,Y , is the stuff of statistical folkore. Often the unbiased
estimate, s2

n, of σ 2 is used, but for some probability models,
shrinkage estimates, cs2

n, reduce the mean squared error (MSE)
of s2

n for every σ , 0 < c < 1, with n the sample size. So far,
there is no shrinkage estimate with a smaller MSE than s2

n that
applies universally, for all values of σ, for all probability mod-
els and every sample size n (Stein 1964; Brown 1968; Arnold
1970; Lehmann 1983, p. 113). Such an estimate is provided in
this article. A similar situation holds for the unbiased estimate
of σX,Y .

For an unbiased estimate tn of a parameter θ with real values,
an increase in the sample size n has usually the same effect as
a successful shrinkage; both decrease the MSE. Questions arise
as to whether by artificially augmenting the sample, an estimate
t̃n can be obtained with a smaller MSE than tn for every θ value,
and as to whether t̃n is a shrinkage estimate. In this work it is
seen that for some parameters, this is indeed so, and that even
more is true; t̃ k

n , the average of the values of tn+k on artificially
augmented samples, turns out to be a shrinkage estimate that
has a smaller MSE than tn not only for all θ values, but also for
all probability models, 1 ≤ k < n.

In particular, in variance estimation, the average of s2
n+1(X1,

. . . ,Xn,Xi), i = 1, . . . ,n, turns out to be a shrinkage estimate
because for the U-statistic kernel h(x1, x2), which determines
σ 2 and s2

n, h(x, x) = 0. The obtained estimate, (n+2)(n−1)
n(n+1)

s2
n, has

a smaller MSE than s2
n for all values of σ,n ≥ 2 and for all prob-

ability models with finite second moments. The same shrinkage
coefficient, (n+2)(n−1)

n(n+1)
, is obtained when averaging the values

tn+1,2(X1, . . . ,Xn,Xi), i = 1, . . . ,n, of a U-statistic tn,2 with
symmetric kernel of order m = 2 vanishing at the diagonal, like,
for example, those determined by σX,Y , Kendall’s τ , and Gini’s
index g. The shrinkage estimate of σX,Y also has a smaller
MSE than the corresponding U-statistic for all covariance val-
ues, n ≥ 2 and for all probability models with marginals hav-
ing finite second moments. However, additional assumptions
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are needed for a similar result to hold when estimating either
τ or g.

The results are presented for a U-statistic tn,m with a sym-
metric kernel of order m ≥ 2 that vanishes when two arguments
are repeated, and the shrinkage coefficients cδn,k,m are obtained
using (n + k) artificially augmented samples, 1 ≤ k < n, where
δn is a positive number that can be chosen to increase with n.

For n large, our analysis suggests that shrinkage coefficients
are to be obtained from (n + kn)-augmented samples for the
bias and the MSE improvement to slowly decrease to 0 as n in-
creases. Shrinkage coefficients are also obtained that are used
to reduce the MSE of some other unbiased estimates.

An alternative (n+1) jackknife estimate, t̃ J
n , is also provided,

which together with the usual (n − 1) jackknife estimate, t J
n ,

has the potential to reduce the MSE of a biased estimate, tn,
of θ. This is contrary to results on unaugmented jackkknife
procedures (Shao and Tu 1995, sec. 2.5, p. 70, l. 3–5). For ex-
ample, when the population’s mean is unknown, the estimate
t̃ J
n = n−1

n+1 s2
n of σ 2 improves t J

n = s2
n and tn = n−1

n s2
n for vari-

ous models. When tn is smooth and n is large, conditions are
provided that determine when t̃ J

n , t J
n , and t̃ 1

n [the average of
tn+1(X1, . . . ,Xn,Xi), i = 1, . . . ,n] have smaller MSE than tn.
It is expected that similar results will hold for (n + k) jackknife
estimates.

In Section 2 a sufficient condition is provided for a shrinkage
estimate to reduce the MSE of an unbiased estimate, tn, of θ for
all θ values and a family, F , of probability models. In Section 3
the basis of the motivation to use (n + k) artificially augmented
samples and t̃ k

n is presented. In Section 4 t̃ k
n is used to obtain

shrinkage estimates that improve the MSE of some U-statistics
and other unbiased estimates. Finally, in Section 5, the alterna-
tive (n + 1) jackknife estimate t̃ J

n is proposed and studied.

2. SHRINKAGE AND MSE REDUCTION

Let X1, . . . ,Xn be a sample from an unknown cumulative
distribution function F in a known class F of models, and let
tn(X1, . . . ,Xn) be an unbiased estimate of the unknown model
parameter θ ∈ � (⊆ R) with finite second moment; θ may be,
for example, the mean of F. The MSE of the shrinkage esti-
mate cntn,0 < cn < 1, is minimized when cn(θ,F) = θ2/Et2n =
(1 + var(tn)

θ2 )−1. Because cn(θ,F) often depends on θ and F,

this approach does not yield a universal shrinkage coefficient cn

that minimizes the MSE of tn for every θ ∈ � and for every
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F ∈ F when F consists of more than one model. An alterna-
tive goal is to determine shrinkage coefficients that reduce the
MSE of tn for every θ ∈ � and for every F ∈ F . These co-
efficients are selected from the set [sup�,F cn(θ,F),1) that is
nonempty if inf�,F

var(tn)
θ2 > 0 because sup�,F cn(θ,F) = (1 +

inf�,F
var(tn)

θ2 )−1; sup�,F (resp. inf�,F ) denotes supθ∈�,F∈F
(resp. infθ∈�,F∈F ).

We now characterize the shrinkage coefficients that reduce
the MSE of tn for a given θ and F.

Lemma 1.

E(cntn − θ)2 < E(tn − θ)2 = var(tn) iff
(1)

1 − cn

1 + cn
<

var(tn)

θ2
.

Proof. Use the relation

E(cntn − θ)2 = c2
n var(tn) + (1 − cn)

2θ2.

From (1), it follows that when F is the true model, the un-
biased estimate tn can be improved with shrinkage for every
θ ∈ � if infθ∈�

var(tn)
θ2 is bounded below by some known posi-

tive constant LF that depends on F and n. This occurs when, for
example, the Fisher information IX1(θ) = M/θ2,M > 0, and
the Cramer–Rao inequality holds for tn at the model F. tn can be
improved with shrinkage for every θ ∈ � and for every F ∈ F
if inf�,F

var(tn)
θ2 is bounded below by some known positive con-

stant L that depends on n.

In (1) the lower bound 1−cn
1+cn

is a decreasing function of cn

that should be suitably chosen; it should be large enough to
cause moderate bias and for (1) to hold for every θ ∈ � and
every F ∈ F , with the corresponding MSE reduction to slowly
decrease to 0 as n increases.

The estimate ĉn = (1 + V̂n
t2n

)−1 of cn(θ,F) will not reduce

the MSE of tn for each n and each F, because V̂n may
not be a satisfactory estimate of var(tn) for all models F.

This can be observed in large samples when θ = σ 2 and
tn = s2

n. Let µk and mk be the kth-order central moments of
the population and of the sample, k ≥ 1, and let an ∼ bn de-

note limn−→∞ an
bn

= 1. var(s2
n) ∼ µ4−µ2

2
n can be estimated by

V̂n = m4−m2
2

n , E(V̂n − µ4−µ2
2

n ) = O(n−2) (see, e.g., Serfling 1980,

pp. 69–71), and var(V̂n) ∼ 56σ 8/n3 (Stuart and Ord 1994,
p. 369). For normal models, var(s2

n) ∼ 2σ 4/n can be estimated
by V̂ ′

n = 2s4
n/n. Recall that if Un follows a χ2

n distribution,
then EUm

n = ∏m
j=1[n + 2( j − 1)], var(Un) = 2n,var(U2

n) =
8n(n + 2)(n + 3), and, therefore, EV̂ ′

n − 2σ 4

n = 2 var(s2
n)

n =
4σ 4

n(n−1)
= O(n−2) and var(V ′

n) = 4σ 8 var(Un−1)

n2(n−1)4 ∼ 32σ 8

n3 . Thus, for

large n, var(V̂n) > var(V̂ ′
n), the MSE of V̂n is larger than that

of V̂ ′
n, and ĉn may underestimate sup�,F cn(θ,F).

3. ESTIMATES BASED ON ARTIFICIALLY
AUGMENTED SAMPLES

Pseudovalues of an estimate tn of θ are used to, for example,
estimate its variance or to obtain a new estimate with reduced
bias or when data are missing. These pseudovalues are usually
obtained by evaluating either tn on B bootstrap samples (Efron
1979), tn−k on (n − k)-reduced samples (Quenouille 1956),

or tn on samples obtained with multiple-imputation methods
(Rubin 1987).

The class An,k of the (n + k) artificially augmented sam-
ples consists of the samples X = (X1, . . . ,Xn,Xn+1 = Xj1 ,

. . . ,Xn+k = Xjk), 1 ≤ j1 < · · · < jk ≤ n, and the pseudovalues
tn+k(X),X ∈An,k, are used to define the estimate

t̃ k
n =

(
n

k

)−1 ∑
X∈An,k

tn+k(X), 1 ≤ k < n. (2)

An,k, tn+k(X),X ∈ An,k, and t̃ k
n can all be thought of in terms of

multiple imputation for a sample with size (n+k) and k missing
observations.

The proposition that follows encourages the use both of
(n + k)-augmented samples and of the estimate t̃ k

n in (2). The
use of B bootstrap (n + k)-augmented samples is discouraged
due to the additional randomization introduced by finite resam-
pling (Yatracos 2002).

Proposition 1. Let F̂n, F̂n−k,i1,...,ik , and F̂n+k,i1,...,ik denote
the empirical cumulative distributions of the original sample
{X1, . . . ,Xn}, {X1, . . . ,Xn} − {Xi1, . . . ,Xik}, and {X1, . . . ,Xn,

Xi1 , . . . ,Xik },1 ≤ k < n,1 ≤ il 	= im ≤ n. Then it holds that

sup
x

∣∣F̂n+k,i1,...,ik(x) − F̂n(x)
∣∣ < sup

x

∣∣F̂n−k,i1,...,ik(x) − F̂n(x)
∣∣.
(3)

Proof. Let I denote the indicator function. Then (3) follows
from the relations

F̂n+k,i1,...,ik(x) = n

n + k
F̂n(x) + 1

n + k

k∑
j=1

I
(
Xij ≤ x

)

= F̂n(x) + 1

n + k

k∑
j=1

[
I
(
Xij ≤ x

) − F̂n(x)
]

and

F̂n−k,i1,...,ik(x) = n

n − k
F̂n(x) − 1

n − k

k∑
j=1

I
(
Xij ≤ x

)

= F̂n(x) − 1

n − k

k∑
j=1

[
I
(
Xij ≤ x

) − F̂n(x)
]
.

4. SHRINKAGE OF U–STATISTICS

4.1 U-Statistics and Augmented Samples

For a symmetric kernel h(x1, x2, . . . , xm) of degree m, such
that Eh(X1,X2, . . . ,Xm) = θ, the U-statistic of θ and the
(n + k)-augmented sample estimate (2) are

tn,m =
(

n

m

)−1 ∑
1≤i1<···<im≤n

h
(
Xi1, . . . ,Xim

)
(4)

and

t̃ k
n,m =

(
n

k

)−1 (
n + k

m

)−1

×
∑

X∈An,k

∑
1≤i1<···<im≤n

h
(
Xi1 , . . . ,Xim

)
. (5)
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4.2 Shrinkage Estimates

Let Vm denote the class of symmetric kernels of degree m ≥ 2
that vanish when two of the arguments in the kernel are re-
peated. When h ∈ Vm, t̃ k

n,m turns out to be a shrinkage estimate
of tn,m; the shrinkage coefficients are obtained in Proposition 2.

Proposition 2. Let tn,m be as in (4) with h ∈ Vm, l =
min{k,m}.

a. The (n + k)-augmented sample estimate is

t̃ k
n,m = cn,k,mtn,m

=

(

n + k
m

)−1 l∑
j=0

(
k
j

)(
n − j
m − j

)
 tn,m. (6)

b. The (n + 1)-augmented sample estimate is

t̃ 1
n,m = cn,1,mtn,m =

[
1 − m2 − m

n(n + 1)

]
tn,m, (7)

the corresponding lower bound in (1) is

1 − cn,1,m

1 + cn,1,m
= m2 − m

2n(n + 1) − m2 + m
, (8)

and it holds that

cn,1,m ≤ cn,1,2, m ≥ 2. (9)

c. When m = 2, the (n + k)-augmented sample estimate is

t̃ k
n,2 = cn,k,2tn,2 =

[
1 − 2k

(n + k)(n + k − 1)

]
tn,2, (10)

the corresponding lower bound in (1) is

1 − cn,k,2

1 + cn,k,2
= k

(n + k)(n + k − 1) − k
, (11)

and it holds that

0 < cn,k,2 ≤ cn,k−1,2 ≤ cn,1,2, 2 ≤ k < n. (12)

Proof. To prove part a, let �n,k,m = ∑l
j=0

(k
j

)(n−j
m−j

)
. In (5),(n

k

)(n+k
m

)
t̃ k
n,m has �n,k,m

(n
k

)
nonvanishing terms and equals

(
n

k

)
�n,k,m(n

m

) ∑
1≤i1<i2<···<im≤n

h
(
Xi1,Xi2 , . . . ,Xim

)
. (13)

From (5) and (13), (6) follows. Proofs for parts b and c follow
from the proof of part a.

Remark 1.
a. For the estimate (6), note, for example, that when n = 3,

m = 2, k = 2, and l = 2 then t̃ 2
3,2 = .8t3,2.

b. Equation (12) and Section 2 explain why cn,1,2 is used
when m = 2. From (10), it follows that, for n large, the bias
and the MSE reduction decrease more slowly to 0 when using
cn,kn,2 with kn increasing (see also Sec. 4.4, Remark 5).

For 1 ≤ j ≤ m, let

hj(x1, . . . , xj) = E
[
h(X1, . . . ,Xm)|X1 = x1, . . . ,Xj = xj

]
,

ζj = var[hj(X1, . . . ,Xj)].
Then it holds that (see, e.g., Serfling 1980, p. 183)(

n

m

)
var(tn,m) =

m∑
j=1

(
m

j

)(
n − m

m − j

)
ζj (14)

and

0 ≤ ζ1 ≤ · · · ≤ ζm = var h(X1, . . . ,Xm). (15)

Proposition 3. Let tn,m be as in (4) with h ∈ Vm.

a. The following statements are sufficient for the shrinkage
estimate cδn,1,mtn,m to have smaller MSE than tn,m for every
θ ∈ �; δn is determined by (18) and can be chosen to increase
with n.

1. There is a known constant LF > 0 such that(
n

m

)
inf
θ∈�

var(tn,m)

θ2
> LF. (16)

2. There is a known constant LF > 0 and j0,1 ≤ j0 ≤ m, such
that

inf
θ∈�

ζj0

θ2
> LF. (17)

b. When m = 2, either (16) or (17) is sufficient for the
shrinkage estimate cδn,k,2tn,2 to have smaller MSE than tn,2 for
every θ ∈ �; δn is determined by (19) and can be chosen to
increase with n.

Proof. For part a1, use (1) and choose an increasing se-
quence δn such that for every n, it holds that(

n

m

)
1 − cδn,1,m

1 + cδn,1,m
=

(
n

m

)
m2 − m

2δ2
n + 2δn − m2 + m

< LF. (18)

The proof of part a2 follows from part a1, because from
(14) and (15), it holds that(

n

m

)
var(tn,m) ≥ ζm ≥ · · · ≥ ζ1.

For part b, to prove sufficiency of (16), use (1) and choose an
increasing sequence δn such that for every n, it holds that(

n

2

)
1 − cδn,k,2

1 + cδn,k,2
=

(
n

2

)
k

(δn + k)(δn + k − 1) − k
< LF.

(19)

Sufficiency of (17) follows as for part a1.

Remark 2. When (17) holds for j0 ≤ m − 1, (15) implies that
it also holds for j0 = m.

Corollary 1. If L = infF∈F LF is positive, then the estimate
cδn,1,mtn,m (resp. cδn,k,2tn,2) obtained using L instead of LF

in (18) [resp. (19)] has smaller MSE than tn,m (resp. tn,2) for
all θ ’s and for all models F ∈ F .
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4.3 Applications

The kernels for the population variance and covariance,
Kendall’s τ , and Gini’s index are (x1−x2)

2

2 ,
(x1−x2)( y1−y2)

2 ,
sign((x1 − x2)( y1 − y2)), and |x1 − x2|γ , γ > 0. The ordering
of the coefficients cn,k,2 in Proposition 2c and (1) suggest using
(n + 1)-augmented sample estimates when n is small; δn = nr

is used herein.

4.3.1 The Population Variance σ 2
X and the Population Co-

variance σXY . Let (X1,Y1), . . . , (Xn,Yn) be a two-dimensio-
nal sample with joint cumulative distribution function F;
µX = EX1,µY = EY1, σ

2
X = var(X1), σ

2
Y = var(Y1), σX,Y =

E(X1 − µX)(Y1 − µY), and µ2,2 = E(X1 − µX)2(Y1 − µY)2.

Let tn,2 = 1
n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ) be the U-statistic estimat-

ing σX,Y ; X̄ and Ȳ are the averages of the X’s and of the Y’s. It
holds that (Lee 1990, p. 14)

var(tn,2) = µ2,2

n
− (n − 2)σ 2

X,Y − σ 2
Xσ 2

Y

n(n − 1)

= (n − 1)(µ2,2 − σ 2
X,Y) + σ 2

X,Y + σ 2
Xσ 2

Y

n(n − 1)
, (20)

and because

n(n − 1)
1 − cn,1,2

1 + cn,1,2

= n2 − n

n2 + n − 1

< 1

<
(n − 1)(µ2,2 − σ 2

X,Y) + σ 2
X,Y + σ 2

Xσ 2
Y

σ 2
X,Y

, (21)

it follows from Corollary 1 that t̃ 1
n,2 = cn,1,2tn,2 has a smaller

MSE than tn,2 for all values of σX,Y and for any model F with
EFX2

1 < +∞ and EFY2
1 < +∞,n ≥ 2.

When µX is unknown, σ 2
X is usually estimated by s2

n =
1

n−1

∑n
i=1(Xi − X̄)2 even though n−1

n+1 s2
n has a smaller MSE

for normal populations but is not admissible (Stein 1964). For
nonnormal populations, s2

n may have smaller MSE than ei-
ther n−1

n+1 s2
n or σ̂ 2 = n−1

n s2
n. Using (20) and (21), it follows that

s̃2
n = cn,1,2s2

n = (n+2)(n−1)
n(n+1)

s2
n has a smaller MSE than tn,2 = s2

n
for all values of σ and for any model F with finite second mo-
ment and n ≥ 2.

4.3.2 Kendall’s τ . Let tn,2 = 2
n(n−1)

∑
1≤i<j≤n sign(Xi −

Xj)(Yi −Yj) be the U-statistic estimating τ = P[(X2 −X1)(Y2 −
Y1) > 0]− P[(X2 − X1)(Y2 − Y1) < 0], τ ∈ [−1 + ε,1 − ε],0 <

ε < 1. Then there is positive integer r = r(ε) such that t̃ 1
n,2 =

cnr,1,2tn has a smaller MSE than tn for n ≥ 2. This follows from
Proposition 3a, because it holds that (Lee 1990, p. 14)

var(tn,2) = 2

n(n − 1)

× (
2(n − 2)var

(
E
[
sign(X1 − X2)(Y1 − Y2)|
X1 = x1,Y1 = y1

]) + 1 − τ 2)
and that
n(n − 1)

2

var(tn,2)

τ 2
>

n(n − 1)

2
var(tn,2) > 1−τ 2 > 1−(1−ε)2.

4.3.3 Gini’s Index, g. Let tn,2 = 2
n(n−1)

∑
1≤i<j≤n |Xi −

Xj|γ be the U-statistic estimating g = E|X1 − X2|γ ∈ G, γ > 0.

Assume that

inf
g∈G

var |X1 − X2|γ
g2

> LF > 0.

Then there is a positive integer r = r(LF) such that t̃ 1
n,2 =

cnr,1,2tn,2 has a smaller MSE than tn for n ≥ 2. This follows
from Proposition 3a, as in the previous example, because it
holds that (Serfling 1980, p. 183)

var(tn,2) = 2

n(n − 1)

(
2(n − 2)var E(|X1 − X2|γ |X1 = x1)

+ var |X1 − X2|γ
)
.

4.4 Additional Remarks

Remark 3. Equation (1), Proposition 3, and the results in
Section 4.3 motivate the use of the shrinkage coefficient cnr,1,2

for any unbiased estimate tn of θ for which nm infθ∈�
var(tn)

θ2 >

LF > 0, with LF known. r satisfies the inequality
1

n2r−m+nr−m−n−m < LF for n ≥ 2, and t̃n = cnr,1,2tn dominates
tn for all θ values, n ≥ 2. When LF is not known, the shrinkage
estimate asymptotically improves the unbiased estimate. For
example, when estimating the mean µ of a distribution with X̄
and the variance σ 2 is unknown, it follows from (1) and (11)

with k = 1 that (n−1)(n+2)
n(n+1)

X̄ dominates X̄ if µ2

σ 2 < n2+n−1
n , that

is, if µ2

σ 2 is not “very large,” which holds for n large.

Remark 4. When cnr,1,2tn is used instead of tn, the amount of
MSE reduction increases as the variance of tn increases, and can
be substantial irrespective of the sample size n. For example, in
variance estimation for normal models, it holds that (Lehmann
1983, p. 113)

E

[
c̃

n∑
i=1

(Xi − X̄)2 − σ 2

]2

= σ 4[(n2 − 1)c̃2 − 2(n − 1)c̃ + 1], (22)

and therefore the MSE reduction due to shrinkage is propor-
tional to σ , which can take any positive value.

Remark 5. Rather than using (n + k)-augmented samples to
obtain a shrinkage coefficient for tn,m, a referee suggested find-

ing L > 0 such that inf�,F
var(tn,m)

θ2 > L holds, then solve the
equation 1−c

1+c = L to obtain the shrinkage estimate ctn,m that
dominates tn,m for all F ∈ F . However, the determination of a
lower bound L is not straightforward, and the MSE reduction
achieved with ctn,m may rapidly decrease to 0 as n increases.
For example, in covariance estimation, it follows from (20) that
for each model F, it holds that

var(tn,2)

σ 2
X,Y

= 1

n(n − 1)
+ g(F, σX,Y ,n),

and it is not clear whether inf�,F g(F, σX,Y ,n) > 0 such that
one can choose L = 1

n(n−1)
. In variance estimation, for the nor-

mal model with unknown mean, it holds that inf�,F
var(s2

n)

σ 4 >
2

n(n−1)
, and one can choose Lj = j

n(n−1)
, j = 1,2. The solu-

tion of the equation 1−c
1+c = Lj is cj,n = n2−n−j

n2−n+j
, j = 1,2, but ob-
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Table 1. Comparing Shrinkage Estimates cs2
n (normal model)

n = 5 n = 10 n = 15 n = 20

c values c L = 1−c
1+c MSE c L = 1−c

1+c MSE c L = 1−c
1+c MSE c L = 1−c

1+c MSE

Best (c = n−1
n+1 ) .6667 .1999 .3333 .8182 .1 .1818 .875 .0667 .125 .9048 .0502 .0952

Unbiased (c = 1) 1 0 .5 1 0 .2222 1 0 .1429 1 0 .1053

c1,n = n2−n−1
n2−n+1

.9048 .05 .4184 .978 .011 .2132 .9905 .0044 .1404 .9948 .0022 .1044

c2,n = n2−n−2
n2−n+2

.8182 .1001 .3677 .9565 .0221 .2053 .9811 .0094 .1379 .9895 .0051 .1032
cn,k=1,2 .9333 .0346 .4399 .9818 .0091 .2146 .9917 .0044 .1404 .9952 .0022 .1044
cn,k=2,2 .9048 .05 .4184 .9697 .0156 .2097 .9853 .0073 .139 .9913 .0041 .1036
cn,k=3,2 .8929 .0566 .41 .9615 .0198 .2068 .9804 .0101 .1376 .9881 .006 .1029
cn,k=4,2 .8889 .0589 .4073 .956 .0226 .205 .9766 .0115 .1369 .9855 .007 .1026

serve that c2,2 = 0. Table 1 shows, for n = 5, 10, 15, and 20
and for various c values, the corresponding value of L = 1−c

1+c
and the MSE of the shrinkage estimate cs2

n obtained from (22)
when σ 2 = 1. As n increases, the bias of cs2

n and the associated
MSE improvement both decrease fast to 0, c ∈ {cn,k,2, cj,n; k =
1, . . . ,4, j = 1,2}.

From (10), 1 − cn,k,2 ∼ 2k
n2 , and thus, for n large, larger bias

and MSE reduction can be achieved using coefficients cn,kn,2.

One may choose, for example, kn = γ n,0 < γ < 1, to obtain
var(s2

n)−E(cn,kn,2s2
n−σ 2)2

var(s2
n)

∼ 2
n

γ

(1+γ )2 [2 − γ

(1+γ )2 ].
5. AUGMENTED SAMPLES AND THE JACKKNIFE

5.1 Jackknife Estimates and Pseudovalues

The (n − 1) jackknife estimate t J
n (Quenouille 1956) aims to

reduce the bias of the estimate tn of θ, and is the average of the
pseudovalues ntn − (n − 1)tn−1,i, i = 1, . . . ,n,

t J
n = ntn − 1

n

n∑
i=1

(n − 1)tn−1,i

= tn + (n − 1)

(
tn −

∑n
i=1 tn−1,i

n

)
; (23)

tn−1,i = t(X1, . . . ,Xi−1,Xi+1, . . . ,Xn), i = 1, . . . ,n.

Equation (3) suggests using (n + 1)-augmented samples to
obtain the pseudo values

tn + (n + 1)(tn+1,i − tn) = (n + 1)tn+1,i − ntn, (24)

whose average,

t̃Jn = n−1
n∑

i=1

[(n + 1)tn+1,i − ntn]

= tn + (n + 1)

(∑n
i=1 tn+1,i

n
− tn

)
, (25)

is an alternative (n + 1) jackknife estimate; tn+1,i = tn+1(X1,

. . . ,Xn,Xi), i = 1, . . . ,n.

Note that in (23) and (25), the tn corrections (n − 1)(tn −∑n
i=1 tn−1,i

n ) and (n+1)(

∑n
i=1 tn+1,i

n − tn) may have opposite signs,
and thus t̃ J

n may increase the bias of tn.
It should be mentioned that Hinkley (1978) and Beran (1984)

used (n + k)-augmented samples, k = 1,2, to study the proper-
ties of t J

n but not for the purpose of deriving estimates. Cabrera
and Fernholz (1999) proposed a “target” estimate that, under
model regularity conditions, has smaller bias and MSE than tn.

5.2 MSE Reduction With tnJ and t̃nJ

From (23) [resp. (25)], it follows that t J
n (resp. t̃ J

n ) has a
smaller MSE than tn iff

E(t J
n − tn)

2 +2(n−1)E(tn −θ)

(
tn −

∑n
i=1 tn−1,i

n

)
< 0 (26)

[
resp. E( t̃ J

n − tn)
2

+ 2(n + 1)E(tn − θ)

(∑n
i=1 tn+1,i

n
− tn

)
< 0

]
. (27)

Because

E(tn − θ)

(
tn −

∑n
i=1 tn−1,i

n

)
and

(28)

E(tn − θ)

(∑n
i=1 tn+1,i

n
− tn

)

may have opposite signs, only one of (26) and (27) may hold.
This is confirmed in the following example and for smooth
functionals in Section 5.4.

Example 1. Let X1, . . . ,Xn be a sample from a normal dis-
tribution with unknown mean µ and variance σ 2, θ = σ 2, and
tn = σ̂ 2, the maximum likelihood estimate. Because tn has a
smaller MSE than s2

n for every σ , (26) does not hold; s2
n is

also the “target” estimate of σ 2 (Cabrera and Fernholz 1999,
sec. 4.1, p. 1093, l. 6 and 7). Among all estimates of σ 2 with
form c

∑n
k=1(Xk − X̄n)

2, 1
n+1

∑n
k=1(Xk − X̄n)

2 minimizes the
MSE and is the minimum risk-equivariant estimate (Lehmann
1983, p. 113). Because t̃ J

n = 1
n+1

∑n
k=1(Xk − X̄n)

2, (27) holds.
Indeed, for any sample X1, . . . ,Xn,Xn+1, it holds that X̄n+1 −

X̄n = 1
n+1 (Xn+1 − X̄n), implying that

(n + 1)tn+1 = ntn + n

n + 1
(Xn+1 − X̄n)

2. (29)

For the (n+1)-augmented sample X1, . . . ,Xn,Xn+1 = Xi, it fol-
lows from (29) that

(n + 1)tn+1,i = ntn + n

n + 1
(Xi − X̄n)

2,

and therefore,

t̃ J
n = n−1

n∑
i=1

[(n + 1)tn+1,i − ntn] = 1

n + 1

n∑
i=1

(Xi − X̄n)
2.
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t̃ J
n has a larger bias than tn, because Etn = σ 2 − σ 2

n and Et̃ J
n =

σ 2 − 2σ 2

n+1 .

For the variance σ 2 = m
m−2 of the Tm distribution, estimates

of the MSE based on 1,000 simulations indicate that t̃ J
n has a

smaller MSE than both tn and t J
n ,3 ≤ n ≤ 30,m = 3,10,20,30,

and that (26) does not hold. The graph of the results is presented
in Figure 1 and Remark 7 in the next section provides the ex-
planation.

(a) m = 3

(b) m = 10

(c) m = 20

(d) m = 30

Figure 1. Variance Estimation: Comparing the MSE of tn, t J
n , and t̃ J

n
for the Tm Distribution. The estimated MSE of t̃ J

n , t J
n , and of tn are,

respectively, the solid curve, the dotted curve, and the dashed curve;
based on 1,000 simulations, 3 ≤ n ≤ 30.

Remark 6. The jackknife covariance estimate obtained with
(n+1)-augmented samples is (n+1)−1 ∑n

i=1(Xi − X̄)(Yi − Ȳ).

5.3 Calculations for Smooth Functionals

Let θ = t(F), and let tn = t(F̂n) be a smooth functional with
second-order von Mises expansion

tn = θ + 1

n

n∑
j=1

a1(Xj) + 1

2n2

n∑
k=1

n∑
l=1

a2(Xk,Xl) + Rem2, (30)

and normalized kernels a1(x) and a2(x, y) such that

EFa1(X) = 0,

a2(X,Y) = a2(Y,X), and (31)

EFa2(x,Y) = 0.

Under regularity conditions implying that Rem2 = oP(n−1) (see
Serfling 1980), it holds that

tn−1,i = t(F̂n−1,i)

= θ + 1

n − 1

(
n∑

j=1

a1(Xj) − a1(Xi)

)

+ 1

2(n − 1)2

(
n∑

k=1

n∑
l=1

a2(Xk,Xl)

−
n∑

l=1

a2(Xi,Xl) −
∑
k 	=i

a2(Xk,Xi)

)

+ oP(n−1),

thus obtaining from (23) and (30) that

(n − 1)

(
tn −

∑n
i=1 tn−1,i

n

)

= 1

2n2(n − 1)

n∑
k=1

n∑
l=1

a2(Xk,Xl)

− 1

2n(n − 1)

n∑
i=1

a2(Xi,Xi) + oP(1). (32)

It also holds that

tn+1,i = t(F̂n+1,i)

= θ + 1

n + 1

(
n∑

j=1

a1(Xj) + a1(Xi)

)

+ 1

2(n + 1)2

(
n∑

k=1

n∑
l=1

a2(Xk,Xl) +
n∑

l=1

a2(Xi,Xl)

+ a2(Xi,Xi) +
n∑

k=1

a2(Xk,Xi)

)

+ oP(n−1),
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thus obtaining from (25) and (30) that

(n + 1)

(∑n
i=1 tn+1,i

n
− tn

)

= − 1

2n2(n + 1)

n∑
k=1

n∑
l=1

a2(Xk,Xl)

+ 1

2n(n + 1)

n∑
i=1

a2(Xi,Xi) + oP(1). (33)

For n large, (32) and (33) confirm the opposite signs of the
tn corrections in (23) and (25), and when in addition ERem2

is negligible, they further confirm the opposite sign of their ex-
pectations.

For n large, the next proposition determines when t J
n , t̃ J

n ,
and t̃ 1

n [see (2)] improve tn.

Proposition 4. Assume that ERem2 is negligible.

a. For t J
n and t̃ J

n , it holds that

E(t J
n − tn)

2 ∼ E( t̃ J
n − tn)

2 ∼ [Ea2(X1,X1)]2

4n2
,

E(t J
n − tn)(tn − θ) ∼ −Ea1(X1)a2(X1,X1)

2n2
− [Ea2(X1,X1)]2

4n2
,

and

E( t̃ J
n − tn)(tn − θ) ∼ Ea1(X1)a2(X1,X1)

2n2
+ [Ea2(X1,X1)]2

4n2
.

For n large, the MSE of t̃ J
n (resp. t J

n ) is smaller than the MSE
of tn iff

Ea1(X1)a2(X1,X1) < −.75[Ea2(X1,X1)]2[
resp. Ea1(X1)a2(X1,X1) > −.25[Ea2(X1,X1)]2].

b. For t̃ 1
n , it holds that

E( t̃ 1
n − tn)

2 ∼ (4n4)−1[Ea2(X1,X1)]2

and

E( t̃ 1
n − tn)(tn − θ)

∼ (2n3)−1Ea1(X1)a2(X1,X1) + (4n3)−1[Ea2(X1,X1)]2.

For n large, the MSE of t̃ 1
n is smaller than the MSE of tn iff

Ea1(X1)a2(X1,X1) < −.5[Ea2(X1,X1)]2.

For the proof see the Appendix.

Remark 7. For the normalized kernels a1 and a2 of the vari-
ance functional σ 2 = t(F), it holds that a1(x1) = (x1 − µ)2 −
σ 2 and a2(x1, x1) = −2(x1 − µ)2. Thus Ea1(X1)a2(X1,X1) =
−2(µ4 − σ 4) and Ea2(X1,X1) = −2σ 2, and it follows from
Proposition 4 that t̃ J

n improves tn and t J
n if µ4 > 2.5σ 4. This

holds for the Tm random variable with σ 2 = m
m−2 and µ4 =

3m2

(m−2)(m−4)
,m > 4.

APPENDIX: PROOFS

Lemma A.1. For the kernels a1 and a2 in (30) that satisfy (31), it
holds that

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Ea2(Xi,Xj)a2(Xk,Xl)

=
n∑

i=1

n∑
k=1

n∑
l=1

Ea2(Xi,Xi)a2(Xk,Xl) (A.1)

=
n∑

i=1

n∑
j=1

Ea2(Xi,Xi)a2(Xj,Xj)

= n(n − 1)[Ea2(X1,X1)]2 + nEa2
2(X1,X1), (A.2)

n∑
k=1

n∑
l=1

n∑
j=1

Ea2(Xk,Xl)a1(Xj)

=
n∑

i=1

n∑
j=1

Ea2(Xi,Xi)a1(Xj)

= nEa1(X1)a2(X1,X1). (A.3)

Proof. It is sufficient to observe that (31) implies that

Ea2(Xi,Xj)a2(Xk,Xl) = 0, i 	= j 	= k 	= l;
Ea2(Xi,Xj)a2(Xi,Xl) = 0, i 	= j 	= l;
Ea2(Xi,Xi)a2(Xk,Xl) = 0, i 	= k 	= l;
Ea2(Xi,Xi)a2(Xi,Xl) = 0, i 	= l;

Ea2(Xk,Xl)a1(Xj) = 0, k 	= l 	= j;
Ea2(Xk,Xk)a1(Xj) = 0, k 	= j;
Ea2(Xj,Xl)a1(Xj) = 0, j 	= l.

Proof of Proposition 4. a. Equations (23), (32), and (33); negligi-
bility of ERem2, and (A.1)–(A.3) imply that

E(t J
n − tn)2

∼ E( t̃ J
n − tn)2

∼ 1

4n6

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Ea2(Xi,Xj)a2(Xk,Xl)

+ 1

4n4

n∑
i=1

n∑
j=1

Ea2(Xi,Xi)a2(Xj,Xj)

− 1

2n5

n∑
i=1

n∑
k=1

n∑
l=1

Ea2(Xi,Xi)a2(Xk,Xl)

∼ [Ea2(X1,X1)]2
4n2

, (A.4)

E(t J
n − tn)(tn − θ)

∼ 1

2n4

n∑
k=1

n∑
l=1

n∑
j=1

Ea2(Xk,Xl)a1(Xj)

+ 1

4n5

n∑
k=1

n∑
l=1

n∑
i=1

n∑
j=1

Ea2(Xk,Xl)a2(Xi,Xj)
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− 1

2n3

n∑
i=1

n∑
j=1

Ea2(Xi,Xi)a1(Xj)

− 1

4n4

n∑
i=1

n∑
k=1

n∑
l=1

Ea2(Xi,Xi)a2(Xk,Xl)

∼ −Ea1(X1)a2(X1,X1)

2n2
− [Ea2(X1,X1)]2

4n2
, (A.5)

and

E( t̃ J
n − tn)(tn − θ) ∼ −E(t J

n − tn)(tn − θ).

The conditions for t J
n and t̃ J

n to improve tn for n large follow from
(26) and (27).

b. From (33), it holds that

t̃ 1
n − tn = −(2n2(n + 1)2)−1

n∑
k=1

n∑
l=1

a2(Xk,Xl)

+ (2n(n + 1)2)−1
n∑

i=1

a2(Xi,Xi) + Rem∗
2.

Negligibility of ERem2 and (A.1)–(A.3) imply that

E( t̃ 1
n − tn)2 ∼ (4n8)−1

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Ea2(Xi,Xj)a2(Xk,Xl)

+ (4n6)−1
n∑

i=1

n∑
j=1

Ea2(Xi,Xi)a2(Xj,Xj)

− (2n7)−1
n∑

i=1

n∑
k=1

n∑
l=1

Ea2(Xi,Xi)a2(Xk,Xl)

∼ (4n4)−1[Ea2(X1,X1)]2
and

E( t̃ 1
n − tn)(tn − θ)

∼ −(2n5)−1
n∑

k=1

n∑
l=1

n∑
j=1

Ea2(Xk,Xl)a1(Xj)

− (4n6)−1
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

Ea2(Xi,Xj)a2(Xk,Xl)

+ (2n4)−1
n∑

i=1

n∑
j=1

Ea1(Xj)a2(Xi,Xi)

+ (4n5)−1
n∑

k=1

n∑
l=1

n∑
i=1

Ea2(Xk,Xl)a2(Xi,Xi)

∼ (2n3)−1Ea1(X1)a2(X1,X1) + (4n3)−1[Ea2(X1,X1)]2.

The result follows because t̃ 1
n improves tn iff E( t̃ 1

n − tn)2 + 2E( t̃ 1
n −

tn)(tn − θ) < 0.

[Received January 2004. Revised February 2005.]
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