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Introduction





1

Correlation, Association, and the
Yule–Simpson Paradox

Causality is central to human knowledge. Two famous quotes from ancient
Greeks are below.

I would rather discover one causal law than be King of Persia.

— Democritus

We do not have knowledge of a thing until we grasped its cause.

— Aristotle

However, the major part of classic statistics is about association rather
than causation. This chapter will review some basic association measures and
point out their fundamental limitations.

1.1 Traditional view of statistics

A traditional view of statistics is to infer correlation or association among
variables. Based on this view, there is no role for causal inference in statistics.
Two famous aphorisms based on this view are below:

• “Correlation does not imply causation.”

• “You cannot prove causality with statistics.”

This book has a very different view: statistics is crucial for understanding
causality. The main focus of this book is to introduce the formal language for
causal inference and develop statistical methods to estimate causal effects in
randomized experiments and observational studies.

3
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1.2 Some commonly-used measures of association

1.2.1 Correlation and regression

The Pearson correlation coefficient between two random variables Z and Y is

ρZY =
cov(Z, Y )√
var(Z)var(Y )

,

which measures the linear dependence of Z and Y.
The linear regression of Y on Z is the model

Y = α+ βZ + ε, (1.1)

where E(ε) = 0 and E(εZ) = 0. We can show that the regression coefficient
β equals

β =
cov(Z, Y )

var(Z)
= ρZY

√
var(Y )

var(Z)
.

So β and ρZY always have the same sign.
We can also define multiple regression of Y on Z and X:

Y = α+ βZ + γX + ε, (1.2)

where E(ε) = 0, E(εZ) = 0 and E(εX) = 0. We usually interpret β as the
“effect” of Z on Y , holding X constant or conditioning on X or controlling
for X. Chapter A2 reviews the basics of linear regression.

More interestingly, the β’s in the above two regressions (1.1) and (1.2) can
be different; they can even have different signs. The following R code reana-
lyzed the LaLonde observational data used by Hainmueller (2012). The main
question of interest is the “causal effect” of a job training program on earn-
ing. The regression controlling for all covariates gives coefficient 1067.5461 for
treat, while the regression not controlling for any covariates gives coefficient
-8506.4954 for treat.

> dat <- read.table("cps1re74.csv", header = TRUE)

> dat$u74 <- as.numeric(dat$re74 ==0)
> dat$u75 <- as.numeric(dat$re75 ==0)
>

> ## linear regression on the outcome

> lmoutcome = lm(re78 ~ ., data = dat)

> summary(lmoutcome)$coef[2, 1:2]

Estimate Std. Error

1067.5461 554.0595

>

> lmoutcome = lm(re78 ~ treat , data = dat)

> summary(lmoutcome)$coef[2, 1:2]

Estimate Std. Error

-8506.4954 712.7664
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1.2.2 Contingency tables

We can represent the joint distribution of two binary variables Z and Y by a
two-by-two contingency table. With pzy = pr(Z = z, Y = y), we can summa-
rize the joint distribution in the following table:

Y = 1 Y = 0
Z = 1 p11 p10
Z = 0 p01 p00

Viewing Z as the treatment or exposure and Y as the outcome, we can
define the risk difference as

rd = pr(Y = 1 | Z = 1)− pr(Y = 1 | Z = 0)

=
p11

p11 + p10
− p01
p01 + p00

,

the risk ratio as

rr =
pr(Y = 1 | Z = 1)

pr(Y = 1 | Z = 0)

=
p11

p11 + p10

/ p01
p01 + p00

,

and the odds ratio1 as

or =
pr(Y = 1 | Z = 1)/pr(Y = 0 | Z = 1)

pr(Y = 1 | Z = 0)/pr(Y = 0 | Z = 0)

=

p11

p11+p10
/ p10

p11+p10

p01

p01+p00
/ p00

p01+p00

=
p11p00
p10p01

.

The terminologies risk difference, risk ratio, and odds ratio come from
epidemiology. Because the outcomes in epidemiology are often diseases, it is
natural to use the name “risk” for the probability of having diseases.

We have the following simple facts for these measures.

Proposition 1.1 (1) The following statements are all equivalent2: Z Y ,
rd = 0, rr = 1, and or = 1. (2) If pzy’s are all positive, then rd > 0
is equivalent to rr > 1 and is also equivalent to or > 1 (3) or ≈ rr if
pr(Y = 1 | Z = 1) and pr(Y = 1 | Z = 0) are small.

1In probability theory, the odds of an event is defined as the ratio of the probability that
the event happens over the probability that the event does not happen.

2This book uses the notation to denote independence or conditional independence of
random variables. The notation is due to Dawid (1979).
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I leave the proofs of statements (1) and (2) as a homework problem. State-
ment (3) is informal. The approximation holds because the odds p/(1 − p)
is close to the probability p for rare diseases with p ≈ 0: by Taylor expan-
sion p/(1 − p) = p + p2 + · · · ≈ p. In epidemiology, if the outcome repre-
sents the occurrence of a rare disease, then it is reasonable to assume that
pr(Y = 1 | X = 1) and pr(Y = 1 | X = 0) are small.

We can also define conditional versions of the rd, rr, and or if the prob-
abilities are replaced by the conditional probabilities given another variable
X, i.e., pr(Y = 1 | Z = 1, X = x) and pr(Y = 1 | Z = 0, X = x).

With frequencies nzy = #{i : Zi = z, Yi = y}, we can summarize the
observed data in the following two-by-two table:

Y = 1 Y = 0
Z = 1 n11 n10
Z = 0 n01 n00

We can estimate rd, rr, and or by replacing the true probabilities by
the sample proportions. In R, functions fisher.test performs exact test and
chisq.test performs asymptotic test for Z Y based on a two-by-two table of
observed data.

Example 1.1 Bertrand and Mullainathan (2004) conducted a randomized ex-
periment on resumes to study the effect of perceived race on callbacks for inter-
views. They randomly assigned African-American- or White-sounding names
on fictitious resumes to help-wanted ads in Boston and Chicago newspapers.
The following two-by-two table summarizes perceived race and callback:

> resume = read.csv("resume.csv")

> Alltable = table(resume$race , resume$call)
> Alltable

0 1

black 2278 157

white 2200 235

The two rows have the same total count, so it is apparent that White names
received more callbacks. Fisher’s exact test below shows that this difference is
statistically significant.

> fisher.test(Alltable)

Fisher ’s Exact Test for Count Data

data: Alltable

p-value = 4.759e-05

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.249828 1.925573

sample estimates:
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odds ratio

1.549732

1.3 An example of the Yule–Simpson Paradox

1.3.1 Data

The classic Kidney stone example is from Charig et al. (1986), where Z is the
treatment with 1 for an open surgical procedure and 0 for a small puncture,
and Y is the outcome with 1 for success and 0 for failure. The treatment and
outcome data can be summarized in the following two-by-two table:

Y = 1 Y = 0

Z = 1 273 77
Z = 0 289 61

The estimated rd is

r̂d =
273

273 + 77
− 289

289 + 61
= 78%− 83% = −5% < 0.

Treatment 0 seems better, that is, the small puncture leads to higher successful
rate compared to the open surgical procedure.

However, the data were not from a randomized controlled trial (RCT)3.
Patients receiving treatment 1 can be very different from patients receiving
treatment 0. A “lurking variable” in this study is the severity of the case:
some patients have smaller stones but some patients have larger stones. We
can split the data according to the size of the stones.

For patients with smaller stones, the treatment and outcome data can be
summarized in the following two-by-two table:

Y = 1 Y = 0

Z = 1 81 6
Z = 0 234 36

For patients with larger stones, the treatment and outcome data can be sum-
marized in the following two-by-two table:

Y = 1 Y = 0

Z = 1 192 71
Z = 0 55 25

3In an RCT, patients are randomly assigned to the treatment arms. Part II of this book
will focus on RCTs.
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The latter two tables must add up to the first table:

81 + 192 = 273, 6 + 71 = 77, 234 + 55 = 289, 36 + 25 = 61.

From the table for patients with smaller stones, the estimated rd is

r̂dsmaller =
81

81 + 6
− 234

234 + 36
= 93%− 87% = 6% > 0,

suggesting that treatment 1 is better. From the table for patients with larger
stones, the estimated rd is

r̂dlarger =
192

192 + 71
− 55

55 + 25
= 73%− 69% = 4% > 0,

also suggesting that treatment 1 is better.
The above data analysis leads to

r̂d < 0, r̂dsmaller > 0, r̂dlarger > 0.

Informally, treatment 1 is better for both patients with smaller and larger
stones, but treatment 1 is worse for the whole population. This interpretation
is quite confusing if the goal is to infer the treatment effect. In statistics,
this is called the Yule–Simpson or Simpson’s Paradox in which the marginal
association has the opposite sign to the conditional associations at all levels.

1.3.2 Explanation

Let X be the binary indicator with X = 1 for smaller stones and X = 0 for
larger stones. Let us first take a look at the X–Z relationship by comparing
the probabilities of receiving treatment 1 among patients with smaller and
larger stones:

p̂r(Z = 1 | X = 1)− p̂r(Z = 1 | X = 0)

=
81 + 6

81 + 6 + 234 + 36
− 192 + 71

192 + 71 + 55 + 25
= 24%− 77%

= −53% < 0.

So patients with larger stones tend to take treatment 1. Statistically, X and
Z have negative association.

Let us then take a look at theX–Y relationship by comparing the probabil-
ities of success among patients with smaller and larger stones: under treatment
1,

p̂r(Y = 1 | Z = 1, X = 1)− p̂r(Y = 1 | Z = 1, X = 0)

=
81

81 + 6
− 192

192 + 71
= 93%− 73%

= 20% > 0;
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FIGURE 1.1: A diagram for the kidney stone example. The signs indicate the
associations of two variables, conditioning on other variables pointing to the
downstream variable.

under treatment 0,

p̂r(Y = 1 | Z = 0, X = 1)− p̂r(Y = 1 | Z = 0, X = 0)

=
234

234 + 36
− 55

55 + 25
= 87%− 69%

= 18% > 0.

So under both treatment levels, patients with smaller stones have higher suc-
cess probabilities. Statistically, X and Y have positive association conditional
on both treatment levels.

We can summarize the qualitative associations in the diagram in Figure
1.1. In technical terms, the treatment has a positive direct path and a more
negative indirect path to the outcome, so the overall association is negative
between the treatment and outcome. In plain English, when less effective
treatment 0 is applied more frequently to the less severe cases, it can appear
to be a more effective treatment.

1.3.3 Geometry of the Yule–Simpson Paradox

Assume that the 2× 2 table based on the aggregated data has counts

whole population Y = 1 Y = 0

Z = 1 n11 n10
Z = 0 n01 n00

The two 2 × 2 tables based on subgroups with X = 1 and X = 0 have
counts

subpopulation X = 1 Y = 1 Y = 0

Z = 1 n11|1 n10|1
Z = 0 n01|1 n00|1
subpopulation X = 0 Y = 1 Y = 0

Z = 1 n11|0 n10|0
Z = 0 n01|0 n00|0
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FIGURE 1.2: Geometry of the Yule–Simpson Paradox

Figure 1.2 shows the geometry of the Yule–Simpson Paradox. The y-axis
shows the count of successes with Y = 1 and the x-axis shows the count of
failures with Y = 0. The two parallelograms corresponds to aggregating the
counts of successes and failures under two treatment levels. The slope of OA1

is larger than that of OB1, and the slope of OA0 is larger than that of OB0.
So the treatment seems beneficial to the outcome within both levels of X.
However, the slope of OA is smaller than that of OB. So the treatment seems
harmful to the outcome for the whole population. The Yule–Simpson Paradox
arises.

1.4 The Berkeley graduate school admission data

Bickel et al. (1975) investigated the admission rates of male and female stu-
dents into the graduate school of Berkeley. The R package datasets contains
the original data UCBAdmissions. The raw data by the six largest departments
are shown below:

> library(datasets)
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> UCBAdmissions = aperm(UCBAdmissions , c(2, 1, 3))

> UCBAdmissions

, , Dept = A

Admit

Gender Admitted Rejected

Male 512 313

Female 89 19

, , Dept = B

Admit

Gender Admitted Rejected

Male 353 207

Female 17 8

, , Dept = C

Admit

Gender Admitted Rejected

Male 120 205

Female 202 391

, , Dept = D

Admit

Gender Admitted Rejected

Male 138 279

Female 131 244

, , Dept = E

Admit

Gender Admitted Rejected

Male 53 138

Female 94 299

, , Dept = F

Admit

Gender Admitted Rejected

Male 22 351

Female 24 317

Aggregating the data over departments, we have a simple two-by-two table:

> UCBAdmissions.sum = apply(UCBAdmissions , c(1, 2), sum)

> UCBAdmissions.sum

Admit

Gender Admitted Rejected
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Male 1198 1493

Female 557 1278

The following function, building upon chisq.test, have a two-by-two table
as the input and the estimated rd and p-value as output:

> risk.difference = function(tb2)

+ {

+ p1 = tb2[1, 1]/(tb2[1, 1] + tb2[1, 2])

+ p2 = tb2[2, 1]/(tb2[2, 1] + tb2[2, 2])

+ testp = chisq.test(tb2)

+

+ return(list(p.diff = p1 - p2 ,

+ pv = testp$p.value ))
+ }

With this function, we find large and significant difference between the ad-
mission rates of male and female students:

> risk.difference(UCBAdmissions.sum)

$p.diff
[1] 0.1416454

$pv
[1] 1.055797e-21

Stratifying on the departments, we find smaller and insignificant differences
between the admission rates of male and female students. In department A,
the difference is significant but negative.

> P.diff = rep(0, 6)

> PV = rep(0, 6)

> for(dd in 1:6)

+ {

+ department = risk.difference(UCBAdmissions[, , dd])

+ P.diff[dd] = department$p.diff
+ PV[dd] = department$pv
+ }

>

> round(P.diff , 2)

[1] -0.20 -0.05 0.03 -0.02 0.04 -0.01

> round(PV, 2)

[1] 0.00 0.77 0.43 0.64 0.37 0.64

1.5 Homework Problems

1.1 Independence in two-by-two tables

Prove (1) and (2) in Proposition 1.1.
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1.2 Correlation and partial correlation

Consider a three-dimensional Normal random vector:XY
Z

 ∼ N

0
0
0

 ,

 1 ρXY ρXZ

ρXY 1 ρY Z

ρXZ ρY Z 1

 .

The correlation coefficient between X and Y is ρXY . There are many equiva-
lent definitions of the partial correlation coefficient. For a multivariate Normal
vector, let ρXY |Z denote the partial correlation coefficient between X and Y
given Z, which is defined as their correlation coefficient in the conditional
distribution (X,Y ) | Z. Show that

ρXY |Z =
ρXY − ρXZρY Z√
1− ρ2XZ

√
1− ρ2Y Z

Give an example with ρXY > 0 and ρXY |Z < 0.
Remark: This is the Yule–Simpson Paradox for a Normal random vector.

1.3 Specification searches

Section 1.2.1 re-analyzes the data used by Hainmueller (2012) with R code in
LalondeRegression.R. In total, the data contain 10 covariates and therefore
210 = 1024 possible subsets of covariates in the linear regression. Run 1024
linear regressions with all possible subsets of covariates, and report the regres-
sion coefficients of the treatment. How many are positively significant, how
many are negatively significant, and how many are not significant? You can
also report other interesting findings from these regressions.

1.4 More on racial discrimination

Section 1.2.2 re-analyzes the data collected by Bertrand and Mullainathan
(2004) with R code in resume.R. Conduct analyses separately for males and
females. What do you find from these subgroup analyses?

1.5 Recommended reading

Bickel et al. (1975) is the original paper for the paradox reported in Section
1.4.
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Potential Outcomes

2.1 Experimentalists’ view of causal inference

Rubin (1975) and Holland (1986) made up the aphorism:

no causation without manipulation.

Not everybody agrees with this point of view. However, it is quite helpful to
clarify ambiguity in thinking about causal relationships. This book follows
this view and defines causal effects using the potential outcomes framework
(Neyman, 1923; Rubin, 1974). In this framework, an experiment, or at least a
thought experiment, has an intervention, a manipulation, or a treatment, and
we are interested in its effect on an outcome or multiple outcomes.

Example 2.1 If we are interested in the effect of taking aspirin or not on the
relief of head ache, the intervention is taking aspirin.

Example 2.2 If we are interested in the effect of participating in a job train-
ing program or not on employment and wage, the intervention is participating
in a job training program.

Example 2.3 If we are interested in the effect of studying in a small class-
room or a large classroom on standardized test scores, the intervention is
studying in a small classroom.

Example 2.4 Gerber et al. (2008) were interested in the effect of different
get-out-to-vote messages on the voting behavior. The intervention is different
get-out-to-vote messages.

Example 2.5 Pearl (2018) claimed that we could infer the effect of obesity on
life span. A popular measure of obesity of the body mass index (BMI), defined
as the body mass divided by the square of the body height in units of kg/m2.
So the intervention can be BMI.

However, there are different levels of ambiguity of the interventions above.
The meanings of interventions in Examples 2.1–2.4 are relatively clear, but the
meaning of intervention on BMI in Example 2.5 is less clear. In particular, we
can imagine different versions of BMI reduction: healthier diet, more physical

15
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exercise, bariatric surgery, etc. These different versions of intervention can
have quite different effects on the outcome. In this book, we will view the
intervention in Example 2.5 as ill-defined without further clarifications.

Another ill-defined intervention is race. Racial discrimination is an impor-
tant issue in labor market, but it is not easy to imagine an experiment to
change the race of any experimental unit. Bertrand and Mullainathan (2004)
give an interesting experiment that partially answers the question.

Example 2.6 Bertrand and Mullainathan (2004) randomly change the
names on the resumes, and compare the callback rates of resumes with African-
American- or White-sounding names. For each resume, the intervention is
the binary indicator of African-American- or White-sounding name, and the
outcome is the binary indicator of callback. We have analyzed the following
two-by-two table in Section 1.2.2:

callback no callback
African-American 157 2278

White 235 2200

From the above, we can compare the the probabilities of being called back
among African-American- and White-sounding names:

157

2278 + 157
− 235

2200 + 235
= 6.45%− 9.65% = −3.20% < 0

with p-value from the Fisher exact test much smaller than 0.001.

In Bertrand and Mullainathan (2004)’s experiment, the treatment is the
perceived race which can be manipulated by experimenters. They design an
experiment to answer a well-defined causal question.

2.2 Formal notation of potential outcomes

Consider a study with n experimental units indexed by i = 1, . . . , n. As a
starting point, we focus on a treatment with two levels: 1 for the treatment
and 0 for the control. For each unit i, the outcome of interest Y has two
versions:

Yi(1) and Yi(0),

which are potential outcomes under the hypothetical interventions 1 and 0.
Neyman (1923) first used this notation. It seems intuitive but has some hidden
assumptions. Rubin (1980) made the following clarifications on the hidden
assumptions.
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Assumption 2.1 (no interference) Unit i’s potential outcomes do not de-
pend on other units’ treatments. This is sometimes called the no-interference
assumption.

Assumption 2.2 (consistency) There are no other versions of the treat-
ment. Equivalently, we require that the treatment level be well defined, or have
no ambiguity at least for the outcome of interest. This is sometimes called the
consistency assumption.

Assumption 2.1 can be violated in infectious diseases or network exper-
iments. For instance, if some of my friends receive flu shots, my chance of
getting the flu decrease even if I do not receive the flu shot; if my friends see
an ad on Facebook, my chance of buying that product increase even if I do
not see the ad. It is an active research area to study situations with interfering
units in modern causal inference literature.

Assumption 2.2 can be violated for treatment with complex components.
For instance, when studying the effect of cigarette smoking on lung cancer, the
type of cigarettes may matter; when studying the effect of college education
on income, the type and major of college education may matter.

Rubin (1980) called the Assumptions 2.1 and 2.2 above together the Stable
Unit Treatment Value Assumption (SUTVA).

Assumption 2.3 (SUTVA) Both Assumptions 2.1 and 2.2 hold.

Under SUTVA, Rubin (2005) called the n×2 matrix of potential outcomes
the Science Table:

i Yi(1) Yi(0)
1 Y1(1) Y1(0)
2 Y2(1) Y2(0)
...

...
...

n Yn(1) Yn(0)

Due to Neyman and Rubin’s fundamental contribution to statistical causal
inference, the potential outcomes framework is sometimes called the Neyman
model, the Neyman–Rubin model, or the Rubin Causal Model.

Causal effects are functions of the Science Table. Inferring individual causal
effects

τi = Yi(1)− Yi(0)

is fundamentally challenging because we can only observe either Yi(1) or Yi(0)
for each unit i, that is, we can observed only half of the Science Table. As
a starting point, most parts of the book focus on the average causal effect
(ACE):

τ = n−1
n∑

i=1

{Yi(1)− Yi(0)} = n−1
n∑

i=1

Yi(1)− n−1
n∑

i=1

Yi(0).

But we can easily extend our discussion to many other parameters (also called
estimands).
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2.2.1 Causal effects, subgroups, and the non-existence of
Yule–Simpson Paradox

If we have two subgroups defined by a binary variable xi, we can define the
subgroup causal effects as

τx =

∑n
i=1 I(xi = x){Yi(1)− Yi(0)}∑n

i=1 I(xi = x)
, (x = 0, 1)

where I(·) is the indicator function. A simple identity is that

τ = π1τ1 + π0τ0

where πx =
∑n

i=1 I(xi = x)/n is the proportion of units with xi = x (x = 0, 1).
Therefore, if τ1 > 0 and τ0 > 0, we must have τ > 0. The Yule–Simpson
Paradox thus cannot happen to causal effects.

2.2.2 Subtlety of experimental unit

I end this section with a subtlety related to the definition of the experimental
unit. Simply speaking, the experimental unit can be different from the physical
unit. For example, if I did not take aspirin before and my headache did not go
way, but I take aspirin now and my headache goes away, you might think that
we can observed my potential outcomes under both control and treatment.
Let i index myself, and let Y = 1 denote the indicator of no headache. Then,
the above heuristic suggests that Yi(0) = 0 and Yi(1) = 1, so it seems that
aspirin kills my headache. But this logic is very wrong because of the misun-
derstanding of the definition of the experimental unit. At different time points,
I, the same physical person, become two distinct experiment units, indexed
by “i,before” and “i, after”. Therefore, we have four potential outcomes

Yi,before(0) = 0, Yi,before(1) =?, Yi,after(0) =?, Yi,after(1) = 1,

with two of them observed and two of them missing. The individual causal
effects

Yi,before(1)− Yi,before(0) =?− 0 and Yi,after(1)− Yi,after(0) = 1−?

are unknown. It is possible that my headache goes away even if I do not take
aspirin:

Yi,after(0) = 1, Yi,after(1) = 1

which implies zero effect; it is also possible that my headache does not go
away if I do not take aspirin:

Yi,after(0) = 0, Yi,after(1) = 1

which implies a positive effect of aspirin.
The wrong heuristic argument might get the right answer if the control

potential outcomes are stable at the before and after periods: Yi,before(0) =
Yi,after(0) = 0. But this assumption is rather strong and fundamentally
untestable.
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2.3 Treatment assignment mechanism

Let Zi be the binary treatment indicator for unit i, vectorized as Z =
(Z1, . . . , Zn). The observed outcome of unit i is a function of the potential
outcomes and the treatment indicator:

Yi =

{
Yi(1), if Zi = 1

Yi(0), if Zi = 0
(2.1)

= ZiYi(1) + (1− Zi)Yi(0) (2.2)

= Yi(0) + Zi{Yi(1)− Yi(0)} (2.3)

= Yi(0) + Ziτi. (2.4)

Equation (2.1) is the definition of the observed outcome. Equation (2.2) is
equivalent to (2.1). It is a trivial fact, but Judea Pearl viewed it as the fun-
damental bridge between the potential outcomes and the observed outcome.
Equations (2.3) and (2.4) highlight the fact that the individual causal effect
τi = Yi(1)− Yi(0) can be heterogeneous across units.

The experiment only reveals one of unit i’s potential outcomes with the
other one missing:

Y mis
i =

{
Yi(0), if Zi = 1

Yi(1), if Zi = 0

= ZiYi(0) + (1− Zi)Yi(1).

The missing potential outcome correspond to the opposite treatment level
of unit i. For this reason, the potential outcomes framework is also called
the counterfactual framework. This name can be confusing because before the
experiment, both potential outcomes are observable, and after the experiment,
one potential outcomes is actually observed.

The treatment assignment mechanism, i.e., the probability distribution of
Z, plays an important role in inferring causal effects. The following simple
numerical examples illustrate this point. We first generate potential outcomes
from Normal distributions with the average causal effect close to −0.5.

> n = 500

> Y0 = rnorm(n)

> tau = - 0.5 + Y0

> Y1 = Y0 + tau

A perfect doctor assigns the treatment to the patient if s/he knows that the
individual causal effect is non-negative. This results in a positive difference in
means of the observed outcomes:

> Z = (tau >= 0)

> Y = Z*Y1 + (1 - Z)*Y0
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> mean(Y[Z==1]) - mean(Y[Z==0])

[1] 2.166509

A clueless doctor does not know any information about the individual causal
effects and assigns the treatment to patients by flipping a fair coin. This results
in a difference in means of the observed outcomes close to the true average
causal effect:

> Z = rbinom(n, 1, 0.5)

> Y = Z*Y1 + (1 - Z)*Y0

> mean(Y[Z==1]) - mean(Y[Z==0])

[1] -0.552064

The above examples are hypothetical since no doctors perfectly know the
individual causal effects. However, the examples do demonstrate the crucial
role of the treatment assignment mechanism. This book will organize the
topics based on the treatment assignment mechanism.

2.4 Homework Problems

2.1 A perfect doctor

Following the first perfect doctor example in Section 2.3, assume the potential
outcomes are random variables generated from

Y (0) ∼ N(0, 1), τ = −0.5 + Y (0), Y (1) = Y (0) + τ.

The binary treatment is determined by the treatment effect as Z = 1(τ ≥ 0),
and the observed outcome is determined by the potential outcomes and the
treatment by Y = ZY (1) + (1− Z)Y (0). Calculate the difference in means

E(Y | Z = 1)− E(Y | Z = 0).

Hint: The mean of a truncated Normal random variable equals

E(X | a < X < b) = µ− σ
ϕ
(

b−µ
σ

)
− ϕ

(
a−µ
σ

)
Φ
(

b−µ
σ

)
− Φ

(
a−µ
σ

) ,
where X ∼ N(µ, σ2), and ϕ(·) and Φ(·) are the probability density and cumu-
lative distribution functions of a standard Normal random variable.

2.2 Nonlinear causal estimands

With potential outcomes {(Yi(1), Yi(0)}ni=1 for n units under the treatment
and control, the difference in means equals the mean of the individual treat-
ment effects:

Ȳ (1)− Ȳ (0) = n−1
n∑

i=1

{Yi(1)− Yi(0)}.
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Therefore, the average treatment effect is a linear causal estimand.
Other estimands may not be linear. For instance, we can define the median

treatment effect as

δ1 = median{(Yi(1)}ni=1 −median{(Yi(0)}ni=1,

which is, in general, different from the median of the individual treatment
effect

δ2 = median{(Yi(1)− Yi(0)}ni=1.

1. Give numerical examples which have δ1 = δ2, δ1 > δ2, and δ1 < δ2.

2. Which estimand makes more sense, δ1 or δ2? Why? Use examples
to justify your conclusion. If you feel that both δ1 and δ2 can make
sense in different applications, you can also give examples to justify
both estimands.

2.3 Average and individual effects

Give a numerical example in which τ = n−1
∑n

i=1{Yi(1)− Yi(0)} > 0 but the
proportion of units with Yi(1) > Yi(0) is smaller than 0.5. That is, the average
causal effect is positive, but the treatment benefits less than half of the units.

2.4 Recommended reading

Holland (1986) is a classic review article on statistical causal inference. It pop-
ularized the name “Rubin Causal Model” for the potential outcomes frame-
work. At the University of California Berkeley, we call it the “Neyman Model”
for obvious reasons.
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Randomized experiments
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The Completely Randomized Experiment
and the Fisher Randomization Test

The potential outcomes framework has intrinsic connections with randomized
experiments. Understanding causal inference with various randomized exper-
iments is fundamental and quite helpful for understanding causal inference in
more complicated non-experimental studies.

Part II of this book focuses on randomized experiments. This chapter
focuses on the simplest experiment, the completely randomized experiment
(CRE).

3.1 CRE

Consider an experiment with n units, with n1 receiving the treatment and n0
receiving the control. We can define the CRE based on its treatment assign-
ment mechanism1.

Definition 3.1 (CRE) A CRE has the treatment assignment mechanism:

pr(Z = z) = 1
/( n

n1

)
,

where z = (z1, . . . , zn) satisfies
∑n

i=1 zi = n1 and
∑n

i=1(1− zi) = n0.

In Definition 3.1, we view the potential outcome vector under treatment
Y (1) = (Y1(1), . . . , Yn(1)) and the potential outcome vector under control
Y (0) = (Y1(0), . . . , Yn(0)) are both fixed. Even if we view them as random,
we can condition on them and the treatment assignment mechanism becomes

pr{Z = z | Y (1),Y (0)} = 1
/( n

n1

)
1Readers may think that a CRE has Zi’s as independent and identically distributed

(IID) Bernoulli random variables with probability π, in which n1 is a Binomial(n, π) random
variable. This is called the Bernoulli randomized experiment (BRE), which reduces to the
CRE if we condition on (n1, n0). I will give more details for the BRE in Problem 4.7 in
Chapter 4.

25
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because Z {Y (1),Y (0)} in a CRE. In a CRE, the treatment vector Z is
from a random permutation of n1 1’s and n0 0’s.

In his seminal book Design of Experiments, Fisher (1935) pointed out the
following advantages of randomization:

1. It creates comparable treatment and control groups on average.

2. It serves as a “reasoned basis” for statistical inference.

Point 1 is intuitive because the random treatment assignment does not
bias toward the treatment or the control. Most people understand point 1
well. Point 2 is more subtle. What Fisher meant is that randomization justifies
a statistical test, which is now called the Fisher Randomization Test (FRT).
This chapter illustrates the basic idea of the FRT under a CRE.

3.2 FRT

Fisher (1935) was interested in testing the following null hypothesis:

H0f : Yi(1) = Yi(0) for all units i = 1, . . . , n.

Rubin (1980) called it the sharp null hypothesis in the sense that it can deter-
mine all the potential outcomes based on the observed data: Y (1) = Y (0) =
Y = (Y1, . . . , Yn), the vector of the observed outcomes. It is also called the
strong null hypothesis (e.g., Wu and Ding, 2021).

Conceptually, under H0f, the FRT works for any test statistic

T = T (Z,Y ), (3.1)

which is a function of the observed data. The observed outcome vector Y
is fixed under H0f, so the only random component in the test statistic T is
the treatment vector Z. The experimenter determines the distribution of Z,
which in turn determines the distribution of T under H0f. This is the basis
for calculating the p-value. I will give more details below.

In a CRE, Z is uniform over the set

{z1, . . . ,zM}

where M =
(
n
n1

)
, and the zm’s are all possible vectors with n1 1’s and n0 0’s.

For instance, with n = 5 and n1 = 3, we can enumerate M =
(
5
3

)
= 10 vectors

as follows:

> permutation10 = function(n, n1){

+ M = choose(n, n1)

+ treat.index = combn(n, n1)

+ Z = matrix(0, n, M)
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+ for(m in 1:M){

+ treat = treat.index[, m]

+ Z[treat , m] = 1

+ }

+ Z

+ }

>

> permutation10 (5, 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 1 0 0 0 0

[2,] 1 1 1 0 0 0 1 1 1 0

[3,] 1 0 0 1 1 0 1 1 0 1

[4,] 0 1 0 1 0 1 1 0 1 1

[5,] 0 0 1 0 1 1 0 1 1 1

As a consequence, T is uniform over the set (with possible duplications)

{T (z1,Y ), . . . , T (zM ,Y )}.

That is, the distribution of T is known due to the design of the CRE. We will
call this distribution of T the randomization distribution.

If larger values are more extreme for T , we can use the following tail
probability to measure the extremeness of the test statistic with respect to its
randomization distribution:

pfrt =M−1
M∑

m=1

I{T (zm,Y ) ≥ T (Z,Y )}, (3.2)

which is called the p-value by Fisher. Figure 3.1 illustrates the computational
process of pfrt.

FIGURE 3.1: Illustration of the FRT

The p-value, pfrt, in (3.2) works for any choice of test statistic and any
outcome-generating process. It also extends naturally to any experiments,
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which will be a topic repeatedly discussed in the following chapters. Impor-
tantly, it is finite-sample exact in the sense2 that under H0f,

pr(pfrt ≤ u) ≤ u for all 0 ≤ u ≤ 1. (3.3)

In practice, M is often to large (e.g., with n = 100, n1 = 50, we have
M > 1029), and it is computationally infeasible to enumerate all possible
values of the treatment vector. We often approximate pfrt by Monte Carlo. To
be more specific, we take simple random draws from the possible values of the
treatment vector, or, equivalently, we randomly permute Z, and approximate
pfrt by

p̂frt = R−1
R∑

r=1

I{T (zr,Y ) ≥ T (Z,Y )}, (3.4)

where the zr’s the R random permutations of Z. The p-value in (3.4) has
Monte Carlo error decreasing fast with an increasing R; see Problem 3.2.
Because the calculation of the p-value in (3.4) involves permutations of Z,
the FRT is sometimes called the permutation test in the context of the CRE.
However, the idea of FRT is more general than the permutation test in more
complex experiments.

3.3 Canonical choices of the test statistic

From the above discussion, the FRT generates finite-sample exact p-value for
any choice of test statistic. This is a feature of the FRT. However, this feature
should not encourage arbitrary choice of the test statistic. Intuitively, we must
choose test statistics that give information for the possible violations of H0f.
Below I will review some canonical choices.

Example 3.1 (difference-in-means) The difference-in-means statistic is

τ̂ = ˆ̄Y (1)− ˆ̄Y (0)

where

ˆ̄Y (1) = n−1
1

∑
Zi=1

Yi = n−1
1

n∑
i=1

ZiYi

2This is the standard definition of the p-value in mathematical statistics. The inequality
is often due to discreteness of the test statistic, and when the equality holds, the p-value is
Uniform(0, 1) under the null hypothesis. Let F (·) be the distribution function of T (Z,Y ).
Even though it is a step function, we assume that it is continuous and strictly increasing as
if it is the distribution function of a continuous random variable taking values on the whole
real line. So pfrt = 1− F (T ), and

pr(pfrt ≤ u) = pr{1− F (T ) ≤ u} = pr{T ≥ F−1(1− u)} = 1− F (F−1(1− u)) = u.

The discreteness of T does cause some technical issues in the proof, yielding an inequality
instead of an equality. I leave the technical details in Problem 3.1.
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is the sample mean of the outcomes under the treatment and

ˆ̄Y (0) = n−1
0

∑
Zi=0

Yi = n−1
0

n∑
i=1

(1− Zi)Yi

is the sample mean of the outcomes under the control, respectively. Under H0f,
it has mean

E(τ̂) = n−1
1

n∑
i=1

E(Zi)Yi − n−1
0

n∑
i=1

E(1− Zi)Yi = 0

and variance

var(τ̂) = var

{
n−1
1

n∑
i=1

ZiYi − n−1
0

n∑
i=1

(1− Zi)Yi

}

= var

(
n

n0

1

n1

n∑
i=1

ZiYi

)

=∗
n2

n20

(
1− n1

n

) s2
n1

=
n

n1n0
s2,

where =∗ follows from Lemma A3.2 for simple random sampling with

Ȳ = n−1
n∑

i=1

Yi, s2 = (n− 1)−1
n∑

i=1

(Yi − Ȳ )2.

Furthermore, the randomization distribution of τ̂ is approximately Normal due
to the finite population central limit theorem in Lemma A3.4:

τ̂√
n

n1n0
s2

→ N(0, 1) (3.5)

in distribution. Since s2 is fixed under H0f, it is equivalent to use

τ̂√
n

n1n0
s2

as the test statistic in the FRT, which is asymptotically Normal as shown
above. Then we can calculate an approximate p-value.

The observed data are {Yi : Zi = 1} and {Yi : Zi = 0}, so the problem
is essentially a two-sample problem. Under the assumption of IID Normal
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outcomes (see Section A1.4.1), the classic two-sample t-test assuming equal
variance is based on

τ̂√
n

n1n0(n−2)

[∑
Zi=1{Yi −

ˆ̄Y (1)}2 +
∑

Zi=0{Yi −
ˆ̄Y (0)}2

] ∼ tn−2. (3.6)

Based on some algebra (see Problem 3.8), we have the expansion

(n− 1)s2 =
∑
Zi=1

{Yi − ˆ̄Y (1)}2 +
∑
Zi=0

{Yi − ˆ̄Y (0)}2 + n1n0
n

τ̂2. (3.7)

With a large sample size n, we can ignore the difference between N(0, 1) and
tn−2 and the difference between n − 1 and n − 2. Moreover, under H0f, τ̂
converges to zero in probability, so n1n0/nτ̂

2 can be ignored asymptotically.
Therefore, under H0f, the approximate p-value in Example 3.1 is close to the
p-value from the classic two-sample t-test assuming equal variance, which can
be calculated by t.test with var.equal = TRUE. Under alternative hypotheses
with nonzero τ , the additional term n1n0

n τ̂2 in the above expansion can make
the FRT less powerful than the usual t-test.

Based on the above discussion, the FRT with τ̂ effectively uses a pooled
variance ignoring the heteroskedasticity between these two groups. In classical
statistics, the two-sample problem with heteroskedastic Normal outcomes is
called the Behrens–Fisher problem (see Section A1.4.1). In the Behrens–Fisher
problem, a standard choice of the test statistic is the studentized statistic
below.

Example 3.2 (studentized statistic) The studentized statistic is

tunequal =
ˆ̄Y (1)− ˆ̄Y (0)√
Ŝ2(1)
n1

+ Ŝ2(0)
n0

,

where

Ŝ2(1) = (n1 − 1)−1
∑
Zi=1

{Yi − ˆ̄Y (1)}2, Ŝ2(0) = (n0 − 1)−1
∑
Zi=0

{Yi − ˆ̄Y (0)}2

are the sample variances of the observed outcomes under the treatment and
control, respectively. Under H0f, the finite population central limit theorem
again implies that t is asymptotically Normal:

t→ N(0, 1)

in distribution. Then we can calculate an approximate p-value which is close
to the p-value from t.test with var.equal = FALSE.
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An extremely important point is that the FRT justifies the traditional t-
tests using t.test with either var.equal = TRUE or var.equal = FALSE, even
if the underlying distributions are not Normal. Standard statistics textbooks
motivate the t-tests based on the Normality assumption, but the assumption
is too strong. Fortunately, the t-test procedures can still be used as long as
the finite population central limit theorems hold. Even if we do not believe
the central limit theorems, we can still use τ̂ and t as test statistics in the
FRT to obtain finite-sample exact p-values.

We will motivate this studentized statistic from another perspective in
Chapter 8. The theory shows that using t in FRT is more robust to het-
eroskedasticity across the two groups.

The following test statistic is robust to outliers resulting from heavy-tailed
outcome data.

Example 3.3 (Wilcoxon rank sum) The difference-in-means statistic uses
the original outcomes, and its sampling distribution depends on the second mo-
ments of the outcomes. This makes it sensitive to outliers. Another popular
test statistic is based on the ranks of the pooled observed outcomes. Let Ri

denote the rank of Yi in the pooled samples Y :

Ri = #{j : Yj ≤ Yi}.

The Wilcoxon rank sum statistic is the sum of the ranks under treatment:

W =

n∑
i=1

ZiRi.

For algebraic simplicity, we assume that there are no ties in the outcomes,
although the FRT can be applied regardless of the existence of ties. For the
case with ties, see Lehmann (1975, Chapter 1 Section 4). Because the sum
of the ranks of the pooled samples are fixed at 1 + 2 + · · · + n = n(n + 1)/2,
the Wilcoxon statistic is equivalent to the difference in the means of the ranks
under treatment and control. Under H0f, the Ri’s are fixed, so W has mean

E(W ) =

n∑
i=1

E(Zi)Ri =
n1
n

n∑
i=1

i =
n1
n

× n(n+ 1)

2
=
n1(n+ 1)

2
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and variance

var(W ) = var

(
n1

1

n1

n∑
i=1

ZiRi

)

=∗ n21

(
1− n1

n

) 1

n1

1

n− 1

n∑
i=1

(
Ri −

n+ 1

2

)2

=
n1n0

n(n− 1)

n∑
i=1

(
i− n+ 1

2

)2

=
n1n0

n(n− 1)

{
n∑

i=1

i2 − n

(
n+ 1

2

)2
}

=
n1n0

n(n− 1)

{
n(n+ 1)(2n+ 1)

6
− n

(
n+ 1

2

)2
}

=
n1n0(n+ 1)

12
,

where =∗ follows from Lemma A3.2. Furthermore, under H0f, the finite pop-
ulation central limit theorem ensures that the randomization distribution of τ̂
is approximately Normal:∑n

i=1 ZiRi − n1(n+1)
2√

n1n0(n+1)
12

→ N(0, 1) (3.8)

in distribution. Based on (3.8), we can conduct an asymptotic test. In R, the
function wilcox.test can compute both exact and asymptotic p-values based on
the statistic W −n1(n1+1)/2. Based on some asymptotic analyses, Lehmann
(1975) showed that the FRT using W has reasonable powers over a wide range
of data generating processes.

Example 3.4 (Kolmogorov–Smirnov statistic) The treatment may af-
fect the outcome in different ways. It seems natural to summarize the treatment
outcomes and control outcomes based on the empirical distributions:

F̂1(y) = n−1
1

n∑
i=1

ZiI(Yi ≤ y), F̂0(y) = n−1
0

n∑
i=1

(1− Zi)I(Yi ≤ y).

Comparing these two empirical distributions yields the famous Kolmogorov–
Smirnov statistic

D = max
y

∣∣∣F̂1(y)− F̂0(y)
∣∣∣.

It is a challenging mathematics problem to derive the distribution of D. With
large sample sizes, its distribution function converges to

pr
(n1n0

n
D ≤ x

)
→

√
2π

x

∞∑
j=1

e−(2j−1)2π2/(8x2),
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based on which we calculate an asymptotic p-value (Van der Vaart, 2000). In
R, ks.test can compute both exact and asymptotic p-values.

3.4 A case study of the LaLonde experimental data

I use LaLonde (1986)’s experimental data to illustrate the FRT. The data are
available in the Matching package (Sekhon, 2011):

> library(Matching)

> data(lalonde)

> z = lalonde$treat
> y = lalonde$re78

Figure 3.2 shows the histograms of the outcomes under the treatment and
control.

real earnings in 1978

de
ns

ity

0 10000 20000 30000 40000

treatment mean
control mean

FIGURE 3.2: Histograms of the outcomes in the LaLonde experimental data:
treatment in white and control in grey
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The following code computes the observed values of the test statistics using
existing functions:

> tauhat = t.test(y[z == 1], y[z == 0],

+ var.equal = TRUE)$statistic
> tauhat

t

2.835321

> student = t.test(y[z == 1], y[z == 0],

+ var.equal = FALSE)$statistic
> student

t

2.674146

> W = wilcox.test(y[z == 1], y[z == 0])$statistic
> W

W

27402.5

> D = ks.test(y[z == 1], y[z == 0])$statistic
> D

D

0.1321206

By randomly permuting the treatment vector, we can obtain the Monte
Carlo approximation of the randomization distributions of the test statistics,
stored in four vectors Tauhat, Student, Wilcox, and Ks.

> MC = 10^4

> Tauhat = rep(0, MC)

> Student = rep(0, MC)

> Wilcox = rep(0, MC)

> Ks = rep(0, MC)

> for(mc in 1:MC)

+ {

+ zperm = sample(z)

+ Tauhat[mc] = t.test(y[zperm == 1], y[zperm == 0],

+ var.equal = TRUE)$statistic
+ Student[mc] = t.test(y[zperm == 1], y[zperm == 0],

+ var.equal = FALSE)$statistic
+ Wilcox[mc] = wilcox.test(y[zperm == 1], y[zperm == 0])$statistic
+ Ks[mc] = ks.test(y[zperm == 1], y[zperm == 0])$statistic
+ }

The one-sided p-values based on the FRT are all smaller than 0.05:

> exact.pv = c(mean(Tauhat >= tauhat),

+ mean(Student >= student),

+ mean(Wilcox >= W),

+ mean(Ks >= D))

> round(exact.pv, 3)

[1] 0.002 0.002 0.006 0.040
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Without using Monte Carlo, we can also compute the asymptotic p-values
which are all smaller than 0.05:

> asym.pv = c(t.test(y[z == 1], y[z == 0],

+ var.equal = TRUE)$p.value ,
+ t.test(y[z == 1], y[z == 0],

+ var.equal = FALSE)$p.value ,
+ wilcox.test(y[z == 1], y[z == 0])$p.value ,
+ ks.test(y[z == 1], y[z == 0])$p.value)
> round(asym.pv, 3)

[1] 0.005 0.008 0.011 0.046

The differences between the p-values are due to the asymptotic approxi-
mations as well as the fact that the default choices for t.test and wilcox.test

are two-sided tests.
Figure 3.3 shows the histograms of the randomization distributions of four

test statistics, as well as their corresponding observed values. For the first
three test statistics, the Normal approximations works quite well even though
the underlying outcome data distribution is far from Normal. In general, a
figure like Figure 3.3 can give very clear information for testing the sharp
null hypothesis. Recently, Bind and Rubin (2020) proposes, in the title of
their paper, that “when possible, report a Fisher-exact p-value and display its
underlying null randomization distribution.”

3.5 Some history of randomized experiments and FRT

3.5.1 James Lind’s experiment

James Lind (1716—1794) was a Scottish doctor and a pioneer of naval hygiene
in the Royal Navy. At his time, scurvy was a major cause of death among
sailors. He conducted one of the earliest randomized experiments with a clear
documentation of the details, and concluded that citrus fruits cured scurvy
before the discovery of Vitamin C.

In Lind (1753), he described the following randomized experiment with
12 patients of scurvy assigned to 6 groups. With some simplifications, the 6
groups are:

1. two received a quart of cider every day;

2. two received twenty-five drops of sulfuric acid three times every day;

3. two received two spoonfuls of vinegar three times every day;

4. two received half a pint of seawater every day;

5. two received two oranges and one lemon every day;

6. two received a spicy paste plus a drink of barley water every day.
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FIGURE 3.3: The randomization distributions of four test statistics based on
the LaLonde experimental data

After six days, patients in the fifth group recovered, but patients in other
groups did not. If we simplify the treatment as

Zi = 1(unit i received citrus fruits)

and the outcome as

Yi = 1(unit i recovered after six days),

then we have a 2× 2 table

Yi = 1 Yi = 0

Zi = 1 2 0
Zi = 0 0 10

This is the extremest possible 2×2 table we can observe under this exper-
iment, and the data contain strong evidence for the positive effect of citrus
fruits for curing scurvy. Statistically, how do we measure the strength of the
evidence?
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Following the logic of the FRT, if the treatment has no effect at all (under
H0f), the extreme 2× 2 table will occur with probability

1(
12
2

) =
1

66
= 0.015

which is the pfrt. This seems a surprise under H0f: we can easily reject H0f

at the level 0.05.

3.5.2 Lady tasting tea

Fisher (1935) described the following famous experiment of Lady Tasting Tea3.
A lady claimed that she could tell the difference between the two ways of
making milk tea: one with milk added first, and the other with tea added
first. This might sound odd to most people. As a statistician, Fisher designed
an experiment to test whether the lady could tell the difference between the
two ways of making milk tea.

He made 8 cups of tea, 4 with milk added first and the other 4 four with
tea added first. Then he presented these 8 cups of tea in a random order to
the lady, and asked the lady to pick up the 4 with milk added first. The final
experiment result can be summarized in the following 2× 2 table

milk first (lady) tea first (lady) column sum

milk first (Fisher) X 4−X 4
tea first (Fisher) 4−X X 4
row sum 4 4 8
The X can be 0, 1, 2, 3, 4. In the real experiment, X = 4, which is the most

extreme data, strongly suggesting that the lady could tell the difference of the
two ways of making milk tea. Again, how do we measure the strength of the
evidence?

Under the null hypothesis that the lady could not tell the difference, only
one of the

(
8
4

)
= 70 possible orders yields the 2× 2 table with X = 4. So the

p-value is

pfrt =
1

70
= 0.014.

Given the significance level 0.05, we reject the null hypothesis.

3.5.3 Two Fisherian principles for experiments

In the above two examples in Sections 3.5.1 and 3.5.2, the pfrt’s are justified
by the randomization of the experiments. This highlightsthe first Fisherian
principle of experiments: randomization.

Moreover, the above two experiments are in some sense the smallest pos-
sible experiments that can yield statistically meaningful results. For instance,

3It becomes the title of a book on the modern history of statistics by Salsburg (2001)
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if Lind only assign one patient to each of the six groups, then the smallest
p-value is

1(
6
1

) =
1

6
= 0.167;

if Fisher only made 6 cups of tea, 3 with milk added first and the other 3 four
with tea added first, then the smallest p-value is

1(
6
3

) =
1

20
= 0.05.

We can never reject the null hypotheses at the level of 0.05. This highlights
the second Fisherian principle of experiments: replications.

Chapter 5 will discuss the third Fisherian principle of experiments: block-
ing.

3.6 Discussion

3.6.1 Other sharp null hypotheses and confidence intervals

I focus on the sharp null hypothesis H0f above. In fact, the logic of the FRT
also works for other sharp null hypotheses. For instance, we can test

H0(τ ) : Yi(1)− Yi(0) = τi for all i = 1, . . . , n

for a known vector τ = (τ1, . . . , τn). Because the individual causal effects are
all known underH0(τ ), we can impute all missing potential outcomes based on
the observed data. With known potential outcomes, the distribution of any test
statistic is completely determined by the treatment assignment mechanism,
and therefore, we can compute the corresponding pfrt as a function of τ ,
denoted by pfrt(τ ). If we can specify all possible τ ’s, then we can compute
a series of pfrt(τ )’s. By duality of hypothesis testing and confidence set (see
Section A1.2.5), we can obtain a (1 − α)-level confidence set for the average
causal effect: {

τ = n−1
n∑

i=1

τi : pfrt(τ ) ≥ α

}
.

Although this strategy is conceptually straightforward, it has practical com-
plexities due to the large number of all possible τ ’s. In the special case of a
binary outcome, Rigdon and Hudgens (2015) and Li and Ding (2016) proposed
some computationally feasible approaches to constructing confidence intervals
for τ based on the FRT. For general unbounded outcomes, this strategy is of-
ten computationally infeasible.
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A canonical simplification is to consider a subclass of the sharp null hy-
potheses with constant individual causal effects:

H0(c) : Yi(1)− Yi(0) = c for all i = 1, . . . , n

for a known constant c. Given c, we can compute pfrt(c). By duality, we can
obtain a (1− α)-level confidence set for the average causal effect:

{c : pfrt(c) ≥ α}.

Because this procedure only involves one-dimensional search, it is computa-
tionally feasible. However, it is often criticized that the constant individual
causal effect assumption is too strong which does not hold for a binary out-
come in particular.

3.6.2 Other test statistics

The FRT is a general strategy that is applicable in any randomized exper-
iments with any test statistic. I give several examples of test statistics in
Section 3.3. In fact, the definition of a test statistic can be much more gen-
eral. For instance, with pre-treatment covariate matrix X with the ith row
being Xi for unit i (i = 1, . . . , n) 4, we can allow the test statistic T (Z,Y ,X)
to be a function of the treatment vector, outcome vector, and the covariate
matrix. Problem 3.6 gives an example.

3.6.3 Final remarks

For a general experiment, the probability distribution of Z is not uniform
over all possible permutations of n1 1’s and n0 0’s. But its distribution is
completely known by the experimenter. Therefore, we can always simulate its
distribution which in turn implies the distribution of any test statistic under
the sharp null hypothesis. A finite-sample exact p-value follows from (3.2).
I will discuss other experiments in the subsequent chapters and I want to
emphasize that the FRT works beyond the specific experiments discussed in
this book.

The FRT works with any test statistic. However, this does answer the
practical question of how to choose a test statistic in the data analysis. If
the goal is to find surprise with respect to the sharp null hypothesis, it is
desirable to choose a test statistic that yields high power under alternative
hypotheses. In general, no test statistic can dominate others in terms of power

4In causal inference, we call Xi a covariate if it is not affected by the treatment. That is, if
the covariate has two potential outcomes Xi(1) and Xi(0), then they must satisfy Xi(1) =
Xi(0). Standard statistics books often do not distinguish the treatment and covariates
because they often appear on the right-hand side of a regression model for the outcome.
They are both called covariates in those statistical models. This book distinguishes the
treatment and covariates because they play different roles in causal inference.
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because power depends on the alternative hypothesis. The four test statistics
in Section 3.3 are motivated by different alternative hypotheses. For instance,
τ̂ and t are motivated by an alternative hypothesis with nonzero average
treatment effect; W is motivated by an alternative hypothesis with a constant
causal effect with outliers. Specifying a working alternative hypothesis is often
helpful for constructing a test statistic although it does not have to be precise
to guarantee the validity of the FRT. Problems 3.6 and 3.7 illustrate the idea
of using a working alternative hypothesis or statistical model to construct test
statistics.

3.7 Homework Problems

3.1 Exactness of pfrt

Prove (3.2).

3.2 Monte Carlo error of p̂frt

Given data, pfrt is a fixed number while its Monte Carlo estimator p̂frt as in
(3.4) is random. Show that

Emc(p̂frt) = pfrt

and

varmc(p̂frt) ≤
1

4R
,

where the subscript “mc” signifies the randomness due to Monte Carlo, that
is, p̂frt is random because zr’s are R independent random draws from all
possible values of Z.

Remark: pfrt is random because Z is random. But in this problem, we
condition on data, so pfrt becomes a fixed number. p̂frt is random because
the zr’s are random permutations of Z.

Problem 3.2 shows that p̂frt is unbiased for pfrt over the Monte Carlo
randomness and gives an upper bound on the variance of p̂frt. Luo et al.
(2021, Theorem 2) gives a more delicate bound on the Monte Carlo error.

3.3 A finite-sample valid Monte Carlo approximation of pfrt

Although p̂frt is unbiased for pfrt, it may not be a valid p-value in the sense
that pr(p̂frt ≤ u) ≤ u for all u ∈ (0, 1) due to Monte Carlo error with a finite
R. The following modified Monte Carlo approximation is. Phipson and Smyth
(2010) pointed out this trick in the permutation test.

Define

p̃frt =
1 +

∑R
r=1 I{T (zr,Y ) ≥ T (Z,Y )}

1 +R
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where the zr’s the R random permutations of Z. Show that with an arbitrary
R, the Monte Carlo approximation p̃frt is always a finite-sample valid p-value
in the sense that pr(p̃frt ≤ u) ≤ u for all u ∈ (0, 1).

Hint: You can use the following two basic probability results to prove
the claim in Problem 3.3. First, for two Binomial random variables X1 ∼
Binomial(R, p1) and X2 ∼ Binomial(R, p2) with p1 ≥ p2, we have pr(X1 ≤
x) ≤ pr(X2 ≤ x) for all x. Second, if p ∼ Uniform(0, 1) and X |
p ∼ Binomial(R, p), then, marginally, X is a uniform random variable over
{0, 1, . . . , R}.

3.4 Fisher’s exact test

Consider a CRE with a binary outcome, with data summarized in the following
2× 2 table:

Y = 1 Y = 0 total

Z = 1 n11 n10 n1
Z = 0 n01 n00 n0

Under H0f, show that any test statistic is a function of n11 and other non-
random fixed constants, and the exact distribution of n11 is Hypergeometric.
Specify the parameters for the Hypergeometric distribution.

Remark: Barnard (1947) and Ding and Dasgupta (2016) pointed out the
equivalence of Fisher’s exact test (reviewed in Section A1.3.1) and the FRT
under a CRE with a binary outcome.

3.5 More details for lady tasting tea

Recall Section 3.5.2. Calculate pr(X = k) for k = 0, 1, 2, 3, 4.

3.6 Covariate-adjusted FRT

This problem gives more details for Section 3.6.2.
Section 3.4 re-analyzed the LaLonde experimental data using the FRT.

The R code FRTLalonde.R implemented the FRT with four test statistics. With
additional covariates, the FRT can be more general with at least the follow-
ing two additional strategies. Under the potential outcomes framework, all
potential outcomes and covariates are fixed numbers.

First, we can use test statistics based on residuals from the linear regres-
sion. Run a linear regression of the outcomes on the covariates, and obtain
the residuals (i.e., treat the residuals as the pseudo “outcomes”). Then define
the four test statistics based on the residuals. Conduct the FRT using these
four new test statistics. Report the corresponding p-values.

Second, we can define the test statistic as the coefficient in the linear
regression of the outcomes on the treatment and covariates. Conduct the FRT
using this test statistic. Report the corresponding p-value.

Why are the five p-values from the above two strategies finite-sample ex-
act? Justify them.
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3.7 FRT with a generalized linear model

Use the same dataset as Problem 3.6 but change the outcome to a binary in-
dicator whether re78 is positive or not. Run logistic regression of the outcome
on the treatment and covariates. Is the coefficient of the treatment signifi-
cant and what is the p-value? Calculate the p-value from the FRT with the
coefficient of the treatment as the test statistic.

3.8 An algebraic detail

Verify (3.7)

3.9 Recommended reading

Bind and Rubin (2020) is a recently paper advocating the use of p-values
as well as the display of the corresponding randomization distributions in
analyzing complex experiments.
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Neymanian Repeated Sampling Inference
in Completely Randomized Experiments

In his seminal paper, Neyman (1923) not only proposed to use the notation of
potential outcomes but also derived rigorous mathematical results for making
inference of the average causal effect under a CRE. In contrast to Fisher’s idea
of calculating the p-value under the sharp null hypothesis, Neyman (1923)
proposed an unbiased point estimator and a conservative confidence interval
based on the sampling distribution of the point estimator. This chapter will
introduce Neyman (1923)’s fundamental results, which are very important for
understanding later chapters in Part II of this book.

4.1 Finite population quantities

Consider a CRE with n units, where n1 of them receive the treatment and
n0 of them receive the control. For unit i = 1, . . . , n, we have potential out-
comes Yi(1) and Yi(0), and individual effect τi = Yi(1)− Yi(0). The potential
outcomes have finite population means

Ȳ (1) = n−1
n∑

i=1

Yi(1), Ȳ (0) = n−1
n∑

i=1

Yi(0),

variances1

S2(1) = (n−1)−1
n∑

i=1

{Yi(1)− Ȳ (1)}2, S2(0) = (n−1)−1
n∑

i=1

{Yi(0)− Ȳ (0)}2,

and covariance

S(1, 0) = (n− 1)−1
n∑

i=1

{Yi(1)− Ȳ (1)}{Yi(0)− Ȳ (0)}.

1Here the divisor n − 1 makes the formulas more elegant. Changing the divisor to n
complicates the formulas but does not change the results fundamentally. With large n, the
difference is minor.

43
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The individual effects have mean

τ = n−1
n∑

i=1

τi = Ȳ (1)− Ȳ (0).

and variance

S2(τ) = (n− 1)−1
n∑

i=1

(τi − τ)2.

We have the following relationship between the variances and covariance.

Lemma 4.1 2S(1, 0) = S2(1) + S2(0)− S2(τ).

The proof of Lemma 4.1 follows from elementary algebra. I leave it as
Problem 4.1.

These fixed quantities are functions of the Science Table {Yi(1), Yi(0)}ni=1.
We are interested in estimating the average causal effect τ based on the data
(Zi, Yi)

n
i=1 from a CRE.

4.2 Neyman (1923)’s theorem

Based on the observed outcomes, we can calculate the sample means

ˆ̄Y (1) = n−1
1

n∑
i=1

ZiYi,
ˆ̄Y (0) = n−1

0

n∑
i=1

(1− Zi)Yi,

the sample variances

Ŝ2(1) = (n1−1)−1
n∑

i=1

Zi{Yi− ˆ̄Y (1)}2, Ŝ2(0) = (n0−1)−1
n∑

i=1

(1−Zi){Yi− ˆ̄Y (0)}2.

But there are no sample versions of S(1, 0) and S2(τ) because the potential
outcomes Yi(1) and Yi(0) are never jointly observed for each unit i. Neyman
(1923) proved the following theorem.

Theorem 4.1 Under a CRE,

1. the difference-in-means estimator τ̂ = ˆ̄Y (1) − ˆ̄Y (0) is unbiased
for τ :

E(τ̂) = τ ;

2. τ̂ has variance

var(τ̂) =
S2(1)

n1
+
S2(0)

n0
− S2(τ)

n
(4.1)

=
n0
n1n

S2(1) +
n1
n0n

S2(0) +
2

n
S(1, 0); (4.2)
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3. the variance estimator

V̂ =
Ŝ2(1)

n1
+
Ŝ2(0)

n0

is conservative for estimating var(τ̂):

E(V̂ )− var(τ̂) =
S2(τ)

n
≥ 0

with the equality holding if and only if τi = τ for all units.

I will present the proof of Theorem 4.1 in Section 4.3. It is important
to clarify the meanings of E(·) and var(·) in Theorem 4.1. The potential
outcomes are all fixed numbers, and only the treatment indicators Zi’s are
random. Therefore, the expectations and variances are all over the randomness
of the Zi’s, which are random permutations of n1 1’s and n0 0’s. Figure 4.1
illustrates the randomness of τ̂ , which is a discrete uniform distribution over
{τ̂1, . . . , τ̂M} induced by M =

(
n
n1

)
possible treatment allocations. Compare

Figure 4.1 with Figure 3.1 to see the key differences between the FRT and
Neyman (1923)’s theorem:

1. the FRT works for any test statistic but Neyman (1923)’s theorem
is only about the difference in means. Although we could derive the
properties of other estimators similar to Neyman (1923)’s theorem,
this mathematical exercise is often quite challenging for general es-
timators;

2. in Figure 3.1 , the observed outcome vector Y is fixed but in Figure
4.1, the observed outcome vector Y (zm) changes as zm changes;

3. the T (zm,Y )’s are all computable based on the observed data, but
the τ̂m’s are hypothetical values because not all potential outcomes
are known.

The point estimator is standard but it has a non-trivial variance under
the potential outcomes framework with a CRE. The variance formula (4.1)
differs from the classic variance formula for difference in means2 because it
not only depends on the finite population variances of the potential outcomes
but also depends on the finite population variance of the individual effects,
or, equivalently, the finite population covariance of the potential outcomes.

2In the classic two-sample problem, the outcomes under treatment are IID draws from a
distribution with mean µ1 and variance σ2

1 , and the outcomes under control are IID draws
from a distribution with mean µ0 and variance σ2

0 . Under this assumption, we have

var(τ̂) =
σ2
1

n1
+

σ2
0

n0
.

Here, var(·) is over the randomness of the outcomes. This variance formula does not involve
a third term that depends on the variance of the individual causal effects.
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FIGURE 4.1: Illustration of Neyman (1923)’s theorem

Unfortunately, S2(τ) and S(1, 0) are not identifiable from the data because
Yi(1) and Yi(0) are never jointly observed.

Due to the fundamental problem of missing one potential outcome, we can
at most obtain a conservative variance estimator. In statistics, the definition
of the confidence interval allows for over coverage and thus conservativeness
in variance estimation. This may be not a good idea in some applications, for
example, studies on side effects of drugs.

The formula (4.1) is a little puzzling in that the more heterogeneous the
individual effects are the smaller the variability of τ̂ is. Section 4.5.1 will
use numerical examples to verify (4.1). What is the intuition here? I give an
explanation based on the equivalent form (4.2). Compare the case with pos-
itively correlated potential outcomes and the case with negatively correlated
potential outcomes. Although the treatment group is a simple random sample
from the finite population of n units, it is possible to observe relatively large
treatment potential outcomes in a realized experiment. If this happens, then
those control units have relatively small treatment potential outcomes. Con-
sequently, if S(1, 0) > 0, then the control potential outcomes are relatively
small; if S(1, 0) < 0, then the control potential outcomes are relatively large.
Therefore, τ̂ tends to larger when the potential outcomes are positively cor-
related, resulting in more extreme values of τ̂ . So the variance of τ̂ is larger
when the potential outcomes are positively correlated.

Li and Ding (2017, Theorem 5 and Proposition 3) further proved the fol-
lowing asymptotic Normality of τ̂ based on the finite population central limit
theorem.

Theorem 4.2 Let n → ∞ and n1 → ∞. If n1/n has a limiting value in
(0, 1), {S2(1), S2(0), S(1, 0)} have limiting values, and

max
1≤i≤n

{Yi(1)− Ȳ (1)}2/n→ 0, max
1≤i≤n

{Yi(0)− Ȳ (0)}2/n→ 0,
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then
τ̂ − τ√
var(τ̂)

→ N(0, 1)

in distribution, and

Ŝ2(1) → S2(1), Ŝ2(0) → S2(0)

in probability.

The proof of Theorem 4.2 is technical and beyond the scope of this book.
It ensures that the sampling distribution of τ̂ can be approximated by Normal
distribution with large sample size and some regularity conditions. Moreover,
it ensures that the sample variances of the outcomes are consistent for the
population variances, which further ensures that the probability limit of Ney-
man (1923)’s variance estimator is larger than the true variance of τ̂ . This
justifies a conservative large-sample confidence interval for τ :

τ̂ ± z1−α/2

√
V̂ ,

which is the same as the confidence interval for the standard two-sample
problem asymptotically. This confidence interval covers τ with probability
at least at large as 1−α when the sample size is large enough. By duality, the
confidence interval implies a test for H0n : τ = 0.

The conservativeness of Neyman (1923)’s confidence interval for τ is not
a big problem if under reporting the treatment effect is not a big problem. It
can be problematic if the outcomes measure the side effects of a treatment. In
medical experiments, under reporting the side effects of a new drug can have
severe consequences.

4.3 Proofs

In this section, I will prove Theorem 4.1.
First, the unbiasedness of τ̂ follows from the representation

τ̂ = n−1
1

n∑
i=1

ZiYi − n−1
0

n∑
i=1

(1− Zi)Yi

= n−1
1

n∑
i=1

ZiYi(1)− n−1
0

n∑
i=1

(1− Zi)Yi(0)
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and the linearity of the expectation:

E(τ̂) = E

{
n−1
1

n∑
i=1

ZiYi(1)− n−1
0

n∑
i=1

(1− Zi)Yi(0)

}

= n−1
1

n∑
i=1

E(Zi)Yi(1)− n−1
0

n∑
i=1

E(1− Zi)Yi(0)

= n−1
1

n∑
i=1

n1
n
Yi(1)− n−1

0

n∑
i=1

n0
n
Yi(0)

= n−1
n∑

i=1

Yi(1)− n−1
n∑

i=1

Yi(0)

= τ.

Second, we can further write τ̂ as

τ̂ =

n∑
i=1

Zi

{
Yi(1)

n1
+
Yi(0)

n0

}
− n−1

0

n∑
i=1

Yi(0).

The variance of τ̂ follows from Lemma A3.2 of simple random sampling:

var(τ̂) =
n1n0

n(n− 1)

n∑
i=1

{
Yi(1)

n1
+
Yi(0)

n0
− Ȳ (1)

n1
− Ȳ (0)

n0

}2

=
n1n0

n(n− 1)

[
1

n21

n∑
i=1

{Yi(1)− Ȳ (1)}2 + 1

n20

n∑
i=1

{Yi(0)− Ȳ (0)}2

+
2

n1n0

n∑
i=1

{Yi(1)− Ȳ (1)}{Yi(0)− Ȳ (0)}

]

=
n0
n1n

S2(1) +
n1
n0n

S2(0) +
2

n
S(1, 0).

From Lemma 4.1, we can also write the variance as

var(τ̂) =
n0
n1n

S2(1) +
n1
n0n

S2(0) +
1

n
{S2(1) + S2(0)− S2(τ)}

=
S2(1)

n1
+
S2(0)

n0
− S2(τ)

n
.

Third, because the treatment group is a simple random sample of size n1
from the n units, Lemma A3.3 ensures that the sample variance of Yi(1)’s is
unbiased for its population variance:

E{Ŝ2(1)} = S2(1).

Similarly, E{Ŝ2(0)} = S2(0). Therefore, V̂ is unbiased for the first two terms
in (4.1).
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4.4 Regression analysis of the CRE

Practitioners often use regression-based inference for the average causal effect
τ . A standard approach is to run the ordinary least squares (OLS) of the
outcomes on the treatment indicators with an intercept

(α̂, β̂) = argmin
(a,b)

n∑
i=1

(Yi − a− bZi)
2,

and use the coefficient of the treatment β̂ as the estimator for the average
causal effect. We can show the coefficient β̂ equals the difference in means:

β̂ = τ̂ . (4.3)

However, the usual variance estimator from the OLS, e.g., the output from
the lm function of R, equals

V̂ols =
N (N1 − 1)

(N − 2)N1N0
Ŝ2(1) +

N (N0 − 1)

(N − 2)N1N0
Ŝ2(0) (4.4)

≈ Ŝ2(1)

N0
+
Ŝ2(0)

N1
,

where the approximation holds with large N1 and N0. It differs from V̂ even
with large N1 and N0.

Fortunately, the Eicker–Huber–White (EHW) robust variance estimator is
close to V̂ :

V̂ehw =
Ŝ2(1)

N1

N1 − 1

N1
+
Ŝ2(0)

N0

N0 − 1

N0
(4.5)

≈ Ŝ2(1)

N1
+
Ŝ2(0)

N0

where the approximation holds with large N1 and N0. It is almost identical to
V̂ . Moreover, the so-called HC2 variant of the EHW robust variance estimator
is identical to V̂ . The hccm function in the car package returns the EHW robust
variance estimator as well as its HC2 variant.

Problem 4.3 provides more technical details for (4.3)–(4.5).

4.5 Examples

4.5.1 Simulation

I first choose the sample size as n = 100 with 60 treated and 40 control units,
and generate the potential outcomes with constant individual causal effects.
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n = 100

n1 = 60

n0 = 40

y0 = rexp(n)

y0 = sort(y0, decreasing = TRUE)

y1 = y0 + 1

With the Science Table fixed, I repeated generate completely randomized ex-
periments and apply Theorem 4.1 to obtain the point estimator, the conser-
vative variance estimator, and the confidence interval based on the Normal
approximation. The first panel of Figure 4.2 shows the histogram of τ̂−τ over
104 simulations.

I then change the potential outcome by sorting the control potential out-
come in reverse order

y0 = sort(y0, decreasing = FALSE)

and repeat the above simulation. The second panel of Figure 4.2 shows the
histogram of τ̂ − τ over 104 simulations.

I finally permute the control potential outcomes

y0 = sample(y0)

and repeat the above simulation. The third panel of Figure 4.2 shows the
histogram of τ̂ − τ over 104 simulations.

Importantly, in the above three sets of simulations, the correlations be-
tween potential outcomes are different but the marginal distributions are the
same. The following table compares the true variances, the conservative esti-
mated variances, and the coverage rates of the 95% confidence intervals.

constant negative independent

var 0.036 0.007 0.020

estimated var 0.036 0.036 0.036

coverege rate 0.947 1.000 0.989

The true variance depends on the correlation between the potential outcomes,
with positively correlated potential outcomes corresponding to a larger sam-
pling variance. This verifies (4.2). The estimated variances are almost identical
because the formula of V̂ depends only on the marginal distributions of the
potential outcomes. Due to the discrepancy between the true and estimated
variances, the coverage rates differ across the three sets of simulations. Only
with constant causal effects, the estimated variance is identical to the true
variance, verifying point 3 of Theorem 4.1.

Figure 4.2 also shows the Normal density curves based on the central limit
theorem for τ̂ . They are very close to the histogram over simulations, verifying
Theorem 4.2.
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τi = τ

τ̂ − τ
−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

negative corr between Y(1) and Y(0)

τ̂ − τ
−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

uncorrelated Y(1) and Y(0)

τ̂ − τ
−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

FIGURE 4.2: Sampling distribution of τ̂ − τ with the same marginal but
different joint distributions of the potential outcomes.
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4.5.2 Heavy-tailed outcome and failure of Normal approxi-
mations

The central limit theorem of τ̂ in Theorem 4.2 holds under some regularity
conditions. Those conditions will be violated with heavy-tailed potential out-
comes. We can modify the above simulation studies to illustrate this point.
Assume the individual causal effects are constant but the control potential
outcomes are contaminated by a Cauchy component with probability 0.1, 0.3
or 0.5. The following code generates the potential outcomes with the proba-
bility of contamination being 0.1.

combination = rbinom(n, 1, 0.1)

y0 = (1 - combination)*rexp(n) + combination*rcauchy(n)

y1 = y0 + 1

Figures 4.3 and 4.4 show two realizations of the histograms of τ̂−τ with the
corresponding Normal approximations. With heavy-tailed potential outcomes,
the Normal approximations are quite poor. Moreover, unlike Figure 4.2, the
histograms are quite sensitive to the random seed of the simulation.

4.5.3 Application

I again use the lalonde data to illustrate the theory.

> library(Matching)

> data(lalonde)

> z = lalonde$treat
> y = lalonde$re78

We can easily calculate the point estimator and standard error based on
the formulas in Theorem 4.1:

> n1= sum(z)

> n0= length(z) - n1

> tauhat = mean(y[z==1]) - mean(y[z==0])

> vhat = var(y[z==1])/n1 + var(y[z==0])/n0

> sehat = sqrt(vhat)

> tauhat

[1] 1794.343

> sehat

[1] 670.9967

Practitioners often use ordinary least squares (OLS) to estimate the aver-
age causal effect which also gives a standard error.

> olsfit = lm(y ~ z)

> summary(olsfit)$coef[2, 1: 2]

Estimate Std. Error

1794.3431 632.8536

However, the above standard error seems too small compared to the one based



4.5 Examples 53

τi = τ

prob comtamination = 0.1
−4 −2 0 2 4

τi = τ

prob comtamination = 0.3
−4 −2 0 2 4

τi = τ

prob comtamination = 0.5
−4 −2 0 2 4

FIGURE 4.3: Sampling distribution of τ̂ − τ with contaminated potential
outcomes: realization one
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τi = τ

prob comtamination = 0.1
−4 −2 0 2 4

τi = τ

prob comtamination = 0.3
−4 −2 0 2 4

τi = τ

prob comtamination = 0.5
−4 −2 0 2 4

FIGURE 4.4: Sampling distribution of τ̂ − τ with contaminated potential
outcomes: realization two
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on Theorem 4.1. However, this can be easily solved by using the Eicker–Huber–
White robust standard error.

> library(car)

> sqrt(hccm(olsfit )[2, 2])

[1] 672.6823

> sqrt(hccm(olsfit , type = "hc0")[2, 2])

[1] 669.3155

> sqrt(hccm(olsfit , type = "hc2")[2, 2])

[1] 670.9967

Different versions of the robust standard error exist. They yield similar results
if the sample size is large, with hc2 yielding a standard error identical to
Theorem 4.1. Problem 4.3 gives a theoretical explanation for the possible
failure of the standard error based on OLS and the asymptotic validity of the
Eicker–Huber–White robust standard error.

4.6 Homework Problems

4.1 Proof of Lemma 4.1

Prove Lemma 4.1.

4.2 Alternative proof of Theorem 4.1

Under a CRE, calculate

var{ ˆ̄Y (1)}, var{ ˆ̄Y (0)}, cov{ ˆ̄Y (1), ˆ̄Y (0)}

and use these formulas to calculate var(τ̂).
Hint: Use the results in Chapter A3.

4.3 Neymanian inference and OLS

Prove (4.3)–(4.5). Moreover, prove that the HC2 variant of the EHW robust
variance estimator recovers V̂ exactly.

Hint: Appendix A2 reviews some important technical results about OLS.

4.4 Treatment effect heterogeneity

Show that S2(τ) = 0 implies that S2(1) = S2(0). Given a counterexample
with S2(1) = S2(0) but S2(τ) ̸= 0.

Show that S2(1) < S2(0) implies that

S(Y (0), τ) = (n− 1)

n∑
i=1

{Yi(0)− Ȳ (0)}(τi − τ) < 0.
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Give a counterexample with S2(1) > S2(0) but S(Y (0), τ) < 0.
Remark: The first result states that no treatment effect heterogeneity im-

plies equal variances in the treated and control potential outcomes. But the
converse is not true. The second result states that if the treated potential
outcome has larger variance than the control potential outcome, then the in-
dividual treatment effect is negatively correlated with the control potential
outcome. But the converse is not true. Gerber and Green (2012, page 293)
and (Ding et al., 2019, Appendix B.3) gave related discussions.

4.5 A better bound of the variance formula

Neyman (1923)’s conservative variance estimator essentially uses the following
upper bound on the true variance:

var(τ̂) =
S2(1)

n1
+
S2(0)

n0
− S2(τ)

n
≤ S2(1)

n1
+
S2(0)

n0
,

which uses the trivial fact that S2(τ) ≥ 0. Show the following upper bound

var(τ̂) ≤ 1

n

{√
n0
n1
S(1) +

√
n1
n0
S(0)

}2

. (4.6)

When does the equality in (4.6) hold?
The upper bound (4.6) motivates another conservative variance estimator

V̂ ′ =
1

n

{√
n0
n1
Ŝ(1) +

√
n1
n0
Ŝ(0)

}2

.

Section 4.5.1 used V̂ in the simulation with R code NeymanCR.R. Repeat the
simulation with additional comparison with the variance estimator V̂ ′ and
the associated confidence interval.

Remark: The upper bound (4.6) can be further improved. Aronow et al.
(2014) derived the sharp upper bound for var(τ̂) using the Frechet–Hoeffding
inequality. Those improvements are rarely used in practice mainly for two
reasons. First, they are more complicated than V̂ which can be conveniently
implemented by OLS. Second, the confidence interval based on V̂ also works
under other formulations, for example, under a true linear model of the out-
come on the treatment, but those improvements do not. Although they are
theoretically interesting, those improvements have little practical impact.

4.6 Vector version of Neyman (1923)

The classic result of Neyman (1923) is about a scalar outcome. It is common
to have multiple outcomes in practice. Therefore, we can extend the potential
outcomes to vectors. We consider the average causal effect on a vector outcome
V ∈ RK ,

τV =
1

n

n∑
i=1

{Vi(1)− Vi(0)} ,
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where Vi(1) and Vi(0) are the potential outcomes of V for unit i. The Neyman-
type estimator for τV is the difference between the sample mean vectors of
the observed outcomes under treatment and control:

τ̂V = V̄1 − V̄0 =
1

n1

n∑
i=1

ZiVi −
1

n0

n∑
i=1

(1− Zi)Vi.

Consider a CRE. Show that τ̂V is unbiased for τV . Find the covariance
matrix of τ̂V . Find a (possibly conservative) estimator for the variance.

4.7 Inference in the BRE

Consider the BRE where the Zi’s are IID Bernoulli(π) with n1 =
∑n

i=1 Zi

receiving the treatment and n0 =
∑n

i=1(1− Zi) receiving the control.
First, we can use the FRT to analyze the BRE. How do we test H0f in

the CRE? Can we use the same FRT procedure as in the CRE if the actual
experiment is the BRE? If yes, give a justification; if no, explain why.

Second, we can obtain point estimator for τ and find the associated vari-
ance estimator, as Neyman (1923) did for the CRE.

1. Is τ̂ unbiased for τ? Is it consistent?

2. Find an unbiased estimator for τ .

3. Compare the variance of the above unbiased estimator and the
asymptotic variance of τ̂ .

Remark: The estimator τ̂ does not have finite variance but the variance of
its asymptotic distribution is finite.

4.8 Recommended reading

Ding (2016) compared the Fisherian and Neymanian approaches to analyzing
the CRE.
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Stratification and Post-Stratification in
Randomized Experiments

Block what you can and randomize what you cannot.
— George Box

This is the second most famous quote from George Box1. This chapter will
explain its meaning.

5.1 Stratification

A CRE may generate an undesired treatment allocation. Let us start with a
completely randomized experiment with a discrete covariate Xi ∈ {1, . . . ,K},
and define n[k] = #{i : Xi = k} and π[k] = n[k]/n as the number and pro-
portion of units in stratum k (k = 1, . . . ,K). A CRE assigns n1 units to the
treatment group and n0 units to the control group, which results in

n[k]1 = #{i : Xi = k, Zi = 1}, n[k]0 = #{i : Xi = k, Zi = 0}

units in the treatment and control groups within stratum k. With positive
probability, n[k]1 or n[k]0 is zero for some k, that is, it is possible that some
strata only have treated or control units. Even none of the n[k]1’s or n[k]0’s
are zero, with high probability

n[k]1

n1
−
n[k]0

n0
̸= 0, (5.1)

and the magnitude can be quite large. So the proportions of units in stratum
k are different across the treatment and control groups although on average
their difference is zero:

E

(
n[k]1

n1
−
n[k]0

n0

)
= E

{
n−1
1

n∑
i=1

Zi1(Xi = k)− n−1
0

n∑
i=1

(1− Zi)1(Xi = k)

}
= 0.

1His most famous quote is “all models are wrong but some are useful.”

59
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When n[k]1/n1 − n[k]0/n0 is large for some strata with X = k, the treatment
and control groups have undesirable covariate imbalance. Such covariate im-
balance deteriorates the quality of the experiment, making it difficult to in-
terpret the results of the experiment since the difference in the outcomes may
be attributed to the treatment or the covariate imbalance.

How can we actively avoid covariate imbalance in the experiment? We
can fix the n[k]1’s or n[k]0’s in advance and conduct stratified randomized
experiments (SRE).

Definition 5.1 (SRE) We conduct K independent CREs within the K
strata of a discrete covariate X.

In agricultural experiments, the SRE is also called the randomized block
design, with the strata called the blocks. Analogously, stratified randomization
is also called block randomization. The total number of randomizations in an
SRE equals

K∏
k=1

(
n[k]
n[k]1

)
,

and each feasible randomization has equal probability. Within stratum k, the
proportion of units receiving the treatment is

e[k] =
n[k]1

n[k]
,

which is also called the propensity score, a conceptual that will play a central
role in Part III of this book. An SRE is different from a CRE: first, all feasible
randomizations in an SRE form a subset of all feasible randomizations in a
CRE, so

K∏
k=1

(
n[k]
n[k]1

)
<

(
n

n1

)
;

second, e[k] is fixed in an SRE but random in a CRE.
For every unit i, we have potential outcomes Yi(1) and Yi(0), and individual

causal effect τi = Yi(1)−Yi(0). For stratum k, we have stratum-specific average
causal effect

τ[k] = n−1
[k]

∑
Xi=k

τi.

The average causal effect is

τ = n−1
n∑

i=1

τi = n−1
K∑

k=1

∑
Xi=k

τi =

K∑
k=1

π[k]τ[k],

which is also the weighted average of the stratum-specific average causal ef-
fects.

If we are interested in τ[k], then we can use the methods in Chapters 3 and
4 for the CRE within stratum k. Below I will discuss statistical inference for
τ .
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5.2 FRT

5.2.1 Theory

In parallel with the discussion of a CRE, I will start with the FRT in an SRE.
The sharp null hypothesis is still

H0f : Yi(1) = Yi(0) for all units i = 1, . . . , n.

The fundamental idea of the FRT applies to any randomized experiment: we
can use any test statistic which has a known distribution under H0f and the
SRE. However, we must be careful with two subtle issues. First, when we sim-
ulate the treatment vector, we must permute the treatment indicators within
strata of X. The resulting FRT is sometimes called the conditional random-
ization test or conditional permutation test. Second, we should choose test
statistics that can reflect the nature of the SRE. Below I give some canonical
choices of the test statistic.

Example 5.1 (Stratified estimator) Motivated by estimating τ , we can
use the following stratified estimator in the FRT:

τ̂S =

K∑
k=1

π[k]τ̂[k],

where

τ̂[k] = n−1
[k]1

n∑
i=1

I(Xi = k, Zi = 1)Yi − n−1
[k]0

n∑
i=1

I(Xi = k, Zi = 0)Yi

is the stratum-specific difference-in-means within stratum k.

Example 5.2 (Studentized stratified estimator) Motivated by the stu-
dentized statistic in the simple two-sample problem, we can use the following
studentized statistic for the stratified estimator in the FRT:

tS =
τ̂S√
V̂S
,

with

V̂S =

K∑
k=1

π2
[k]

(
Ŝ2
[k](1)

n[k]1
+
Ŝ2
[k](0)

n[k]0

)
where Ŝ2

[k](1) and Ŝ
2
[k](0) are the stratum-specific sample variances of the out-

comes under treatment and control, respectively. The exact form of this statis-
tic is motivated by the Neymanian perspective discussed in Section 5.3.
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Example 5.3 (Combining Wilcoxon rank-sum statistics) We first com-
pute the Wilcoxon rank sum statistic W[k] within stratum k and then combine
them as

WS =

K∑
k=1

c[k]W[k].

Based on different asymptotic schemes and optimality criteria, Van Elteren
(1960) proposed two weighting methods, one with

c[k] =
1

n[k]1n[k]0
,

and the other with

c[k] =
1

n[k] + 1

The motivations for these weights appear to be quite technical, and other
choices of weights may also be reasonable.

Example 5.4 (Hodges and Lehmann (1962)’s aligned rank statistic)
Van Elteren (1960)’s statistic works well with a few large strata. However, it
does not work well with many small strata since it does not make enough
comparisons, potentially losing information in the data. Hodges and Lehmann
(1962) proposed a test statistic that makes more comparisons across strata
after standardizing the outcomes. They suggested first centering the outcomes
as

Ỹi = Yi − Ȳ[k]

with the stratum-specific mean Ȳ[k] = n−1
[k]

∑
Xi=k Yi if Xi = k, then obtain-

ing the ranks (R̃1, . . . , R̃n) of the pooled outcomes (Ỹ1, . . . , Ỹn), and finally
constructing the test statistic

W̃ =

n∑
i=1

ZiR̃i.

We can simulate the exact distributions of the above test statistics under
the SRE. We can also calculate their means and variances and obtain the
p-values based on Normal approximations.

After searching for a while, I failed to find detailed discussion of the
Kolmogorov–Smirnov statistic for the SRE. Below is my proposal.

Example 5.5 (Kolmogorov–Smirnov statistic) We compute D[k], the
maximum difference between the empirical distributions of the outcomes under
treatment and control within stratum k. The final test statistic can be

DS =

K∑
k=1

c[k]D[k]
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or
Dmax = max

1≤k≤K
c[k]D[k],

where c[k] =
√
n[k]1n[k]0/n[k] is motivated by the limiting distribution of D[k]

with n[k]1 and n[k]0 approach infinity (Van der Vaart, 2000). The statistics
DS and Dmax are more appropriate when all strata have large sample size.
Another reasonable choice is

D = max
y

∣∣∣ K∑
k=1

π[k]{F̂[k]1(y)− F̂[k]0(y)}
∣∣∣,

where F̂[k]1(y) and F̂[k]0(y) are the stratum-specific empirical distribution func-
tions of the outcomes under treatment and control, respectively. The statistic
D is appropriate in both the cases with large strata and the cases with many
small strata.

5.2.2 An application

The Penn Bonus experiment as an example to illustrate the FRT in the SRE.
The dataset used by Koenker and Xiao (2002) is from a job training program
stratified on quarter, with the outcome being the duration before employed.

penndata = read.table("Penn46_ascii.txt")

z = penndata$treatment
y = log(penndata$duration)
block = penndata$quarter

I will focus on τ̂S and WS, and leave the FRT with other statistics as
exercise. The following function computes τ̂S and V :

stat_SRE = function(z, y, x)

{

xlevels = unique(x)

K = length(xlevels)

PiK = rep(0, K)

TauK = rep(0, K)

WilcoxK = rep(0, K)

for(k in 1:K)

{

xk = xlevels[k]

zk = z[x == xk]

yk = y[x == xk]

PiK[k] = length(zk)/length(z)

TauK[k] = mean(yk[zk==1]) - mean(yk[zk==0])

WilcoxK[k] = wilcox.test(yk[zk==1], yk[zk ==0])$statistic
}

return(c(sum(PiK*TauK), sum(WilcoxK/PiK )))

}
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The following function generates a random treatment assignment in the
SRE of the observed data:

zRandomSRE = function(z, x)

{

xlevels = unique(x)

K = length(xlevels)

zrandom = z

for(k in 1:K)

{

xk = xlevels[k]

zrandom[x == xk] = sample(z[x == xk])

}

return(zrandom)

}

Based on the above data and functions, we can easily simulate the ran-
domization distributions of the test statistics (shown in Figure 5.1 with 104

Monte Carlo draws) and compute the p-values.

> MC = 10^4

> statSREMC = matrix(0, MC, 2)

> for(mc in 1:MC)

+ {

+ zrandom = zRandomSRE(z, block)

+ statSREMC[mc , ] = stat_SRE(zrandom , y, block)

+ }

> mean(statSREMC[, 1] <= stat.obs [1])

[1] 0.0019

> mean(statSREMC[, 2] <= stat.obs [2])

[1] 5e-04

5.3 Neymanian inference

5.3.1 Point and interval estimation

Statistical inference for an SRE builds on the fact that it essentially consists
of K independent CREs. Based on this, we can easily extend Neyman (1923)’s
results to the SRE. Within stratum k, the difference-in-means τ̂[k] is unbiased
for τ[k] with variance

var(τ̂[k]) =
S2
[k](1)

n[k]1
+
S2
[k](0)

n[k]0
−
S2
[k](τ)

n[k]
,

where S2
[k](1), S

2
[k](0) and S

2
[k](τ) are the stratum-specific variances of potential

outcomes and the individual treatment effects, respectively. Therefore, the
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τ̂S

−0.10 −0.05 0.00 0.05 0.10 0.15

V

4700000 4800000 4900000 5000000 5100000 5200000

FIGURE 5.1: The randomization distributions of τ̂S and V based on the Penn
Bonus experiment.
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stratified estimator τ̂S =
∑K

k=1 π[k]τ̂[k] is unbiased for τ =
∑K

k=1 π[k]τ[k] with
variance

var(τ̂S) =

K∑
k=1

π2
[k]var(τ̂[k]).

If n[k]1 ≥ 2 and n[k]0 ≥ 2, then we can obtain the sample variances Ŝ2
[k](1)

and Ŝ2
[k](0) of the outcomes within stratum k and construct a conservative

variance estimator

V̂S =

K∑
k=1

π2
[k]

(
Ŝ2
[k](1)

n[k]1
+
Ŝ2
[k](0)

n[k]0

)
,

where Ŝ2
[k](1) and Ŝ2

[k](0) are the stratum-specific sample variances of the
outcomes under treatment and control, respectively. Based on a Normal ap-
proximation of τ̂S, we can construct a Wald-type 1−α confidence interval for
τ :

τ̂S ± z1−α/2

√
V̂S.

From a hypothesis testing perspective, under H0n : τ = 0, we can compare

tS = τ̂S/
√
V̂S with the standard Normal quantiles to obtain asymptotic p-

values. The statistic tS has appeared in Example 5.2 for the FRT. Similar to
the discussion for the CRE, using tS in the FRT yields finite-sample exact
p-value under H0f and asymptotically valid p-value under H0n. Wu and Ding
(2021) provided a justification for this claim.

Here I omit the technical details for the central limit theorem of τ̂S. See Liu
and Yang (2020) for a proof, which includes the two regimes with a few large
strata and many small strata. I will illustrate this theoretical issues using a
numerical example in Section 5.3.2.

5.3.2 Numerical examples

The following function computes the Neymanian point and variance estima-
tors:

Neyman_SRE = function(z, y, x)

{

xlevels = unique(x)

K = length(xlevels)

PiK = rep(0, K)

TauK = rep(0, K)

varK = rep(0, K)

for(k in 1:K)

{

xk = xlevels[k]

zk = z[x == xk]

yk = y[x == xk]
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PiK[k] = length(zk)/length(z)

TauK[k] = mean(yk[zk==1]) - mean(yk[zk==0])

varK[k] = var(yk[zk==1])/sum(zk) +

var(yk[zk ==0])/sum(1 - zk)

}

return(c(sum(PiK*TauK), sum(PiK^2*varK )))

}

The first simulation setting has K = 5 and each stratum has 80 units.
TauHat and VarHat are the point and variance estimators over 104 simulations.

> K = 5

> n = 80

> n1 = 50

> n0 = 30

> x = rep (1:K, each = n)

> y0 = rexp(n*K, rate = x)

> y1 = y0 + 1

> zb = c(rep(1, n1), rep(0, n0))

> MC = 10^4

> TauHat = rep(0, MC)

> VarHat = rep(0, MC)

> for(mc in 1:MC)

+ {

+ z = replicate(K, sample(zb))

+ z = as.vector(z)

+ y = z*y1 + (1-z)*y0

+ est = Neyman_SRE(z, y, x)

+ TauHat[mc] = est[1]

+ VarHat[mc] = est[2]

+ }

> var(TauHat)

[1] 0.002248925

> mean(VarHat)

[1] 0.002266396

The upper panel of Figure 5.2 shows the histogram of the point estimator,
which is symmetric and bell-shaped around the true parameter. From the
above, the average value of the variance estimator is almost identical to the
variance of the estimators because the individual causal effects are constant.

The first simulation setting has K = 50 and each stratum has 8 units.

> K = 50

> n = 8

> n1 = 5

> n0 = 3

> x = rep (1:K, each = n)

> y0 = rexp(n*K, rate = log(x + 1))

> y1 = y0 + 1

> zb = c(rep(1, n1), rep(0, n0))
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> MC = 10^4

> TauHat = rep(0, MC)

> VarHat = rep(0, MC)

> for(mc in 1:MC)

+ {

+ z = replicate(K, sample(zb))

+ z = as.vector(z)

+ y = z*y1 + (1-z)*y0

+ est = Neyman_SRE(z, y, x)

+ TauHat[mc] = est[1]

+ VarHat[mc] = est[2]

+ }

>

> hist(TauHat , xlab = expression(hat(tau)[S]),

+ ylab = "", main = "many small strata",

+ border = FALSE , col = "grey",

+ breaks = 30, yaxt = ’n’,

+ xlim = c(0.8, 1.2))

> abline(v = 1)

>

> var(TauHat)

[1] 0.001443111

> mean(VarHat)

[1] 0.001473616

The lower panel of Figure 5.2 shows the histogram of the point estimator,
which is symmetric and bell-shaped around the true parameter.

We finally use the Penn Bonus Experiment to illustrate the Neymanian
inference in an SRE. Applying the function Neyman_SRE to the dataset, we
obtain:

> est = Neyman_SRE(z, y, block)

> est [1]

[1] -0.08990646

> sqrt(est [2])

[1] 0.03079775

So the job training program significantly shortens the duration time before
employment.

5.3.3 Comparing the SRE and the CRE

What are the benefits of the SRE compared to the CRE? I have motivated
the SRE from the covariate balance perspective. In addition, I will show that
better covariate balance in turn results in better estimation precision of the
average causal effect. To make a fair comparison, I assume that e[k] = e for all
k which ensures that τ̂ = τ̂S. I leave the proof of this result as Problem 5.1.

We now compare the sampling variances. The classic analysis of variance
technique motivates the decomposition of the total variance into the summa-
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a few large strata

τ̂S

0.8 0.9 1.0 1.1 1.2

many small strata

τ̂S

0.8 0.9 1.0 1.1 1.2

FIGURE 5.2: Normal approximations under two regimes
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tion of the within-strata and between-strata variances, yielding

S2(1) = (n− 1)−1
n∑

i=1

{Yi(1)− Ȳ (1)}2

= (n− 1)−1
K∑

k=1

∑
Xi=k

{Yi(1)− Ȳ[k](1) + Ȳ[k](1)− Ȳ (1)}2

= (n− 1)−1
K∑

k=1

∑
Xi=k

[
{Yi(1)− Ȳ[k](1)}2 + {Ȳ[k](1)− Ȳ (1)}2

]
=

K∑
k=1

[
n[k] − 1

n− 1
S2
[k](1) +

n[k]

n− 1
{Ȳ[k](1)− Ȳ (1)}2

]
,

and similarly,

S2(0) =

K∑
k=1

[
n[k] − 1

n− 1
S2
[k](0) +

n[k]

n− 1
{Ȳ[k](0)− Ȳ (0)}2

]
,

S2(τ) =

K∑
k=1

[
n[k] − 1

n− 1
S2
[k](τ) +

n[k]

n− 1
{τ[k] − τ}2

]
.

With large strata, the variance of the difference-in-means estimator under
complete randomization is approximately

varCRE(τ̂)

=
S2(1)

n1
+
S2(0)

n0
− S2(τ)

n

≈
K∑

k=1

[
π[k]

n1
S2
[k](1) +

π[k]

n0
S2
[k](0)−

π[k]

n
S2
[k](τ)

]

+

K∑
k=1

[
π[k]

n1
{Ȳ[k](1)− Ȳ (1)}2 +

π[k]

n0
{Ȳ[k](0)− Ȳ (0)}2 −

π[k]

n
{τ[k] − τ}2

]
.

The constant propensity scores assumption ensures

π[k]/n[k]1 = 1/(ne), π[k]/n[k]0 = 1/{n(1− e)}, π[k]/n[k] = 1/n,

which allow us to rewrite the variance of τ̂S under the SRE as

varSRE(τ̂S) =

K∑
k=1

π2
[k]

[
S2
[k](1)

n[k]1
+
S2
[k](0)

n[k]0
−
S2
[k](τ)

n[k]

]

=

K∑
k=1

[
π[k]

n1
S2
[k](1) +

π[k]

n0
S2
[k](0)−

π[k]

n
S2
[k](τ)

]
.
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Approximately, the difference between varCRE(τ̂) and varSRE(τ̂S) is

K∑
k=1

[
π[k]

n1
{Ȳ[k](1)− Ȳ (1)}2 +

π[k]

n0
{Ȳ[k](0)− Ȳ (0)}2 −

π[k]

n
(τ[k] − τ)2

]

=

K∑
k=1

π[k]

n

{√
n0
n1

{Ȳ[k](1)− Ȳ (1)}+
√
n1
n0

{Ȳ[k](0)− Ȳ (0)}
}2

≥ 0,

which is non-negative. The difference is zero only in the extreme case that√
n0
n1

{Ȳ[k](1)− Ȳ (1)}+
√
n1
n0

{Ȳ[k](0)− Ȳ (0)} = 0

for k = 1, . . . ,K. When the covariate is predictive to the potential outcomes,
the above quantities are usually not all zeros, which ensure the efficiency
gain of the SRE compared to the CRE. Only in the extreme cases that the
covariate is not predictive at all, the large-sample efficiency gain is zero. In
those cases, the SRE can even result in worse estimators in finite sample. The
above discussion corroborates the quote from George Box at the beginning of
this chapter.

I will end this section with several remarks. First, the above comparison
is based on the sampling variance, and we can also compare the estimated
variances under the SRE and the CRE. The results are similar. Second, in-
creasing K improves efficiency, but this argument depends on the large strata
assumption. So we face a tradeoff in practice. We cannot arbitrarily increase
K, and the most extreme case is n[k]1 = n[k]0 = 1, which is called the matched
pair experiment and will be discussed later.

5.4 Post-stratification in a CRE

In a CRE with a discrete covariate X, the numbers of units receiving the
treatment and control are random within stratum k. In a SRE, these numbers
are fixed. But if we conduct conditional inference given n = {n[k]1, n[k]0}Kk=1,
then a CRE becomes a SRE. Mathematically, if none of the components of n
are zero, then

prCRE(Z = z | n) = prCRE(Z = z,n)

prCRE(n)
=

1∏K
k=1

(
n[k]

n[k]1

) , (5.2)

that is, the conditional distribution of Z from a CRE given n is identical to
the distribution of Z from an SRE. So conditional on n, we can analyze a
CRE with a discrete covariate X in the same way as in a SRE. In particular,
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the FRT becomes a conditional FRT, and the Neymanian analysis becomes
post-stratification:

τ̂PS =

K∑
k=1

π[k]τ̂[k],

which has an identical form as τ̂S. The variance of τ̂PS conditioning on n is
identical to the variance of τ̂S under the SRE.

Hennessy et al. (2016) used simulation to show that the conditional FRT
is often more powerful than the unconditional one. Miratrix et al. (2013)
used theory to show that in many cases, post-stratification improves efficiency
compared to τ̂ . However, the simulation is based on limited number of data
generating processes, and the theory assumes all strata are large enough. We
cannot go too extreme in the conditional FRT or post-stratification because
with a larger K it is more likely that some n[k]1 or n[k]0 become zero. Small
or zero values of n[k]1 or n[k]0 greatly reduces the number of randomizations
in the FRT, possibly reducing the power dramatically. The problem for the
Neymanian counterpart is more salient because we cannot even define τ̂PS and
the corresponding variance estimator.

Stratification uses X in the design stage and post-stratification uses X in
the analysis stage. They are duals. Asymptotically, their difference is small
with large strata (Miratrix et al., 2013).

5.4.1 Meinert et al. (1970)’s Example

We use the data from a randomized trial from Meinert et al. (1970), which
were also used by Rothman et al. (2008). The treatment is tolbutamide and
the control is a placebo.

Age < 55

Surviving Dead
Z = 1 98 8
Z = 0 115 5

Age ≥ 55

Surviving Dead
Z = 1 76 22
Z = 0 69 16

Total

Surviving Dead
Z = 1 174 30
Z = 0 184 21

The following table shows the estimates for two strata separately, the post-
stratified estimator, and the crude estimator ignoring the binary covariate, as
well as the corresponding standard errors.

stratum 1 stratum 2 post-stratification crude
est −0.034 −0.036 −0.035 −0.045
se 0.031 0.060 0.032 0.033

Although the crude estimator and the post-stratification estimator do not
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lead to fundamentally different results, the crude estimator is outside the
range of the stratum-specific estimators while the post-stratification estimator
is within the range.

5.4.2 Chong et al. (2016)’s Example

Chong et al. (2016) ran a randomized experiment in Peru to study the effect
of supplemental iron pills on school performance. The experiment is stratified
on class_level. I will only use a subset of the original data.

library("foreign")

dat_chong = read.dta("chong.dta")

use.vars = c("treatment",

"gradesq34",

"class_level",

"anemic_base_re")

dat_physician = subset(dat_chong ,

treatment != "Soccer Player",

select = use.vars)

dat_physician$z = (dat_physician$treatment =="Physician")
dat_physician$y = dat_physician$gradesq34

The treatment and control group sizes vary across five strata:

> table(dat_physician$z,
+ dat_physician$class_level)

1 2 3 4 5

FALSE 15 19 16 12 10

TRUE 17 20 15 11 10

We can use the Neyman_SRE function defined before to compute the stratified
estimator and its estimated variance.

tauS = with(dat_physician ,

Neyman_SRE(z, gradesq34 , class_level ))

An important additional covariate is the baseline anemic indicator which is
quite important for predicting the outcome. Further conditioning the baseline
anemic indicator, we have an experiment with 5 × 2 = 10 strata, with the
treatment and control group sizes shown below.

> table(dat_physician$z,
+ dat_physician$class_level ,
+ dat_physician$anemic_base_re)
, , = No

1 2 3 4 5

FALSE 6 14 12 7 4

TRUE 8 12 9 5 6
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, , = Yes

1 2 3 4 5

FALSE 9 5 4 5 6

TRUE 9 8 6 6 4

Again we can use the Neyman_SRE function defined before to compute the post-
stratified estimator and its estimated variance.

tauSPS = with(dat_physician ,

{

sps = interaction(class_level , anemic_base_re)

Neyman_SRE(z, gradesq34 , sps)

})

The following table compares these two estimators. The post-stratified
estimator yields a much smaller p-value.

est se t.stat p.value
stratify 0.406 0.202 2.005 0.045

stratify and post-stratify 0.463 0.190 2.434 0.015

This example illustrates that post-stratification can be used not only in
the CRE but also in the SRE with additional discrete covariates.

5.5 Practical questions

How do we choose X to construct a SRE? Theoretically, X should be predic-
tive to the potential outcomes. In some cases, the experimenter has enough
background knowledge about the predictive covariates based on, for exam-
ple, some pilot studies. Then the choice of X should be straightforward. In
some other cases, this background knowledge may not be clear enough. Ex-
perimenters instead choose X based on logistic convenience, for example, X
can be indicator for the study areas or the cohort of students.

The choose of K is a related problem. Theoretically, more stratification
increases the estimation efficiency if all strata are large enough. However,
extremely large K may even decrease the estimation efficiency. In simulation
studies, we observe diminishing marginal returns of increasingK. Anecdotally,
K = 5 often suffices for efficiency gain. Some experimenter prefers the most
extreme version of the SRE with K = n/2. This results in the matched pair
design, which will be discussed in Chapter 7 later.

Some experiments have multidimensional continuous covariates. Can the
SRE still be used? If we have a pilot study, we can build a model for the
potential outcome Y (0) given those covariates, and then we can choose X as
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a discretized version of the predictor Ŷ (0). In general, if we do not have such
a pilot study or we do not want to make ad hoc discretizations, we can use a
more general strategy called rerandomization, which is the topic for Chapter
6.

5.6 Homework Problems

5.1 Consequence of the constant propensity score

Show that if e[k] = e for all k = 1, . . . ,K, then τ̂ = τ̂S.

5.2 Consquence of constant individual causal effects

Assume that the individual causal effects are constant τi = τ for all i =
1, . . . , n. Consider the following class of weighted estimator for τ :

τ̂w =

K∑
k=1

w[k]τ̂[k],

where w[k] ≥ 0 for all k.
Find the condition on the w[k]’s such that τ̂w is unbiased for τ . Among all

unbiased estimators, find the one with the minimum variance.

5.3 FRT for the Project STAR data in Imbens and Rubin (2015)

Reanalyze the Project STAR data using the Fisher randomization test. Note
that I use Z for the treatment indicator but Imbens and Rubin (2015) use
W. Use τ̂S, V and the aligned rank statistic in the Fisher randomization test.
Compare the p-values.

treatment = list(c(1,1,0,0),

c(1,1,0,0),

c(1,1,1,0,0),

c(1,1,0,0),

c(1,1,0,0),

c(1,1,0,0),

c(1,1,0,0),

c(1,1,1,1,0,0),

c(1,1,0,0),

c(1,1,0,0),

c(1,1,0,0),

c(1,1,1,0,0),

c(1,1,0,0),

c(1,1,0,0),

c(1,1,0,0),

c(1,1,0,0))
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outcome = list(c(0.165 ,0.321 , -0.197 ,0.236) ,

c(0.918 , -0.202 ,1.19 ,0.117) ,

c(0.341 ,0.561 , -0.059 , -0.496 ,0.225) ,

c( -0.024 , -0.450 , -1.104 , -0.956) ,

c( -0.258 , -0.083 , -0.126 ,0.106) ,

c(1.151 ,0.707 ,0.597 , -0.495) ,

c(0.077 ,0.371 ,0.685 ,0.270) ,

c( -0.870 , -0.496 , -0.444 ,0.392 , -0.934 , -0.633) ,

c( -0.568 , -1.189 , -0.891 , -0.856) ,

c( -0.727 , -0.580 , -0.473 , -0.807) ,

c( -0.533 ,0.458 , -0.383 ,0.313) ,

c(1.001 ,0.102 ,0.484 ,0.474 ,0.140) ,

c(0.855 ,0.509 ,0.205 ,0.296) ,

c(0.618 ,0.978 ,0.742 ,0.175) ,

c( -0.545 ,0.234 , -0.434 , -0.293) ,

c( -0.240 , -0.150 ,0.355 , -0.130))

5.4 A multi-center trial

Gould (1998, Table 1) reported the following data from a multi-center trial:

> multicenter = read.csv("multicenter.csv")

> multicenter

center n0 mean0 sd0 n1 mean1 sd1 n5 mean5 sd5

1 1 7 0.43 4.58 7 -5.43 5.53 8 -2.63 3.38

2 2 11 0.10 4.21 11 -2.59 3.95 12 -2.21 4.14

3 3 6 2.58 4.80 6 -3.94 4.25 7 1.29 7.39

4 4 10 -2.30 3.86 10 -1.23 5.17 10 -1.40 2.27

5 5 10 2.08 6.46 10 -6.70 7.45 10 -5.13 3.91

6 6 6 1.13 3.24 5 3.40 8.17 5 -1.59 3.19

7 7 5 1.20 7.85 6 -3.67 4.89 5 -1.40 2.61

8 8 12 -1.21 2.66 13 0.18 3.81 12 -4.08 6.32

9 9 8 1.13 5.28 8 -2.19 5.17 9 -1.96 5.84

10 10 9 -0.11 3.62 10 -2.00 5.35 10 0.60 3.53

11 11 15 -4.37 6.12 14 -2.68 5.34 15 -2.14 4.27

12 12 8 -1.06 5.27 9 0.44 4.39 9 -2.03 5.76

13 13 12 -0.08 3.32 12 -4.60 6.16 11 -6.22 5.33

14 14 9 0.00 5.20 9 -0.25 8.23 7 -3.29 5.12

15 15 6 1.83 5.85 7 -1.23 4.33 6 -1.00 2.61

16 16 14 -4.21 7.53 14 -2.10 5.78 12 -5.75 5.63

17 17 13 0.76 3.82 13 0.55 2.53 13 -0.63 5.41

18 18 15 -1.05 4.54 13 2.54 4.16 14 -2.80 2.89

19 19 15 2.07 4.88 15 -1.67 4.95 15 -3.43 4.71

20 20 11 -1.46 5.48 10 -1.99 5.63 10 -6.77 5.19

21 21 5 0.80 4.21 5 -3.35 4.73 5 -0.23 4.14

22 22 11 -2.92 5.42 10 -1.22 5.95 11 -4.45 6.65

23 23 9 -3.37 4.73 9 -1.38 4.17 7 0.57 2.70

24 24 12 -1.92 2.91 12 -0.66 3.55 12 -2.39 2.27

25 25 9 -3.89 4.76 9 -3.22 5.54 8 -1.23 4.91
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26 26 15 -3.48 5.98 15 -2.13 3.25 14 -3.71 5.30

27 27 11 -1.91 6.49 12 -1.33 4.40 11 -1.52 4.68

28 28 10 -2.66 3.80 10 -1.29 3.18 10 -4.70 3.43

29 29 13 -0.77 4.73 13 -2.31 3.88 13 -0.47 4.95

This is a SRE with centers being the strata. The trial was conducted
to study the efficacy and tolerability of finasteride, a drug for treating benign
prostatic hyperplasia. Within each of the 29 centers, patients were randomized
into three arms: control, finasteride 1mg, and finasteride 5mg. The above
dataset provides summary statistics for the outcome, which is the change
from baseline in total symptom score. The total symptom score is the sum of
the responses to nine questions (score 0 to 4) about symptoms pertaining to
various aspects of impaired urinary ability. The meanings of the columns are:

1. center: number of the center;

2. n0, n1, n5: sample sizes of the three arms;

3. mean0, mean1, mean5: mean of the outcome;

4. sd0, sd1, sd5: standard deviation of the outcome.

The individual-level outcomes are not reported so we cannot implement
the FRT. However, the Neymanian inference only requires the summary statis-
tics. Report the point estimators and variance estimators for comparing “fi-
nasteride 1mg” and “finasteride 5mg” to “control”, separately.

5.5 Data re-analyses

Re-analyze the LaLonde data used in Neymanlalonde.R. Conduct both Fish-
erian and Neymanian inferences.

The original experiment is a completely randomized experiment. Now we
pretend that the original experiment is a stratified randomized experiment.
First, re-analyze the data pretending that the experiment is stratified on
the race (black, Hispanic or other). Second, re-analyze the data pretending
that the experiment is stratified on marital status. Third, re-analyze the data
pretending that the experiment is stratified on the indicator of high school
diploma.

Compare with the results obtained under a completely randomized exper-
iments.

5.6 Recommended reading

Miratrix et al. (2013) provided solid theory for post-stratification and com-
pared it with stratification. A main theoretical result is that their difference
is small asymptotically although they can differ in finite samples.
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Rerandomization and Regression
Adjustment

Stratification and post-stratification in Chapter 5 are duals for discrete co-
variates in the design and analysis of randomized experiments. How should we
deal with multidimensional possibly continuous covariates? We can discretize
continous covariates, but this is not an ideal strategy with many covariates.
Rerandomization and regression adjustment are duals for general covariates,
which are the topics for this chapter.

The following table summarizes the topics of Chapters 5 and 6:

design analysis

discrete covariate stratification post-stratification

general covariate rerandomization regression adjustment

6.1 Rerandomization

6.1.1 Experimental design

Again we consider a finite population of n units, where n1 of them receive the
treatment and n0 of them receive the control. Let Z = (Z1, . . . , Zn) be the
treatment vector for these units. Unit i has covariate Xi ∈ RK which can have
continuous or binary components. Concatenate them as X = (X1, . . . , Xn)
and center them at mean zero X̄ = n−1

∑n
i=1Xi = 0 without loss of generality.

The CRE balances the covariates in the treatment and control groups on
average, for instance, the difference in means of the covariates

τ̂X = n−1
1

n∑
i=1

ZiXi − n−1
0

n∑
i=1

(1− Zi)Xi

has mean zero under the CRE. However, it can result in undesirable covariate
balance across the treatment and control groups in the realized treatment
allocation, that is, the realized value of τ̂X is often not zero. Using the vector
form of Neyman (1923) in Problem 4.6, we can show that

cov(τ̂X) =
1

n1
S2
X +

1

n0
S2
X =

n

n1n0
S2
X ,

79



80 6 Rerandomization and Regression Adjustment

where S2
X = (n− 1)−1

∑n
i=1XiX

T
i . The following Mahalanobis distance mea-

sures the difference between the treatment and control groups:

M = τ̂TXcov(τ̂X)−1τ̂X = τ̂TX

(
n

n1n0
S2
X

)−1

τ̂X .

Technically the above formula of M is meaningful only if S2
X is invertible,

which means that the columns of the covariate matrix are linearly indepen-
dent. If a column can be represented by a linear combinations of other columns,
it is redundant and should be dropped before the experiment. A nice feature
ofM is that it is invariance under non-degenerate linear transformations of X.
Lemma 6.1 below summarizes the result with the proof relegated to Problem
6.2.

Lemma 6.1 M remains the same if we transform Xi to α+BXi for all units
i = 1, . . . , n where α ∈ RK and B ∈ RK×K is invertible.

The finite population central limit theorem (Li and Ding, 2017) ensures
that with large n, the Mahalanobis distanceM is approximately χ2

K under the
CRE. Therefore, it is likely that M has a large realized value under the CRE
with asymptotic mean K and variance 2K. Rerandomization avoids covariate
imbalance by discarding the treatment allocations with large values of M .
Below I give a formal definition of the rerandomization using the Mahalanobis
distance (ReM), which was proposed by Cox (1982) and Morgan and Rubin
(2012).

Definition 6.1 (ReM) Draw Z from CRE and accept it if and only if

M ≤ a,

for some predetermined constant a > 0.

Choosing a is like choosing the number of strata in the SRE, which is
a non-trivial problem in practice. At one extreme, a = ∞, we just conduct
the CRE. At the other extreme, a = 0, there are very few feasible treatment
allocations, and consequently, the experiment has little randomness, rendering
randomization-based inference useless. As a compromise, we choose a small
but not extremely small a, for example, a = 0.001 or some upper quantile of
a χ2

K distribution.
ReM uses the Mahalanobis distance as the balance criterion. We can con-

sider general rerandomization with the balance criterion defined as a function
of Z andX. For example, we can use the following criterion based on marginal
tests for all coordinates of Xi = (xi1, . . . , xiK)T. We accept Z if and only if∣∣∣∣∣∣ τ̂xk√

n
n1n0

S2
xk

∣∣∣∣∣∣ ≤ a (k = 1, . . . ,K) (6.1)
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for some predetermined constant a > 0. For example, a some upper quantile
of a standard Normal distribution. ReM has many desirable properties. As
mentioned above, it is invariant to linear transformation of the covariates.
Moreover, it has nice geometric properties and elegant mathematical theory.
This chapter will focus on ReM. See Zhao and Ding (2021b) for the theory
for the rerandomization based on criterion (6.1) as well as other criteria.

6.1.2 Statistical inference

An important question is how to analyze the data under ReM. Bruhn and
McKenzie (2009) and Morgan and Rubin (2012) argued that we can always
use the FRT as long as we simulate Z under the constraint M ≤ a. This
always yields finite-sample exact p-values under the sharp null hypothesis.

It is a challenging problem to derive the finite sample properties of ReM
without assuming the sharp null hypothesis. Instead, Li et al. (2018b) derived
the asymptotic distribution of the difference in means of the outcome τ̂ under
ReM and the regularity conditions below.

Condition 6.1 As n→ ∞,

1. n1/n and n0/n have positive limits;

2. the finite population covariance of {Xi, Yi(1), Yi(0), τi} has
limit;

3. max1≤i≤n |Yi(1)−Ȳ (1)|2/n→ 0, max1≤i≤n |Yi(0)−Ȳ (0)|2/n→
0, and max1≤i≤n ∥Xi∥2/n→ 0,

Below is the main theorem for ReM. Let

LK,a ∼ D1 | DTD ≤ a

where D = (D1, . . . , DK) follows a K-dimensional standard Normal distribu-
tion; let ε follows a univariate standard Normal distribution; LK,a ε.

Theorem 6.1 Under ReM with M ≤ a and Condition 6.1, we have1

τ̂ − τ
·∼
√

var(τ)
{√

R2LK,a +
√
1−R2ε

}
,

where

var(τ̂) =
S2(1)

n1
+
S2(0)

n0
− S2(τ)

n

is Neyman (1923)’s variance formula proved in Chapter 4, and

R2 = corr2(τ̂ , τ̂X)

1The notation “A
·∼ B” means that A and B have the same asymptotic distributions.
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FIGURE 6.1: Geometry of ReM

is the squared multiple correlation coefficient2 between τ̂ and τ̂X under the
CRE.

Although the proof of Li et al. (2018b) is technical, the asymptotic distri-
bution in Theorem 6.1 has clear geometric interpretation, as shown in Figure
6.1. It shows that τ̂ decomposes into a component that is a linear combination
of τ̂X and a component that is orthogonal to τ̂X . Geometrically, cos2 θ = R2,
where θ is the angle between τ̂ and τ̂X . ReM affects the first component but
does not change the second component. The truncated Normal distribution
LK,a is due to the restriction of ReM on the first component.

When a = ∞, the asymptotic distribution simplifies to the one under the
CRE:

τ̂ − τ
·∼
√
var(τ)ε.

When the threshold a is close to zero, the the asymptotic distribution simplifies
to

τ̂ − τ
·∼
√
var(τ)(1−R2)ε.

So with a small threshold a, the efficiency gain due to ReM depends on R2,
which has the following equivalent form.

Proposition 6.1 Under the CRE,

R2 = corr2(τ̂ , τ̂X) =
n−1
1 S2(1 | x) + n−1

0 S2(0 | x)− n−1S2(τ | x)
n−1
1 S2(1) + n−1

0 S2(0)− n−1S2(τ)
,

2The squared multiple correlation coefficient between a random variable y and a random
vector X is defined as

R2
yX = corr2(y,X) =

cov(y,X)cov(X)−1cov(X, y)

var(y)
.

It extends the definition of the Pearson correlation coefficient and measures the linear
dependence of y on X.
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where {S2(1), S2(0), S2(τ)} are the finite population variances of {Yi(1), Yi(0), τi}ni=1,
and {S2(1 | x), S2(0 | x), S2(τ | x)} are the corresponding finite population
variances of their linear projections on (1, Xi).

3 Under the constant causal
effect assumption with τi = τ , R2 reduces to the finite population squared
multiple correlation between Yi(0) and Xi.

I leave the proof of Proposition 6.1 to Problem 6.4.
When 0 < a < ∞, the asymptotic distribution has a more complicated

form and is more concentrated at τ and thus the difference in means is more
precise under ReM than under the CRE.

If we ignore the design of ReM and still use the confidence interval based
on Neyman (1923)’s variance formula and the Normal approximation, it is
overly conservative and overcovers τ even if the individual causal effects are
constant. Li et al. (2018b) described how to construct confidence intervals
based on Theorem 6.1. We omit the discussion here but will come back to the
inference issue in Section 6.3.

6.2 Regression adjustment

What if we do not conduct rerandomization in the design stage but want
to adjust for covariate imbalance in the analysis stage of the CRE? We will
discuss several regression adjustment strategies.

6.2.1 Covariate-adjusted FRT

The covariates X are all fixed, and furthermore, under H0f, the observed
outcomes are all fixed. Therefore, we can simulate the distribution of any test
statistic T (Z,Y ,X) and calculate the p-value. The basic idea of the FRT
remains the same in the presence additional covariates.

There are two general strategies to construct the test statistic, as sum-
marized by Zhao and Ding (2021a). Problem 3.6 hints at both of them. I
summarize them below:

• The first strategy is to construct the test statistic based on residuals from
fitted statistical models. We can regress Yi on Xi to obtain residual εi, and
then treat εi as the pseudo outcome to construct test statistics.

• The second strategy is to use a regression coefficient as a test statistic. We

3For example, the linear projection of Yi(1) on (1, Xi) is α1 + β1Xi where

(α1, β1) = argmin
a,b

n∑
i=1

{Yi(1)− a− bTXi}2.



84 6 Rerandomization and Regression Adjustment

can regress Yi on (Zi, Xi) to obtain the coefficient of Zi as the test statistic.
The rest of this section will review some test statistics based on OLS.

In strategy one, we only need to run regression once, but in strategy two,
we need to run regression many times. In the above, “regression” is a generic
term, which can be linear regression, logistic regression, or even machine learn-
ing algorithms. The FRT with any test statistics from these two strategies will
be finite-sample exact under H0f although they differ under alternative hy-
potheses.

6.2.2 Analysis of covariance and extensions

Now we turn to direct estimation of the average causal effect τ that adjusts
for the observed covariates.

Historically, Fisher (1925) proposed to use the analysis of covariance (AN-
COVA) to improve estimation efficiency. This remains a standard strategy in
many fields. He suggested running the OLS of Yi on (Zi, Xi) and obtaining
the coefficient of Zi as an estimator for τ . Let τ̂F denote Fisher’s ANCOVA
estimator.

A former Berkeley Statistics Professor, David Freedman, reanalyzed
Fisher’s ANCOVA under Neyman (1923)’s potential outcomes framework.
Freedman (2008a,b) found the following negative results:

1. τ̂F is biased, but the simple difference in means τ̂ is unbiased.

2. The asymptotic variance of τ̂F may be even larger than that of τ̂ .

3. The standard error from the OLS is inconsistent for the true stan-
dard error of τ̂F under the CRE.

A Berkeley Ph.D. student, Winston Lin, wrote a thesis in response to
Freedman’s critiques. Lin (2013) found the following positive results:

1. The bias of τ̂F is small in large samples, and it goes to zero as the
sample size approaches infinity.

2. We can improve the asymptotic efficiency of both τ̂ and τ̂F by using
the coefficient of Zi in the OLS of Yi on (Zi, Xi, Zi × Xi). Let τ̂L
denote Lin (2013)’s estimator. Moreover, the EHW standard error
is a conservative estimator for the true standard error of τ̂L under
the CRE.

3. The EHW standard error4 for τ̂F in the OLS fit of Yi on (Zi, Xi) is

4Without covariates, the HC2 correction yields identical variance estimator as Neyman
(1923)’s classic one. For coherence, we can also use the HC2 correction for Lin (2013)’s
estimator with covariate adjustment. When the number of covariates is small compared
to the sample size and the covariates do not contain outliers, the variants of the EHW
standard error perform similarly to the original one. When the number of covariates is large
compared to the sample size or the covariates contain outliers, the variants can outperform
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a conservative estimator for the true standard error of τ̂F under the
CRE.

6.2.2.1 Some heuristics for Lin (2013)’s results

Neyman (1923)’s result demonstrates that the variance of the difference-in-
means estimator depends on the variances of the potential outcomes. Intu-
itively, we can reduce the variance of the estimator by reducing the variances
of the outcomes. A simple family of linearly adjusted estimator is

τ̂(β1, β0) = n−1
1

n∑
i=1

Zi(Yi − βT1Xi)− n−1
0

n∑
i=1

(1− Zi)(Yi − βT0Xi)(6.2)

=
{
ˆ̄Y (1)− βT1

ˆ̄X(1)
}
−
{
ˆ̄Y (0)− βT0

ˆ̄X(0)
}
, (6.3)

where { ˆ̄Y (1), ˆ̄Y (0)} are the sample means of the outcomes, and { ˆ̄X(1), ˆ̄X(0)}
are the sample means of the covariates. This covariate-adjusted estimator
τ̂(β1, β0) tries to reduce the variance of τ̂ by residualizing the potential out-
comes. It reduces to τ̂ with β1 = β0 = 0. It has mean τ for any fixed values
of β1 and β0 because X̄ = 0. We are interested in finding the (β1, β0) that
minimized the variance of τ̂(β1, β0). This estimator is essentially the difference
in means of the adjusted potential outcomes {Yi(1)−βT1Xi, Yi(0)−βT0Xi}ni=1.
Applying Neyman (1923)’s result, this estimator has variance

var{τ̂(β1, β0)} =
S2(1;β1)

n1
+
S2(0;β1)

n0
− S2(τ ;β1, β0)

n
,

where S2(z;β1) (z = 1, 0) and S2(τ ;β1, β0) are the finite population vari-
ances of the adjusted potential outcomes and individual effects, respectively;
moreover, a conservative variance estimate is

V̂ (β1, β0) =
Ŝ2(1;β1)

n1
+
Ŝ2(0;β1)

n0
,

where

Ŝ2(1;β1) = (n1 − 1)−1
n∑

i=1

Zi{Yi − γ1 − βT1Xi}2,

Ŝ2(0;β0) = (n0 − 1)−1
n∑

i=1

(1− Zi){Yi − γ0 − βT0Xi}2

are the sample variances of the adjusted potential outcomes with γ1 and γ0

the original one. In those cases, Lei and Ding (2021) recommend using the HC3 variant of
the EHW standard error. See Chapter A2 for more details of the EHW standard errors.
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being the sample means of Yi − βT1Xi under treatment and Yi − βT0Xi under
control. To minimize V̂ (β1, β0), we need to solve two OLS problems:

min
γ1,β1

n∑
i=1

Zi{Yi − γ1 − βT1Xi}2, min
γ0,β0

n∑
i=1

(1− Zi){Yi − γ0 − βT0Xi}2.

We run OLS of Yi on Xi for the treatment and control groups separately and
obtain (γ̂1, β̂1) and (γ̂0, β̂0). The final estimator is

τ̂(β̂1, β̂0) = n−1
1

n∑
i=1

Zi(Yi − β̂T1Xi)− n−1
0

n∑
i=1

(1− Zi)(Yi − β̂T0Xi)

=
{
ˆ̄Y (1)− β̂T1

ˆ̄X(1)
}
−
{
ˆ̄Y (0)− β̂T0

ˆ̄X(0)
}
.

From the properties of the OLS fits (see (A2.3)), we know

ˆ̄Y (1) = γ̂1 + β̂T1
ˆ̄X(1), ˆ̄Y (0) = γ̂0 + β̂T0

ˆ̄X(0).

Therefore, we can rewrite the estimator as

τ̂(β̂1, β̂0) = γ̂1 − γ̂0 (6.4)

The equivalent form in (6.4) suggests that we can obtain τ̂(β̂1, β̂0) from a
single OLS fit below.

Proposition 6.2 The estimator τ̂(β̂1, β̂0) in (6.4) equals the coefficient of Zi

in the OLS fit of Yi on (Zi, Xi, Zi ×Xi), which is τ̂L introduced before.

I leave the proof of Proposition 6.2 to Problem 6.5, which is a pure algebra
fact.

Based on the discussion above, a conservative variance estimator for τ̂L is

V̂ (β̂1, β̂0) =
1

n1(n1 − 1)

n∑
i=1

Zi(Yi − γ̂1 − β̂T1Xi)
2

+
1

n0(n0 − 1)

n∑
i=1

(1− Zi)(Yi − γ̂0 − β̂T0Xi)
2.

Based on quite technical calculations, Lin (2013) further showed that the
EHW standard error from the OLS in Proposition 6.2 is almost identical to
V̂ (β̂1, β̂0) which is a conservative estimator of the true standard error of τ̂L
under the CRE. Intuitively, this is because we do not assume that the linear
model is correctly specified, and the EHW standard error is robust to model
misspecification.

There is a subtle issue with the discussion above. The variance formula
var{τ̂(β1, β0)} works for fixed (β1, β0), but the estimator τ̂(β̂1, β̂0) uses two

estimated coefficients (β̂1, β̂0). The additional uncertainty in the estimated
coefficients may cause finite-sample bias in the final estimator. Lin (2013)
showed that the issue goes away asymptotically. However, his theory requires
a large sample size and some regularity conditions on the potential outcomes
and covariates.
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TABLE 6.1: Predicting the potential outcomes

X Z Y (1) Y (0) Ŷ (1) Ŷ (0)

X1 1 Y1(1) ? µ̂1(X1) µ̂0(X1)
...

Xn1 1 Yn1(1) ? µ̂1(Xn1) µ̂0(Xn1)
Xn1+1 0 ? Yn1+1(0) µ̂1(Xn1+1) µ̂0(Xn1+1)

...
Xn 0 ? Yn(0) µ̂1(Xn) µ̂0(Xn)

6.2.2.2 Understanding Lin (2013)’s estimator via predicting the
potential outcomes

We can view Lin (2013)’s estimator as a predictive estimator based on OLS
fits of the potential outcomes. We build a prediction model for Y (1) based on
X using the data from the treatment group:

µ̂1(x) = γ̂1 + β̂T1x. (6.5)

Similarly, we build a prediction model for Y (0) based on X using the data
from the control group:

µ̂0(x) = γ̂0 + β̂T0x. (6.6)

If we predict the missing potential outcomes, then we have the following pre-
dictive estimator:

τ̂pred = n−1

{∑
Zi=1

Yi +
∑
Zi=0

µ̂1(Xi)−
∑
Zi=1

µ̂0(Xi)−
∑
Zi=0

Yi

}
. (6.7)

We can verify that with (6.5) and (6.6), the predictive estimator equals Lin
(2013)’s estimator:

τ̂pred = τ̂L. (6.8)

If we predict all potential outcomes even if they are observed, we have the
following projective estimator:

τ̂proj = n−1
n∑

i=1

{µ̂1(Xi)− µ̂0(Xi)}. (6.9)

We can verify that with (6.5) and (6.6), the projective estimator equals Lin
(2013)’s estimator:

τ̂proj = τ̂L. (6.10)
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I leave the proofs of (6.8) and (6.10) to Problem 6.6.
The more general formulas (6.7) and (6.9) are well defined with other

predictors of the potential outcomes. To make connections with Lin (2013)’s
estimator, I focus on the linear predictors here. They can be quite general,
including much more complicated machine learning algorithms. However, con-
structing point estimator is just the first step in analyzing the CRE. A more
important second step is to quantify the uncertainty associated with the es-
timator, which depends on the properties of the predictors of the potential
outcomes. Nevertheless, without doing additional theoretical analysis, we can
always use (6.7) and (6.9) as the test statistics in the FRT.

6.2.2.3 Understanding Lin (2013)’s estimator via adjusting for co-
variate imbalance

The linearly-adjusted estimator has an equivalent form

τ̂(β1, β0) = τ̂ − γTτ̂X (6.11)

where γ = n0

n β1 +
n1

n β0, so we can also write it as τ̂(γ) = τ̂(β1, β0). Similarly,
Lin (2013)’s estimator has an equivalent form

τ̂L = τ̂ − γ̂Tτ̂X , (6.12)

where γ̂ = n0

n β̂1+
n1

n β̂0. I leave the proofs of (6.11) and (6.12) to Problem 6.7.
The forms (6.11) and (6.12) are the mathematical statements of “adjusting for
the covariate imbalance.” They essentially subtract some linear combinations
of the difference in means of the covariates. Since τ̂ and τ̂X are correlated, the
covariate adjustment with an appropriate γ reduces the variance of τ̂ . Another
interesting feature of (6.11) and (6.12) is that the final estimators depend only
on γ or γ̂, so the choice of the β-coefficients are not unique. Therefore, Lin
(2013)’s estimator is just one of the optimal estimators, but it can be easily
implemented via the standard OLS with the EHW standard error.

6.2.3 Some additional remarks on regression adjustment

6.2.3.1 Duality between ReM and regression adjustment

Li et al. (2018b) pointed out that ReM and Lin (2013)’s regression adjustment
are duals in using covariates in the design and analysis stages of the experi-
ment. To be more specific, when a is small, the asymptotic distribution of τ̂
under ReM is almost identical to the asymptotic distribution of τ̂L under the
CRE. So ReM uses covariates in the design stage and Lin (2013)’s regression
adjustment uses covariates in the analysis stage, achieving nearly the same
asymptotic efficiency gain when a is small.
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6.2.3.2 Equivalence of regression adjustment and post-stratification

If we have discrete covariate Ci withK categories, we can createK−1 centered
dummy variables

Xi = (I(Ci = 1)− π[1], . . . , I(Ci = K − 1)− π[K−1]).

In this case, Lin (2013)’s regression adjustment is equivalent to post-
stratification, as summarized by the following proposition.

Proposition 6.3 τ̂L based in Xi is numerically identical to the post-
stratification estimator based on Ci.

I leave the proof of Proposition 6.3 as Problem 6.9.

6.2.3.3 Difference-in-difference as a special case of covariate ad-
justment τ̂(β1, β0)

An important covariate X in many studies is the lagged outcome before the
treatment. For instance, the covariate X is the pre-test score if the outcome Y
is the post-test score in educational research; the covariate X is the log wage
before the job training program if the outcome Y is the log wage after the
job training program. With the lagged outcome X as a covariate, a popular
estimator is the gain score or difference-in-difference estimator with β1 = β0 =
1 in (6.2) and (6.3):

τ̂(1, 1) = n−1
1

n∑
i=1

Zi(Yi −Xi)− n−1
0

n∑
i=1

(1− Zi)(Yi −Xi)

=
{
ˆ̄Y (1)− ˆ̄Y (0)

}
−
{
ˆ̄X(1)− ˆ̄X(0)

}
.

The first form of τ̂(1, 1) justifies the name gain score because it is essentially
the difference in means of the gain score gi = Yi − Xi. The second form of
τ̂(1, 1) justifies the name difference-in-difference because it is the difference
between two differences in means. This estimator is different from Lin (2013)’s
estimator: it fixes β1 = β0 = 1 in advance while Lin (2013)’s estimator involves
two estimated β’s. It is unbiased with a conservative variance estimator

V̂ (1, 1) =
1

n1(n1 − 1)

n∑
i=1

Zi{gi − ˆ̄g(1)}2

+
1

n0(n0 − 1)

n∑
i=1

(1− Zi){gi − ˆ̄g(0)}2,

where ˆ̄g(1) and ˆ̄g(0) are the sample means of the gain score gi = Yi−Xi under
treatment and control, respectively. When the lagged outcome is a strong
predictor of the outcome, the gain score gi = Yi −Xi often has much smaller
variance than the outcome itself. In this case, τ̂(1, 1) often greatly reduces the
variance of the simple difference in means of the outcome.
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TABLE 6.2: Design and analysis of experiments

analysis

CRE τ̂ (Neyman, 1923)
1−→ τ̂L (Lin, 2013)

design 2
y y4

ReM τ̂ (Li et al., 2018b)
3−→ τ̂L (Li and Ding, 2020)

6.2.4 Extension to the SRE

It is possible that we have an experiment stratified on a discrete variable C
and observe additional covariates X. If all strata are large, then we can obtain
Lin (2013)’s estimators within strata τ̂L,[k] and obtain the final estimator as

τ̂L,S =

K∑
k=1

π[k]τ̂L,[k].

A conservative variance estimator is

V̂L,S =

K∑
k=1

π2
[k]V̂ehw,[k],

where V̂ehw,[k] is the EHW variance estimator from the OLS fit of the out-
come on the treatment indicator, the covariates, and their interactions within
stratum k. Importantly, we need to center covariates by their stratum-specific
means.

6.3 Unification, combination, and comparison

Li and Ding (2020) unified the literature and showed that we can combine
rerandomization and regression adjustment. That is, if we rerandomize in
the design stage, we can use Lin (2013)’s estimator with the EHW standard
error in the analysis stage. The combination of rerandomization and regression
adjustment improves covariate balance in the design stage and estimation
efficiency in the analysis stage.

Table 6.2 summarizes the literature from Neyman (1923) to Li and Ding
(2020). Arrow 1 illustrates the efficiency gain of covariate adjustment in the
CRE: asymptotically, τ̂L has smaller variance than τ̂ . Arrow 2 illustrates the
efficiency gain of the ReM: asymptotically, τ̂ has narrower quantile range
under the ReM than under the CRE. Arrows 3 and 4 illustrate the benefits
of the combination.
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6.4 Simulation

Angrist et al. (2009) conducted an experiment to evaluate different strategies
to improve academic performance among college freshmen. Here I use a subset
of the original data, focusing on the control group and the treatment group
offered academic support services and financial incentives for good grades.
The outcome is the GPA at the end of the first year, and two covariates
are the gender and baseline GPA. The following table summarizes the results
based on the unadjusted and adjusted estimators. The adjusted estimator has
smaller standard error although it gives the same insignificant result as the
unadjusted estimator.

estimate s.e. t-stat p-value
Neyman 0.054 0.076 0.719 0.472

Lin 0.075 0.072 1.036 0.300

I also use this dataset to conduct simulation studies to evaluate the four
design and analysis strategies summarized in Table 6.2. I fit quadratic func-
tions of the outcome on the covariates and use them to impute all the missing
potential outcomes, separately for the treated and control groups. To show the
improvement of ReM and regression adjustment, I also rescale the error terms
by 0.1 and 0.25 to increase the signal to noise ratio. With the imputed Science
Table, I generate 2000 treatments, obtain the observed data, and calculate the
estimators. In the simulation, the “true” outcome model is nonlinear, but we
still use linear adjustment for estimation. By doing this, we can evaluate the
properties of the estimators when the linear model is misspecified.

Figure 6.2 shows the violin plots of the four combinations, subtracting the
true τ from the estimates. As predicted by the theory, all estimators are nearly
unbiased, and both ReM and regression adjustment improve efficiency. They
are more effective when the noise level is smaller.

6.5 Final remarks

With a continuous outcome, Fisher’s ANCOVA has been the standard ap-
proach for many years. Lin (2013)’s improvement has better theoretical prop-
erties even if the linear model is misspecified. With a binary outcome, it is
common to use the coefficient of the treatment in the logistic regression of the
observed outcome on the treatment indicator and covariates to estimate the
causal effects However, Freedman (2008c) showed that this logistic regression
does not have nice properties under the potential outcomes framework. Even
if the logistic model is correct, the coefficient estimates the conditional odds
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FIGURE 6.2: Simulation with 2000 Monte Carlo replicates and a = 0.05 for
the ReM

ratio which may not be the parameter of interest; when the logistic model is
incorrect, it is even harder to interpret the coefficient. From the discussion
above, if the parameter of interest is the average causal effect, we can still use
Lin (2013)’s estimator to analyze the binary outcome data in the CRE. Guo
and Basse (2023) extend Lin (2013)’s theory to allow for using generalized
linear models to construct estimators for the average causal effect under the
potential outcomes framework.

Other extensions of Lin (2013)’s theory focus on high dimensional covari-
ates. Bloniarz et al. (2016) focus on the regime with many covariates than the
sample size, and under the sparsity assumption, they suggest replacing the
OLS fits by the least absolute shrinkage and selection operator (LASSO) fits
(Tibshirani, 1996) of the outcome on the treatment, covariates and their inter-
actions. Lei and Ding (2021) focus on the regime with a diverging number of
covariates without assuming sparsity, and under certain regularity conditions,
they show that Lin (2013)’s estimator is still consistent and asymptotically
Normal. Wager et al. (2016) propose to use machine learning methods to
analyze high dimensional experimental data.

6.6 Homework Problems

6.1 FRT under ReM

Describe the FRT under ReM.
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6.2 Invariance of the Mahalanobis Distance

Prove Lemma 6.1.

6.3 Bias of the difference-in-means estimator under rerandomization

Assume that we draw Z = (Z1, . . . , Zn) from a CRE and accept it if and only
if ϕ(Z,X) = 1, where ϕ is a predetermined balance criterion. Show that if
n1 = n0 and

ϕ(Z,X) = ϕ(1n −Z,X), (6.13)

then τ̂ is unbiased for τ . Verify that rerandomization using the Mahalanobis
distance satisfies (6.13) if n1 = n0. Give a counterexample that τ̂ is biased for
τ when these two conditions do not hold.

6.4 Equivalent form of R2 in the CRE

Prove Proposition 6.1.

6.5 Lin’s estimator for covariate adjustment

Prove Proposition 6.2.

6.6 Predictive and projective estimators

Prove (6.8) and (6.10).

6.7 Equivalent form of the covariate-adjusted estimator

Prove (6.11) and (6.12).

6.8 ANCOVA also adjusts for covariate imbalance

This problem gives a result for ANCOVA that is similar to (6.12).
Show that

τ̂F = τ̂ − γ̂TFτ̂X ,

where γ̂F is the coefficient of Xi in the OLS fit of Yi on (1, Zi, Xi).

6.9 Regression adjustment / post-stratification of CRE

Prove Proposition 6.3.
Hint: Sometimes τ̂ps or τ̂L may not be well-defined. In those cases, we treat

τ̂ps and τ̂L as equal. You can ignore this complexity in the proof.

6.10 More on the difference-in-difference estimator in the CRE

This problem gives more details for the difference-in-difference estimator in
the CRE in Section 6.2.3.3.

Show that τ̂(1, 1) is unbiased for τ , calculate its variance, and show that



94 6 Rerandomization and Regression Adjustment

V̂ (1, 1) is a conservative estimator for the true variance of τ̂(1, 1). When does
E{V̂ (1, 1)} = var{τ̂(1, 1)} hold?

Compare the variances of τ̂(0, 0) and τ̂(1, 1) to show that

var{τ̂(0, 0)} ≥ var{τ̂(1, 1)}

if and only if

2
n0
n
β1 + 2

n1
n
β0 ≥ 1,

where

β1 =

∑n
i=1(Xi − X̄){Yi(1)− Ȳ (1)}∑n

i=1(Xi − X̄)2
, β0 =

∑n
i=1(Xi − X̄){Yi(0)− Ȳ (0)}∑n

i=1(Xi − X̄)2

are the coefficients of Xi in the OLS fits of Yi(1) and Yi(0) on (1, Xi), respec-
tively.

Remark: Gerber and Green (2012, page 28) discussed a special case of this
problem with n1 = n0.

6.11 Data re-analyses

Re-analyze the data used in SRE Neyman penn.R. The analysis in Chapter 5
uses the treatment indicator, the outcome and the block indicator. Now we
want to use all other covariates.

Conduct regression adjustments within strata of the experiment, and then
combine these adjusted estimators to estimate the average causal effect. Re-
port the point estimator, estimated standard error and 95% confidence inter-
val. Compare them with those without regression adjustments.

6.12 Recommended reading

The title of this chapter is the same as that of Li and Ding (2020), which
studied the roles of rerandomization and regression adjustment in the design
and analysis stages of randomized experiments, respectively.
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Matched-Pairs Experiment

The matched-pairs experiment (MPE) is the most extreme version of the SRE
with only one treated unit and one control unit within each stratum. In this
case, the strata are also called pairs. Although this type of experiment is a
special case of the SRE discussed in Chapter 5, it has its own estimation and
inference strategy. Moreover, it has many new features and it is closely related
to the “matching” strategy in observational studies which will be covered in
Chapter 15 later. So we discuss the MPE in this separate chapter.

7.1 Design of the experiment and potential outcomes

Consider an experiment with 2n units. If we have predictive covariates to
the outcomes, we can pair units based on the similarity of covariates. With a
scalar covariate, we can order units based on this covariate and then form pairs
based on the adjacent units. With many covariates, we can define pairwise
distances between units and then form pairs based on these distances. In
this case, pair matching can be done using a greedy algorithm or an optimal
nonbipartite matching algorithm. The greedy algorithm pairs the two units
with the smallest distance, drop them from the pool of units, pair the two
remaining units with the smallest distance, etc. The optimal nonbipartite
matching algorithm divides the 2n units into n pairs of two units to minimize
the sum of the within-pair distances. See Greevy et al. (2004) for more details
of the computational aspect of the MPE. In this chapter, we assume that the
pairs are formed based on the covariates, and discuss the subsequent design
and analysis issues.

Let (i, j) index the unit j in pair i, where i = 1, . . . , n and j = 1, 2.
Unit (i, j) has potential outcomes Yij(1) and Yij(0) under the treatment and
control, respectively. Within each pair, we randomly assign one unit to receive
the treatment and the other to receive the control. Let

Zi =

{
1, if the first unit receives the treatment,

0, if the second unit receives the treatment.

We can formally define MPE based on the treatment assignment mechanism.

95
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Definition 7.1 (MPE) We have

(Zi)
n
i=1

IID∼ Bernoulli(1/2). (7.1)

The observed outcomes within pair i are

Yi1 = ZiYi1(1) + (1− Zi)Yi1(0) =

{
Yi1(1), if Zi = 1;

Yi1(0), if Zi = 0;

and

Yi2 = ZiYi2(0) + (1− Zi)Yi2(1) =

{
Yi2(0), if Zi = 1;

Yi2(1), if Zi = 0.

So the observed data are (Zi, Yi1, Yi2)
n
i=1.

7.2 FRT

Similar to the discussion before, we can always use the FRT to test the sharp
null hypothesis:

H0f : Yij(1) = Yij(0) for all i = 1, . . . n and j = 1, 2.

When conducting the FRT, we need to simulate the distribution of
(Zi, . . . , Zn) from (7.1). I will discuss some canonical choices of test statistics
based on the within-pair differences between the treated and control outcomes:

τ̂i = outcome under treatment− outcome under control (within pair i)

= (2Zi − 1)(Yi1 − Yi2)

= Si(Yi1 − Yi2),

where the Si = 2Zi − 1 are IID random signs with mean 0 and variance
1, for i = 1, . . . , n. Since the pairs with zero τ̂i’s do not contribute to the
randomization distribution, we drop those pairs in the discussion of the FRT.

Example 7.1 (paired t statistic) The average of the within-pair differ-
ences is

τ̂ = n−1
n∑

i=1

τ̂i.

Under H0f,
E(τ̂) = 0

and

var(τ̂) = n−2
n∑

i=1

var(τ̂i) = n−2
n∑

i=1

var(Si)(Yi1 − Yi2)
2 = n−2

n∑
i=1

τ̂2i .
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Based on the CLT for the sum of independent random variables, we have the
Normal approximation:

τ̂√
n−2

∑n
i=1 τ̂

2
i

d−→ N(0, 1).

We can use this Normal approximation to construct an asymptotic test. Many
standard test books suggest using the following paired t statistic in the MPE:

tpair =
τ̂√

{n(n− 1)}−1
∑n

i=1(τ̂i − τ̂)2
,

which is almost identical to τ̂ with large n and small τ̂ under H0f.

In classic statistics, the motivation for using tpair is under a different frame-

work. When τ̂i
IID∼ N(0, σ2), we can show that tpair ∼ t(n− 1), i.e., the exact

distribution of tpair is t with degrees of freedom n−1, which is close to N(0, 1)
with a large n. The R function t.test with paired=TRUE can implement this
test. With a large n, these procedures give similar results. The discussion in
Example 7.1 gives another justification of the classic paired t test without
assuming the Normality of the data.

Example 7.2 (Wilcoxon sign-rank statistic) Based on the ranks (R1, . . . , Rn)
of (|τ̂1|, . . . , |τ̂n|), we can define a test statistic

W =

n∑
i=1

I(τ̂i > 0)Ri.

Under H0f,

E(W ) =
1

2

n∑
i=1

Ri =
1

2

n∑
i=1

i =
n(n+ 1)

4

and

var(W ) =
1

4

n∑
i=1

R2
i =

1

4

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

24
.

The CLT for the sum of independent random variables ensures the following
Normal approximation:

W − n(n+ 1)/4√
n(n+ 1)(2n+ 1)/24

d−→ N(0, 1).

We can use this Normal approximation to construct an asymptotic test. The
R function wilcox.test with paired=TRUE can implement these tests.
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Example 7.3 (Kolmogorov–Smirnov-type statistic) Under H0f, the ab-
solute values (|τ̂1|, . . . , |τ̂n|) are fixed but their signs are random. So (τ̂1, . . . , τ̂n)
and −(τ̂1, . . . , τ̂n) should have the same distribution. Let

F̂ (t) = n−1
n∑

i=1

I(τ̂i ≤ t)

be the empirical distribution of (τ̂1, . . . , τ̂n), and

1− F̂ (−t−) = n−1
n∑

i=1

I(−τ̂i ≤ t)

be the empirical distribution of −(τ̂1, . . . , τ̂n), where F̂ (−t−) is the left limit
of the function F̂ (·) at −t. A Kolmogorov–Smirnov-type statistic is then

D = max
t

|F̂ (t) + F̂ (−t−)− 1|.

Butler (1969) proposed this test statistic and derived its exact and asymp-
totic distributions. Unfortunately, this is not implemented in standard software
packages. Nevertheless, we can simulate its exact distribution and compute the
p-value based on the FRT. 1

Example 7.4 (sign statistic) The sign statistic uses only the signs of the
within-pair differences

∆ =

n∑
i=1

I(τ̂i > 0).

Under H0f,

I(τ̂i > 0)
IID∼ Bernoulli(1/2)

and therefore
∆ ∼ Binomial(n, 1/2).

Based on this we have an exact Binomial test, which is implemented in the
R function binom.test with p=1/2. Using the CLT, we can also conduct a test
based on the following Normal approximation of the Binomial distribution:

∆− n/2√
n/4

d−→ N(0, 1).

1Butler (1969)’s proposed this test statistic under a slightly different framework. Given
IID draws of (τ̂1, . . . , τ̂n) from a distribution F (y), if they are symmetrically distributed
around 0, then

F (t) = pr(τ̂i ≤ t) = pr(−τ̂i ≤ t) = 1− pr(τ̂i < −t) = 1− F (−t−).

Therefore, F̂ (t)+ F̂ (−t−)−1 measures the deviation from the null hypothesis of symmetry,
which motivates the definition of D. A naive definition of the Kolmogorov–Smirnov-type
statistic is to compare the empirical distributions of the outcomes under treatment and
control as in Example 3.4. Using that definition, we effectively break the pairs. Although it
can still be used in the FRT for the MPE, it does not capture the matched-pairs structure
of the experiment.
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TABLE 7.1: Counts of four types of pairs

control outcome 1 control outcome 0

treated outcome 1 m11 m10

treated outcome 0 m01 m00

Example 7.5 (McNemar’s statistic for a binary outcome) If the out-
come is binary, we can summarize the data from the MPE in a more compact
way. Given a pair, the treated outcome can be either 1 or 0 and the control
outcome can be either 1 or 0, yielding a 2× 2 table as in Table 7.1.

Under H0f, the numbers of concordant pairs m11 and m00 are fixed, and
m10 + m01 is also fixed. So the only random component is m10 which has
distribution

m10 ∼ Binomial(m10 +m01, 1/2).

This implies an exact test based on the Binomial distribution. The R function
mcnemar.test gives an asymptotic test based on the Normal approximation of
the Binomial distribution:

m10 − (m10 +m01)/2√
(m10 +m01)/4

=
m10 −m01√
m10 +m01

d−→ N(0, 1).

Both the exact FRT and the asymptotic test do not depend on m11 or m00.
Only the numbers of discordant pairs matter in these tests.

7.3 Neymanian inference

The average causal effect within pair i is

τi =
1

2
{Yi1(1) + Yi2(1)− Yi1(0)− Yi2(0)} ,

and the average causal effect for all units is

τ = n−1
n∑

i=1

τi = (2n)−1
n∑

i=1

2∑
j=1

{Yij(1)− Yij(0)}.

It is intuitive that τ̂i is unbiased for τi, so τ̂ is unbiased for τ . We can also
calculate the variance of τ̂ . I relegate the exact formula to a homework problem
because the MPE is just a special case of the SRE.

However, we cannot follow the strategy of a SRE to estimate the variance
of τ̂ . The within-pair sample variances of the outcomes are not well defined
because within each pair we have only one treated and one control unit. The
data do not allow us to estimate the variance of τ̂i within pair i.
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Is it possible to estimate the variance of τ̂ in the MPE? Let us forget about
the MPE and change the perspective to the classic IID sampling. If the τ̂i’s
are IID with mean µ and σ2, then the variance of τ̂ = n−1

∑n
i=1 τ̂i is σ

2/n.
An unbiased estimator for σ2 is the sample variance (n− 1)−1

∑n
i=1(τ̂i − τ̂)2,

so an unbiased estimator for var(τ̂) is

V̂ = {n(n− 1)}−1
n∑

i=1

(τ̂i − τ̂)2.

The discussion also extends to the independent but not IID setting; see Prob-
lem A1.1 in Chapter A1. The above discussion seems a digression from the
MPE which has completely different statistical assumptions. But at least it
motivates a variance estimator V̂ , which uses the between-pair variance of τ̂i
to estimate variance of τ̂ . Of course, it is derived under different assumptions.
Does it work for the MPE? Theorem 7.1 below is a positive result.

Theorem 7.1 Under the MPE, V̂ is a conservative estimator for the true
variance of τ̂ :

E(V̂ )− var(τ̂) = {n(n− 1)}−1
n∑

i=1

(τi − τ)2 ≥ 0.

If the τi’s are constant across pairs, then E(V̂ ) = var(τ̂).

Theorem 7.1 states that under the MPE, V̂ is a conservative variance
estimator in general and becomes unbiased if the average causal effects are
constant across pairs. It is somewhat surprising because V̂ depends on the
between-pair variance of the τ̂i’s whereas var(τ̂) depends on the within-pair
variance of each of τ̂i. The proof below might provide some insights for this
surprisingly result.
Proof of Theorem 7.1: Using the basic algebraic fact that

∑n
i=1(ai− ā)2 =∑n

i=1 a
2
i − nā2 in the following steps 2 and 5, we have

n(n− 1)E(V̂ ) = E

{
n∑

i=1

(τ̂i − τ̂)2

}

= E

(
n∑

i=1

τ̂2i − nτ̂2

)

=

n∑
i=1

{var(τ̂i) + τ2i } − n{var(τ̂) + τ2}

=

n∑
i=1

var(τ̂i)− nvar(τ̂) +

n∑
i=1

τ2i − nτ2

= n2var(τ̂)− nvar(τ̂) +

n∑
i=1

(τi − τ)2.
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Therefore,

E(V̂ ) = var(τ̂) + {n(n− 1)}−1
n∑

i=1

(τi − τ)2 ≥ var(τ̂).

□
Similar to the discussions for other experiments, the Neymanian approach

relies on the large-sample approximation:

τ̂ − τ√
var(τ̂)

→ N(0, 1)

in distribution if n→ ∞ and some regularity conditions hold. Due to the over
estimation of the variance, the Wald-type confidence interval

τ̂ ± z1−α/2

√
V̂

covers τ with probability at least 1− α.
Both the point estimator τ̂ and the variance estimator V̂ can be conve-

niently obtained by OLS, as shown in the proposition below.

Proposition 7.1 τ̂ and V̂ are identical to the coefficient and variance es-
timator of the intercept from the OLS fit of the vector (τ̂1, . . . , τ̂n)

T on the
intercept only.

I leave the proof of Proposition 7.1 as Problem 7.3.

7.4 Covariate adjustment

7.4.1 FRT

Similar to the discussion in the CRE, there are two general strategies of co-
variate adjustment in the MPE. First, we can construct test statistics based
on the residuals from a model fitting of the outcome on the covariates, since
those residuals are fixed numbers under the sharp null hypothesis. A canoni-
cal choice is to fit OLS of all observed Yij ’s on Xij ’s to obtain the residuals
ε̂ij ’s. We can then construct test statistics pretending that the ε̂ij ’s are the
observed outcomes. Rosenbaum (2002a) advocated this strategy in particular
to the MPE.

Second, we can directly use some coefficients from model fitting as the test
statistics. The discussion in the next subsection will suggest a choice of the
test statistic for the second strategy.
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7.4.2 Regression adjustment

Although we have matched on covariates in the design stage, it is possible
that the matching is not perfect and sometimes we have additional covariates
beyond those used in the pair-matching stage. In those cases, we can adjust
for the covariates to further improve estimation efficiency. Assume that each
unit has covariates Xij , and we can compute the within-pair differences in
covariates τ̂X,i and their average τ̂X in the same way as the outcome. We can
show that

E(τ̂X,i) = 0, E(τ̂X) = 0,

and

cov(τ̂X) = n−2
n∑

i=1

τ̂X,iτ̂
T
X,i.

In a realized MPE, cov(τ̂X) is not zero unless all the τ̂X,i’s are zero. With an
unlucky draw of (Z1, . . . , Zn), it is possible that τ̂X differs substantially from
zero. Similar to the discussion in the CRE, adjusting for the imbalance of the
covariate means is likely to improve estimation efficiency.

Consider a class of estimators indexed by γ:

τ̂(γ) = τ̂ − γTτ̂X

which has mean 0 for any fixed γ. We want to choose γ to minimize the
variance of τ̂(γ). Its variance is a quadratic function of γ:

var{τ̂(γ)} = var(τ̂ − γTτ̂X) = var(τ̂) + γTcov(τ̂X)γ − 2γTcov(τ̂X , τ̂),

which is minimized at

γ̃ = cov(τ̂X)−1cov(τ̂X , τ̂).

We have obtained the formula of cov(τ̂X) in the above, which can also be
written as

cov(τ̂X) = n−2
n∑

i=1

|τ̂X,i||τ̂X,i|T,

where |·| denotes component-wise absolute value of a vector. So cov(τ̂X) is fixed
and known from the observed data. However, cov(τ̂X , τ̂) depends on unknown
potential outcomes. Fortunately, we can obtain an unbiased estimator for it,
as shown in Theorem 7.2 below.

Theorem 7.2 An unbiased estimator for cov(τ̂X , τ̂) is

θ̂ = {n(n− 1)}−1
n∑

i=1

(τ̂X,i − τ̂X)(τ̂i − τ̂).
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The proof of Theorem 7.2 is similar to that of Theorem 7.1. I leave it to
Problem 7.2.

Therefore, we can estimate the optimal coefficient γ̃ by

γ̂ =

(
n−2

n∑
i=1

τ̂X,iτ̂
T
X,i

)−1{
{n(n− 1)}−1

n∑
i=1

(τ̂X,i − τ̂X)(τ̂i − τ̂)

}

≈

(
n∑

i=1

(τ̂X,i − τ̂X)(τ̂X,i − τ̂X)T

)−1 n∑
i=1

(τ̂X,i − τ̂X)(τ̂i − τ̂),

which is approximately the coefficient of the τ̂X,i in the OLS fit of the τ̂i’s on
the τ̂X,i’s with an intercept. The final estimator is

τ̂adj = τ̂(γ̂) = τ̂ − γ̂Tτ̂X ,

which, by the property of OLS, is approximately the intercept in the OLS fit
of the τ̂i’s on the τ̂X,i’s with an intercept.

A conservative variance estimator for τ̂adj is then

V̂adj = V̂ + γ̂Tcov(τ̂X)γ̂ − 2γ̂Tθ̂ = V̂ − θ̂Tcov(τ̂X)−1θ̂.

A subtle technical issue is whether τ̂(γ̂) has the same optimality as τ̂(γ̃).
With large samples, we can show τ̂(γ̂)− τ̂(γ̃) = −(γ̂− γ̃)Tτ̂X is of higher order
since it is the product of two “small” terms γ̂ − γ̃ and τ̂X . I omit the tedious
details for asymptotic analysis, but hope the result makes some intuitive sense
to the readers.

Moreover, Fogarty (2018b) discussed the asymptotically equivalent regres-
sion formulation of the above covariate-adjusted procedure, and gave a rigor-
ous proof for associated CLT. I summarize the regression formulation below
without giving the regularity conditions.

Proposition 7.2 Under the MPE, the covariate-adjusted estimator τ̂adj and

the associated variance estimator V̂adj can be conveniently approximated by
the intercept and the associated variance estimator from the OLS fit of the
vector of the τ̂i’s on the 1’s and the matrix of the τ̂X,i’s.

I leave the proof of Proposition 7.2 as Problem 7.3. Interestingly, neither
Proposition 7.1 nor 7.2 requires the EHW correction of the variance estimator.
Because we reduce the data from the MRE to the within-pair differences, it is
unnecessary to center the covariates unlike in Lin (2013)’s estimator for the
CRE.
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7.5 Examples

7.5.1 Darwin’s data comparing cross-fertilizing and self-
fertilizing on the height of corns

This is a classical example from Fisher (1935). It contains 15 pairs of corns with
either cross-fertilizing or self-fertilizing, with the height being the outcome.
The R package HistData provides the original data, where cross and self are
the heights under cross-fertilizing and self-fertilizing, respectively, and diff

denotes their difference.

> library("HistData")

> ZeaMays

pair pot cross self diff

1 1 1 23.500 17.375 6.125

2 2 1 12.000 20.375 -8.375

3 3 1 21.000 20.000 1.000

4 4 2 22.000 20.000 2.000

5 5 2 19.125 18.375 0.750

6 6 2 21.500 18.625 2.875

7 7 3 22.125 18.625 3.500

8 8 3 20.375 15.250 5.125

9 9 3 18.250 16.500 1.750

10 10 3 21.625 18.000 3.625

11 11 3 23.250 16.250 7.000

12 12 4 21.000 18.000 3.000

13 13 4 22.125 12.750 9.375

14 14 4 23.000 15.500 7.500

15 15 4 12.000 18.000 -6.000

In total, the MPE has 215 = 32768 possible treatment assignment which
is a tractable number in R. The following function can enumerate all possible
treatment assignment for the MPE:

MP_enumerate = function(i, n.pairs)

{

if(i > 2^n.pairs) print("i is too large.")

a = 2^((n.pairs -1):0)

b = 2*a

2*sapply(i-1,

function(x)

as.integer ((x %% b)>=a)) - 1

}

So we enumerate all the treatment assignments, and calculate the corre-
sponding τ̂ ’s and the one-sided exact p-value.

> difference = ZeaMays$diff
> n.pairs = length(difference)
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> abs.diff = abs(difference)

> t.obs = mean(difference)

> t.ran = sapply (1:2^15 ,

+ function(x){

+ sum(MP_enumerate(x, 15)*abs.diff)

+ })/n.pairs

> pvalue = mean(t.ran >=t.obs)

> pvalue

[1] 0.02633667

Figure 7.1 shows the exact randomization of τ̂ .

exact randomization distribution: Darwin's data

paired t−statistic

−4 −2 0 2 4

p−value = 0.026

FIGURE 7.1: Randomization distribution of τ̂ using Darwin’s data

7.5.2 Children’s television workshop experiment data

I also re-analyze the data from from Ball et al. (1973) which was also analyzed
by Imbens and Rubin (2015). It contains 8 pairs, and the following table
summarizes the within-pair covariate and outcome, as well as their differences:

> dataxy

x.control x.treatment y.control y.treatment diffx diffy

1 12.9 12.0 54.6 60.6 -0.9 6.0

2 15.1 12.3 56.5 55.5 -2.8 -1.0

3 16.8 17.2 75.2 84.8 0.4 9.6

4 15.8 18.9 75.6 101.9 3.1 26.3

5 13.9 15.3 55.3 70.6 1.4 15.3

6 14.5 16.6 59.3 78.4 2.1 19.1
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7 17.0 16.0 87.0 84.2 -1.0 -2.8

8 15.8 20.1 73.7 108.6 4.3 34.9

We can use the OLS to obtain the point estimators and standard errors:
without adjusting for covariates, we have

> unadj = summary(lm(diffy ~ 1, data = dataxy ))$coef
> round(unadj , 3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.425 4.636 2.896 0.023

with adjusting for covariates, we have

> adj = summary(lm(diffy ~ diffx , data = dataxy ))$coef
> round(adj , 3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.994 1.410 6.381 0.001

diffx 5.371 0.599 8.964 0.000

The above results assume large n, and p-values are justified if we believe
the large-n approximation. However, n = 8 is not large. In total, we have
28 = 256 possible treatment assignments, so the smallest possible p-value is
1/256 = 0.0039, which is much larger than the p-value based on the Normal
approximation of the covariate-adjusted estimator. In this example, it will
be more reasonable to use the FRT with the studentized statistic (i. e., the
t value from the lm function) to calculate exact p-values. Figure 7.2 shows the
exact distributions of the two studentized statistic, as well as the two-sided
p-values. The figure highlights the fact that the randomization distribution of
the test statistics are discrete, taking at most 256 possible values. The Normal
approximations are unlikely to be accurate especially at the tails. We should
report the p-values based on the FRT.

7.6 Comparing the MPE and CRE

Imai (2008b) compared the MPE and CRE. Heuristically, the conclusion is
that the MPE gives more precise estimators if the matching is well done and
the covariates are predictive to the outcome. However, without the outcome
data in the design stage, it is hard to decide whether this holds. In the FRT, if
covariates are predictive to the outcome, the MPE usually gives more powerful
tests compared to the CRE. Greevy et al. (2004) illustrated this using simula-
tion based on the Wilcoxon sign rank statistic. However, this can be a subtle
issue with finite samples. Consider an experiment with 2n units, with n units
receiving the treatment and n units receiving the control. If we test the sharp
null hypothesis at level 0.05, then in the MPE, we need at least 2 × 5 = 10
units since the smallest p-value is 1/25 = 1/32 < 0.05 but 1/24 = 1/16 > 0.05,
but in the CRE, we need at least 2× 4 = 8 units since the smallest p-value is
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p−value = 0.031

τ̂

−3 −2 −1 0 1 2 3

p−value = 0.008

τ̂adj

−6 −4 −2 0 2 4 6

FIGURE 7.2: Randomization distributions of the studentized statistics in Sec-
tion 7.5.2

1/
(
8
4

)
= 1/70 < 0.05 but 1/

(
6
3

)
= 1/20 = 0.05. So with 8 units, it is impossible

to reject the sharp null hypothesis in the MPE but it is possible in the CRE.
Even if the covariates are perfect predictors of the outcome, the MPE is not
superior to the CRE based on the FRT.

7.7 Extension to the general matched experiment

It is straightforward to extend the MPE to the general matched experiment
with varying numbers of control units. Assume that we have n matched sets
indexed by i = 1, . . . , n. For matched set i, we have 1 +Mi units. The Mi’s
can vary. The total number of experimental units is N = n +

∑n
i=1Mi. Let

ij index the unit j within matched set i (i = 1, . . . , n and j = 1, . . . ,Mi + 1).
Unit ij has potential outcomes Yij(1) and Yij(0) under the treatment and
control, respectively.

Within matched set i (i = 1, . . . , n), the experimenter randomly selects
exactly one unit to receive the treatment with the rest Mi units receiving the
control. This general matched experiment is also a special case of the SRE
with n strata of size 1+Mi (i = 1, . . . , n). Let Zij be the treatment indicator
for unit ij, which reveals one of the potential outcomes as

Yij = ZijYij(1) + (1− Zij)Yij(0).
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The average causal effect within matched set i equals

τi = (Mi + 1)−1
1+Mi∑
j=1

{Yij(1)− Yij(0)}.

Since it is a SRE, an unbiased estimator of τi is

τ̂i =

Mi+1∑
j=1

ZijYij −M−1
i

n∑
i=1

(1− Zij)Yij

which is the difference in means of the outcomes within matched set i.
Below we discuss the statistical inference with the general matched exper-

iment.

7.7.1 FRT

As usual, we can always use the FRT to test the sharp null hypothesis

H0f : Yij(1) = Yij(0) for all i = 1, . . . , n; j = 1, . . . ,Mi + 1.

Because the general matched experiment is a special case of the SRE with
many small strata, we can use the test statistics defined in Examples 5.4, 5.5,
7.2, 7.3, 7.4, as well as the estimators and the corresponding t-statistics from
the following two subsections.

7.7.2 Estimating the average of the within-strata effects

We first focus on estimating the average of the within-strata effects:

τ = n−1
n∑

i=1

τi.

It has an unbiased estimator

τ̂ = n−1
n∑

i=1

τ̂i.

Interestingly, we can show that Theorem 7.1 holds for the general matched
experiment, so are other results for the MPE. In particular, we can use the
OLS fit of the τ̂i’s on the intercept to obtain the point and variance estimators
for τ . With covariates, we can use the OLS fit of the τ̂i’s on the intercept and
the τ̂X,i’s, where

τ̂X,i =

Mi+1∑
j=1

ZijXij −M−1
i

n∑
i=1

(1− Zij)Xij

is the corresponding difference in means of the covariates within matched set
i.
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7.7.3 A more general causal estimand

Importantly, the τ above is the average of the τi’s, which does not equal the
average causal effect for the N units in the experiment when the Mi’s vary.
The average causal effect equals

τ ′ = N−1
n∑

i=1

1+Mi∑
j=1

{Yij(1)− Yij(0)} =

n∑
i=1

1 +Mi

N
τi.

To unify the discussion, I consider the weighted causal effect

τw =

n∑
i=1

wiτi

with
∑n

i=1 wi = 1, which includes τ as a special case with wi = n−1 and τ ′ as
a special case with wi = (1 +Mi)/N for i = 1, . . . , n. It is straightforward to
obtain an unbiased estimator

τ̂w =

n∑
i=1

wiτ̂i,

and calculate its variance

var(τ̂w) =

n∑
i=1

w2
i var(τ̂i).

However, estimating the variance of this estimator is quite tricky because the
τ̂i’s are independent random variable without any replicates. This is a famous
problem in theoretical statistics studied by Hartley et al. (1969) and Rao
(1970). Fogarty (2018a) also discussed this problem without recognizing these
previous works. I will give the final form of the variance estimator without
detailing the motivation:

V̂w =
n∑

i=1

ci(τ̂i − τ̂w)
2

where

ci =

w2
i

1−2wi

1 +
∑n

i=1
w2

i

1−2wi

.

As a sanity check, ci reduces to {n(n − 1)}−1 in the MPE with Mi = 1 and
wi = n−1. For simplicity, we focus on the case with wi < 1/2 for all i’s, that
is, there is no matched set containing more than half of the total weights. The
following theorem extends Theorem 7.1.



110 7 Matched-Pairs Experiment

Theorem 7.3 Under the general matched experiment with varying Mi’s, we
have

E(V̂w)− var(τ̂w) =

n∑
i=1

ci(τi − τw)
2 ≥ var(τ̂w) ≥ 0

with equality holding if the τi’s are constant.

Although the theoretical motivation for V̂w is quite complicated, it is not
too difficult to verify Theorem 7.3 directly. I relegate the proof to Problem
7.9.

7.8 Homework Problems

7.1 The true variance of τ̂ in the MPE

Express var(τ̂) in terms of the first two finite-population moments potential
outcomes.

7.2 A covariance estimator

Prove Theorem 7.2.

7.3 Variance estimators via OLS

Prove Propositions 7.1 and 7.2.

7.4 Point and variance estimator with binary outcome

This problem extends Example 7.5 to Neymanian inference.
Express τ̂ and V̂ in terms of the counts in Table 7.1.

7.5 Minimum sample size for the FRT

Extend the discussion in Section 7.6. Consider an experiment with 2n units,
with n units receiving the treatment and n units receiving the control, and
test the sharp null hypothesis at level 0.001. What is the minimum value of
n for an MPE so that the smallest p-value does not exceed than 0.001, and
what is the correponding minimum value of n for a CRE.

7.6 Re-analyzing Darwin’s data

In MPE_FRT_darwin.R, I analyze Darwin’s data using the FRT based on the test
statistic τ̂ .

Re-analyze this dataset using the FRT with the Wilcoxon signed rank sum
statistic.
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Re-analyze this dataset based on the Neymanian inference: unbiased point
estimator, conservative variance estimator, 95% confidence interval.

7.7 Re-analyzing children’s television workshop experiment data

In MPE_Neyman_star.R, I analyze the data from based on Neymanian inference.
Re-analyze this dataset using the FRT with different test statistics.
Re-analyze this dataset using the FRT with covariate adjustment, e.g., you

can define test statistics based on residuals from the OLS fit of the observed
outcome on covariates. Will the conclusion change if you do not include an
intercept in your OLS fit?

7.8 Re-analyzing Angrist and Lavy (2009)’s data

The original analysis was quite complicated. For this problem, please focus
only on Table A1 of the original paper viewing the schools as experimental
units. Angrist and Lavy (2009) essentially conducted an MPE on the schools.
Dropping pair 6 and all the pairs with noncompliance results in 14 complete
pairs, with data shown below and also in AL2009.csv:

pair z pr99 pr00 pr01 pr02

1 1 0 0.046 0.000 0.091 0.185

2 1 1 0.036 0.051 0.000 0.047

3 2 0 0.054 0.094 0.184 0.034

4 2 1 0.050 0.108 0.110 0.095

5 3 0 0.114 0.000 0.056 0.075

6 3 1 0.098 0.054 0.030 0.068

7 4 0 0.148 0.162 0.082 0.075

8 4 1 0.134 0.390 0.339 0.458

9 5 0 0.152 0.105 0.083 0.129

10 5 1 0.145 0.077 0.579 0.167

11 6 0 0.188 0.214 0.375 0.545

12 6 1 0.179 0.165 0.483 0.444

13 7 0 0.193 0.771 0.328 0.583

14 7 1 0.189 0.186 0.168 0.368

15 8 0 0.197 0.350 0.000 0.383

16 8 1 0.200 0.071 0.667 0.429

17 9 0 0.213 0.176 0.164 0.172

18 9 1 0.209 0.165 0.092 0.151

19 10 0 0.211 0.667 0.250 0.617

20 10 1 0.219 0.250 0.500 0.350

21 11 0 0.219 0.153 0.185 0.219

22 11 1 0.224 0.363 0.372 0.342

23 12 0 0.255 0.226 0.213 0.327

24 12 1 0.257 0.098 0.107 0.095

25 13 0 0.261 0.071 0.000 NA

26 13 1 0.263 0.441 0.448 0.435

27 14 0 0.286 0.161 0.126 0.181

28 14 1 0.285 0.389 0.353 0.309
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The outcomes are the Bagrut passing rates in years 2001 and 2002, with the
Bagrut passing rates in 1999 and 2000 as pretreatment covariates. Re-analyze
the data based on the Neymanian inference with and without covariates. In
particular, how do you deal with the missing outcome in pair 25?

7.9 Variance estimation in the general matched experiment

This problem contains more details for Section 7.7.
First, prove Theorem 7.1 for the general matched experiment.
Second, prove Theorem 7.3.
Hint: For the second part, we need to first verify that τ̂i − τ̂w has mean

τi − τw and variance

var(τ̂i − τ̂w) = var(τ̂w) + (1− 2wi)var(τ̂i).

7.10 Recommended readings

Greevy et al. (2004) provided an algorithm to form matched pairs based on
covariates. Imai (2008b) discussed estimation of the average causal effect with-
out covariates, and Fogarty (2018b) discussed covariate adjustment in MPEs.
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Unification of the Fisherian and Neymanian
Inferences in Randomized Experiments

Previous chapters cover both the Fisherian and Neymanian inferences for dif-
ferent types of experiments. The Fisherian perspective focuses on the finite-
sample exact p-value for testing the strong null hypothesis of no causal effects
for any units whatsoever, and the Neymanian perspective focuses on unbi-
ased estimation with a conservative large-sample confidence interval for the
average causal effect. Both of them are justified by the physical randomiza-
tion of the experiments. They are the two important forms of design-based
or randomization-based inference for causal effects. They are related but also
have distinct features.

In 1935, Neyman presented his seminal paper on randomization-based in-
ference to the Royal Statistical Society. His paper (Neyman, 1935) was at-
tacked by Fisher in the discussion session. Sabbaghi and Rubin (2014) re-
viewed this famous Neyman–Fisher controversy and presented some new re-
sults for this old problem. Instead of going to philosophical issues, this chapter
provides a unified discussion.

8.1 Testing strong and weak null hypotheses in the CRE

Let us revisit the treatment-control CRE. The Fisherian perspective focuses
on testing the strong null hypothesis

H0f : Yi(1) = Yi(0) for all units i = 1, . . . , n.

The FRT delivers a finite-sample exact pfrt.
By duality of the confidence interval and hypothesis testing, the Neyma-

nian perspective gives a test for the weak null hypothesis

H0n : τ = 0 ⇐⇒ H0n : Ȳ (1) = Ȳ (0)

based on

t =
τ̂√
V̂

=

√
var(τ̂)

V̂
× τ̂√

var(τ̂)

d−→ C ×N(0, 1),

113
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with C ≤ 1. Using N(0, 1) quantiles for the studentized statistic t, we have a
conservative large-sample test for H0n.

Furthermore, Ding and Dasgupta (2017) show that the FRT with the stu-
dentized statistic t has the dual guarantees:

1. the associate pfrt is finite-sample exact under H0f;

2. it is asymptotically conservative under H0n.

Importantly, this is a feature of the studentized statistic t. Ding and Das-
gupta (2017) showed that the FRT with other test statistics may not have
the dual guarantee. In particular, the FRT with τ̂ may be asymptotically
anti-conservative under H0n. I give some heuristics below to illustrate the
importance of studentization in the FRT.

Under H0n, we have

τ̂
·∼ N

(
0,
S2(1)

n1
+
S2(0)

n0
− S2(τ)

n

)
.

The FRT pretends that the Science Table is (Yi, Yi)
n
i=1, so the permutation

distribution of τ̂ is

(τ̂)π
·∼ N

(
0,
s2

n1
+
s2

n0

)
,

where (·)π denotes the permutation distribution and s2 is the sample variance
of the observed outcomes. Based on (3.7) in Chapter 3, we can approximate
the asymptotic variance of (τ̂)π under H0f as

s2

n1
+
s2

n0
=

n

n1n0

{
n1 − 1

n− 1
Ŝ2(1) +

n0 − 1

n− 1
Ŝ2(0) +

n1n0
n(n− 1)

τ̂2
}

≈ Ŝ2(1)

n0
+
Ŝ2(0)

n1

≈ S2(1)

n0
+
S2(0)

n1
,

which does not match the asymptotic variance of τ̂ . Ideally, we should com-
pute the p-value under H0n based the true distribution of τ̂ , which, however,
depends on the unknown potential outcomes. In contrast, we use the FRT to
compute the pfrt based on the permutation distribution (τ̂)π, which does not
match the true distribution of τ̂ under H0n even with large samples. There-
fore, the FRT with τ̂ may not control the type one error rate under H0n even
with large samples.

Fortunately, the undesired property of the FRT with τ̂ goes away if we
replace the test statistic τ̂ with the studentized version t. Under H0n, we have

t
·∼ N(0, C2)



8.3 Covariate-adjusted FRTs in the CRE 115

where C2 ≤ 1 with equality holding if Yi(1) − Yi(0) = τ for all units i =
1, . . . , n. The FRT generates the permutation distribution

tπ
·∼ N(0, 1)

where the variance equals 1 because the Science Table used by the FRT has
zero individual causal effects. Under H0n, because the true distribution of t
is more dispersed than the corresponding permutation distribution, the pfrt
based on t is asymptotically conservative.

8.2 Covariate-adjusted FRTs in the CRE

Extending the discussion in Section 8.1 to the case with covariates, Zhao and
Ding (2021a) recommend using the FRT with the studentized Lin (2013)’s
estimator:

tL =
τ̂L√
V̂L
,

which is the robust t-statistic for the coefficient of Zi in the OLS fit of Yi on
1, Zi, Xi and ZiXi. They show that the FRT with tL has multiple guarantees:

1. the associate pfrt is finite-sample exact under H0f;

2. it is asymptotically conservative under H0n;

3. it is asymptotically more powerful than the FRT with t when H0n

does not hold and the covariates are predictive to the outcomes;

4. the above properties holds even if the linear outcome model is mis-
specified.

Similarly, this is a feature of the the studentized statistic tL. Zhao and Ding
(2021a) show that other covariate-adjusted FRTs reviewed in Section 6.2.1
may be either anti-conservative under H0n or less powerful than the FRT
with tL when H0n does not hold.

8.3 General recommendations

The recommendations for the SRE parallel those for the CRE if both the
strong and weak null hypotheses are of interest. Without additional covariates,
Zhao and Ding (2021a) recommend using the FRT with

tS =
τ̂S√
V̂S

;
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with additional covariates, they recommend using the FRT with

tL,S =
τ̂L,S√
V̂L,S

.

The analysis of ReM is trickier. Zhao and Ding (2021a) show that the FRT
with t does not have the dual guarantees in Section 8.1, but the FRT with tL
still has the guarantees in Section 8.2. This highlights the importance of both
covariate adjustment and studentization in ReM.

Similar results hold for the MPE. Without covariates, we recommend using
the FRT with the t-statistic for the intercept in the OLS fit of τ̂i on 1; with
covariates, we recommend using the FRT with the t-statistic for the intercept
in the OLS fit of τ̂i on 1 and τ̂x,i. Figure 7.2 in Chapter 7 are based on these
recommended FRTs.

Overall, the FRTs with studentized statistics are safer choices. When the
large-sample Normal approximations to the studentized statistics are accu-
rate, the FRTs give pfrt’s that are almost identical to those based on Normal
approximations. When the large-sample approximations are inaccurate, the
FRTs at least guarantees valid p-values under the strong null hypotheses.
This is the recommendation of this book.

8.4 A case study

Chong et al. (2016) conducted a randomized experiment on 219 students of
a rural secondary school in the Cajamarca district of Peru during the 2009
school year. They first provided the village clinic with iron supplements and
trained the local staff to distribute one free iron pill to any adolescent who re-
quested one in person. They then randomly assign students to three arms with
three different types of videos: in the first video, a popular soccer player was
encouraging the use of iron supplements to maximize energy (“soccer” arm);
in the second video, a physician was encouraging the use of iron supplements
to improve overall health (“physician” arm); the third video did not mention
iron at all (“control” arm). The experiment was stratified on the class level
(1–5). The treatment and control group sizes within classes are shown below:

class 1 class 2 class 3 class 4 class 5
soccer 16 19 15 10 10

physician 17 20 15 11 10
control 15 19 16 12 10

One outcome of interest is the average grades in the third and fourth
quarters of 2009, and an important background covariate was the anemia
status at baseline. We make pairwise comparisons of the “soccer” arm versus
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the “control” arm and the “physician” arm versus the “control” arm. We
also compare the FRTs with and without using the covariate indicating the
baseline anemia status. We use their dataset to illustrate the FRTs in complete
randomization and stratified randomization. The ten subgroup analyses within
the same class levels use the FRTs with t and tL for the CRE and the two
overall analyses averaging over all class levels use the FRTs with tS and tL,S
for the SRE.

Table 8.1 shows the point estimators, standard errors, the p-value based
on the Normal approximation of the robust t-statistics, and the p-value based
on the FRTs. In most strata, covariate adjustment decreases the standard er-
ror since the baseline anemia status is predictive to the outcome. Table 8.1
also exhibits two exceptions: within class 2, covariate adjustment increases
the standard error when comparing “soccer” and “control”; in class 4, covari-
ate adjustment increases the standard error when comparing “physician” and
“control”. This is due to the small group sizes within these strata, causing the
asymptotic approximation dubious. Nevertheless, in these two scenarios, the
differences in the standard error are in the third digit. The p-values from the
Normal approximation and the FRT are close with the latter being slightly
larger in most cases. Based on the theory, the p-values based on the FRT
should be trusted since it has an additional guarantee of being finite-sample
exact under the sharp null hypothesis. This becomes important in this exam-
ple since the groups sizes are quite small within strata.

We echo Bind and Rubin (2020)’s suggestion that when conducting the
FRTs, not only the p-values but also the randomization distributions of the
test statistics should be reported. Figure 8.1 compares the histograms of the
randomization distributions of the robust t-statistics with the asymptotic ap-
proximations. In the subgroup analysis, we can observe discrepancy between
the randomization distributions and N(0, 1); average over all class levels, the
discrepancy becomes unnoticeable. Overall, in this application, the p-values
based on the Normal approximation do not differ substantially from those
based on the FRTs. Two approaches yield coherent conclusions: the video
with a physician telling the benefits of iron supplements improved the aca-
demic performance and the effect was most significant among student in class
3; in contrast, the video with a famous soccer player telling the benefits of the
iron supplements did not have any significant effect.

8.5 Homework Problems

8.1 Re-analyzing Angrist and Lavy (2009)’s data

This is the Fisherian counterpart of Problem 7.8. Report the pfrt’s from the
FRTs with studentized statistics.
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TABLE 8.1: Re-analysis of Chong’s data. N corresponds to the unadjusted
estimators and tests, and L corresponds to the covariate-adjusted estimators
and tests.

(a) soccer versus control

est s.e. pnormal pfrt
class 1

N 0.051 0.502 0.919 0.924
L 0.050 0.489 0.919 0.929

class 2
N -0.158 0.451 0.726 0.722
L -0.176 0.452 0.698 0.700

class 3
N 0.005 0.403 0.990 0.989
L -0.096 0.385 0.803 0.806

class 4
N -0.492 0.447 0.271 0.288
L -0.511 0.447 0.253 0.283

class 5
N 0.390 0.369 0.291 0.314
L 0.443 0.318 0.164 0.186
all
N -0.051 0.204 0.802 0.800
L -0.074 0.200 0.712 0.712

(b) physician versus control

est s.e. pnormal pfrt
class 1

N 0.567 0.426 0.183 0.192
L 0.588 0.418 0.160 0.174

class 2
N 0.193 0.438 0.659 0.666
L 0.265 0.409 0.517 0.523

class 3
N 1.305 0.494 0.008 0.012
L 1.501 0.462 0.001 0.003

class 4
N -0.273 0.413 0.508 0.515
L -0.313 0.417 0.454 0.462

class 5
N -0.050 0.379 0.895 0.912
L -0.067 0.279 0.811 0.816
all
N 0.406 0.202 0.045 0.047
L 0.463 0.190 0.015 0.017
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FIGURE 8.1: Re-analyzing Chong et al. (2016)’s data: randomization distri-
butions with 5× 104 Monte Carlo draws and the N(0, 1) approximations
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8.2 Replication of Zhao and Ding (2021a)’s Figure 1

Zhao and Ding (2021a) use simulation to evaluate the finite-sample properties
of the pfrt’s from the FRTs with various test statistics. Based on their Figure
1, they recommend using the FRT with tL,S to analyze the SRE. Replicate
their Figure 1.

8.3 Recommended reading

Zhao and Ding (2021a).
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Bridging Finite and Super Population
Causal Inference

We have focused on the finite population perspective in randomized experi-
ment. It treats all the potential outcomes as fixed numbers or conditions on
them if they are realizations of some random variables. The advantage of this
perspective is that it focuses on the design of the experiments and requires
minimal assumptions on the data generating process of the outcomes. How-
ever, it is often criticized for having only internal validity but not necessarily
external validity. Obviously, all experimenters care about not only the internal
validity but also the external validity of their experiments. Since all statistical
properties are conditional on the potential outcomes for the units we have,
the results are only about the observed units. Then a natural question arises:
do the finite population results generalize to a bigger population?

This is a fair critique on the finite population framework conditional on
the potential outcomes. However, this can be a philosophical question. What
we observed is a finite population, so any experimental design and analysis
directly give us information about this finite population. Randomization only
ensures internal validity given the potential outcomes of these units. The ex-
ternal validity of the results depend on the sampling process of the units. If the
finite population is a representative sample of a larger population we are in-
terested in, then of course the experimental results also have external validity.
Otherwise, the results based on randomization inference may not generalize.
Pearl and Bareinboim (2014) discussed this transportability problem from a
different perspective.

For some statisticians, this is just a technical problem. We can change
the statistical framework, assuming that the units are sampled from a super
population. Then all the statements are about the population of interest.
This is a convenient framework, although it does not really solve the problem
mentioned above. Below, I will introduce this framework for two purposes:
first, it gives a different perspective for randomized experiments; second, it
serves as a bridge between Parts II and III of this book. The latter purpose
is more important, since the super population framework allows us to derive
more fruitful results for observational studies in which the treatment is not
randomly assigned.

121
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9.1 CRE

Assume
{Zi, Yi(1), Yi(0), Xi}ni=1

IID∼ {Z, Y (1), Y (0), X}

from a super population. With a little abuse of notation, we define the popu-
lation average causal effect as

τ = E{Y (1)− Y (0)} = E{Y (1)} − E{Y (0)}.

Under the super population framework, we can formulate the CRE as below.

Definition 9.1 (CRE under the super population framework) Z {Y (1), Y (0), X}

Under Definition 9.1, the average causal effect can be written as

τ = E{Y (1) | Z = 1} − E{Y (0) | Z = 0}
= E(Y | Z = 1)− E(Y | Z = 0), (9.1)

which equals the difference in expectations of the outcomes. Since τ can be
expressed as a function of the distributions of the observables, it is nonpara-
metrically identifiable1. The identification formula (9.1) immediately suggests
a moment estimator τ̂ , which is the difference in means of the outcomes de-
fined before. Conditioning on Z, this is then a standard two-sample problem
comparing the means of two independent samples. We have

E(τ̂ | Z) = τ, var(τ̂ | Z) =
var{Y (1)}

n1
+

var{Y (0)}
n0

.

Under IID sampling, the sample variances are unbiased for the population
variances, so Neyman (1923)’s variance estimator is unbiased for var(τ̂ | Z).
The conservativeness problem goes away under this super population frame-
work.

We can also discuss covariate adjustment. Based on the OLS decomposi-
tions (see Chapter A2)

Y (1) = γ1 + βT1X + ε(1), (9.2)

Y (0) = γ0 + βT0X + ε(0), (9.3)

we have
τ = E{Y (1)− Y (0)} = γ1 − γ0 + (β1 − β0)

TE(X),

since the residuals ε(1) and ε(0) have mean zero due to the inclusion of the

1In causal inference, we say that a parameter is nonparametrically identifiable if it can
be determined by the distribution of the observed variables without imposing further para-
metric assumptions.
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intercepts. We can use the OLS with the treated and control data to estimate
the coefficients in (9.2) and (9.3), respectively. The sample versions of the

coefficients are γ̂1, β̂1, γ̂0, β̂0, so a covariate-adjusted estimator for τ is

τ̂adj = γ̂1 − γ̂0 + (β̂1 − β̂0)
TX̄.

If we center covariates with X̄ = 0, the above estimator reduces to Lin (2013)’s
estimator

τ̂L = γ̂1 − γ̂0,

which equals the coefficient of Z in the pooled regression with treatment-
covariates interactions.

Unfortunately, the EHW variance estimator does not work for τ̂L because
of the additional uncertainty X̄ under the super population framework. Berk
et al. (2013), Negi andWooldridge (2021) and Zhao and Ding (2021a) proposed
a correction of the EHW variance estimator by adding an additional term

(β̂1 − β̂0)
TS2

X(β̂1 − β̂0)/n.

A conceptually simpler yet computationally intensive approach is to use the
bootstrap to estimate the variance; see Chapter A1.5.

9.2 SRE

We can extend the discussion in Section 9.1 to the SRE since it is equivalent to
independent CREs within strata. The notation below will be slightly different
from that in Chapter 5.

Assume that

{Zi, Yi(1), Yi(0), Xi}
IID∼ {Z, Y (1), Y (0), X}.

With a discrete covariate Xi ∈ {1, . . . ,K}, we can formulate the SRE as
below.

Definition 9.2 (SRE under the super population framework) Z {Y (1), Y (0)} |
X.

Under Definition 9.2, the conditional average causal effect can be rewritten
as

τ[k] = E{Y (1)−Y (0) | X = k} = E(Y | Z = 1, X = k)−E(Y | Z = 0, X = k),

so the average causal effect can be rewritten as

τ = E{Y (1)−Y (0)} =

K∑
k=1

pr(X=k)E{Y (1)−Y (0) | X = k} =
K∑

k=1

pr(X = k)τ[k].
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The discussion in Section 9.1 holds with all strata, so we can derive the super
population analog for the SRE. When there are more than two treatment
and control units within each strata, we can use V̂S as an unbiased variance
estimator for var(τ̂S).

9.3 Homework Problems

9.1 OLS decomposition of the observed outcome under the CRE

Based on (9.2) and (9.3), show that the OLS decomposition of the observed
outcome on the treatment, covariates and their interaction is

Y = α0 + αZZ + αTXX + αTZXXZ + ε

where

α0 = γ0, αZ = γ1−γ0, αX = β0, αZX = β1−β0, ε = Zε(1)+(1−Z)ε(0).

That is,

(α0, αZ , αX , αZX) = arg min
a0,aZ ,aX ,aZX

E(Y − a0 − aZZ − aTXX − aTZXXZ)
2.

9.2 Recommended reading

Ding et al. (2017a) provide a unified discussion of the finite-population and
super-population inferences for the average causal effect.
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Observational Studies, Selection Bias, and
Nonparametric Identification of Causal
Effects

Cochran (1965) summarized two common characteristics of observational
studies:

1. the objective is to elucidate cause-and-effect relationships;

2. it is not feasible to use controlled experimentation.

The first characteristic is identical to that of randomized experiments dis-
cussed in Part II, but the second differs fundamentally from randomized ex-
periments.

Dorn (1953) suggested that the planner of an observational study should
always ask himself the following question:

How would the study be conducted if it were possible to do it by controlled
experimentation?

It is always helpful to follow Dorn (1953)’s suggestion because the potential
outcomes framework has an intrinsic link to an experiment, either a real exper-
iment or a thought experiment. Part III of this book will discuss causal infer-
ence with observational studies. It will clarify the fundamental differences be-
tween observational studies and randomized experiments. Nevertheless, many
ideas of causal inference with observational studies are deeply connected to
those with randomized experiments.

10.1 Motivating Examples

Example 10.1 (job training program) LaLonde (1986) was interested in
the causal effect of a job training program on earnings. His compared the re-
sults based on a randomized experiment to the results based on observational
studies. We have used the experimental data before, which is the lalonde

dataset in the Matching package; we have also used an observational counter-
part cps1re74.csv in Problem 1.3. LaLonde (1986) found that many traditional
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econometric methods for observational studies gave quite different estimates
compared to the estimates based on the experimental data. Dehejia and Wahba
(1999) re-analyzed the data using methods motivated by causal inference, and
found that those methods can recover the experimental gold standard. Since
then, this became a canonical example in causal inference with observational
studies.

Example 10.2 (smoking and homocysteine) Bazzano et al. (2003) com-
pared the homocysteine levels in daily smokers and never smokers based on the
data from the National Health and Nutrition Examination Survey (NHANES)
2005–2006. Rosenbaum (2018) documented the data as homocyst in the pack-
age senstrat. The dataset has the following important covariates:

female 1=female, 0=male
age3 three age categories: 20–39, 40–50, ≥60
ed3 three education categories: < High School, High School, some College
bmi3 three BMI categories: <30, [30, 35), ≥ 35
pov2 TRUE=income at least twice the poverty level, FALSE otherwise

Example 10.3 (school meal program and body mass index) Chan et al.
(2016) used a subsample of the data from NHANES 2007–2008 to study
whether participation in school meal programs lead to an increase in BMI
for school children. They documented the data as nhanes_bmi in the package
ATE. The dataset has the following important covariates:

age age
ChildSex gender (1: Male, 0: Female)
black race (1: Black, 0: otherwise)
mexam race (1: Hispanic: 0 otherwise)
pir200 plus Family above 200% of the federal poverty level
WIC Participation in the special supplemental nutrition program
Food Stamp Participation in food stamp program
fsdchbi Childhood food security
AnyIns Any insurance
RefSex Gender of the adult respondent (1: Male, 0: Female)
RefAge Age of the adult respondent

10.2 Causal effects and selection bias under the potential
outcomes framework

For unit i (i = 1, . . . , n), we have pretreatment covariates Xi, a binary treat-
ment indicator Zi, and an observed outcome Yi with two potential outcomes
Yi(1) and Yi(0) under treatment and control, respectively. For simplicity, we
assume

{Xi, Zi, Yi(1), Yi(0)}ni=1
IID∼ {X,Z, Y (1), Y (0)}.



10.2 Causal effects and selection bias under the potential outcomes framework 129

So we can drop the subscript i for quantities depending on this population.
The causal effects of interest are the average causal effect

τ = E{Y (1)− Y (0)},

the average causal effect on the treated units

τT = E{Y (1)− Y (0) | Z = 1},

and the average causal effect on the control units:

τC = E{Y (1)− Y (0) | Z = 0}.

By the linearity of the expectation, we have

τT = E{Y (1) | Z = 1} − E{Y (0) | Z = 1}
= E(Y | Z = 1)− E{Y (0) | Z = 1}

and

τC = E{Y (1) | Z = 0} − E{Y (0) | Z = 0}
= E{Y (1) | Z = 0} − E(Y | Z = 0).

In the above two formulas of τT and τC, the quantities E(Y | Z = 1) and E(Y |
Z = 0) are directly observable from the data, but the quantities E{Y (0) | Z =
1} and E{Y (1) | Z = 0} are not. The latter two are counterfactuals because
they are the means of the potential outcomes corresponding to the treatment
level that is the opposite of the actual received treatment.

The simple difference in means, also known as the prima facie causal effect,

τPF = E(Y | Z = 1)− E(Y | Z = 0)

= E{Y (1) | Z = 1} − E{Y (0) | Z = 0}

is generally biased for the causal effects defined above. For example,

τPF − τT = E{Y (0) | Z = 1} − E{Y (0) | Z = 0}

and
τPF − τC = E{Y (1) | Z = 1} − E{Y (1) | Z = 0}

are not zero in general, and they quantifies the selection bias. They measure
the differences in the means of the potential outcomes across the treatment
and control groups.

Why randomization is so important? Rubin (1978) first used potential
outcomes to quantify the benefit of randomization. We have used the fact in
Chapter 9 that

Z {Y (1), Y (0)} (10.1)
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in the CRE, which implies that the selection bias terms are both zero:

τPF − τT = E{Y (0) | Z = 1} − E{Y (0) | Z = 0} = 0

and
τPF − τC = E{Y (1) | Z = 1} − E{Y (1) | Z = 0} = 0.

So under complete randomization (10.1),

τ = τT = τC = τPF.

From the above discussion, the fundamental benefit of randomization is to
balance the distributions of the potential outcomes across the treatment and
control groups, which is more important than to balance the distributions of
the observed covariates.

Without randomization, the selection bias terms can be arbitrarily large
especially for unbounded outcomes. This highlights the fundamental difficulty
of causal inference with observational studies.

10.3 Sufficient conditions for nonparametric identifica-
tion

10.3.1 Identification

Causal inference with observational studies is challenging. It relies on strong
assumptions. A strategy is to use the information of the pretreatment covari-
ates and assume that conditioning on the observed covariates X, the selection
bias terms are zero, that is,

E{Y (0) | Z = 1, X} = E{Y (0) | Z = 0, X}, (10.2)

E{Y (1) | Z = 1, X} = E{Y (1) | Z = 0, X}. (10.3)

The assumptions in (10.2) and (10.3) state that the differences in the means of
the potential outcomes across the treatment and control groups are entirely
due to the difference in the observed covariates. So given the same value
of the covariates, the potential outcomes have the same means across the
treatment and control groups. Mathematically, (10.2) and (10.3) ensure that
the conditional versions of the effects are identical:

τ(X) = τT(X) = τC(X) = τPF(X),

where

τ(X) = E{Y (1)− Y (0) | X},
τT(X) = E{Y (1)− Y (0) | Z = 1, X},
τC(X) = E{Y (1)− Y (0) | Z = 0, X},
τPF(X) = E(Y | Z = 1, X)− E(Y | Z = 0, X).
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In particular, τ(X) is often called the conditional average causal effect.
A key result in this chapter is that the average causal effect τ is nonpara-

metrically identifiable under (10.2) and (10.3). The notion of nonparametri-
cally identifiability does not appear frequently in classic statistics, but it is
key to causal inference with observational studies.

Definition 10.1 (identification) A parameter θ is identifiable if it can be
written as a function of the distribution of the observed data under certain
model assumptions. A parameter θ is nonparametrically identifiable if it can
be written as a function of the distribution of the observed data without any
parametric model assumptions.

Definition 10.1 is too abstract at the moment. I will use more concrete
examples in later chapters to illustrate its meaning. It is often neglected in
standard statistics problems. For instance, the mean θ = E(Y ) is nonpara-
metrically identifiable if we have IID draws of Yi’s; the Pearson correlation
coefficient θ = corr(X,Y ) is nonparametrically identifiable if we have IID
draws of the pairs (Xi, Yi)’s. In those examples, the parameters are nonpara-
metrically identifiable automatically. However, Definition 10.1 is fundamental
in causal inference with observational studies. In particular, the parameter of
interest τ = E{Y (1)− Y (0)} depends on some unobserved random variables,
so it is unclear whether it is nonparametrically identifiable based on observed
data. Under the assumptions in (10.2) and (10.3), it is nonparametrically
identifiable, with detailed below.

Because τPF(X) depends only on the observables, it is nonparametrically
identified by definition. Moreover, (10.2) and (10.3) ensure that the three
causal effects are the same as τPF(X), so τ(X), τT(X) and τC(X) are all
nonparametrically identified. Consequently, the unconditional versions are also
nonparametrically identified under (10.2) and (10.3) due to the law of total
expectation:

τ = E{τ(X)}, τT = E{τT(X) | Z = 1}, τC = E{τC(X) | Z = 0}.

From now on, we focus on τ unless stated otherwise. The following theorem
summarized the identification formulas of τ .

Theorem 10.1 Under (10.2) and (10.3), the average causal effect τ is iden-
tified by

τ = E{τ(X)} (10.4)

= E{E(Y | Z = 1, X)− E(Y | Z = 0, X)} (10.5)

=

∫
{E(Y | Z = 1, X = x)− E(Y | Z = 0, X = x)}F (dx). (10.6)

The formula (10.5) was formally established by Rosenbaum and Rubin
(1983b), which is also called the g-formula by Robins (see Hernán and Robins,
2020).
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With a discrete covariate, we can write the identification formula in The-
orem 10.1 as

τ =
∑
x

E(Y | Z = 1, X = x)pr(X = x)

−
∑
x

E(Y | Z = 0, X = x)pr(X = x), (10.7)

and also the simple difference in means as

τPF =
∑
x

E(Y | Z = 1, X = x)pr(X = x | Z = 1)

−
∑
x

E(Y | Z = 0, X = x)pr(X = x | Z = 0) (10.8)

by the law of total probability. Comparing (10.7) and (10.8), we can see that
although both formulas compare the conditional expectations E(Y | Z =
1, X = x) and E(Y | Z = 0, X = x), they average over different distribution of
the covariates. The causal parameter τ averages the conditional expectations
over the common distribution of the covariate, but the difference in means
τPF averages the conditional expectations over two different distributions of
covariate in the treated and control groups.

Usually, we impose a stronger assumption:

Y (z) Z | X (z = 0, 1). (10.9)

This assumption has many names:

1. ignorability due to Rubin (1978);

2. unconfoundedness which is popular among epidemiologists;

3. selection on observables which is popular among social scientists;

4. conditional independence which is merely a description of the nota-
tion in the assumption.

Sometimes, we impose an even stronger assumption

{Y (1), Y (0)} Z | X (10.10)

which is called strong ignorability (Rosenbaum and Rubin, 1983b). If the pa-
rameter of interest is τ , then the stronger assumptions (10.9) and (10.10) are
just imposed for notational simplicity. They are not necessary in this case.
However, they cannot be relaxed if the parameter of interest is the causal
effects on other scales (for example, distribution, quantile, or some transfor-
mation of the outcome). The strong ignorability assumption requires that the
potential outcomes vector be independent of the treatment given covariates,
but the ignorability assumption only requires each potential outcome be in-
dependent of the treatment given covariates. The former is stronger than the
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latter. However, their difference is rather technical and of pure probability
interests; see Problem 10.4. In most reasonable statistical models, they are
identical; see Section 10.3.2 below. We will not distinguish them in this book
and will simply use ignorability to refer to both.

10.3.2 Plausibility of the assumption

A fundamental problem of causal inference with observational studies is the
plausibility of the ignorability assumption. The above discussion may seem too
mathematical in the sense that the ignorability assumption serves as a suffi-
cient condition to ensure the nonparametric identification of the average causal
effect. What is its scientific meaning? Intuitively, it rules out all unmeasured
covariates that affect treatment and outcome simultaneously. Those “common
causes” of the treatment and outcomes are called confounders. That is why
the ignorability assumption is also called the unconfoundedness assumption.
More mathematically, we can interpret the ignorability assumption based on
the outcome data generating process. If

Y (1) = f1(X,V1),

Y (0) = f0(X,V0),

Z = 1{g(X,V ) ≥ 0}

with (V1, V0) V , then (10.9) and (10.10) hold. In the above data generating
process, the “common causes” X of the treatment and the outcome are all
observed, the remaining random components are independent. If the data
generating process changes to

Y (1) = f1(X,U, V1),

Y (0) = f0(X,U, V0),

Z = 1{g(X,U, V ) ≥ 0}

with (V1, V0) V , then (10.9) or (10.10) does not hold in general. The un-
measured “common cause” U induces dependence between the treatment and
potential outcomes even conditioning on the observed covariates X. If we do
not have access to U and analyze the data based only on (Z,X, Y ), the final
estimator will be biased for the causal parameter in general. This type of bias
is called the omitted variable bias in econometrics.

The ignorability assumption can be reasonable if we observe a rich set
of covariates X that affect the treatment and the outcome simultaneously. I
start with this assumption, discussing identification and estimation strategies
in Part III of this book. However, it is fundamentally untestable. We may
justify it based on the scientific background knowledge, but we are often not
sure whether it holds or not. Parts IV and V of this book will discuss other
strategies when this assumption is not plausible.
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10.4 Two simple estimation strategies and their limita-
tions

10.4.1 Stratification or standardization based on discrete co-
variates

If the covariate Xi ∈ {1, . . . ,K} is discrete, then ignorability (10.9) reads as

Y (z) Z | X = k (z = 0, 1; k = 1, . . . ,K),

which essentially assumes that the observational study is a SRE. Therefore,
we can use the estimator

τ̂ =

K∑
k=1

π[k]

{
ˆ̄Y[k](1)− ˆ̄Y[k](0)

}
,

which is identical to the stratified or post-stratified estimator discussed in
Chapter 5.

This method is still widely used in practice. Example 10.2 contains discrete
covariates, and I relegate the analysis to Problem 10.3. However, there are
several obvious difficulties in implementing this method. First, it works well
for the case with small K. For large K, it is very likely that many strata have
n[k]1 = 0 or n[k]0 = 0, leading to the illy defined τ̂[k]’s for those strata. This is
related to the issue of overlap which will be discussed in Chapter 20. Second,
it is not obvious how to apply this stratification method to multidimensional
continuous or mixed covariatesX. A standard method is to create strata based
on the initial covariates and then apply the stratification method. This may
result in arbitrariness in the analysis.

10.4.2 Outcome regression

The most commonly-used method based on the outcome regression is to run
the OLS with an additive model of the observed outcome on the treatment
indicator and covariates, which assumes

E(Y | Z,X) = β0 + βzZ + βTxX.

If the above linear model is correct, then we have

τ(X) = E(Y | Z = 1, X)− E(Y | Z = 0, X)

= (β0 + βz + βTxX)− (β0 + βTxX)

= βz,

which implies that the treatment effect is homogeneous with respect to the
covariates. This, coupled with ignorability, implies that

τ = E{τ(X)} = βz.
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Therefore, if ignorability holds and the outcome model is linear, then the aver-
age causal effect equals the coefficient of Z. This is one of the most important
applications of the linear model. However, the causal interpretation of the co-
efficient of Z is valid only under two strong assumptions: ignorability and the
linear model.

We have discussed in Chapter 6, the above procedure is suboptimal even in
randomized experiments, because it ignores the treatment effect heterogeneity
induced by the covariates. If we assume

E(Y | Z,X) = β0 + βzZ + βTxX + βTzxXZ,

we have

τ(X) = E(Y | Z = 1, X)− E(Y | Z = 0, X)

= (β0 + βz + βTxX + βTzxX)− (β0 + βTxX)

= βz + βTzxX,

which, coupled with ignorability, implies that

τ = E{τ(X)} = E(βz + βTzxX) = βz + βTzxE(X).

The estimator for τ is then β̂z + β̂TzxX̄, where β̂z is the regression coefficient
and X̄ is the sample mean of X. If we center the covariates to ensure X̄ = 0,
then the estimator is simply the regression coefficient of Z. To simplify the
procedure, we usually center the covariates at the beginning; also recall Lin
(2013)’s estimator introduced in Chapter 6. Rosenbaum and Rubin (1983b)
and Hirano and Imbens (2001) discussed this estimator.

In general, we can use other more complex models to estimate the causal
effects. For example, if we build two predictors µ̂1(X) and µ̂0(X) based on
the treated and control data, respectively, then we have an estimator for the
conditional average causal effect

τ̂(X) = µ̂1(X)− µ̂0(X)

and an estimator for the average causal effect:

τ̂ = n−1
n∑

i=1

{µ̂1(Xi)− µ̂0(Xi)}.

The estimator τ̂ above has the same form as the projective estimator discussed
in Chapter 6. It is sometimes called the outcome imputation estimator. For
example, we may model a binary outcome using a logistic model

E(Y | Z,X) = pr(Y = 1 | Z,X) =
eβ0+βzZ+βT

xX

1 + eβ0+βzZ+βT
xX

,
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then based on the estimators of the coefficients β̂0, β̂z, β̂x, we have the following
estimator for the average causal effect:

τ̂ = n−1
n∑

i=1

{
eβ̂0+β̂z+β̂T

xXi

1 + eβ̂0+β̂z+β̂T
xXi

− eβ̂0+β̂T
xXi

1 + eβ̂0+β̂T
xXi

}
.

This estimator is not simply the coefficient of the treatment in the logistic
model.1 It is a nonlinear function of all the coefficients as well as the the
empirical distribution of the covariates. In econometrics, this estimator is is
called the average partial effect or average marginal effect of the treatment
in the logistic model. Many econometric software packages can report this
estimator associated with the standard error. Similarly, we can also derive
the corresponding estimator based on a fully interacted logistic model; see
Problem 10.2.

For all the estimators discussed above, we can use the nonparametric boot-
strap to estimate the standard errors. See Chapter A1.5.

The above predictors for the conditional means of the outcome can also be
other machine learning tools. In particular, Hill (2011) championed the use of
tree methods for estimating τ , and Wager and Athey (2018) proposed to use
them also for estimating τ̂(X). Wager and Athey (2018) also combined the
tree methods with the ideas in the next chapter. Since then, machine learning
and causal inference has been an active research area (e.g., Hahn et al., 2020;
Künzel et al., 2019).

The biggest problem of the above approach based on outcome regressions
is its sensitivity to the specification of the outcome model. Problem 1.3 gave
such an example. Depending on the incentive of empirical research and pub-
lications, people sometimes reported their favorable causal effects estimates
after searching over a wide set of candidate models, without confessing this
searching process. This is a major source of p-hacking in causal inference.

10.5 Homework Problems

10.1 Nonparametric identification of other causal effects

Under ignorability and overlap, show that

1. the distributional causal effect

DCEy = pr{Y (1) > y} − pr{Y (0) > y}

1If the logistic outcome model is correct, then β̂z estimates the conditional odds ratio of
the treatment on the outcome given covariates, which does not equal τ . Freedman (2008c)
gave an warning of using the logistic regression coefficient to estimate τ in CREs. See
Chapter A2 for more details of the logistic regression.
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is nonparametrically identifiable for all y;

2. the quantile causal effect

QCEq = quantileq{Y (1)} − quantileq{Y (0)},

is nonparametrically identifiable for all q, where quantileq{·} is the
qth quantile of a random variable.

Remark: In probability theory, pr{Y (z) ≤ y} is the cumulative distribution
function and pr{Y (z) > y} is the survival function of the potential outcome
Y (z). The distributional causal effect compares the survival functions of the
potential outcomes under treatment and control.

10.2 Outcome imputation estimator in the fully interacted logistic model

Assume that a binary outcome follows a logistic model

E(Y | Z,X) = pr(Y = 1 | Z,X) =
eβ0+βzZ+βT

xX+βT
xzXZ

1 + eβ0+βzZ+βT
xX+βT

xzXZ
.

What is the corresponding outcome regression estimator for the average causal
effect?

10.3 Data analysis: stratification and regression

Use the dataset homocyst in the package senstrat. The outcome is
homocysteine, the homocysteine level, and the treatment is z, where z =
1 for a daily smoker and z = 0 for a never smoker. Covariates are
female, age3, ed3, bmi3, pov2 with detailed explanations in the package, and
st is a stratum indicator, defined by all the combinations of the discrete co-
variates.

1. How many strata have only treated or control units? What is the
proportion of the units in these strata? Drop these strata and per-
form a stratified analysis of the observational study. Report the
point estimator, variance estimator and 95% confidence interval for
the average causal effect.

2. Run the OLS of the outcome on the treatment indicator and covari-
ates without interactions. Report the coefficient of the treatment
and the robust standard error.

Drop the strata with only treated or control units. Re-run the OLS
and report the result.

3. Apply Lin (2013)’s estimator of the average causal effect. Report
the coefficient of the treatment and the robust standard error.

If you do not drop the strata with only treated or control units,
what will happen?

4. Compare the results in the above three analyses. Which one is more
credible?
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10.4 Ignorability versus strong ignorability

Given an example such that the ignorability holds but the strong ignorability
does not hold.

Remark: This is related to a classic probability problem of finding three
random variables A,B,C such that

A C and B C but (A,B)/ C.

10.5 Recommended reading

Cochran (1965) is a classic reference on observational studies. It contains many
useful insights but does not use the formal potential outcomes framework.
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The Central Role of the Propensity Score
in Observational Studies for Causal Effects

Rosenbaum and Rubin (1983b) proposed the key concept propensity score and
discussed its role in causal inference with observational studies. It is one of
the most cited papers in statistics, and Titterington (2013) listed it as the
second most cited paper published in Biometrika during the past 100 years.
Its citations are growing very fast during the recent years.

Under the IID sampling assumption, we have four random variables as-
sociated with each unit: {X,Z, Y (1), Y (0)}. Following the basic probability
rule, we can factorize the joint distribution as

pr{X,Z, Y (1), Y (0)}
= pr(X)× pr{Y (1), Y (0) | X} × pr{Z | X,Y (1), Y (0)},

where pr(X) is the covariate distribution, pr{Y (1), Y (0) | X} is the outcome
model, and pr{Z | X,Y (1), Y (0)} is the treatment assignment mechanism.
Usually, we do not want to model the covariates because they are background
information happening before the treatment and outcome. If we want to move
beyond the outcome model, then we must focus on the treatment assignment
mechanism, which leads to the definition of the propensity score.

Definition 11.1 (propensity score) Define

e(X,Y (1), Y (0)) = pr{Z = 1 | X,Y (1), Y (0)}

as the propensity score. Under strong ignorability, we have

e(X,Y (1), Y (0)) = pr{Z = 1 | X,Y (1), Y (0)} = pr(Z = 1 | X),

so the propensity score reduces to

e(X) = pr(Z = 1 | X),

the conditional probability of the receiving the treatment given the observed
covariates.

Rosenbaum and Rubin (1983b) used e(X) = pr(Z = 1 | X) as the defi-
nition of the propensity score because they focused on observational studies

139



140 11 Propensity Score

under ignorability. It is sometimes helpful to view e(X,Y (1), Y (0)) = pr{Z =
1 | X,Y (1), Y (0)} as the general definition of the propensity score even when
ignorability fails. See Problem 11.1 for more details.

Following Rosenbaum and Rubin (1983b), this chapter will demonstrate
that e(X) is a key quantity in causal inference with observational studies
under ignorability.

11.1 The propensity score as a dimension reduction tool

11.1.1 Theory

Theorem 11.1 If Z {Y (1), Y (0)} | X, then Z {Y (1), Y (0)} | e(X).

Theorem 11.1 states that if strong ignorability holds conditional on co-
variates X, then it also holds conditional on the scalar propensity score e(X).
The ignorability requires conditioning on many background characteristics Z
of the units, but Theorem 11.1 implies that controlling for the propensity score
e(X) romoves all confounding induced by covariates X. The original covari-
ates X can be general and have many dimensions, but the propensity score
e(X) is a one-dimensional scalar variable bounded between 0 and 1. There-
fore, the propensity score reduces the dimension of the original covariates but
still maintain the ignorability. As a technical statistical terminology, we can
view the propensity score as a dimensional reduction tool. We will first prove
Theorem 11.1 below and then given an application of the dimension reduction
property of the propensity score.
Proof of Theorem 11.1: By the definition of conditional independence, we
need to show that

pr{Z = 1 | Y (1), Y (0), e(X)} = pr{Z = 1 | e(X)}. (11.1)

The left-hand side of (11.1) equals

pr{Z = 1 | Y (1), Y (0), e(X)}
= E{Z | Y (1), Y (0), e(X)}

= E
[
E{Z | Y (1), Y (0), e(X), X} | Y (1), Y (0), e(X)

]
(tower property; see Section A1.1.1)

= E
[
E{Z | Y (1), Y (0), X} | Y (1), Y (0), e(X)

]
= E

{
E(Z | X) | Y (1), Y (0), e(X)

}
(strong ignorability)

= E
{
e(X) | Y (1), Y (0), e(X)

}
= e(X).
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The right-hand side of (11.1) equals

pr{Z = 1 | e(X)}
= E{Z | e(X)}

= E
[
E{Z | e(X), X} | e(X)

]
(tower property)

= E
{
E(Z | X) | e(X)

}
= E

{
e(X) | e(X)

}
= e(X).

So the left-hand side of (11.1) equals the right-hand side of (11.1). □

11.1.2 Propensity score stratification

Theorem 11.1 motivates a simple method for estimating causal effects: propen-
sity score stratification. Starting from the simple case, we assume that the
propensity score is known and only takes K possible values {e1, . . . , eK} with
K being much smaller than the sample size n. Theorem 11.1 reduces to

Z {Y (1), Y (0)} | e(X) = ek (k = 1, . . . ,K).

Therefore, we have a stratified randomized experiment (SRE), that is, we have
K independent CREs within strata of the propensity score. We can analyze
the observational data in the same way as the SRE stratified on e(X).

In general, the propensity score is not known and is not discrete. We often
fit a statistical model for pr(Z = 1 | X) (for example, a logistic model)
to obtain the estimated propensity score ê(X). This estimated propensity
score can take as many values as the sample size, but we can discretize it
to approximate the simple case above. For example, we can discretize the
estimated propensity score by its K quantiles to obtain ê′(X): ê′(Xi) = ek,
the k/K-th quantile of ê(X), if ê(Xi) is between the (k−1)/K-th and k/K-th
quantiles of ê(X). Then we have

Z {Y (1), Y (0)} | ê′(X) = ek (k = 1, . . . ,K).

approximately. So we can analyze the observational data in the same way as
the SRE stratified on ê′(X). The ignorability holds only approximately given
ê′(X). We can further use regression adjustment based on covariate to remove
bias and improve efficiency. To be more specific, we can obtain Lin (2013)’s
estimator within each stratum and construct the final estimator by a weighted
average.

With unknown propensity score, we need to fit a statistical model to obtain
the estimated propensity score ê(X). This makes the final estimator depen-
dent on the model specification. However, the propensity score stratification
estimator only requires the correct ordering of the estimated propensity scores
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rather than their exact values, which makes it relatively robust compared to
other methods. This robustness property of propensity score stratification
appeared in many numerical examples but its rigorous quantification is still
missing in the literature.

An important practical question is how to choose K? If K is too small,
then the strong ignorability does not hold even approximately given ê′(X).
If K is too large, then we do not have enough units within each stratum of
the estimated propensity score and many strata have only treated or control
units. Therefore, we face a trade-off in practice. Following Cochran (1968)’s
heuristics, Rosenbaum and Rubin (1983b) and Rosenbaum and Rubin (1984)
suggested K = 5 which removes a large amount of bias in many settings.
However, with extremely large dataset, propensity score stratification leads
to biased estimators with a fixed K (Lunceford and Davidian, 2004). It is
thus reasonable to increase K as long as each stratum has enough treated and
control units. Wang et al. (2020) suggested an aggressive choice of K, which
is the maximum number of strata such that the stratified estimator is well
defined. But the rigorous theory for this procedure is not fully established.

Another important practical question is how to compute the standard er-
rors of the estimators based on propensity score stratification? Some researcher
conditioned on the discretized propensity scores ê′(X) and reported standard
errors based on the SRE. This effectively ignored the uncertainty in the esti-
mated propensity scores. Other researchers bootstrapped the whole procedure
to account for full uncertainty. However, the theory for the bootstrap is still
unclear due to the discreteness of this estimator.

11.1.3 Application

To illustrate the propensity score stratification method, I revisited Example
10.3. Figure 11.1 shows the histograms of the estimated propensity scores with
different numbers of bins (K = 5, 10, 30).

Based on propensity score stratification, we can calculate the point esti-
mators and the standard errors for difference choice of K ∈ {5, 10, 20, 50, 80}
as follows (with the function Neyman_SRE defined in Chapter 5 for analyzing
the SRE):

> pscore = glm(z ~ x, family = binomial)$fitted.values
> n.strata = c(5, 10, 20, 50, 80)

> strat.res = sapply(n.strata , FUN = function(nn){

+ q.pscore = quantile(pscore , (1:(nn -1))/nn)

+ ps.strata = cut(pscore , breaks = c(0,q.pscore ,1),

+ labels = 1:nn)

+ Neyman_SRE(z, y, ps.strata )})

>

> rownames(strat.res) = c("est", "se")

> colnames(strat.res) = n.strata

> round(strat.res , 3)

5 10 20 50 80
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breaks = 5

0.0 0.2 0.4 0.6 0.8 1.0

breaks = 10

0.0 0.2 0.4 0.6 0.8 1.0

breaks = 30

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 11.1: Histograms of the estimated propensity scores based on the
nhanes_bmi data: white for the control group and grey for the treatment group

est -0.116 -0.178 -0.200 -0.265 -0.204

se 0.283 0.282 0.279 0.272 NA

Increasing K from 5 to 50 reduces the standard error. However, we cannot
go as extreme as K = 80 because the standard error is not well-defined in
some strata with only one treated or control unit. The above estimators show
negative but insignificant effect of the meal program on the BMI.

We can also compare the above estimator with the three simple regression
estimators: the one without adjusting for any covariates and Fisher and Lin’s
estimators.

naive fisher lin

est 0.534 0.061 -0.017

se 0.225 0.227 0.226

The naive difference in means differ greatly from other methods. Although
the point estimates are different, two regression estimators and the propen-
sity score stratification estimators give qualitatively the same results. The
propensity score stratification estimators are stable across different choices of
K.
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11.2 Propensity score weighting

11.2.1 Theory

Theorem 11.2 If Z {Y (1), Y (0)} | X and 0 < e(X) < 1, then

E{Y (1)} = E

{
ZY

e(X)

}
, E{Y (0)} = E

{
(1− Z)Y

1− e(X)

}
,

and

τ = E{Y (1)− Y (0)} = E

{
ZY

e(X)
− (1− Z)Y

1− e(X)

}
.

Before proving Theorem 11.2, it is important to note the additional as-
sumption 0 < e(X) < 1. It is called the overlap or positivity condition. The
formulas in Theorem 11.2 become infinity if e(X) = 0 or 1 for some values of
X. It is not a restriction due to the identification formulas based on propen-
sity score weighting. Although it was not stated explicitly in Theorem 10.1,
the conditional expectations E(Y | Z = 1, X) and E(Y | Z = 0, X) in the
identification formula of τ in (10.5) is well defined only if 0 < e(X) < 1. The
overlap condition can be viewed as a technical condition to ensure that the
formulas in Theorems 10.1 and 11.2 are well defined. It can also cause some
philosophical issues for causal inference with observational studies. When unit
i has e(Xi) = 1, we always observe its potential outcome under the treatment,
Yi(1), but can never observe its potential outcome under the control, Yi(0). In
this case, the potential outcome Yi(0) may not even be well defined, making
the definition of the causal effect ambiguous for unit i. King and Zeng (2006)
called Yi(0) an extreme counterfactual when e(Xi) = 1, and discussed their
dangers in causal inference. A similar problem arises if unit i has e(Xi) = 0.

In sum, Z {Y (1), Y (0)} | X requires adequate covariates to ensure
the conditional independence of the treatment and potential outcomes, and
0 < e(X) < 1 requires residual randomness in the treatment conditional on
the covariates. In fact, Rosenbaum and Rubin (1983b)’s definition of strong
ignorability includes both of these conditions. In the modern literature, they
are often stated separately.
Proof of Theorem 11.2: I only prove the result for E{Y (1)} because the
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proof of the result for E{Y (0)} is similar. We have

E

{
ZY

e(X)

}
= E

{
ZY (1)

e(X)

}
= E

[
E

{
ZY (1)

e(X)
| X
}]

(tower property)

= E

[
1

e(X)
E {ZY (1) | X}

]
= E

[
1

e(X)
E(Z | X)E {Y (1) | X}

]
(strong ignorability)

= E

[
1

e(X)
e(X)E {Y (1) | X}

]
= E [E {Y (1) | X}]
= E{Y (1)}.

□

11.2.2 Inverse propensity score weighting estimators

Theorem 11.2 implies the following moment estimator for the average causal
effect:

τ̂ht =
1

n

n∑
i=1

ZiYi
ê(Xi)

− 1

n

n∑
i=1

(1− Zi)Yi
1− ê(Xi)

,

where ê(Xi) is the estimated propensity score. This is the inverse propensity
score weighting (IPW) estimator, which is also called the Horvitz–Thompson
(HT) estimator. Horvitz and Thompson (1952) proposed it in survey sampling
and Rosenbaum (1987a) used in causal inference with observational studies.

However, the estimator τ̂ht has many problems. In particular, it is not
invariant to location transformation of the outcome. For example, if we change
Yi to Yi + c with a constant c, then it becomes τ̂ht + c(1̂T − 1̂C), where

1̂T =
1

n

n∑
i=1

Zi

ê(Xi)
, 1̂C =

1

n

n∑
i=1

(1− Zi)

1− ê(Xi)

are two different estimates of the constant 1. I use the funny notation 1̂T
and 1̂C because with the true propensity score these two terms both have
expectation 1; see Problem 11.3. In general, 1̂T − 1̂C is not zero in finite
sample. Since adding a constant to every outcome should not change the
average causal effect, this estimator is not reasonable because of its dependence
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on c. A simple fix to the problem is to normalize the weights by 1̂T and 1̂C
respectively, resulting in the following estimator

τ̂hajek =

∑n
i=1

ZiYi

ê(Xi)∑n
i=1

Zi

ê(Xi)

−
∑n

i=1
(1−Zi)Yi

1−ê(Xi)∑n
i=1

1−Zi

1−ê(Xi)

.

This is the Hajek estimator due to Hájek (1971). We can verify that the Hajek
estimator is invariant to the location transformation, that is, if we replace Yi
by Yi + c, then τ̂hajek remains the same. Moreover, many numerical studies
have found that τ̂hajek is much more stable than τ̂ht in finite samples.

11.2.3 A problem of weighting and a fundamental problem
of causal inference

In many asymptotic analysis, we require a strong overlap condition

0 < αL ≤ e(X) ≤ αU < 1,

that is, the true propensity score is bounded away from 0 and 1. However,
D’Amour et al. (2021) pointed out that this is a rather strong assumption
especially with many covariates. Chapter 20 will discuss this problem in detail.

Even if the strong overlap condition holds for the true propensity score,
the estimated propensity scores can be close to 0 or 1. When this happens,
the weighting estimators blow up to infinity resulting in extremely unstable
behaviors in finite samples. We can either truncate the estimated propensity
score by changing it to

max
[
αL,min{ê(Xi), αU}

]
,

or trim the observations by dropping units with ê(Xi) outside the interval
[αL, αU]. Crump et al. (2009) suggested αL = 0.1 and αU = 0.9, and Kurth
et al. (2005) suggested αL = 0.05 and αU = 0.95. Yang and Ding (2018)
established some asymptotic theory for trimming.

11.2.4 Application

Revisiting Example 10.3, we can obtain the weighting estimators based on
different truncations of the the estimated propensity scores. The following
results are the two weighting estimators with the bootstrap standard errors,
with truncations at (0, 1), (0.01, 0.99), (0.05, 0.95), and (0.1, 0.9):

$trunc0
HT Hajek

est -1.516 -0.156

se 0.495 0.238
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$trunc .01
HT Hajek

est -1.516 -0.156

se 0.464 0.231

$trunc .05
HT Hajek

est -1.499 -0.152

se 0.472 0.248

$trunc .1
HT Hajek

est -0.713 -0.054

se 0.435 0.229

The HT estimator gives results far away from all other estimators we discussed
so far. The point estimates seem too large and they are negatively significant
unless we truncate the estimated propensity scores at (0.1, 0.9). This is an
example showing the instability of the HT estimator.

11.3 The propensity score as a balancing score

11.3.1 Theory

Theorem 11.3 The propensity score satisfies

Z X | e(X).

Moreover, for any function h(·), we have

E

{
Zh(X)

e(X)

}
= E

{
(1− Z)h(X)

1− e(X)

}
(11.2)

provided the existence of the moments on both sides of (11.2).

Rosenbaum and Rubin (1983b) also introduced the notion of balancing
score b(X), which satisfies Z X | b(X). By Theorem 11.3, the propensity
score is a balancing score. Theorem 11.3 also states that the any function
h(X) of the covariates has the same mean across the treatment and control
groups, if weighted by the inverse of the propensity score.

Moreover, Rosenbaum and Rubin (1983b) showed that the propensity score
e(X) is the coarsest balancing score, that is, the propensity score e(X) is a
function of any balancing score. Problem 11.5 gives more details.
Proof of Theorem 11.3: First, we show Z X | e(X), that is,

pr{Z = 1 | X, e(X)} = pr{Z = 1 | e(X)}. (11.3)
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Following similar steps as the proof of Theorem 11.1, we can show that the
left-hand side of (11.3) equals

pr{Z = 1 | X, e(X)} = pr(Z = 1 | X) = e(X),

and the right-hand side of (11.3) equals

pr{Z = 1 | e(X)} = E{Z | e(X)}

= E
[
E{Z | X, e(X)} | e(X)

]
= E

[
E{Z | X} | e(X)

]
= E

[
e(X) | e(X)

]
= e(X).

Therefore, (11.3) holds.
Second, we show (11.2). We can use similar steps as the proof of Theorem

11.1. But given Theorem 11.1, we have a simpler proof. If we view h(X)
as an outcome, then its two potential outcomes are identical and the strong
ignorability holds: Z h(X) | X. The difference between the the left-hand and
right-hand sides of (11.2) is the average causal effect of Z on h(X), which is
zero. □

11.3.2 Covariate balance check

The proof of Theorem 11.3 is simple. But Theorem 11.3 has useful implications
for the statistical analysis. Before getting access to the outcome data, we can
check whether the propensity score model is specified well enough to ensure
covariate balance in the data. Rubin (2007) viewed this as the design stage
of the observational study, and Rubin (2008) argued that this can result in
more objective causal inference because the design stage does not involve the
values of the outcomes. While this is a useful recommendation in practice, it
is not entirely clear how to quantify the objectiveness.

In propensity score stratification, we have the discretized estimated
propensity score ê′(X) and approximately

Z X | ê′(X) = ek (k = 1, . . . ,K).

Therefore, we can check whether the covariate distributions are the same
across the treatment and control groups within each stratum of the discretized
estimated propensity score.

In propensity score weighting, we can view h(X) as a pseudo outcome and
estimate the average causal effect on h(X). Because the true average causal
effect on h(X) is 0, the estimate should not be significantly different from 0.
A canonical choice of h(X) is X.

Let us revisit Example 10.3 again. Based on propensity score stratification
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balance check based on weighting

FIGURE 11.2: Balance check: point estimates and 95% confidence intervals
of the average causal effect on covariates

with K = 5, all the covariates except Food_Stamp are well balanced across the
treatment and control groups. Similar result holds for the Hajek estimator.
Figure 11.2 shows the balance checking results.

11.4 Homework Problems

11.1 Another version of Theorem 11.1

Prove that
Z {Y (1), Y (0), X} | e(X,Y (1), Y (0)).

Remark: This result implies that

Z {Y (1), Y (0)} | {X, e(X,Y (1), Y (0)}.

Rosenbaum (2020) and Rosenbaum and Rubin (2023) pointed out this result
and called e(X,Y (1), Y (0)) the principal unobserved covariate.
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11.2 Another version of Theorem 11.1

If Z Y (z) | X for z = 0, 1, then Z Y (z) | e(X) for z = 0, 1. That is, if
ignorability holds conditional on covariates X, then it also holds conditional
on the scalar propensity score e(X). Prove this theorem.

11.3 More results on the IPW estimators

This is related to the discussion of the IPW estimators in Section 11.2.2.
Prove

E

{
1

n

n∑
i=1

Zi

e(Xi)

}
= 1, E

{
1

n

n∑
i=1

(1− Zi)

1− e(Xi)

}
= 1.

11.4 Re-analysis of Rosenbaum and Rubin (1983a)

Use Table 1 of Rosenbaum and Rubin (1983a). If you are interested, you can
read the whole paper. It is a canonical paper. But for this problem, you only
need Table 1.

Rosenbaum and Rubin (1983a) fitted a logistic regression model for the
propensity score and stratified the data into 5 subclasses. Because the treat-
ment (Surgical versus Medical) is binary and the outcome is also binary (im-
proved or not), they represented the data by a table.

Based on this table, estimate the average causal effect, and report the 95%
confidence interval.

11.5 Balancing score and propensity score: more theoretical results

Rosenbaum and Rubin (1983b) defined b(X) as a balancing score if Z X |
b(X). Here, b(X) can be a scalar or a vector. An obvious balancing score is
b(X) = X, but it is not a useful one without any simplification of the original
covariates. By Theorem 11.3, the propensity score is a special balancing score.
More interestingly, Rosenbaum and Rubin (1983b) showed that the propensity
score is the coarsest balancing score, as in Theorem 11.4 below which includes
Theorem 11.3 as a special case.

Theorem 11.4 b(X) is a balancing score if and only if b(X) is finer than
e(X) in the sense that e(X) = f(b(X)) for some function f(·).

Theorem 11.4 is relevant in subgroup analysis. In particular, we may be
interested in not only the average causal effect τ but also the subgroup effects
for boys and girls. Without loss of generality, assume the first component of
X is the indicator for girls, and we can interested in estimating

τ(x1) = E{Y (1)− Y (0) | X1 = x1}, (x1 = 1, 0).

Theorem 11.4 implies that under ignorability,

Z {Y (1), Y (0)} | e(X), X1 (11.4)
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because b(X) = {e(X), X1} is finer than e(X) and thus a balancing score.
The conditional independence in (11.4) ensures ignorability holds given the
propensity score, within each level of X1. Therefore, we can perform the same
analysis based on the propensity score, within each level of X1, yielding esti-
mates for two subgroup effects.

With the above motivation in mind, now prove Theorem 11.4.

11.6 Some basics of subgroup effects

This problem is related to Problem 11.5, but you can work on it independently.
Consider a standard observational study with covariates X = (X1, X2),

where X1 denotes a binary subgroup indicator (e.g., statistics major or not
statistics major) andX2 contains the rest covariates. The parameter of interest
is the subgroup causal effect

τ(x1) = E{Y (1)− Y (0) | X1 = x1}, (x1 = 1, 0).

Show that

τ(x1) = E

{
1(X1 = x1)ZY

e(X)
− 1(X1 = x1)(1− Z)Y

1− e(X)

}/
pr(X1 = x1)

and give the corresponding Horvitz–Thompson and Hajek estimators for
τ(x1).

11.7 Recommended reading

The title of this chapter is the same as the title of the classic paper by Rosen-
baum and Rubin (1983b). Most results in this chapter are directly drawn from
their original paper.

Rubin (2007) and Rubin (2008) highlighted the importance of the design
stage of observational studies for more objective causal inference
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The Doubly Robust or the Augmented
Inverse Propensity Score Weighting
Estimator for the Average Causal Effect

Under unconfoundedness Z {Y (1), Y (0)} | X and overlap 0 < e(X) < 1,
Chapter 11 has shown two identification formulas of the average causal effect
τ = E{Y (1)− Y (0)}. First, the outcome imputation formula is

τ = E{µ1(X)} − E{µ0(X)} (12.1)

where

µ1(X) = E{Y (1) | X} = E(Y | Z = 1, X),

µ0(X) = E{Y (0) | X} = E(Y | Z = 0, X)

are the two conditional mean functions of the outcome given covariates. Sec-
ond, the inverse propensity score weighting (IPW) formula is

τ = E

{
ZY

e(X)

}
− E

{
(1− Z)Y

1− e(X)

}
(12.2)

where
e(X) = pr(Z = 1 | X)

is the propensity score introduced in Chapter 11.
The outcome imputation estimator requires fitting a model for the outcome

given the treatment and covariates. It is consistent if the outcome model
is correctly specified. The IPW estimator requires fitting a model for the
treatment given covariates. It is consistent if the propensity score model is
correctly specified.

Mathematically, we have many combinations of (12.1) and (12.2) that lead
to different identification formulas of the average causal effect. Below I will dis-
cuss a particular combination that has appealing theoretical properties. This
combination motivates an estimator that is consistent if either the propensity
score or the outcome model is correctly specified. It is call the doubly robust
estimator, championed by James Robins (Scharfstein et al., 1999; Bang and
Robins, 2005).

153
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12.1 The doubly robust estimator

12.1.1 Population version

We posit a working model for the conditional means of the outcome µ1(X,β1)
and µ0(X,β0), indexed by the parameters β1 and β0. For example, if the
conditional means are linear or logistic under the working model, then the pa-
rameters are just the regression coefficients. If the outcome model is correctly
specified, then µ1(X,β1) = µ1(X) and µ0(X,β0) = µ0(X). We posit a work-
ing model for the propensity score e(X,α), indexed by the parameter α. For
example, if the working model is logistic, then α is the regression coefficient.
If the propensity score model is correctly specified, then e(X,α) = e(X). In
practice, both models may be misspecified.

Define

µ̃dr
1 = E

[
Z{Y − µ1(X,β1)}

e(X,α)
+ µ1(X,β1)

]
, (12.3)

µ̃dr
0 = E

[
(1− Z){Y − µ0(X,β0)}

1− e(X,α)
+ µ0(X,β0)

]
, (12.4)

which can also be written as

µ̃dr
1 = E

[
ZY

e(X,α)
− Z − e(X,α)

e(X,α)
µ1(X,β1)

]
, (12.5)

µ̃dr
0 = E

[
(1− Z)Y

1− e(X,α)
− e(X,α)− Z

1− e(X,α)
µ0(X,β0)

]
. (12.6)

The formulas in (12.3) and (12.4) augment the outcome imputation estima-
tor by inverse propensity score weighting terms of the residuals. The formulas
in (12.5) and (12.6) augment the IPW estimator by the imputed outcomes. For
this reason, the doubly robust estimator is also called the augmented inverse
propensity score weighting (AIPW) estimator.

The augmentation strengthens the theoretical properties in the following
sense.

Theorem 12.1 Assume unconfoundedness Z {Y (1), Y (0)} | X and overlap
1 < e(X) < 1.

1. If either e(X,α) = e(X) or µ1(X,β1) = µ1(X), then µ̃dr
1 =

E{Y (1)}.
2. If either e(X,α) = e(X) or µ0(X,β0) = µ0(X), then µ̃dr

0 =
E{Y (0)}.
3. If either e(X,α) = e(X) or {µ1(X,β1) = µ1(X), µ0(X,β0) =
µ0(X)}, then µ̃dr

1 − µ̃dr
0 = τ .
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By Theorem 12.1, µ̃dr
1 − µ̃dr

0 equals τ if either the propensity score model
or the outcome model is correctly specified. That’s why it is called the doubly
robust estimator.
Proof of Theorem 12.1: I only prove the result for µ1 = E{Y (1)}. The
proof for the result for µ0 = E{Y (0)} is similar. We have the decomposition

µ̃dr
1 − E{Y (1)} = E

[
Z{Y (1)− µ1(X,β1)}

e(X,α)
− {Y (1)− µ1(X,β1)}

]
= E

[
Z − e(X,α)

e(X,α)
{Y (1)− µ1(X,β1)}

]
= E

(
E

[
Z − e(X,α)

e(X,α)
{Y (1)− µ1(X,β1)} | X

])
= E

[
E

{
Z − e(X,α)

e(X,α)
| X
}
× E {Y (1)− µ1(X,β1) | X}

]
= E

[
e(X)− e(X,α)

e(X,α)
× {µ1(X)− µ1(X,β1)}

]
.

Therefore, µ̃dr
1 −E{Y (1)} = 0 if either e(X,α) = e(X) or µ1(X,β1) = µ1(X).

□

12.1.2 Sample version

From the population versions of µ̃dr
1 and µ̃dr

0 , we can construct the sample
versions by the following steps:

1. obtain the fitted values of the propensity scores: e(X, α̂);

2. obtain the fitted values of the outcome means: µ1(X, β̂1) and

µ0(X, β̂0);

3. construct the doubly robust estimator: τ̂dr = µ̂dr
1 − µ̂dr

0 , where

µ̂dr
1 =

1

n

n∑
i=1

[
Zi{Yi − µ1(Xi, β̂1)}

e(Xi, α̂)
+ µ1(Xi, β̂1)

]

and

µ̂dr
0 =

1

n

n∑
i=1

[
(1− Zi){Yi − µ0(Xi, β̂0)}

1− e(Xi, α̂)
+ µ0(Xi, β̂0)

]
;

4. approximate the variance of τ̂dr via the nonparametric bootstrap
by resampling from (Zi, Xi, Yi)

n
i=1 (Funk et al., 2011).
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Analogous to (12.5) and (12.6), we can also rewrite µ̂dr
1 and µ̂dr

0 as

µ̂dr
1 =

1

n

n∑
i=1

[
ZiYi

e(Xi, α̂)
− Zi − e(Xi, α̂)

e(Xi, α̂)
µ1(Xi, β̂1)

]
,

µ̂dr
0 =

1

n

n∑
i=1

[
(1− Zi)Yi
1− e(Xi, α̂)

− e(Xi, α̂)− Zi

1− e(Xi, α̂)
µ0(Xi, β̂0)

]
.

12.2 More intuition and theory for the doubly robust
estimator

Although the beginning of this chapter claims that the basic identification
formulas based on outcome regression and inverse propensity score weight
immediately yield infinitely many other identification formulas, the particular
forms of the double robust estimators in (12.3) and (12.4) are not obvious
to come up with. The original motivation for (12.3) and (12.4) was quite
theoretical, which relies on the semiparametric efficiency theory in advanced
mathematical statistics (Bickel et al., 1993). It is beyond the level of this
book. Below I will give two more intuitive perspectives to construct (12.3)
and (12.4). Both Sections 12.2.1 and 12.2.2 below focus on the estimation of
E{Y (1)} since the estimation of E{Y (0)} is similar by symmetry.

12.2.1 Reducing the variance of the IPW estimator

The IPW estimator for µ1 based on

µ1 = E

{
ZY

e(X)

}
completely ignores the outcome model of Y . It has the advantages of being
consistent without assuming any outcome model. However, if the covariates
are predictive to the outcome, the residual based on a working outcome model
usually has smaller variance than the outcome even if this working outcome
model is wrong. With a possibly mis-specified outcome model µ1(X,β1), a
trivial decomposition holds:

µ1 = E{Y (1)} = E{Y (1)− µ1(X,β1)}+ E{µ1(X,β1)}.

If we apply the IPW formula to the first term in the above formula viewing
Y (1)− µ1(X,β1) as a pseudo potential outcome under the treatment, we can
rewrite the above formula as

µ1 = E

{
Z{Y − µ1(X,β1)}

e(X)

}
+ E{µ1(X,β1)} (12.7)

= E

{
Z{Y − µ1(X,β1)}

e(X)
+ µ1(X,β1)

}
, (12.8)
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which holds if the propensity score model is correct without assuming that
the outcome model is correct. Using a working model to improve efficiency
is an old idea from survey sampling. Little and An (2004) and Lumley et al.
(2011) pointed out its connection with the doubly robust estimator.

12.2.2 Reducing the bias of the outcome regression estima-
tor

The discussion in Section 12.2.1 starts with the IPW estimator and improves
its efficiency based on a working outcome model. Alternatively, we can also
start with an outcome regression estimator based on

µ̃1 = E{µ1(X,β1)}

which may not be the same as µ1 since the outcome may be wrong. The bias
of this estimator is E{µ1(X,β1)− Y (1)}, which can be estimated by an IPW
estimator

B = E

{
Z{µ1(X,β1)− Y }

e(X)

}
if the propensity score model is correct. So a de-biased estimator is µ̃1 − B,
which is identical to (12.8).

12.3 Examples

12.3.1 Summary of some canonical estimators for τ

The following R implements the outcome imputation, Hovitz–Thompson, Ha-
jek, and doubly robust estimators for τ . These estimators can be conveniently
implemented based on the fitted values of the glm function. The default choice
for the propensity score model is the logistic model, and the default choice
for the outcome model is the linear model with out.family = gaussian1. For
binary outcomes, we can also specify out.family = binomial to fit the logistic
model.

OS_est = function(z, y, x, out.family = gaussian ,

truncpscore = c(0, 1))

{

## fitted propensity score

pscore = glm(z ~ x, family = binomial)$fitted.values
pscore = pmax(truncpscore [1], pmin(truncpscore [2], pscore ))

1The glm function is more general than the lm function. With
out.family = gaussian, glm is identical to lm.
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## fitted potential outcomes

outcome1 = glm(y ~ x, weights = z,

family = out.family)$fitted.values
outcome0 = glm(y ~ x, weights = (1 - z),

family = out.family)$fitted.values

## regression imputation estimator

ace.reg = mean(outcome1 - outcome0)

## IPW estimators

ace.ipw0 = mean(z*y/pscore - (1 - z)*y/(1 - pscore ))

ace.ipw = mean(z*y/pscore)/mean(z/pscore) -

mean ((1 - z)*y/(1 - pscore ))/mean ((1 - z)/(1 - pscore ))

## doubly robust estimator

res1 = y - outcome1

res0 = y - outcome0

ace.dr = ace.reg + mean(z*res1/pscore - (1 - z)*res0/(1 - pscore ))

return(c(ace.reg , ace.ipw0 , ace.ipw , ace.dr))

}

It is tedious to calculate the analytic formulas for the variances of the
above estimators. The bootstrap provides convenient approximations for the
variances based on resampling from {Zi, Xi, Yi}ni=1. Building upon OS_est, the
following function returns point estimators as well as the bootstrap standard
errors.

OS_ATE = function(z, y, x, n.boot = 2*10^2,

out.family = gaussian , truncpscore = c(0, 1))

{

point.est = OS_est(z, y, x, out.family , truncpscore)

## nonparametric bootstrap

n.sample = length(z)

x = as.matrix(x)

boot.est = replicate(n.boot ,

{id.boot = sample (1:n.sample , n.sample , replace = TRUE)

OS_est(z[id.boot], y[id.boot], x[id.boot , ],

out.family , truncpscore )})

boot.se = apply(boot.est , 1, sd)

res = rbind(point.est , boot.se)

rownames(res) = c("est", "se")

colnames(res) = c("reg", "HT", "Hajek", "DR")

return(res)

}
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12.3.2 Simulation

I will use simulation to evaluate the finite-sample properties of the estimators
under four scenarios:

1. both the propensity score and outcome models are correct;

2. the propensity score model is wrong but the outcome model is cor-
rect;

3. the propensity score model is correct but the outcome model is
wrong;

4. both the propensity score and outcome models are wrong.

I will report the average bias, the true standard error, and the average esti-
mated standard error of the estimators over simulation.

In case 1, the data generating process is

x = matrix(rnorm(n*2), n, 2)

x1 = cbind(1, x)

beta.z = c(0, 1, 1)

pscore = 1/(1 + exp(- as.vector(x1%*%beta.z)))

z = rbinom(n, 1, pscore)

beta.y1 = c(1, 2, 1)

beta.y0 = c(1, 2, 1)

y1 = rnorm(n, x1%*%beta.y1)

y0 = rnorm(n, x1%*%beta.y0)

y = z*y1 + (1 - z)*y0

In case 2, I modify the propensity score model to be nonlinear:

x1 = cbind(1, x, exp(x))

beta.z = c(-1, 0, 0, 1, -1)

pscore = 1/(1 + exp(- as.vector(x1%*%beta.z)))

In case 3, I modify the outcome model to be nonlinear:

beta.y1 = c(1, 0, 0, 0.2, -0.1)

beta.y0 = c(1, 0, 0, -0.2, 0.1)

y1 = rnorm(n, x1%*%beta.y1)

y0 = rnorm(n, x1%*%beta.y0)

In case 4, I modify both the propensity score and the outcome model.
We set the sample size to be n = 500 and generate 500 independent data

sets according to the data generating processes above. In case 1,

reg HT Hajek DR

ave.bias 0.00 0.02 0.03 0.01

true.se 0.11 0.28 0.26 0.13

est.se 0.10 0.25 0.23 0.12

All estimators are nearly unbiased. The two weighting estimators have larger
variances. In case 2,
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reg HT Hajek DR

ave.bias 0.00 -0.76 -0.75 -0.01

true.se 0.12 0.59 0.47 0.18

est.se 0.13 0.50 0.38 0.18

The two weighting estimators are severely biased due to the misspecification
of the propensity score model. The regression imputation and doubly robust
estimators are nearly unbiased. In case 3,

reg HT Hajek DR

ave.bias -0.05 0.00 -0.01 0.00

true.se 0.11 0.15 0.14 0.14

est.se 0.11 0.14 0.13 0.14

The regression imputation estimator has larger bias than the other three esti-
mators due to the misspecification of the outcome model. The weighting and
doubly robust estimators are nearly unbiased. In case 4,

reg HT Hajek DR

ave.bias -0.08 0.11 -0.07 0.16

true.se 0.13 0.32 0.20 0.41

est.se 0.13 0.25 0.16 0.26

All estimators are biased because both the propensity score and outcome
models are wrong. The Horvitz–Thompson and doubly robust estimator has
the largest bias. When both models are wrong, the doubly robust estimator
appears to be doubly fragile.

In all the cases above, the boostrap standard errors are close to the true
ones when the estimators are nearly unbiased for the true average causal effect.

12.3.3 Applications

Revisiting Example 10.3, we obtain the following estimators and bootstrap
standard errors:

reg HT Hajek DR

est -0.017 -1.516 -0.156 -0.019

se 0.230 0.492 0.246 0.233

The two weighting estimators are much larger than the other two estimators.
Truncating the estimated propensity score at [0.1, 0.9], we obtain the following
estimators and bootstrap standard errors:

reg HT Hajek DR

est -0.017 -0.713 -0.054 -0.043

se 0.223 0.422 0.235 0.231

The Hajek estimator becomes much close to the regression imputation and
doubly robust estimators, while the Horvitz–Thompson estimator is still an
outlier.
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12.4 Some further discussion

Recall the proof of Theorem 12.1, the key for the double robustness property
is the product structure in

µ̃dr
1 − E{Y (1)} = E

[
e(X)− e(X,α)

e(X,α)
× {µ1(X)− µ1(X,β1)}

]
,

which ensures that the estimation error is zero if either e(X) = e(X,α) or
µ1(X) = µ1(X,β1). This delicate structure renders the doubly robust estima-
tor possibly doubly fragile when both the propensity score and the outcome
models are misspecified. The product of two errors multiply to yield poten-
tially much larger errors. Kang and Schafer (2007) criticized the doubly robust
estimator based on extensive simulation studies. They found that the finite-
sample performance of the doubly robust estimator can be even more wild
than the simple regression imputation and IPW estimators.

Despite the critique from Kang and Schafer (2007), the doubly robust
estimator has been a standard strategy in causal since the seminal work of
Scharfstein et al. (1999). Recently, it resurrected in the theoretical statistics
and econometrics literature with a fancier name “double machine learning”
(Chernozhukov et al., 2018). The basic idea is to replace the working models
for the propensity score and outcome by machine learning tools which can be
viewed as more flexible models than the traditional parametric models.

12.5 Homework problems

12.1 A sanity check

Consider the case in which the covariate is discrete X ∈ {1, . . . ,K} and
the parameter of interest is µ1. Without imposing any model assumptions,
the estimated propensity score ê(X) is the proportion of units receiving
the treatment and the estimated outcome mean is the sample mean of the

outcome ˆ̄Y[k]1 = Ê(Y | Z = 1, X = k) under treatment, within stratum
X = k (k = 1, . . . ,K). Show that the stratified estimator, outcome regression
estimator, IPW estimator, and the doubly robust estimator are all the same.

12.2 An alternative form of the doubly robust estimator for τ

Motivated by (12.7), we have an alternative form of doubly robust estimator
for µ1:

µ̃dr2
1 =

E
[
Z{Y−µ1(X,β1)}

e(X,α)

]
E
[

Z
e(X,α)

] + E{µ1(X,β1)}.
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Show that µ̃dr2
1 = µ1 if either e(X,α) = e(X) or µ1(X,β1) = µ1(X). Give the

analogous formula for estimating µ0. Give the sample analogue of the doubly
robust estimator for τ based on these formulas. Note that this form of doubly
robust estimator appeared in Robins et al. (2007).

12.3 Data analysis of Example 10.1

Analyze the dataset cps1re74.csv using the methods discussed so far.

12.4 Recommended reading

Lunceford and Davidian (2004) gave a nice review and comparison of many
methods discussed in Chapters 11 and 12.
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The Average Causal Effect on the Treated
Units and Other Estimands

Chapters 10–12 focused on the identification and estimation of the average
causal effect τ = E{Y (1) − Y (0)} under the unconfoundedness and overlap
assumptions. Conceptually, it is straightforward to extend the discussion to
the average causal effects on the treated and control units:

τT = E{Y (1)− Y (0) | Z = 1},
τC = E{Y (1)− Y (0) | Z = 0}.

Because of the symmetry, this chapter focuses on τT and also included exten-
sions to other estimands.

13.1 Nonparametric identification of τT

The average causal effect on the treated units equals

τT = E(Y | Z = 1)− E{Y (0) | Z = 1},

where the first term E(Y | Z = 1) is directly identifiable from the data and
the second term E{Y (0) | Z = 1} is counterfactual. The key assumption
to identify the second term is the following unconfoundedness and overlap
assumptions.

Assumption 13.1 Z Y (0) | X and e(X) < 1.

Because the key is to identify E{Y (0) | Z = 1}, we only need the “one-
sided” unconfoundedness and overlap assumptions. Under Assumption 13.1,
we have the following identification result for τT.

Theorem 13.1 Under Assumption 13.1, we have

E{Y (0) | Z = 1} = E {E(Y | Z = 0, X) | Z = 1}

=

∫
E(Y | Z = 0, X = x)F (dx | Z = 1).

163
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Theorem 13.1 implies that τT is nonparmetrically identified by

τT = E(Y | Z = 1)− E {E(Y | Z = 0, X) | Z = 1} (13.1)

Proof of Theorem 13.1: We have

E{Y (0) | Z = 1} = E
[
E{Y (0) | Z = 1, X} | Z = 1

]
= E

[
E{Y (0) | Z = 0, X} | Z = 1

]
= E {E(Y | Z = 0, X) | Z = 1}

=

∫
E(Y | Z = 0, X = x)F (dx | Z = 1).

□
With a discrete X, the identification formula in Theorem 13.1 reduces to

E{Y (0) | Z = 1} =

K∑
k=1

E(Y | Z = 0, X = k)pr(X = k | Z = 1),

motivating the following stratified estimator for τT:

τ̂T = ˆ̄Y (1)−
K∑

k=1

π̂[k]|1
ˆ̄Y[k](0),

where π̂[k]|1 = n[k]1/n1 is the proportion of category k of X among the treated
units.

For continuous X, we need to fit an outcome model for E(Y | Z = 0, X)
using the control units. If the fitted values for the control potential outcomes
are µ̂0(Xi), then the outcome regression estimator is

τ̂T = ˆ̄Y (1)− n−1
1

n∑
i=1

Ziµ̂0(Xi) = n−1
1

n∑
i=1

Zi{Yi − µ̂0(Xi)}.

Example 13.1 If we specify a linear model for all units

E(Y | Z,X) = β0 + βzZ + βTxX,

then

τT = E(Y | Z = 1)− E(β0 + βTxX | Z = 1)

= E(Y | Z = 1)− β0 − βTxE(X | Z = 1).

If we run OLS to obtain (β̂0, β̂z, β̂x), then the estimator is

τ̂T = ˆ̄Y (1)− β̂0 − β̂Tx
ˆ̄X(1).



13.2 Nonparametric identification of τT 165

Using the property of the OLS (see A2.3), we have

n∑
i=1

Zi(Yi − β̂0 − β̂zZi − β̂TxXi) = 0 =⇒ ˆ̄Y (1)− β̂0 − β̂z − β̂Tx
ˆ̄X(1) = 0.

Therefore, the above estimator reduces to τ̂T = β̂z, the OLS coefficient of Z.
By the property of the OLS, we can also write β̂z as the difference in means

of the adjusted outcome Yi − β̂TxXi, resulting in

τ̂T =
{
ˆ̄Y (1)− β̂Tx

ˆ̄X(1)
}
−
{
ˆ̄Y (0)− β̂Tx

ˆ̄X(0)
}

=
{
ˆ̄Y (1)− ˆ̄Y (0)

}
− β̂Tx

{
ˆ̄X(1)− ˆ̄X(0)

}
. (13.2)

Therefore, τ̂T equals the simple difference in means of the outcome, adjusted
by the imbalance of the covariates in the treatment and control groups.

Section 10.4.2 shows that β̂z is an estimator for τ , and this example further
shows that β̂z is an estimator for τT. This is not surprising because the linear
model assumes constant causal effects across units.

Example 13.2 The identification formula depends only on E(Y | Z = 0, X),
so we need only to specify a model for the control units. When this model is
linear,

E(Y | Z = 0, X) = β0|0 + βTx|0X,

we have

τT = E(Y | Z = 1)− E(β0|0 + βTx|0X | Z = 1)

= E(Y | Z = 1)− β0|0 − βTx|0E(X | Z = 1).

If we run OLS with only the control units to obtain (β̂0|0, β̂x|0), then the esti-
mator is

τ̂T = ˆ̄Y (1)− β̂0|0 − β̂Tx|0
ˆ̄X(1).

Using the property of the OLS (see A2.3), we have

ˆ̄Y (0) = β̂0|0 + β̂Tx|0
ˆ̄X(0).

Therefore, the above estimator reduces to

τ̂T =
{
ˆ̄Y (1)− ˆ̄Y (0)

}
− β̂Tx|0

{
ˆ̄X(1)− ˆ̄X(0)

}
,

which is similar to (13.2) with a different coefficient for the difference in means
of the covariates.

As an algebraic fact, we can show that this estimator equals the coefficient
of Z in the OLS fit of the outcome on the treatment, covariates, and their

interactions, with the covariates centered by ˆ̄X(1). See Problem 13.1 for more
details.
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13.2 Inverse propensity score weighting and doubly ro-
bust estimation of τT

Theorem 13.2 Under Assumption 13.1, we have

E{Y (0) | Z = 1} = E

{
e(X)

e

1− Z

1− e(X)
Y

}
(13.3)

and

τT = E(Y | Z = 1)− E

{
e(X)

e

1− Z

1− e(X)
Y

}
, (13.4)

where e = pr(Z = 1) is the marginal probability of the treatment.

Proof of Theorem 13.2: The left-hand side of (13.3) equals

E{Y (0) | Z = 1} = E{ZY (0)}/e
= E

[
E(Z | X)E{Y (0) | X}

]
/e

= E
[
e(X)E{Y (0) | X}

]
/e.

The right-hand side of (13.3) equals

E

{
e(X)

e

1− Z

1− e(X)
Y

}
= E

[
E

{
e(X)

e

1− Z

1− e(X)
Y (0) | X

}]
= E

[
e(X)

e{1− e(X)}
E {(1− Z)Y (0) | X}

]
= E

[
e(X)

e{1− e(X)}
E(1− Z | X)E {Y (0) | X}

]
= E

[
e(X)E{Y (0) | X}

]
/e.

So (13.3) holds. □
We have two inverse propensity score weighting estimators

τ̂htT = ˆ̄Y (1)− n−1
1

n∑
i=1

ô(Xi)(1− Zi)Yi

and

τ̂hajekT = ˆ̄Y (1)−
∑n

i=1 ô(Xi)(1− Zi)Yi∑n
i=1 ô(Xi)(1− Zi)

,

where ô(Xi) = ê(Xi)/{1 − ê(Xi)} is the fitted odds of the treatment given
covariates.

The estimation of E(Y | Z = 1) is simple. We have a doubly robust
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estimator for E{Y (0) | Z = 1} which combines the propensity score and the
outcome model. Define

µ̃dr
0T = E [o(X,α)(1− Z){Y − µ0(X,β0)}+ Zµ0(X,β0)] /e, (13.5)

where o(X,α) = e(X,α)/{1− e(X,α)}.

Theorem 13.3 Under Assumption 13.1, if either e(X,α) = e(X) or
µ0(X,β0) = µ0(X), then µdr

0T = E{Y (0) | Z = 1}.

Proof of Theorem 13.3: We have the decomposition

e
[
µ̃dr
0T − E{Y (0) | Z = 1}

]
= E [o(X,α)(1− Z){Y (0)− µ0(X,β0)}+ Zµ0(X,β0)]− E{ZY (0)}
= E [o(X,α)(1− Z){Y (0)− µ0(X,β0)} − Z{Y (0)− µ0(X,β0)}]
= E [{o(X,α)(1− Z)− Z} {Y (0)− µ0(X,β0)}]

= E

[
e(X,α)− Z

1− e(X,α)
{Y (0)− µ0(X,β0)}

]
= E

[
E

{
e(X,α)− Z

1− e(X,α)
| X
}
× E{Y (0)− µ0(X,β0) | X}

]
= E

[
e(X,α)− e(X)

1− e(X,α)
× {µ0(X)− µ0(X,β0)}

]
.

Therefore, µ̃dr
0T−E{Y (0) | Z = 1} = 0 if either e(X,α) = e(X) or µ0(X,β0) =

µ0(X). □
From the population versions of µ̃dr

0T, we can construct the sample version
by the following steps:

1. obtain the fitted values of the propensity scores e(X, α̂);

2. obtain the fitted values of the outcome mean under control
µ0(X, β̂0);

3. construct the doubly robust estimator: τ̂drT = ˆ̄Y (1)− µ̂dr
0T, where

µ̂dr
0T =

1

n1

n∑
i=1

[
e(Xi, α̂)

(1− Zi){Yi − µ0(Xi, β̂0)}
1− e(Xi, α̂)

+ Ziµ0(Xi, β̂0)

]
;

4. estimate the variance of τT via the bootstrap by resampling from
(Zi, Xi, Yi)

n
i=1.

Hahn (1998), Mercatanti and Li (2014), Shinozaki and Matsuyama (2015) and
Yang and Ding (2018) are references discussing the estimation of τT.
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13.3 An example

The following R code implements two outcome regression estimators, two IPW
estimators, and the doubly robust estimator for τT, as well as the bootstrap
variance estimators. To avoid extreme estimated propensity scores, we can
also truncated them from the above.

ATT.est = function(z, y, x, out.family = gaussian , Utruncpscore = 1)

{

## sample size

nn = length(z)

nn1 = sum(z)

## fitted propensity score

pscore = glm(z ~ x, family = binomial)$fitted.values
pscore = pmin(Utruncpscore , pscore)

odds.pscore = pscore/(1 - pscore)

## fitted potential outcomes

outcome0 = glm(y ~ x, weights = (1 - z),

family = out.family)$fitted.values

## regression imputation estimator

ace.reg0 = lm(y ~ z + x)$coef [2]
ace.reg = mean(y[z==1]) - mean(outcome0[z==1])

## propensity score weighting estimator

ace.ipw0 = mean(y[z==1]) -

mean(odds.pscore*(1 - z)*y)*nn/nn1

ace.ipw = mean(y[z==1]) -

mean(odds.pscore*(1 - z)*y)/mean(odds.pscore*(1 - z))

## doubly robust estimator

res0 = y - outcome0

ace.dr = ace.reg - mean(odds.pscore*(1 - z)*res0)*nn/nn1

return(c(ace.reg0 , ace.reg , ace.ipw0 , ace.ipw , ace.dr))

}

OS_ATT = function(z, y, x, n.boot = 10^2,

out.family = gaussian , Utruncpscore = 1)

{

point.est = ATT.est(z, y, x, out.family , Utruncpscore)

## nonparametric bootstrap

n.sample = length(z)

x = as.matrix(x)

boot.est = replicate(n.boot ,

{id.boot = sample (1:n.sample , n.sample , replace = TRUE)
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ATT.est(z[id.boot], y[id.boot], x[id.boot , ],

out.family , Utruncpscore )})

boot.se = apply(boot.est , 1, sd)

res = rbind(point.est , boot.se)

rownames(res) = c("est", "se")

colnames(res) = c("reg0", "reg", "HT", "Hajek", "DR")

return(res)

}

Now we re-analyze the data in Example 10.3 to estimate τT. We obtain

reg0 reg HT Hajek DR

est 0.061 -0.351 -1.992 -0.351 -0.187

se 0.227 0.258 0.705 0.328 0.287

without truncating the estimated propensity scores, and

reg0 reg HT Hajek DR

est 0.061 -0.351 -0.597 -0.192 -0.230

se 0.223 0.255 0.579 0.302 0.276

by truncating the estimated propensity scores from the above at 0.9. The HT
estimator is sensitive to the truncation as expected. The regression estima-
tor in Example 13.1 is quite different from other estimators. It imposes an
unnecessary assumption that the regression functions in the treatment and
control group share the same coefficient of X. The regression estimator in
Example 13.2 is much close to the Hajek and doubly robust estimators. The
estimates above are slightly different from those in Section 12.3.3, suggesting
some treatment effect heterogeneity across τT and τ .

13.4 Other estimands

Li et al. (2018a) gave a unified discussion of the causal estimands in observa-
tional studies. Starting from the conditional average causal effect τ(X), they
proposed a general class of estimands

τh =
E{h(X)τ(X)}
E{h(X)}

indexed by a weighting function h(X) with E{h(X)} ≠ 0. The normalization
in the denominator is to ensure that a constant causal effect τ(X) = τ averages
to the same τ .

Under the unconfoundedness assumption,

τh =
E[h(X){µ1(X)− µ0(X)}]

E{h(X)}
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which motivates the outcome regression estimator

τ̂h =

∑n
i=1 h(Xi){µ̂1(Xi)− µ̂0(Xi)}∑n

i=1 h(Xi)
.

Moreover, we can show that τh has the following weighting form:

Theorem 13.4 Under ignorability and overlap, we have

τh = E

{
ZY h(X)

e(X)
− (1− Z)Y h(X)

1− e(X)

}
/E{h(X)}.

The proof of Theorem 13.4 is similar to those of Theorems 11.2 and 13.2
which is relegated to Problem 13.8. Based on Theorem 13.4, we can construct
the corresponding IPW estimator.

By Theorem 13.4, each unit is associated with the weight due to the defini-
tion of the estimand as well as the weight due to the inverse of the propensity
score. Finally, the treated units are weighted by h(X)/e(X) and the control
units are weighted by h(X)/{1−e(X)}. Li et al. (2018a, Table 1) summarized
several estimands, and I present a part of it below:

population h(X) estimand weights

combined 1 τ 1/e(X) and 1/{1− e(X)}
treated e(X) τT 1 and e(X)/{1− e(X)}
control 1− e(X) τC {1− e(X)}/e(X) and 1
overlap e(X){1− e(X)} τO 1− e(X) and e(X)

The overlap population and the corresponding estimand

τO =
E [e(X){1− e(X)}τ(X)]

E [e(X){1− e(X)}]

is new to us. This estimand has the largest weight for units with e(X) = 1/2
and downweights the units with extreme propensity scores. A nice feature
of this estimand is that its IPW estimator is rather stable without the pos-
sibly extremely small values of e(X) and 1 − e(X) in the denominator. If
e(X) τ(X) including the special case of τ(X) = τ , the parameter τO reduces
to τ . In general, however, the estimand τO may cause controversy because
it changes the initial population and depends on the propensity score which
may be misspecified in practice. Li et al. (2018a) and Li et al. (2019) gave
some justifications and numerical evidence. This estimand will appear again
in Chapter 14.

We can also construct the doubly robust estimator for τh. I relegate the
details to Problem 13.9.
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13.5 Homework Problems

13.1 An algebraic fact about a regression estimator for τT

This problem provides more details for Example 13.2.

Show that if we center the covariates by Xi − ˆ̄X(1) for all units, then τ̂T
equals the coefficient of Z in the OLS fit of the outcome on the treatment,
covariates, and their interactions.

13.2 Simulation for the average causal effect on the treated units

In OS_ATE.R in Chapter 12, I ran some simulation studies for τ . Run similar
simulation studies for τT with either correct or incorrect propensity score or
outcome models.

You can choose different model parameters, larger numbers of simulation
and bootstrap replicates. Report your findings, including at least the bias,
variance, and variance estimator via the bootstrap. You can also report other
properties of the estimators, for example, the asymptotic Normality and the
coverage rates of the confidence intervals.

13.3 An alternative form of the doubly robust estimator for τT

Motivated by (13.5), we have an alternative form of doubly robust estimator
for E{Y (0) | Z = 1}:

µ̃dr2
0T =

E [o(X,α)(1− Z){Y − µ0(X,β0)}]
E [o(X,α)(1− Z)]

+ E{Zµ0(X,β0)}/e.

Show that under Assumption 13.1, µ̃dr2
0T = E{Y (0) | Z = 1} if either

e(X,α) = e(X) or µ0(X,β0) = µ0(X). Give the sample analogue of the doubly
robust estimator for τT.

13.4 Average causal effect on the control units

Prove the identification formulas for τC, analogous to (13.1) and (13.4). Pro-
pose the doubly robust estimator for τC.

13.5 Estimating individual effect and conditional average causal effect

Assume that {Zi, Xi, Yi(1), Yi(0)}ni=1
IID∼ {Z,X, Y (1), Y (0)}. The individual

effect is τi = Yi(1)−Yi(0) and the conditional average causal effect is τ(Xi) =
E{Yi(1)− Yi(0) | Xi}. Since we will discuss individual effect, we do not drop
the subscript i since τ mean the average causal effect, not the population
version of Y (1)− Y (0).

1. Under randomization with Zi {Yi(1), Yi(0)} and e = pr(Zi = 1),
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show that

δi =
ZiYi
e

− (1− Zi)Yi
1− e

is an unbiased predictor of the individual effect in the sense that

E(δi − τi) = 0 (i = 1, . . . , n).

Further show that E(δi) = τ for all i = 1, . . . , n.

2. Under ignorability with Zi {Yi(1), Yi(0)} | Xi and e(Xi) =
pr(Zi = 1 | Xi), show that

δi =
ZiYi
e(Xi)

− (1− Zi)Yi
1− e(Xi)

is an unbiased predictor of the individual effect and the conditional
average causal effect in the sense that

E(δi − τi) = 0, E{δi − τ(Xi)} = 0, (i = 1, . . . , n).

Further show that E(δi) = τ for all i = 1, . . . , n.

13.6 General estimand and (τT, τC)

Assume unconfoundedness. Show that τh = τT if h(X) = e(X), and τh = τC
if h(X) = 1− e(X).

13.7 More on τO

Show that

τO =
E[{1− e(X)}τ(X) | Z = 1]

E{1− e(X) | Z = 1}
=
E{e(X)τ(X) | Z = 0}
E{e(X) | Z = 0}

.

13.8 IPW for the general estimand

Prove Theorem 13.4.

13.9 Doubly robust estimation for general estimand

For a given h(X), we have the following formulas for constructing the doubly
robust estimator for τh:

µ̃h,dr
1 = E

[
Zh(X){Y − µ1(X,β1)}

e(X,α)
+ h(X)µ1(X,β1)

]
,

µ̃h,dr
0 = E

[
(1− Z)h(X){Y − µ0(X,β0)}

1− e(X,α)
+ h(X)µ0(X,β0)

]
.

Show that under ignorability and overlap,
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1. if either e(X,α) = e(X) or µ1(X,β1) = µ1(X), then µ̃h,dr
1 =

E{h(X)Y (1)};

2. if either e(X,α) = e(X) or µ0(X,β0) = µ0(X), then µ̃h,dr
0 =

E{h(X)Y (0)};
3. if either e(X,α) = e(X) or {µ1(X,β1) = µ1(X), µ0(X,β0) =

µ0(X)}, then
µ̃h,dr
1 − µ̃h,dr

0

E{h(X)}
= τh.

Remark: Tao and Fu (2019) proved the above results. However, they hold
only for a given h(X). The most interesting cases of τT, τC and τO all have
weight depending on the propensity score e(X), which must be estimated in
the first place. The above formulas do not apply to constructing the doubly
robust estimators for τT and τC; there does not exist a doubly robust estimator
for τO.

13.10 Recommended reading

Shinozaki and Matsuyama (2015) focused on τT, and Li et al. (2018a) discussed
general τh.
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Using the Propensity Score in Regressions
for Causal Effects

Since Rosenbaum and Rubin (1983b)’s seminal paper, many creative uses of
the propensity score have appeared in the literature (e.g., Bang and Robins,
2005; Robins et al., 2007; Van der Laan and Rose, 2011; Vansteelandt and
Daniel, 2014). This chapter discusses two simple methods to use the propensity
score: including the propensity score as a covariate in regressions and running
regressions weighted by the inverse of the propensity score. I choose to focus
on these two methods because

1. they are easy to implement, which involve only standard statistical
software packages for regressions;

2. their properties are comparable to many more complex methods;

3. they can be easily extended to allow for flexible statistical models
including machine learning algorithms.

14.1 Regressions with the propensity score as a covariate

By Theorem 11.1, if unconfoundedness holds conditioning on X, then it also
holds conditioning on e(X):

Z {Y (1), Y (0)} | e(X).

Analogous to (10.5), τ is also nonparametrically identified by

τ = E
[
E{Y | Z = 1, e(X)} − E{Y | Z = 0, e(X)}

]
,

which motivates methods based on regressions of Y on Z and e(X).
The simplest regression specification is the OLS fit of Y on {1, Z, e(X)},

with the coefficient of Z as an estimator, denoted by τe. For simplicity, I will
discuss the population OLS:

argmin
a,b,c

E{Y − a− bZ − ce(X)}2

175
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with τe defined as the coefficient of Z. It is consistent for τ if we have a
correct propensity score model and the outcome model is indeed linear in
Z and e(X). The more interesting result is that τe estimates τO if we have
a correct propensity score model even if the outcome model is completely
misspecified.

Theorem 14.1 If Z {Y (1), Y (0)} | X, then the coefficient of Z in the OLS
fit of Y on {1, Z, e(X)} equals

τe = τO =
E{hO(X)τ(X)}
E{hO(X)}

,

recalling that hO(X) = e(X){1− e(X)} and τ(X) = E{Y (1)− Y (0) | X}.

An unusual feature of Theorem 14.1 is that the overlap condition is not
needed any more. Even if some units have propensity score e(X) equaling 0 or
1, their associate weight e(X){1− e(X) is zero so that they do not contribute
anything to the final parameter τO.
Proof of Theorem 14.1: Based on the FWL theorem reviewed in Section
A2.3, we can obtain τe in two steps: first, we obtain the residual Z̃ from the
OLS fit of Z on {1, e(X)}; then, we obtain τe from the OLS fit of Y on Z̃.

The coefficient of e(X) in the OLS fit of Z on {1, e(X)} is

cov{Z, e(X)}
var{e(X)}

=
E[cov{Z, e(X) | X}] + cov{E(Z | X), e(X)}

var{e(X)}

=
0 + var{e(X)}
var{e(X)}

= 1,

so the intercept is E(Z) − E{e(X)} = 0 and the residual is Z̃ = Z − e(X).
This makes sense since Z − e(X) is uncorrelated with any function of X.

Therefore, we can obtain τe from the univariate OLS fit of Y on a centered
variable Z − e(X):

τe =
cov{Z − e(X), Y }
var{Z − e(X)}

.

The denominator simplifies to

var{Z − e(X)} = E{Z − e(X)}2

= E{Z + e(X)2 − 2Ze(X)}
= e(X) + e(X)2 − 2e(X)2 = hO(X).



14.1 Regressions with the propensity score as a covariate 177

The numerator simplifies to

cov{Z − e(X), Y }
= E[{Z − e(X)}Y ]

= E[{Z − e(X)}ZY (1)] + E[{Z − e(X)}(1− Z)Y (0)]

(since Y = ZY (1) + (1− Z)Y (0))

= E[{Z − Ze(X)}Y (1)]− E[e(X)(1− Z)Y (0)]

= E[Z{1− e(X)}Y (1)]− E[e(X)(1− Z)Y (0)]

= E[e(X){1− e(X)}µ1(X)]− E[e(X){1− e(X)}µ0(X)]

(tower property and ignorability)

= E{hO(X)τ(X)}.

The conclusion follows. □
From the proof of Theorem 14.1, we can simply run the OLS of Y on

the centered treatment Z̃ = Z − e(X). Lee (2018) proposed this procedure.
Moreover, we can also include X in the OLS fit which may improve efficiency
in finite sample. However, this does not change the estimand, which is still
τO. I summarize these two results in the corollary below.

Corollary 14.1 If Z {Y (1), Y (0)} | X, then

(1) the coefficient of Z − e(X) in the OLS fit of Y on Z − e(X) or
{1, Z − e(X)} equals τO;

(2) the coefficient of Z in the OLS fit of Y on {1, Z, e(X), X} equals
τO.

Proof of Corollary 14.1: (1) The first result is an intermediate step in
the proof of Theorem 14.1. The second result holds because regressing Y on
Z − e(X) or {1, Z − e(X)} does not change the coefficient of Z − e(X) since
it has mean zero.

(2) It follows from the fact that

Z − e(X) = Z − 0− 1 · e(X)− 0TX

is the residual of the OLS fit of Z on {1, e(X), X}, since Z − e(X) is uncor-
related with any functions of X. □

Theorem 14.1 motivates a two-step estimator for τO: first, fit a propensity
score model to obtain ê(Xi); second, run OLS of Yi on (1, Xi, ê(Xi)) to obtain
the coefficient of Zi. Corollary 14.1 motivates another two-step estimator for
τO: first, fit a propensity score model to obtain ê(Xi); second, run OLS of Yi
on Zi − ê(Xi) to obtain the coefficient of Zi. Although OLS is convenient for
obtaining point estimators, the corresponding standard errors are incorrect
due to the uncertainty in the first step estimation of the propensity score. We
can use the bootstrap to approximate the standard errors.
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Robins et al. (1992) discussed many OLS estimators based on the propen-
sity score. The above results seem special cases of their general theory although
they did not point out the connection with the estimand under the overlap
weight, which was resurrected by Li et al. (2018a). Lee (2018) proposed to
regress Y on Z − e(X) from a different perspective without making connec-
tions to the existing results in Robins et al. (1992) and Li et al. (2018a).

Rosenbaum and Rubin (1983b) proposed to estimate the average causal
effect based on the OLS fit of Y on {1, Z, e(X), Ze(X)}. When this outcome
model is correct, their estimator is consistent for the average causal effect.
However, when the model is incorrect, the corresponding estimator has a much
more complicated interpretation. Little and An (2004) suggested constructing
estimators based on the OLS of Y on Z and a flexible function of e(X) and
showed it enjoys certain doubly robustness property. Due to the complexity
in implementation, I omit the discussion.

14.2 Regressions weighted by the inverse of the propen-
sity score

14.2.1 Average causal effect

We first re-examine the Hajek estimator of τ :

τ̂hajek =

∑n
i=1

ZiYi

ê(Xi)∑n
i=1

Zi

ê(Xi)

−
∑n

i=1
(1−Zi)Yi

1−ê(Xi)∑n
i=1

1−Zi

1−ê(Xi)

,

which equals the difference between the weighted means of the outcomes in
the treatment and control groups. Numerically, it is identical to the coefficient
of Zi in the following weighted least squares (WLS) of Yi on (1, Zi).

Proposition 14.1 τ̂hajek equals β̂ from the following WLS:

(α̂, β̂) = argmin
α,β

n∑
i=1

wi(Yi − α− βZi)
2

with weights

wi =
Zi

ê(Xi)
+

1− Zi

1− ê(Xi)
=

{
1

ê(Xi)
if Zi = 1;

1
1−ê(Xi)

if Zi = 0.
(14.1)

Imbens (2004) pointed out the result in Proposition 14.1. I leave it as a
Problem 14.1. By Proposition 14.1, it is convenient to obtain τ̂hajek based
on WLS. However, due to the uncertainty in the estimated propensity score,
the standard error reported by WLS is incorrect for the true standard error
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of τ̂hajek. The bootstrap provides a convenient approximation to the true
standard error.

Why does the WLS give a consistent estimator for τ? Recall that in the
CRE with a constant propensity score, we can simply use the coefficient of Zi

in the OLS fit of Yi on (1, Zi) to estimate τ . In observational studies, units have
different probabilities of receiving the treatment and control, respectively. If
we weight the treated units by 1/e(Xi) and the control units by 1/{1−e(Xi)},
then they can represent the whole population and we effectively have a pseudo
randomized experiment. Consequently, the difference between the weighted
means are consistent for τ . The numerical equivalence of τ̂hajek and WLS is
not only a fun numerical fact itself but also useful for motivation more complex
estimator with covariate adjustment. I give one extension below.

Recall that in the CRE, we can use the coefficient of Zi in the OLS fit of Yi
on (1, Zi, Xi, ZiXi) to estimate τ , where the covariates are centered with X̄ =
0. This is Lin (2013)’s estimator which uses covariates to improve efficiency. A
natural extension to observational studies is to estimate τ using the coefficient
of Zi in the WLS fit of Yi on (1, Zi, Xi, ZiXi) with weights defined in (14.1).
Hirano and Imbens (2001) used this estimator in an application. The fully
interacted linear model is equivalent to two separate linear models for the
treated and control groups. If the linear models

E(Y | Z = 1, X) = β10 + βT1xX, E(Y | Z = 0, X) = β00 + βT0xX,

are correctly specified, then both OLS and WLS give consistent estimators
for the coefficients and the estimators of the coefficient of Z is consistent for
τ . More interestingly, the estimator of the coefficient of Z based on WLS is
also consistent for τ if the propensity score model is correct and the outcome
model is incorrect. That is, the estimator based on WLS is doubly robust.
Robins et al. (2007) discussed this property and attributed this result to M.
Joffe’s unpublished paper. I will give more details below.

Let ê(Xi) be the fitted propensity score and (µ1(Xi, β̂1), µ0(Xi, β̂0)) be the
fitted values of the outcome means based on the WLS. The outcome regression
estimator is

τ̂ regwls =
1

n

n∑
i=1

µ1(Xi, β̂1)−
1

n

n∑
i=1

µ0(Xi, β̂0)

and the doubly robust estimator for τ is

τ̂drwls = τ̂ regwls +
1

n

n∑
i=1

Zi{Yi − µ1(Xi, β̂1)}
ê(Xi)

− 1

n

n∑
i=1

(1− Zi){Yi − µ0(Xi, β̂0)}
1− ê(Xi)

.

An interesting result is that this doubly robust estimator equals the outcome
regression estimator, which reduces to the coefficient of Zi in the WLS fit of
Yi on (1, Zi, Xi, ZiXi) if we use weights (14.1).

Theorem 14.2 If X̄ = 0 and (µ1(Xi, β̂1), µ0(Xi, β̂0)) = (β̂10 + β̂T1xXi, β̂00 +
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β̂T0xXi) based on the WLS fit of Yi on (1, Zi, Xi, ZiXi) with weights (14.1),
then

τ̂drwls = τ̂ regwls = β̂10 − β̂00,

which is the coefficient of Zi in the WLS fit.

Proof of Theorem 14.2: The WLS fit of Yi on (1, Zi, Xi, ZiXi) is equivalent
to two WLS fits based on the treated and control data. Both WLS fits include
intercepts, so the first order conditions must satisfy

n∑
i=1

Zi(Yi − β̂10 − β̂T1xXi)

ê(Xi)
= 0

and
n∑

i=1

(1− Zi)(Yi − β̂00 − β̂T0xXi)

1− ê(Xi)
= 0.

So the difference between τ̂dr and τ̂ reg is exactly zero. Both reduces to

1

n

n∑
i=1

(β̂10+β̂
T
1xXi)−

1

n

n∑
i=1

(β̂00+β̂
T
0xXi) = β̂10−β̂00+(β̂1x−β̂0x)TX̄ = β̂10−β̂00

with centered covariates. So they both equal the coefficient of Zi in the WLS
fit of Yi on (1, Zi, Xi, ZiXi). □

Freedman and Berk (2008) discouraged the use of the WLS estimator above
based on some simulation studies. They showed that when the outcome model
is correct, the WLS estimator is worse than the OLS estimator since the WLS
estimator has large variability in their simulation setting with homoskedastic
outcomes. This may not be true in general. When the errors have variance
proportional to the inverse of the propensity scores, the WLS estimator will
be more efficient than the OLS estimator. They also showed that the estimated
standard error based on the WLS fit is not consistent for the true standard
error because it ignores the uncertainty in the estimated propensity score.
This can be easily fixed by using the bootstrap to approximate the variance
of the WLS estimator. Nevertheless, they found that “weighting may help
under some circumstances” because when the outcome model is incorrect, the
WLS estimator is still consistent if the propensity score model is correct.

I end this section with Table 14.1 summarizing the regression estimators
for causal effects in both randomized experiments and observational studies.

14.2.2 Average causal effect on the treated units

The results for τT parallel those for τ . First, the Hajek estimator for τT

τ̂hajekT = ˆ̄Y (1)−
∑n

i=1 ô(Xi)(1− Zi)Yi∑n
i=1 ô(Xi)(1− Zi)

,

with ô(Xi) = ê(Xi)/{1 − ê(Xi)}, equals the coefficient of Zi in the following
WLS fit Yi on (1, Zi).
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TABLE 14.1: Regression estimators in CREs and unconfounded observational
studies. The weights wi’s are defined in (14.1) .

CRE unconfounded observational studies

without X Yi ∼ Zi Yi ∼ Zi with weights wi

with X Yi ∼ (Zi, Xi, ZiXi) Yi ∼ (Zi, Xi, ZiXi) with weights wi

Proposition 14.2 τ̂hajekT is numerically identical to β̂ in the following WLS:

(α̂, β̂) = argmin
α,β

n∑
i=1

wTi(Yi − α− βZi)
2

with weights

wTi = Zi + (1− Zi)ô(Xi) =

{
1 if Zi = 1;

ô(Xi) if Zi = 0.
(14.2)

Similar to Proposition 14.1, Proposition 14.2 is a pure linear algebra result.
I relegate its proof as Problem 14.1.

Second, if we center covariates with ˆ̄X(1) = 0, then we can estimate τT
using the coefficient of Zi in the WLS fit of Yi on (1, Zi, Xi, ZiXi) with weights
defined in (14.2). Similarly, this estimator equals the regression estimator

τ̂ regT,wls =
ˆ̄Y (1)− 1

n1

n∑
i=1

Ziµ0(Xi, β̂0),

which also equals the doubly robust estimator

τ̂drT,wls = τ̂ regT,wls −
1

n1

n∑
i=1

ô(Xi)(1− Zi){Yi − µ0(Xi, β̂0)}.

Theorem 14.3 If ˆ̄X(1) = 0 and µ0(Xi, β̂0) = β̂00+ β̂
T
0xXi based on the WLS

fit of Yi on (1, Zi, Xi, ZiXi) with weights (14.2), then

τ̂drT,wls = τ̂ regT,wls = β̂10 − β̂00,

which is the coefficient of Zi in the WLS fit.

Proof of Theorem 14.3: Based on the WLS fits in the treatment and control
groups, we have

n∑
i=1

Zi(Yi − β̂10 − β̂T1xXi) = 0, (14.3)

n∑
i=1

ô(Xi)(1− Zi)(Yi − β̂00 − β̂T0xXi) = 0. (14.4)
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The second result (14.4) ensures that τ̂drT,wls = τ̂ regT,wls. Both reduces to

ˆ̄Y (1)− 1

n1

n∑
i=1

Zi(β̂00 + β̂T0xXi) =
1

n1

n∑
i=1

Zi(Yi − β̂00 − β̂T0xXi).

With covariates centered with ˆ̄X(1) = 0, the first result (14.3) implies that
ˆ̄Y (1) = β̂10 which further simplifies the estimators to β̂10 − β̂00. □

14.3 Homework problems

14.1 Hajek estimators as WLS estimators

Prove Propositions 14.1 and 14.2.
Hint: These are special cases of Problem A2.2 on the univariate WLS.

14.2 Predictive estimator and doubly robust estimator

Another outcome regression estimator is the predictive estimator

τ̂pred = µ̂pred
1 − µ̂pred

0

where

µ̂pred
1 =

1

n

n∑
i=1

{
ZiYi + (1− Zi)µ1(Xi, β̂1)

}
and

µ̂pred
0 =

1

n

n∑
i=1

{
Ziµ0(Xi, β̂1) + (1− Zi)Yi

}
.

It differs from the outcome regression estimator discussed before in that it
only predicts the counterfactural outcomes but not the observed outcomes.

Show that the doubly robust estimator equals τ̂pred if (µ1(Xi, β̂1), µ0(Xi, β̂1)) =

(β̂10 + β̂T1xXi, β̂00 + β̂T0xXi) are from the WLS fits of Yi on (1, Xi) based on
the treated and control data, respectively, with weights

wi = Zi/ô(Xi) + (1− Zi)ô(Xi) =

{
1

ô(Xi)
= 1−ê(Xi)

ê(Xi)
if Zi = 1;

ô(Xi) =
ê(Xi)

1−ê(Xi)
if Zi = 0.

(14.5)

Remark: Cao et al. (2009) and Vermeulen and Vansteelandt (2015) moti-
vated the weights in (14.5) from other more theoretical perspectives.
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14.3 Weighted logistic regression with a binary outcome

With a binary outcome, we can replace linear outcome models by the logistic
outcome models. Show that with weights in the logistic regressions, the doubly
robust estimators equals the outcome regression estimator. The result holds
for both τ and τT.

14.4 Causal inference with a misspecified linear regression

Define the population OLS of Y on Z,X as

(β0, β1, β2) = arg min
b0,b1,b2

E(Y − b0 − b1Z − bT2X)2.

Recall that e(X) = pr(Z = 1 | X) is the propensity score, and define ẽ(X) =
γ0 + γT1X as the OLS projection of A on X with

(γ0, γ1) = arg min
c0,c1

E(A− c0 − cT1X)2.

1. Show that

β1 =
E[w̃(X){µ1(X)− µ0(X)}]

E{w̃(X)}
+
E[{e(X)− ẽ(X)}µ0(X)]

E{w̃(X)}

where w̃(X) = e(X){1− ẽ(X)}.
2. When X contains the dummy variables for a discrete covariate,

show that

β1 =
E[w(X){µ1(X)− µ0(X)}]

E{w(X)}
where w(X) = e(X){1− e(X)} is the overlap weight.

Remark: Vansteelandt and Dukes (2022) gave the formula in the first part
without a detailed proof. The result in part 2 was derived many times in the
literature (e.g., Angrist, 1998; Ding, 2021).

14.5 Data re-analysis

Re-analyze the dataset in karolinska.txt and the dataset nhanes_bmi in the
ATE package.

14.6 Recommended reading

Kang and Schafer (2007) gave a critical review of the doubly robust estimator,
using simulation to compare it with many other estimators. Robins et al.
(2007) gave a very insightful comment on Kang and Schafer (2007).
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Matching in Observational Studies

Matching has a long history in empirical research. W. Cochran and D. Rubin
popularized it in statistical causal inference. Cochran and Rubin (1973) is
an early review paper. Rubin (2006b) collects Rubin’s contributions to this
topic. This chapter also discusses modern contributions by Abadie and Imbens
(2006, 2008, 2011).

15.1 A simple starting point: many more control units

        treated group             	 	 	 	 	        control group

X1
X2

Xn1

Xm(1)

Xm(2)

Xm(n1)

⋮

Consider a simple case with the number of control units n0 being much
larger than the number of treated units n1. For unit i = 1, . . . , n1 in the treated

185
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group, we find a unit m(i) in the control group such that Xi = Xm(i). In the
ideal case, we have exact matches. Therefore, the units within a matched pair
have the same propensity score e(Xi) = e(Xm(i)). Consequently, conditioning
on the event that one unit receives the treatment and the other receives the
control, the probability of unit i receiving the treatment and unitm(i) receives
the control is

pr(Zi = 1, Zm(i) = 0 | Zi + Zm(i) = 1, Xi, Xm(i))

=
pr(Zi = 1, Zm(i) = 0 | Xi, Xm(i))

pr(Zi = 1, Zm(i) = 0 | Xi, Xm(i)) + pr(Zi = 0, Zm(i) = 1 | Xi, Xm(i))

=
e(Xi){1− e(Xm(i))}

e(Xi){1− e(Xm(i))}+ {1− e(Xi)}e(Xm(i))

=
1

2
.

That is, the treatment assignment is identical to the MPE conditioning on
the covariates and the event that each pair has a treated and control units.
So we can analyze the exactly matched observational study as if it is a MPE,
using either the FRT or the Neymanian approach in Chapter 7. This gives us
inference on the causal effect on the treated units.

We can also find multiple control units for each treated unit. In general,
we can find Mi matched control units for the treated unit i. When the Mi’s
vary, it is called the variable-ratio matching (Ming and Rosenbaum, 2000,
2001; Pimentel et al., 2015). With perfect matching, the treatment assignment
mechanism is identical to the general matched experiment discussed in Section
7.7. We can use the analytic results in that section to analyzed the matched
observational study.

15.2 A more complicated but realistic scenario

Even if the control group is large, we often do not have exact matches. What
we can achieve is that Xi ≈ Xm(i) or Xi−Xm(i) is small under some distance
metric. So we have only approximate matches. For example, we define

m(i) = arg min
k:Zk=0

d(Xi, Xk),

where d(Xi, Xk) measures the distance between Xi and Xk. Some canonical
choices of the distance are the Euclidean distance

d(Xi, Xk) = ∥Xi −Xk∥22,
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and the Mahalanobis distance1

d(Xi, Xk) = (Xi −Xk)
TΩ−1(Xi −Xk)

with Ω being the sample covariance matrix of the Xi’s from the whole popu-
lation or only the control group.

I review some subtle issues about matching below. See Stuart (2010) for a
review paper.

1. (one-to-one or one-to-M matching) The above discussion focused
on one-to-one matching

2. I focus on matching with replacement but some practitioners pre-
fer matching without replacement. If the pool of control units is
large, these two methods will not not matter too much for the final
result. Matching with replacement is computationally more conve-
nient, but matching without replacement involves computationally
intensive discrete optimization. Matching with replacement usually
gives matches of higher quality but it introduces dependence by
using the same units multiple times. In contrast, the advantage of
matching without replacement is the independence of matched units
and the simplicity in the subsequent data analysis.

3. Because of the residual covariate imbalance within matched pairs,
it is crucial to use covariate adjustment when analyzing the data.
In this case, covariate adjustment is not only for efficiency gain but
also for bias correction.

4. If X is “high dimensional”, it is likely that d(Xi, Xk) is too large
for some unit i in the treated group and for all choices of the units
in the control group. In this case, we may have to drop some units
that are hard to find matches. By doing this, we effectively change
the study population of interest.

5. It is hard to avoid the above problem. For example, if Xi ∼
N(0, Ip), Xk ∼ N(0, Ip), and Xi Xk, then

∥Xi −Xk∥22 ∼ ∥N(0, 2Ip)∥22 = 2χ2
p

which has mean 2p and variance 8p. Theory shows that with large
p, imperfect matching causes large bias in causal effect estimation.
This suggests that if p is large, we must have some dimension reduc-
tion before matching. Rosenbaum and Rubin (1983b) proposed to
match based on the propensity score. With the estimated propen-
sity score, we find pairs of units {i,m(i)} with small values of
|ê(Xi)− ê(Xm(i))| or |logit{ê(Xi)} − logit{ê(Xm(i))}|, i.e., we have
a one dimensional matching problem.

1We define ∥v∥22 =
∑p

j=1 v
2
j for a vector v = (v1, . . . , vp)T. It denotes the squared length

of the vector v.
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15.3 Matching estimator for the average causal effect

In a sequence of papers, Abadie and Imbens (AI) rigorously character-
ized the repeated sampling properties of the matching estimator and pro-
posed the corresponding large-sample confidence intervals for the average
causal effect. They chose the standard setup for observational studies with

{Xi, Zi, Yi(1), Yi(0)}ni=1
IID∼ {X,Z, Y (1), Y (0)}.

15.3.1 Point estimation and bias correction

AI focused on 1 to M matching with replacement. For a treated unit i, we
can simply impute the potential outcome under treatment as Ŷi(1) = Yi, and
impute the potential outcome under control as

Ŷi(0) =M−1
∑
k∈Ji

Yk,

where Ji is the set of matched units from the control group for unit i. For
example, we can compute d(Xi, Xk) for all k in the control group, and then
define Ji as the indices of k with the M smallest values of d(Xi, Xk).

For a control unit i, we simply impute the potential outcome under control
as Ŷi(0) = Yi, and impute the potential outcome under treatment as

Ŷi(1) =M−1
∑
k∈Ji

Yk,

where Ji is the set of matched units from the treatment group for unit i.
The matching estimator is

τ̂m = n−1
n∑

i=1

{Ŷi(1)− Ŷi(0)}.

AI showed that τ̂m has non-negligible bias especially when X is multidi-
mensional and the number of control units is comparable to the number of
treated units. Through some technical derivations, they proposed the following
estimator for the bias:

B̂ = n−1
n∑

i=1

B̂i

where
B̂i = (2Zi − 1)M−1

∑
k∈Ji

{µ̂1−Zi
(Xi)− µ̂1−Zi

(Xk)}

with {µ̂1(Xi), µ̂0(Xi)} being the predicted outcomes by, for example, from
OLS fits. For a treated unit with Zi = 1, the estimated bias is

B̂i =M−1
∑
k∈Ji

{µ̂0(Xi)− µ̂0(Xk)}
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which corrects the discrepancy in predicted control potential outcomes due to
the mis-match in covariates; for a control unit with Zi = 0, the estimates bias
is

B̂i = −M−1
∑
k∈Ji

{µ̂1(Xi)− µ̂1(Xk)}

which corrects the discrepancy in predicted treated potential outcomes due to
the mis-match in covariates.

The final bias corrected matching estimator is

τ̂mbc = τ̂m − B̂,

which has the following linear expansion.

Proposition 15.1 We have

τ̂mbc = n−1
n∑

i=1

ψ̂i (15.1)

where

ψ̂i = µ̂1(Xi)− µ̂0(Xi) + (2Zi − 1)(1 +Ki/M){Yi − µ̂Zi
(Xi)}

with Ki being the times that unit i is used as a match.

The linear expansion in Proposition 15.1 follows from simple but tedious
algebra. I leave its proof as Problem 15.1. The linear expansion motivates a
simple variance estimator

V̂ mbc =
1

n2

n∑
i=1

(ψ̂i − τ̂mbc)2,

by viewing τ̂mbc as sample averages of the ψ̂i’s. In the literature, Abadie and
Imbens (2008) first showed that the simple bootstrap by resampling the origi-
nal data does not work for estimating the variance of the matching estimators,
but their proposed variance estimation procedure is not easy to implement.
Otsu and Rai (2017) proposed to bootstrap the ψ̂i’s in the linear expansion,
which yields the variance estimator V̂ mbc.

15.3.2 Connection with the doubly robust estimators

The bias-corrected matching estimators and the doubly robust estimators are
closely related. They both equal the outcome regression estimator with some
modifications based on the residuals

R̂i =

{
Yi − µ̂1(Xi) if Zi = 1;

Yi − µ̂0(Xi) if Zi = 0.
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For the average causal effect τ , recall the outcome regression estimator

τ̂ reg = n−1
n∑

i=1

{µ̂1(Xi)− µ̂0(Xi)}

and the doubly robust estimator

τ̂dr = τ̂ reg + n−1
n∑

i=1

{
ZiR̂i

ê(Xi)
− (1− Zi)R̂i

1− ê(Xi)

}
.

Furthermore, we can verify that τ̂mbc has a form very similar to τ̂dr.

Proposition 15.2 The bias-corrected matching estimator for τ equals

τ̂mbc = τ̂ reg + n−1
n∑

i=1

{(
1 +

Ki

M

)
ZiR̂i −

(
1 +

Ki

M

)
(1− Zi)R̂i

}
.

I leave the proof of Proposition 15.2 as Problem 15.2. From Proposition
15.2, we can view matching as a nonparametric method to estimator the
propensity score, and the resulting bias-corrected matching estimator as a
doubly robust estimator. For instance, 1+Ki/M should be similar to 1/ê(Xi).
When a treated unit has a small e(Xi), the resulting weight 1/ê(Xi) will be
large, and at the same time, it will be matched with many control units, re-
sulting in large Ki and thus large 1 + Ki/M . However, this connection also
raised an obvious question regarding matching. With a fixedM , the estimator
1 +Ki/M for 1/e(Xi) will be very noisy. Allowing M to grow with the sam-
pling size is likely to improve the matching-based nonparametric estimator
for the propensity score and thus improve the asymptotic properties of the
matching and bias-corrected matching estimators. Lin et al. (2023) provided
a formal theory.

15.4 Matching estimator for the average causal effect on
the treated

For the average causal effect on the treated

τT = E(Y | Z = 1)− E{Y (0) | Z = 1},

we only need to impute the missing potential outcomes under control for all
the treated units, resulting the following estimator

τ̂mT = n−1
1

n∑
i=1

Zi{Yi − Ŷi(0)}.
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Again it is biased with multidimensional X. Otsu and Rai (2017) propose to
estimate its bias by

B̂T = n−1
1

n∑
i=1

ZiB̂T,i

where
B̂T,i =M−1

∑
k∈Ji

{µ̂0(Xi)− µ̂0(Xk)}

corrects the bias due to the mis-match of covariates for a treated unit with
Zi = 1.

The final bias-corrected estimator is

τ̂mbc
T = τ̂mT − B̂T,

which has the following linear expansion.

Proposition 15.3 We have

τ̂mbc
T = n−1

1

n∑
i=1

ψ̂T,i, (15.2)

where
ψ̂T,i = Zi{Yi − µ̂0(Xi)} − (1− Zi)Ki/M{Yi − µ̂0(Xi)}.

I leave the proof as Problem 15.1. Motivated by Otsu and Rai (2017), we

can view τ̂mbc
T as n/n1 multiplied by the sample average of the ψ̂T,i’s, so an

intuitive variance estimator is

V̂ mbc
T =

(
n

n1

)2
1

n2

n∑
i=1

(ψ̂T,i − τ̂mbc
T n1/n)

2 =
1

n21

n∑
i=1

(ψ̂T,i − τ̂mbc
T n1/n)

2.

Similar to the discussion in Section 15.3.2, we can compare the doubly
robust and bias-corrected matching estimators with the outcome regression
estimator. For the average causal effect on the treated units τT, recall the
outcome regression estimator

τ̂ regT = n−1
1

n∑
i=1

Zi{Yi − µ̂0(Xi)},

and the doubly robust estimator

τ̂drT = τ̂ regT − n−1
1

n∑
i=1

ê(Xi)

1− ê(Xi)
(1− Zi)R̂i.

Furthermore, we can verify that τ̂mbc
T has a form very similar to τ̂drT .
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Proposition 15.4 The bias correction matching estimator for τT equals

τ̂mbc
T = τ̂ regT − n−1

1

n∑
i=1

Ki

M
(1− Zi)R̂i.

I leave the proof of Proposition 15.4 as Problem 15.3. Proposition 15.4
suggests that matching essentially uses Ki/M to estimate the odds of the
treatment given covariates.

15.5 A case study

15.5.1 Experimental data

Now I revisit the LaLonde data using Sekhon (2011)’s Matching package. We
have used this package several times for the dataset lalonde, and now we
will use its key function Match. The experimental part gives us the following
results:

> library("car")

> library("Matching")

> y = lalonde$re78
> z = lalonde$treat
> x = as.matrix(lalonde[, c("age", "educ", "black",

+ "hisp", "married", "nodegr",

+ "re74", "re75")])

>

> ## analysis the randomized experiment

> neymanols = lm(y ~ z)

> neymanols$coef [2]
z

1794.343

> sqrt(hccm(neymanols , type = "hc2")[2, 2])

[1] 670.9967

>

> xc = scale(x)

> linols = lm(y ~ z*xc)

> linols$coef [2]
z

1621.584

> sqrt(hccm(linols , type = "hc2")[2, 2])

[1] 694.7217

Both the unadjusted and adjusted estimators shows positive significant results
on the job training program. We can analyze the data as if it is an observational
study, yielding the following results:
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> matchest.adj = Match(Y = y, Tr = z, X = x, BiasAdjust = TRUE)

> summary(matchest.adj)

Estimate ... 2119.7

AI SE ...... 876.42

T-stat ..... 2.4185

p.val ...... 0.015583

Original number of observations .............. 445

Original number of treated obs ............... 185

Matched number of observations ............... 185

Matched number of observations (unweighted ). 268

Both the point estimator and standard error increase, but qualitatively, the
conclusion remains the same.

15.5.2 Observational data

Then I revisit the observational counterpart of the data:

> dat <- read.table("cps1re74.csv",header=T)

> dat$u74 <- as.numeric(dat$re74 ==0)
> dat$u75 <- as.numeric(dat$re75 ==0)
> y = dat$re78
> z = dat$treat
> x = as.matrix(dat[, c("age", "educ", "black",

+ "hispan", "married", "nodegree",

+ "re74", "re75", "u74", "u75")])

If we use simple OLS estimators, we obtain results that are far from the
experimental benchmark:

> neymanols = lm(y ~ z)

> neymanols$coef [2]
z

-8506.495

> sqrt(hccm(neymanols , type = "hc2")[2, 2])

[1] 583.4426

>

> xc = scale(x)

> linols = lm(y ~ z*xc)

> linols$coef [2]
z

-4265.801

> sqrt(hccm(linols , type = "hc2")[2, 2])

[1] 3211.772

However, if we use matching, the results almost recovers those based on the
experimental data:

> matchest = Match(Y = y, Tr = z, X = x, BiasAdjust = TRUE)
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> summary(matchest)

Estimate ... 1747.8

AI SE ...... 916.59

T-stat ..... 1.9068

p.val ...... 0.056543

Original number of observations .............. 16177

Original number of treated obs ............... 185

Matched number of observations ............... 185

Matched number of observations (unweighted ). 248

Ignoring the ties in the matched data, we can also use the matched-pairs
analysis, which again yields results similar to those based on the experimental
data:

> diff = y[matchest$index.treated] -

+ y[matchest$index.control]
> round(summary(lm(diff ~ 1))$coef[1, ], 2)

Estimate Std. Error t value Pr(>|t|)

1581.44 558.55 2.83 0.01

>

> diff.x = x[matchest$index.treated , ] -

+ x[matchest$index.control , ]

> round(summary(lm(diff ~ diff.x))$coef[1, ], 2)

Estimate Std. Error t value Pr(>|t|)

1842.06 578.37 3.18 0.00

15.5.3 Covariate balance checks

Moreover, we can use simple OLS to check covariate balance. Before matching,
the covariates are highly imbalanced, signified by many stars associated with
the coefficients.

> lm.before = lm(z ~ x)

> summary(lm.before)

Call:

lm(formula = z ~ x)

Residuals:

Min 1Q Median 3Q Max

-0.18508 -0.01057 0.00303 0.01018 1.01355

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.404e-03 6.326e-03 0.222 0.8243

xage -4.043e-04 8.512e-05 -4.750 2.05e-06 ***

xeduc 3.220e-04 4.073e-04 0.790 0.4293
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xblack 1.070e-01 2.902e-03 36.871 < 2e-16 ***

xhispan 6.377e-03 3.103e-03 2.055 0.0399 *

xmarried -1.525e-02 2.023e-03 -7.537 5.06e-14 ***

xnodegree 1.345e-02 2.523e-03 5.331 9.89e-08 ***

xre74 7.601e-07 1.806e-07 4.208 2.59e-05 ***

xre75 -1.231e-07 1.829e-07 -0.673 0.5011

xu74 4.224e-02 3.271e-03 12.914 < 2e-16 ***

xu75 2.424e-02 3.399e-03 7.133 1.02e-12 ***

Residual standard error: 0.09935 on 16166 degrees of freedom

Multiple R-squared: 0.1274 , Adjusted R-squared: 0.1269

F-statistic: 236.1 on 10 and 16166 DF, p-value: < 2.2e-16

But after matching, the covariates are well balanced, signified by the ab-
sence of stars for all coefficients.

> lm.after = lm(z ~ x,

+ subset = c(matchest$index.treated ,
+ matchest$index.control ))
> summary(lm.after)

Call:

lm(formula = z ~ x, subset = c(matchest$index.treated , matchest$index.control ))

Residuals:

Min 1Q Median 3Q Max

-0.66864 -0.49161 -0.03679 0.50378 0.65122

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.003e-01 2.427e-01 2.474 0.0137 *

xage 3.199e-03 3.427e-03 0.933 0.3511

xeduc -1.501e-02 1.634e-02 -0.918 0.3590

xblack 6.141e-05 7.408e-02 0.001 0.9993

xhispan 1.391e-02 1.208e-01 0.115 0.9084

xmarried -1.328e-02 6.729e-02 -0.197 0.8437

xnodegree -3.023e-02 7.144e-02 -0.423 0.6723

xre74 6.754e-06 9.864e-06 0.685 0.4939

xre75 -9.848e-06 1.279e-05 -0.770 0.4417

xu74 2.179e-02 1.027e-01 0.212 0.8321

xu75 -2.642e-02 8.327e-02 -0.317 0.7512

Residual standard error: 0.5043 on 485 degrees of freedom

Multiple R-squared: 0.005101 , Adjusted R-squared: -0.01541

F-statistic: 0.2487 on 10 and 485 DF, p-value: 0.9909
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15.6 Discussion

With many covariates, matching based on the original covariates may suffer
from the curse of dimensionality. Rosenbaum and Rubin (1983b) suggested
to use matching based on the estimated propensity score. Abadie and Imbens
(2016) provided a form theory for this strategy.

15.7 Homework Problems

15.1 Linear expansions of the bias-corrected estimators

Prove Propositions 15.1 and 15.3.

15.2 Doubly robust form of the bias-corrected matching estimator for τ

Prove Proposition 15.2.

15.3 Doubly robust form of the bias-corrected matching estimator for τt

Prove Proposition 15.4.

15.4 Data re-analyses

In OS_ATE.R, I analyze two datasets using regression imputation, two IPW
and the doubly robust estimators. Reanalyze them using the propensity score
stratification estimator and the Abadie–Imbens matching estimator. Compare
these estimators.

Note that you should choose different number of strata for the propensity
score stratification estimator, and check covariate balance. You should also
choose different number of matches for the matching estimator. You can even
apply various estimators to the matched data. Are your results sensitive to
your choices?

15.5 Data re-analyses

In Matching.R, I analyzed the LaLonde observational study using matching.
Matching performs well because it gives an estimator that is close to the exper-
imental gold standard. Reanalyze the data using the regression imputation,
propensity score stratification, two IPW and the doubly robust estimators.
Compare the results to the matching estimator and to the estimator from the
experimental gold standard.

Note that you have many choices. For example, the number of strata for
stratification and the threshold to trim to data based on the estimated propen-
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sity scores. You may consider fitting different propensity score and outcome
models, e.g., including some quadratic terms of the basic covariates. You can
even apply these estimators to the matched data.

This is a classic dataset and hundreds of papers have used it. You can read
some references (Dehejia and Wahba, 1999; Hainmueller, 2012) and you can
also be creative in your own data analysis.

15.6 Data re-analyses

Ho et al. (2007) is an influential paper in political science, based on which
the authors have developed an R package MatchIt (Ho et al., 2011). Ho et al.
(2007) analyzed two datasets, both of which are available from the Harvard
Dataverse.

Reanalyze these two datasets using the methods discussed so far. You can
also try other methods as long as you can justify them.

15.7 Recommended reading

The literature of matching estimators is massive, and three excellent review
papers are Sekhon (2009), Stuart (2010) and Imbens (2015).
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Difficulties of Unconfoundedness in
Observational Studies for Causal Effects

Part III of this book discusses causal inference with observational studies
under two assumptions: unconfoundedness and overlap. Both are strong as-
sumptions and likely to be violated in practice. This chapter will discuss the
difficulties of the unconfoundedness assumption. Chapters 17–19 will discuss
various strategies for sensitivity analysis in observational studies with un-
measured confounding. Chapter 20 will discuss the difficulties of the overlap
assumption.

16.1 Some basics of the causal diagram

Pearl (1995) introduced the causal diagram as a powerful tool for causal infer-
ence in empirical research. Pearl (2000) is a textbook on the causal diagram.
Here I introduce the causal diagram as an intuitive tool for illustrating the
causal relationships among variables.

For example, if we have the causal diagram

X

~~   
Z // Y

and focus on the causal effect of Z on Y , we can read it as
X ∼ FX(x),

Z = fZ(X, εZ),

Y (z) = fY (X, z, εY (z)),

where εZ εY (z) for both z = 0, 1. In the above, covariates X are generated
from a distribution FX(x), the treatment assignment is a function of X with
a random error term εZ , and the potential outcome Y (z) is a function of X,
z and a random error term εY (z). We can easily read from the equations that
Z Y (z) | X, i.e., the unconfoundedness assumption holds.

201
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If we have a causal diagram

X

�� &&

U

��xx
Z // Y

we can read it as 
X ∼ FX(x),

U ∼ FU (u),

Z = fZ(X,U, εZ),

Y (z) = fY (X,U, z, εY (z)),

where εZ εY (z) for both z = 0, 1. We can easily read from the equations that
Z Y (z) | (X,U) but Z / Y (z) | X, i.e., the unconfoundedness assumption
holds conditioning on (X,U) but does not hold conditioning on X only. In
this case, U is an unmeasured confounder. In this diagram, U is called an
unmeasured confounder.

16.2 Assessing ignorability

The weak ignorability

Z Y (1) | X, Z Y (0) | X

implies that

pr{Y (1) | Z = 1, X} = pr{Y (1) | Z = 0, X},
pr{Y (0) | Z = 1, X} = pr{Y (0) | Z = 0, X}.

So the ignorability assumption basically requires that the counterfactual dis-
tribution pr{Y (1) | Z = 0, X} equals the observed distribution pr{Y (1) |
Z = 1, X}, and the counterfactual distribution pr{Y (0) | Z = 1, X} equals
the observed distribution pr{Y (0) | Z = 0, X}. Because the counterfactual
distributions are not directly identifiable from the data, the ignorability as-
sumption is fundamentally untestable without additional assumptions. I will
discuss two strategies to assess ignorability. Here, “assess” is a weaker notion
than “test”. The former is referred to as supplementary analysis that support
or undermine the initial analysis, but the latter is referred to formal statistical
testing.

16.2.1 Using negative outcomes

Assume that Y n is an outcome similar to Y and ideally, shares the same
confounding structure as Y . If we believe Z Y (z) | X, then we also tend to
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believe Z Y n(z) | X. Moreover, we know, a priori, the effect of Z on Y n:

τ(Z → Y n) = E{Y n(1)− Y n(0)}.

An important example is that τ(Z → Y n) = 0. A causal diagram satisfying
these requirements is below:

X

~~   

// Y n

Z // Y

Example 16.1 Cornfield et al. (1959) studied the causal role of cigarette
smoking on lung cancer based on observational studies. They controlled for
many important background variables but it is still possible to have some un-
measured confounders biasing the observed effects. To strengthen the evidence,
they also reported the effect of cigarette smoking on car accident which was
close to zero, the anticipated effect based on biology. So even if they could not
rule out unmeasured confounding in the analysis, this supplementary analysis
based on a negative outcome makes the evidence of the the causal effect of
cigarette smoking on lung cancer stronger.

Example 16.2 Imbens and Rubin (2015) suggested using the lagged outcome
as a negative outcome. In most cases, it is reasonable to believe that the lagged
outcome and the outcome have similar confounding structure. Since the lagged
outcome happens before the treatment, the average causal effect on it must be
0. However, their suggestion should be used with caution since in most studies
we simply treat lagged outcomes as an observed confounder.

In some sense, the covariate balance check in Chapter 11 is a special case
of using negative controls. Similar to the problem of using lagged outcomes
as negative controls, those covariates are usually a part of the ignorability
assumption. Therefore, the failure of covariate balance check does not really
falsify the ignorability assumption but rather the model specification of the
propensity score.

Example 16.3 Observational studies in elderly persons have shown that vac-
cination against influenza remarkably reduces one’s risk of pneumonia/in-
fluenza hospitalization and all-cause mortality in the following season, after
adjustment for measured covariates. Jackson et al. (2006) were skeptical about
the large magnitude and thus conducted supplementary analysis on negative
outcomes. Vaccination often begins in autumn, but influenza transmission is
often minimal until winter. Based on biology, the effect of vaccination should
be most prominent during influenza season. But Jackson et al. (2006) found
greater effect before the influenza season, suggesting that the observed effect is
due to unmeasured confounding.
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Jackson et al. (2006) seems the most convincing one since the influenza-
related outcomes before and during the influenza season should have simi-
lar confounding patterns. Cornfield et al. (1959)’s additional evidence seems
weaker since car accident and lung cancer have very different causal mecha-
nisms with respect to cigarette smoking. In fact, Fisher (1957)’s critique was
that the relationship between cigarette smoking on lung cancer may be due
to an unobserved genetic factor. Such a genetic factor might affect cigarette
smoking and lung cancer simultaneously, but it seems unlikely that it also
affects car accident.

Lipsitch et al. (2010) is a recent article on negative outcomes. Rosenbaum
(1989) discussed the role of known effects in causal inference.

16.2.2 Using negative exposures

Negative exposures are duals of negative outcomes. Assume Zn is a treatment
variable similar to Z and shares the same confounding structure as Z. If we
believe Z Y (z) | X, then we tend to believe Zn Y (z) | X. Moreover, we
know, a priori, the effect of Zn on Y

τ(Zn → Y ) = E{Y (1n)− Y (0n)}.

An important example is that τ(Zn → Y ) = 0. A causal diagram satisfying
these requirements is below:

Zn Xoo

~~   
Z // Y

Example 16.4 Sanderson et al. (2017) give many examples of negative ex-
posures in determining the effect of intrauterine exposure on later outcomes
by comparing the association of a maternal exposure during pregnancy with
the outcome of interest, with the association of the paternal exposure with the
same outcome. They review studies on the effect of maternal and paternal
smoking on offspring outcomes, the effect of maternal and paternal BMI on
later offspring BMI and autism spectrum disorder. In these examples, we ex-
pect the the association of the maternal exposure with the outcome is larger
than that of the paternal exposure with the outcome.

16.2.3 Summary

The unconfoundedness assumption is fundamentally untestable without ad-
ditional assumptions. Although negative outcomes and negative controls in
observational studies cannot prove or disprove unconfoundedness, using them
in supplementary analyses can strengthen the evidence for causation. How-
ever, it is often non-trivial to conduct this type of supplementary analyses
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because it involves more data and more importantly, deeper understanding
of the causal problems in order to find convincing negative outcomes and
negative controls.

16.3 Problems of over adjustment

We have discussed many methods for estimating causal effects under ignora-
bility:

Z {Y (1), Y (0)} | X.

This is an assumption conditioning on X. It is crucial to select the right set
of X that ensure the conditional independence. Rosenbaum (2002b) wrote
that“there is no reason to avoid adjustment for a variable describing subjects
before treatment.” Similarly, Rubin (2007) wrote that “typically, the more
conditional an assumption, the more acceptable it is.” Both argued that we
should control for all observed pretreatment covariate. VanderWeele and Sh-
pitser (2011) called it the pretreatment criterion. Pearl disagreed with this
recommendation and gave two counterexamples below.

16.3.1 M-bias

M-bias appears in the following causal diagram with an M-structure:

U1

��

  

U2

��

~~
X

Z Y

We can read from the diagram the data generating process:
U1 U2,

X = fX(U1, U2, εX),

Z = fZ(U1, εZ),

Y = Y (z) = fY (U2, εY ),

where (εX , εZ , εY ) are independent random error terms. In the above causal
diagram, X is observed, but U1 and U2 are unobserved. If we change the value
of Z, the value of Y will not change at all. So the true causal effect of Z on Y
must be 0. From the data-generating equations, we can easy read that Z Y ,
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so the association between Z and Y is 0, and, in particular,

τPF = E(Y | Z = 1)− E(Y | Z = 0) = 0.

This means that without adjusting for the covariate X, the simple estimator
is unbiased for the true parameter.

However, if we condition on X, then U1/ U2 | X, and consequently, Z / Y |
X and ∫

{E(Y | Z = 1, X = x)− E(Y | Z = 0, X = x)}F (dx) ̸= 0

in general. To gain intuition, we consider the case with Gaussian linear mod-
els1: 

X = aU1 + bU2 + εX ,

Z = cU1 + εZ ,

Y = Y (z) = dU2 + εY ,

where (U1, U2, εX , εZ , εY )
IID∼ N(0, 1). We have

cov(Z, Y ) = cov(cU1 + εZ , dU2 + εY ) = 0,

but by the result in Problem 1.2, the partial correlation coefficient between Z
and Y given X is

ρZY |X =
ρZY − ρZXρY X√
1− ρ2ZX

√
1− ρ2Y X

∝ −ρZXρY X ∝ −cov(Z,X)cov(Y,X) = −abcd,

the product of the coefficients on the path from Z to Y . So the unadjusted
estimator is unbiased but the adjusted estimator has bias proportional to abcd.

The following simple example illustrates M-bias.

> n = 10^6

>

> ## M bias

> U1 = rnorm(n)

> U2 = rnorm(n)

> X = U1 + U2 + rnorm(n)

> Z = U1 + rnorm(n)

> Y = U2 + rnorm(n)

>

> round(summary(lm(Y ~ Z))$coef[2, 1], 3)

[1] -0.001

> round(summary(lm(Y ~ Z + X))$coef[2, 1], 3)

[1] -0.201

>

1It is not ideal for our discussion of binary Z, but it simplifies the derivations. Ding and
Miratrix (2015) gave detailed discussion with more natural models for binary Z.
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> Z = (Z >= 0)

> round(summary(lm(Y ~ Z))$coef[2, 1], 3)

[1] -0.002

> round(summary(lm(Y ~ Z + X))$coef[2, 1], 3)

[1] -0.421

16.3.2 Z-bias

Consider the following causal diagram:

U

b

��

c

��
X

a // Z
τ // Y

with the data generating process2{
Z = aX + bU + εZ ,

Y (z) = τz + cU + εY ,

where (U,X, εZ , εY )
IID∼ N(0, 1). In this data generating process, we have

X U, X / Z, and X affects Y only through Z.
The unadjusted estimator is

τunadj =
cov(Z, Y )

var(Z)
=

cov(Z, τZ + cU)

var(Z)
= τ +

ccov(aX + bU, U)

var(Z)
= τ +

cb

a2 + b2 + 1
,

which has bias bc/(a2 + b2 + 1). The adjusted estimator from the OLS of Y
on (Z,X) satisfies {

E{Z(Y − τadjZ − αX)} = 0,

E{X(Y − τadjZ − αX)} = 0,

which is equivalent to{
E(ZY ) = τadjvar(Z) + αE(XZ),

E(XY ) = τadjE(XZ) + αvar(X).

We need to solve for (τadj, α) from the above two linear equations:

τadj =

∣∣∣∣E(ZY ) E(XZ)
E(XY ) var(X)

∣∣∣∣∣∣∣∣ var(Z) E(XZ)
E(XZ) var(X)

∣∣∣∣ =
E(ZY )var(X)− E(XZ)E(XY )

var(Z)var(X)− E(XZ)2

=
τ(a2 + b2 + 1) + bc− aτa

(a2 + b2 + 1)− a2
=
τ(b2 + 1) + bc

b2 + 1
= τ +

bc

b2 + 1
,

2Again, we generate continuous Z from a linear model to simplify the derivations. Ding
et al. (2017b) extended the theory to more general causal models, especially for binary Z.



20816 Difficulties of Unconfoundedness in Observational Studies for Causal Effects

which has bias bc/(b2 + 1).
So the unadjusted estimator has smaller bias than the adjusted estimator.

More interestingly, the stronger the association betweenX and Z is (measured
by a), the larger the bias of the adjusted estimator is.

The mathematical derivation is not extremely hard. But this type of bias
seems rather mysterious. Here is the intuition. The treatment is a function of
X, U , and other random errors. If we condition on X, it is merely a function
of U and other random errors. Therefore, conditioning makes Z less random,
and more critically, makes the unmeasured confounder U play a more im-
portant role in Z. Consequently, the confounding bias due to U is amplified
by conditioning on X. This idealized example illustrates the danger of over
adjusting for some covariates.

Heckman and Navarro-Lozano (2004) observed the phenomenon in sim-
ulation studies, and Wooldridge (2016, technical report in 2006) verified it
in linear models. Pearl (2010, 2011) explained it using causal diagrams. This
type of bias is called Z-bias because in Pearl’s original papers, he used the
symbol Z for our variable X. Throughout the book, however, Z is used for
the treatment variable. In Part V of this book, we will call Z an instrumental
variable if it satisfies the causal diagram presented in this subsection. This
justifies the instrumental variable bias as another name of this type of bias.

The following simple example illustrates Z-bias.

> X = rnorm(n)

> U = rnorm(n)

> Z = X + U + rnorm(n)

> Y = U + rnorm(n)

>

> round(summary(lm(Y ~ Z))$coef[2, 1], 3)

[1] 0.334

> round(summary(lm(Y ~ Z + X))$coef[2, 1], 3)

[1] 0.501

>

> Z = 2*X + U + rnorm(n)

> round(summary(lm(Y ~ Z))$coef[2, 1], 3)

[1] 0.167

> round(summary(lm(Y ~ Z + X))$coef[2, 1], 3)

[1] 0.5

>

> Z = 10*X + U + rnorm(n)

> round(summary(lm(Y ~ Z))$coef[2, 1], 3)

[1] 0.01

> round(summary(lm(Y ~ Z + X))$coef[2, 1], 3)

[1] 0.5
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16.3.3 What covariates should we adjust for in observational
studies?

We never know the true underlying data generating process which can be
quite complicated. However, the following causal diagram helps to clarify many
ideas. It already rules out the possibility ofM -bias discussed in Section 16.3.1.

XR

XZ

��

X

�� ��

XY

��
Z //

��

Y

��
XI

The covariates above have different features:

1. X affects both the treatment and the outcome. Conditioning on X
ensures ignorability, so we should control for X.

2. XR is pure random noise not affecting either the treatment or the
outcome. Including it in analysis does not bias the estimate but it
introduces unnecessary variability in finite sample.

3. XZ is an instrumental variable that affects the outcome only
through the treatment. In the diagram above, including it in analy-
sis does not bias the estimate although it increases variability. How-
ever, with unmeasured confounding, including it in analysis ampli-
fies the bias as shown in Section 16.3.1.

4. XY affects the outcome only but not the treatment. Without con-
ditioning on it, the ignorability still holds. Since they are predictive
to the outcome, including them in analysis often improves precision.

5. XI is affected by the treatment and outcome. It is a post-treatment
variable, not a pretreatment covariate. We should not include it if
the goal is to infer the effect of the treatment on the outcome. We
will discuss issues with post-treatment variables in causal inference
in Part VI of this book.

If we believe the above causal diagram, we should adjust for at least X to
remove bias and more ideally, further adjust for XY to reduce variance.
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16.4 Homework Problems

16.1 Cochran’s formula or the omitted variable bias formula

Sir David Cox calls the following result Cochran’s formula (Cochran, 1938;
Cox, 2007) and econometricians call it the omitted variable bias formula (An-
grist and Pischke, 2008). A special case appeared in Fisher (1925). It is also
a sister of the Frisch–Waugh–Lovell Theorem in Chapter A2.3.

The formula has two versions. All vectors below are column vectors.

1. (Population version) Assume (yi, x1i, x2i)
n
i=1 are iid, where yi is a

scalar, xi1 has dimension K, and xi2 has dimension L.

We have the following OLS decompositions of random variables

yi = βT1xi1 + βT2x2i + εi, (16.1)

yi = γTxi1 + ei, (16.2)

xi2 = δTxi1 + vi. (16.3)

Equation (16.1) is called the long regression, and Equation (16.2) is
called the short regression. In Equation (16.3), δ is a matrix because
it is a regression of a vector on a vector. You can view (16.3) as
regression of each component of xi2 on xi1.

Show that γ = β1 + δβ2.

2. (Sample version) We have an n× 1 vector Y , an n×K matrix X1,
and an n × L matrix X2. We do not assume any randomness. All
results below are purely linear algebra.

We can obtain the following OLS fits:

Y = X1β̂1 +X2β̂2 + ε̂,

Y = X1γ̂ + ê,

X2 = X1δ̂ + v̂,

where ε̂, ê, v̂ are the residuals. Again, the last OLS fit means the
OLS fit of each column of X2 on X1, and therefore the residual v̂ is
an n× L matrix.

Show that γ̂ = β̂1 + δ̂β̂2.

Remark: The product terms δβ2 and δ̂β̂2 are often referred to as the
omitted-variable bias at the population level and sample level, respectively.

16.2 Recommended reading

Imbens (2020) reviews and compares the roles of potential outcomes and
causal diagrams for causal inference.
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E-Value: Evidence for Causation in
Observational Studies with Unmeasured
Confounding

All the methods discussed in Part III rely crucially on the ignorability as-
sumption. They require controlling for all confounding between the treatment
and outcome. However, we cannot use the data to validate the ignorability
assumption. Observational studies are often criticized due to the possibility of
unmeasured confounding. The famous Yule–Simpson Paradox demonstrates
that an unmeasured binary confounder can completely overturn an observed
association between the treatment and outcome. However, to overturn a larger
observed association, this unmeasured confounder must have stronger associa-
tion with the treatment and the outcome. In other words, not all observational
studies are created equal. Some provide stronger evidence for causation than
others.

The following three chapters will discuss various sensitivity analysis tech-
niques that can quantify the evidence of causation based on observational
studies in the presence of unmeasured confounding. This chapter starts with
the E-value, introduced by VanderWeele and Ding (2017) based on the theory
in Ding and VanderWeele (2016). It is more useful for observational studies
using logistic regressions. Chapter 18 discusses sensitivity analysis for the av-
erage causal effect based on inverse probability weighting, outcome regression,
and doubly robust estimation. Chapter 19 discusses Rosenbaum’s framework
for sensitivity analysis for matched observational studies.

17.1 Cornfield-type sensitivity analysis

Although we do not assume ignorability given X:

Z / {Y (1), Y (0)} | X,

we still assume latent ignorability given X and another unmeasured con-
founder U :

Z {Y (1), Y (0)} | (X,U).

211
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The technique in this chapter works the best for a binary outcome Y although
it can be extended to other non-negative outcomes (Ding and VanderWeele,
2016). Focus on binary Y now. The true conditional causal effect on the risk
ratio scale is defined as

rrtrue
ZY |x =

pr{Y (1) = 1 | X = x}
pr{Y (0) = 1 | X = x}

,

and the observed conditional risk ratio equals

rrobs
ZY |x =

pr(Y = 1 | Z = 1, X = x)

pr(Y = 1 | Z = 0, X = x)
.

In general, with an unmeasured confounder U ,

rrtrue
ZY |x ̸= rrobs

ZY |x

because

rrtrue
ZY |x =

∫
pr(Y = 1 | Z = 1, X = x, U = u)F (du | X = x)∫
pr(Y = 1 | Z = 0, X = x, U = u)F (du | X = x)

and

rrobs
ZY |x =

∫
pr(Y = 1 | Z = 1, X = x, U = u)F (du | Z = 1, X = x)∫
pr(Y = 1 | Z = 0, X = x, U = u)F (du | Z = 0, X = x)

are averaged over different distributions of U .
Doll and Hill (1950) found that the risk ratio of cigarette smoking on lung

cancer was 9 even after adjusting for many observed covariates X1. Fisher
(1957) criticized their result to be noncausal because it is possible that a
hidden gene simultaneously causes cigarette smoking and lung cancer although
the true causal effect of cigarette smoking on lung cancer is absent. This is the
common cause hypothesis, also discussed by Reichenbach (1957). Cornfield
et al. (1959) took a more constructive perspective and asked: how strong
this unmeasured confounder must be in order to explain away the observed
association between cigarette smoking and lung cancer? Below we will use
Ding and VanderWeele (2016)’s general formulation of the problem.

Consider the following causal diagram:

U

�� ��
Z Y

which conditions on X. So Z Y | (X,U). Conditioning on X and U , we

1Their original analysis was based on a case-control study and estimated the odds ratio
of cigarette smoking on lung cancer. But the risk ratio is close to the odds ratio since lung
cancer is a rare outcome.
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observe no association between Z and Y ; but conditioning on only X, we
observe association between Z and Y . Although we can allow U to be general
as Ding and VanderWeele (2016), we assume that U is binary to simplify the
presentation.

Define two sensitivity parameters:

rrZU |x =
pr(U = 1 | Z = 1, X = x)

pr(U = 1 | Z = 0, X = x)
≡ f1,x
f0,x

measures the treatment-confounder association, and

rrUY |x =
pr(Y = 1 | U = 1, X = x)

pr(Y = 1 | U = 0, X = x)
,

measures the confounder-outcome association, conditional on covariates X =
x. Without loss of generality, we assume that rrobs

x > 1,rrZU |x > 1, and
rrUY |x > 1. We can show the main result below.

Theorem 17.1 Under Z Y | (X,U), we have

rrobs
ZY |x ≤

rrZU |xrrUY |x

rrZU |x + rrUY |x − 1
.

Theorem 17.1 shows the upper bound of the observed risk ratio of the
treatment on the outcome if the conditional independence Z Y | (X,U)
holds. Under this conditional independence assumption, the association be-
tween the treatment and the outcome is purely due to the association be-
tween the treatment, rrZU |x, and the confounder and the association be-
tween the confounder and the outcome, rrUY |x. The upper bound equals
rrZU |xrrUY |x/(rrZU |x + rrUY |x − 1). A similar inequality appeared in Lee
(2011). It is also related to Cochran’s formula or the omitted-variable bias
formula for linear models, which was reviewed in Problem 16.1.

Reversely, to generate a certain value of the observed risk ratio rrobs
x ,

the two confounding measures rrZU |x and rrUY |x cannot be arbitrary. Their
function rrZU |xrrUY |x/(rrZU |x + rrUY |x − 1) must be at least at large as

rrobs
x .
I will give the proof of Theorem 17.1 below.
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Proof of Theorem 17.1: We can decompose rrobs
ZY |x as

rrobs
ZY |x

=
pr(Y = 1 | Z = 1, X = x)

pr(Y = 1 | Z = 0, X = x)

=

[
pr(U = 1 | Z = 1, X = x)pr(Y = 1 | Z = 1, U = 1, X = x)

+ pr(U = 0 | Z = 1, X = x)pr(Y = 1 | Z = 1, U = 0, X = x)

]
[
pr(U = 1 | Z = 0, X = x)pr(Y = 1 | Z = 0, U = 1, X = x)

+ pr(U = 0 | Z = 0, X = x)pr(Y = 1 | Z = 0, U = 0, X = x)

]

=

[
pr(U = 1 | Z = 1, X = x)pr(Y = 1 | U = 1, X = x)

+ pr(U = 0 | Z = 1, X = x)pr(Y = 1 | U = 0, X = x)

]
[
pr(U = 1 | Z = 0, X = x)pr(Y = 1 | U = 1, X = x)

+ pr(U = 0 | Z = 0, X = x)pr(Y = 1 | U = 0, X = x)

]
=

f1,xrrUY |x + 1− f1,x

f0,xrrUY |x + 1− f0,x

=
(rrUY |x − 1)f1,x + 1

rrUY |x−1

rrZU|x
f1,x + 1

.

We can verify that rrobs
ZY |x is increasing in f1,x. So letting f1,x = 1, we have

rrobs
ZY |x ≤

(rrUY |x − 1) + 1
rrUY |x−1

rrZU|x
+ 1

=
rrZU |xrrUY |x

rrZU |x + rrUY |x − 1
.

□
In the proof of Theorem 17.1, we have obtain an identity

rrobs
ZY |x =

(rrUY |x − 1)f1,x + 1
rrUY |x−1

rrZU|x
f1,x + 1

.

But this identity involves three parameters

{f1,x,rrZU |x,rrUY |x};

see Problem 17.2 for a related formula. In contrast, the upper bound in The-
orem 17.1 involves only two parameters

{rrZU |x,rrUY |x}

which measure the strength of the confounder.

17.2 E-value

Lemma 17.1 below is useful for deriving interesting corollaries of Theorem
17.1.
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Lemma 17.1 Define β(w1, w2) = w1w2/(w1+w2−1) for w1 > 1 and w2 > 1.

1.β(w1, w2) is symmetric in w1 and w2;

2.β(w1, w2) increasing in both w1 and w2;

3.β(w1, w2) ≤ w1 and β(w1, w2) ≤ w2;

4.β(w1, w2) ≤ w2/(2w − 1), where w = max(w1, w2).

Using Theorem 17.1 and Lemma 17.1(3), we have

rrZU |x ≥ rrobs
ZY |x, rrUY |x ≥ rrobs

ZY |x,

or, equivalently,
min(rrZU |x,rrUY |x) ≥ rrobs

ZY |x.

Therefore, to explain away the observed relative risk, both confounding mea-
sures rrZU |x and rrUY |x must be at least as large as rrobs

ZY |x Cornfield et al.

(1959) first derived the inequality rrZU |x ≥ rrobs
ZY |x, also called the Cornfield

inequality (Gastwirth et al., 1998). Schlesselman (1978) derived the inequality
rrUY |x ≥ rrobs

ZY |x. These are related to to the data processing inequality in

information theory2.
If we define w = max(rrZU |x,rrUY |x), then we can use Theorem 17.1 and

Lemma 17.1(4) to obtain

w2/(2w − 1) ≥ β(rrZU |x,rrUY |x) ≥ rrobs
x

=⇒ w2 − 2rrobs
x w + rrobs

x ≥ 0,

which is a quadratic inequality. One root rrobs
ZY |x −

√
rrobs

ZY |x(rr
obs
ZY |x − 1) is

always smaller than or equal to 1, so we have

w = max(rrZU |x,rrUY |x) ≥ rrobs
ZY |x +

√
rrobs

ZY |x(rr
obs
ZY |x − 1).

Therefore, to explain away the observed relative risk, the maximum of the
confounding measures rrZU |x and rrUY |x must be at least as large as

rrobs
ZY |x+

√
rrobs

ZY |x(rr
obs
ZY |x − 1). Based on this result, VanderWeele and Ding

(2017) introduced the following notion of E-value for measuring the evidence
of causation with observational studies.

2In information theory, the mutual information

I(A,B) =

∫∫
p(a, b) log2

p(a, b)

p(a)p(b)
dadb

measures the dependence between two random variables A and B, where p(·) denotes the
joint or marginal density of (A,B). The data processing inequality is a famous result: if

Z Y | U , then I(Z, Y ) ≥ I(Z,U) and I(Z, Y ) ≥ I(U, Y ). Lihua Lei and Bin Yu pointed
out to me the connection between Cornfield’s inequality and the data processing inequality.
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Definition 17.1 (E-Value) With the observed conditional risk ratio rrobs
ZY |x,

define the E-Value as

rrobs
ZY |x +

√
rrobs

ZY |x(rr
obs
ZY |x − 1)

The E-value is defined for the parameter rrobs
ZY |x. In practice, rrobs

ZY |x is
estimated with sampling error. We can calculate the E-value based on the
estimated rrobs

ZY |x, as well as the corresponding E-values for the lower and

upper confidence limits of rrobs
ZY |x.

Fisher’s p-value measures the evidence for causal effects in randomized
experiment. We have discussed the p-value based on the FRT in Part II of this
book. However, in observational studies with large sample sizes, p-values can
be a poor measure of evidence for causal effects. Even if the true causal effects
are 0, a tiny amount of unmeasured confounding can bias the estimate, which
can result in extremely small p-values given the small sampling uncertainty.
The sampling uncertainty is usually secondary in observational studies with
large sample sizes, but the uncertainty due to unmeasured confounding is often
the first order problem that does not diminish with increased sample sizes.
VanderWeele and Ding (2017) argued that the E-value is a better measure of
the evidence for causal effects in observational studies.

17.3 A classic example

I revisit a classic example below.

Example 17.1 Hammond and Horn (1958) used the U.S. population to study
the cigarette smoking and lung cancer relationship. Ignoring covariates, their
data can be represented by a 2× 2 table:

Lung cancer No lung cancer

Smoker 397 78557
Non-smoker 51 108778

Based on the data, they obtained an estimate of the risk ratio 10.73 with a
95% confidence interval [8.02, 14.36]. To explain away the point estimate, the
E-value is

10.73 +
√
10.73× (10.73− 1) = 20.95;

to explain away the lower confidence limit, the E-value is

8.02 +
√
8.02× (8.02− 1) = 15.52.

Figure 17.1 shows the joint values of the two confounding measures to
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FIGURE 17.1: Magnitude of confounding to explain away the observed risk
ratio in Hammond and Horn (1958)

explain away the point estimate and lower confidence limit of the risk ratio.
In particular, to explain way the point estimate, they must lie in the area above
the solid curve; to explain away the lower confidence limit, they must lie in
the area above the dashed curve.

17.4 Extensions

17.4.1 E-value and Bradford Hill’s criteria for causation

The E-value provides evidence for causation. But evidence is not a proof.
With a larger E-value, we need a stronger unmeasured confounder to explain
away the observed risk ratio; the evidence for causation is stronger. With a
smaller E-value, we need a weaker unmeasured confounder to explain away
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the observed risk ratio; the evidence for causation is weaker. Coupled with the
discussion in Section 17.5.1, a larger observed risk ratio have stronger evidence
for causation. This is closely related to Sir Bradford Hill’s first criterion for
causation: strength of the association (Bradford Hill, 1965). Theorem 17.1
provides a mathematical quantification of his heuristic argument.

In a famous paper, Bradford Hill (1965) proposed a set of nine criteria to
provide evidence for causation between a presumed cause and outcome. His
criteria are

1. strength;

2. consistency;

3. specificity;

4. temporality;

5. biological gradient;

6. plausibility;

7. coherence;

8. experiment;

9. analogy.

The E-value is a way to justify his first criterion. That is, stronger as-
sociation often provides stronger evidence for causation because to explain
way stronger association, we need stronger confounding measures. We have
discussed randomized experiments in Part II, which corroborates his eighth
criterion. Due to the space limit, I omit the detailed discussion of his other cri-
teria and encourage the readers to read (Bradford Hill, 1965). Recently, this
paper is re-printed as Bradford Hill (2020) with insightful comments from
many leading researchers in causal inference.

17.4.2 E-value after logistic regression

With a binary outcome, it is common for epidemiologists to use a logistic
regression of the outcome Yi on the treatment indicator Zi and covariates Xi:

pr(Yi = 1 | Zi, Xi) =
eβ0+β1Zi+βT

2Xi

1 + eβ0+β1Zi+βT
2Xi

.

In the logistic model above, the coefficient of Zi is the log of the conditional
odds ratio between the treatment and the outcome given the covariates:

β1 = log
pr(Yi = 1 | Zi = 1, Xi = x)/pr(Yi = 0 | Zi = 1, Xi = x)

pr(Yi = 1 | Zi = 0, Xi = x)/pr(Yi = 0 | Zi = 0, Xi = x)
.

Importantly, the logistic model assumes a common odds ratio across all values
of the covariates. Moreover, when the outcome is rare in that pr(Yi = 1 | Zi =
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1, Xi = x) and pr(Yi = 1 | Zi = 0, Xi = x) are close to 0, the conditional odds
ratio approximates the conditional risk ratio (see Proposition 1.1(3)):

β1 ≈ log
pr(Yi = 1 | Zi = 1, Xi = x)

pr(Yi = 1 | Zi = 0, Xi = x)
= logrrobs

ZY |x.

Therefore, based on the estimated logistic regression coefficient and the corre-
sponding confidence limits, we can calculated the E-value immediately. This
is the leading application of the E-value.

Example 17.2 The NCHS2003.txt contains the National Center for Health
Statistics birth certificate data, with the following binary indicator variables
useful for us:

PTbirth pre-term birth
preeclampsia pre-eclampsia3

ageabove35 an older mother with age ≥ 35 (the treatment)
somecollege college education
mar marital status
smoking smoking status
drinking drinking status
hispanic mother’s ethnicity
black mother’s ethnicity
nativeamerican mother’s ethnicity
asian mother’s ethnicity
This version of the data is from Valeri and Vanderweele (2014). This ex-

ample focuses on the outcome PTbirth and Problem 17.3. The following R code
computes the E-values after fitting a logistic regression. Based on the E-values,
we conclude that to explain away the point estimate, the maximum confound-
ing measure must be larger than 1.94, and to explain away the lower confidence
limit, the maximum confounding measure must be larger than 1.91. Although
these confounding measures are not as strong as those in Section 17.3, they
appear to be fairly large in epidemiologic studies.

> evalue = function(rr)

+ {

+ rr + sqrt(rr*(rr - 1))

+ }

>

> NCHS2003 = read.table("NCHS2003.txt", header = TRUE , sep = "\t")

>

> ## outcome: PTbirth

> y_logit = glm(PTbirth ~ ageabove35 +

+ mar + smoking + drinking + somecollege +

+ hispanic + black + nativeamerican + asian ,

+ data = NCHS2003 ,

+ family = binomial)

> log_or = summary(y_logit)$coef[2, 1:2]
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> est = exp(log_or[1])

> lower.ci = exp(log_or[1] - 1.96*log_or[2])

> est

Estimate

1.305982

> evalue(est)

Estimate

1.938127

>

> lower.ci

Estimate

1.294619

> evalue(lower.ci)

Estimate

1.912211

17.4.3 Non-zero true causal effect

Theorem 17.1 assumes no true causal effect of the treatment on the outcome.
Ding and VanderWeele (2016) proved a general theorem allowing for non-zero
true causal effect.

Theorem 17.2 Modify the definition of rrUY |x as

rrUY |x = max
z=0,1

pr(Y = 1 | Z = z, U = 1, X = x)

pr(Y = 1 | Z = z, U = 0, X = x)
.

We have

rrtrue
ZY |x ≥ rrobs

ZY |x

/ rrZU |xrrUY |x

rrZU |x + rrUY |x − 1
.

Theorem 17.1 is a special case of Theorem 17.2 with rrtrue
ZY |x = 1. See the

original paper of Ding and VanderWeele (2016) for the proof of Theorem 17.2.
Without assuming any additional assumptions, Theorem 17.2 states a lower
bound of the true risk ratio rrtrue

ZY |x given the observed risk ratio rrobs
ZY |x and

the two sensitivity parameters rrZU |x and rrUY |x.
When the treatment is apparently preventive to the outcome, the observed

risk ratio is smaller than 1. In this case, Theorems 17.1 and 17.2 are not
directly useful, and we must re-label the treatment levels and calculate the
E-value based on 1/rrobs

ZY |x.

17.5 Critiques and responses

Since the original paper was published, E-value has been a standard num-
ber reported by many epidemiologic studies. Nevertheless, it also attracted
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FIGURE 17.2: E-value as a monotone transformation of the risk ratio: three
figures have different ranges of the risk ratio.

critiques (Ioannidis et al., 2019). I will review some limitations of E-values
below.

17.5.1 E-value is just a monotone transformation of the risk
ratio

From Figure 17.2, we can see that if the risk ratio is large, then the E-value

rrobs
ZY |x +

√
rrobs

ZY |x(rr
obs
ZY |x − 1) is nearly 2rrobs

ZY |x which is linear in the risk

ratio. For small risk ratio, the E-value is more nonlinear. Critics often say
that the E-value is merely a monotone transformation of the point estimator
or the confidence limits of the risk ratio. So it does not provide any additional
information.

This is partially true. Indeed, the E-value is entirely based on the point
estimator or the confidence limits of the risk ratio. It has a meaningful in-
terpretation based on Theorem 17.1: to explain away the observed risk ratio,
the maximum of the confounding measures must be at least as large as the
E-value.

17.5.2 Calibration of the E-value

The E-value equals the maximum value of the association between the con-
founder and the treatment and that between the confounder and the outcome
to completely explain aways an observed association. An obvious problem is
that this confounder is fundamentally latent. So it is not trivial to decide
whether a certain E-value is large or small. Another related problem is that
the E-value depends on how many observed covariates X we have controlled
for since it quantifies the strength of the residual confounding given X. There-
fore, E-values across studies are not directly comparable. The E-value provides
evidence for causation but this evidence should be assessed carefully based on
background knowledge of the problem of interest.
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The following leave-one-covariate-out approach is an intuitive approach
to calibrate the E-value. With X = (X1, . . . , Xp), we can pretend that the
component Xj were not observed and compute the Z-Xj and Xj-Y risk ratios
given other observed covariates (j = 1, . . . , p). These risk ratios provide the
range for the confounding measures due to U if we believe that the unmeasured
U is not as strong as all of the observed covariates. However, I am not aware
of any formal justification of this approach.

17.5.3 It works the best for a binary outcome and the risk
ratio

Theorem 17.1 works well for a binary outcome and the risk ratio. Ding
and VanderWeele (2016) also proposed sensitivity analysis methods for other
causal parameters, but they are not as elegant as the E-value for binary out-
come based on the risk ratio. The next chapter will propose a simple sensitivity
analysis method for the average causal effect that include several methods in
Part III as special cases.

17.6 Homework Problems

17.1 Lemma 17.1

Prove Lemma 17.1.

17.2 Schlesselman (1978)’s formula

For simplicity, we condition on X implicitly in the following discussion. With
binary treatment Z, outcome Y , and unmeasured confounder U , show that

rrobs
ZY

rrtrue
ZY

=
1 + (γ − 1)pr(U = 1 | Z = 1)

1 + (γ − 1)pr(U = 1 | Z = 0)

assuming a common risk ratio of the treatment on the outcome within both
U = 0 and U = 1:

rrZY |U=0 = rrZY |U=1,

and also a common risk ratio of the confounder on the outcome within both
Z = 0 and Z = 1:

rrUY |Z=0 = rrUY |Z=1, denoted by γ.

Hint: First verify that if rrZY |U=0 = rrZY |U=1 then

rrtrue
ZY = rrZY |U=0 = rrZY |U=1.
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This identity shows the collapsibility of the risk ratio. In epidemiology, the
risk ratio is a collapsible measure of association.

Remark: Schlesselman (1978)’s formula does not assume conditional in-
dependence Z Y | U , but assumes homogeneity of the Z-Y and U -Y risk
ratios. It is a classic formula for sensitivity analysis. It is an identity that is
simple to implement with pre-specified

{γ,pr(U = 1 | Z = 1),pr(U = 1 | Z = 0)}.

However, it involves more sensitivity parameters than Theorem 17.1. Even
though Theorem 17.1 only gives an inequality, it is not a loose inequality
compared to Schlesselman (1978)’s formula under stronger assumptions. With
Theorem 17.1, Schlesselman (1978)’s formula is only of historical interest.

17.3 E-value after logistic regression: data analysis

This problem uses the same dataset as Example 17.2.
Report the E-value for the outcome preeclampsia.

17.4 Cornfield-type inequalities for the risk difference

Consider binary Z, Y, U , and condition on X implicitly. Assume latent ignor-
ability given U . Show that under Z Y | U , we have

rdobs
ZY = rdZU × rdUY (17.1)

where rdobs
ZY is the observed risk difference of Z on Y , and rdZU and rdUY

are the treatment-confounder and confounder-outcome risk differences, respec-
tively (recall the definition of the risk difference in Chapter 1.2.2).

Remark: Without loss of generality, assume that rdobs
ZY ,rdZU ,rdUY are

all positive. Then (17.1) implies that

min(rdZU ,rdUY ) ≥ rdobs
ZY

and

max(rdZU ,rdUY ) ≥
√
rdobs

ZY .

These are the Cornfield inequalities for the risk difference with a binary
confounder. They show that for an unmeasured confounder to explain away
an observed risk difference rdobs

ZY , the treatment-confounder and confounder-
outcome risk differences must both be larger than rdobs

ZY , and the maximum
of them must be larger than the square root of rdobs

ZY .
Cornfield et al. (1959) obtained, but did not appreciate the significance of

(17.1). Gastwirth et al. (1998) and Poole (2010) discussed the first Cornfield
condition for the risk difference, and Ding and VanderWeele (2014) discussed
the second.

Ding and VanderWeele (2014) also derived more general results without
assuming a binary U . Unfortunately, the results for a general U are weaker
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than those above for a binary U , that is, the inequalities become looser with
more levels of U . This motivated Ding and VanderWeele (2016) to focus on the
Cornfield inequalities for the risk ratio, which do not deteriorate with more
levels of U .

17.5 Recommended reading

Ding and VanderWeele (2016) extended and unified the Cornfield-type sensi-
tivity analysis, which is the theoretical basis for the notion of E-value.
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Sensitivity Analysis for the Average Causal
Effect with Unmeasured Confounding

Cornfield-type sensitivity analysis works the best for binary outcomes on the
risk ratio scale, conditioning on the observed covariates. Although Ding and
VanderWeele (2016) also proposed Cornfield-type sensitivity analysis methods
for the average causal effect, they are not general enough and are not con-
venient to apply. Below I give a more direct approach to sensitivity analysis
based on the conditional expectations of the potential outcomes. The idea
appeared in early work of Robins (1999) and Scharfstein et al. (1999). This
chapter is based on Lu and Ding (2023)’s recent formulation.

The approach is closely related to the idea of deriving worse-case bounds on
the average potential outcomes. I will first review the simpler idea of bounds,
and then discuss the approach to sensitivity analysis.

18.1 Introduction

Recall the canonical setup of an observational study with {Zi, Xi, Yi(1), Yi(0)}ni=1
IID∼

{Z,X, Y (1), Y (0)} and focus on the average causal effect

τ = E{Y (1)− Y (0)}.

It decomposes to

τ = [E(Y | Z = 1)pr(Z = 1) + E{Y (1) | Z = 0}pr(Z = 0)]

− [E{Y (0) | Z = 1}pr(Z = 1) + E(Y | Z = 0)pr(Z = 0)] .

So the fundamental difficulty is to estimate the counterfactual means

E{Y (1) | Z = 0}, E{Y (0) | Z = 1}.

There are in general two extreme strategies to estimate them.
We have discussed the first strategy in Part III, which relies on ignorability.

Assuming

E{Y (1) | Z = 1, X} = E{Y (1) | Z = 0, X},
E{Y (0) | Z = 1, X} = E{Y (0) | Z = 0, X},

225
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TABLE 18.1: Science Table with bounded outcome [ℓ, u], where ℓ and u are
two constants

Z Y (1) Y (0) Lower Y (1) Upper Y (1) Lower Y (0) Upper Y (0)

1 Y1(1) ? Y1(1) Y1(1) ℓ u
...

...
...

...
...

...
...

1 Yn1
(1) ? Yn1

(1) Yn1
(1) ℓ u

0 ? Yn1+1(0) ℓ u Yn1+1(0) Yn1+1(0)
...

...
...

...
...

...
...

0 ? Yn(0) ℓ u Yn(0) Yn(0)

we can identify the counterfactual means by the observables:

E{Y (1) | Z = 0} = E {E(Y | Z = 1, X) | Z = 0}

and, similarly,

E{Y (0) | Z = 1} = E {E(Y | Z = 0, X) | Z = 1} .

The second strategy in the next section assumes nothing except that the
outcomes are bounded between ℓ and u. This is natural for binary outcomes
with ℓ = 0 and u = 1. With this assumption, the two counterfactual means
are also bounded between ℓ and u, which implies the worse-case bounds on τ .
I will review this strategy below.

18.2 Manski-type worse-case bounds on the average
causal effect without assumptions

Assume that the outcome is bounded between ℓ and u. From the decomposi-
tion

E{Y (1)} = E{Y (1) | Z = 1}pr(Z = 1) + E{Y (1) | Z = 0}pr(Z = 0),

we can derive that E{Y (1)} has lower bound

E{Y | Z = 1}pr(Z = 1) + ℓpr(Z = 0)

and upper bound

E{Y | Z = 1}pr(Z = 1) + upr(Z = 0).

Similarly, from the decomposition

E{Y (0)} = E{Y (0) | Z = 1}pr(Z = 1) + E{Y (0) | Z = 0}pr(Z = 0),
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we can derive that E{Y (0)} has lower bound

ℓpr(Z = 1) + E{Y | Z = 0}pr(Z = 0)

and upper bound

upr(Z = 1) + E{Y | Z = 0}pr(Z = 0).

Combining these bounds, we can derive that the average causal effect τ =
E{Y (1)} − E{Y (0)} has lower bound

E{Y | Z = 1}pr(Z = 1)+ ℓpr(Z = 0)− upr(Z = 1)−E{Y | Z = 0}pr(Z = 0)

and upper bound

E{Y | Z = 1}pr(Z = 1)+upr(Z = 0)− ℓpr(Z = 1)−E{Y | Z = 0}pr(Z = 0).

The length of the bounds is u − ℓ, which is not informative but is better
than the a priori bounds [ℓ − u, u − ℓ] with length 2(u − ℓ). Without further
assumptions, the observed data distribution does not uniquely determine τ .
In this case, we say that τ is partially identified, with the formal definition
below.

Definition 18.1 (partial identification) A parameter θ is partially iden-
tified if the observed data distribuion is compatible with multiple values of θ.

Compare Definitions 10.1 and 18.1. If the parameter θ is uniquely deter-
mined by the observed data distribution, then it is identifiable; otherwise, it
is partially identifiable. Therefore, τ is identifiable with the ignorability as-
sumption, but only partially identifiable without the ignorability assumption.

Cochran (1953) used the idea of worse-case bounds in surveys with missing
data, but abandoned the idea because it often gives very conservative results.
Similarly, the worst-case bounds above are often uninteresting from a prac-
tical perspective because they often cover 0. Moreover, this strategy is not
applicable to the settings with unbounded outcomes.

Manski applied the idea to causal inference (Manski, 1990) and many other
econometric models (Manski, 2003). This idea of bounding causal parameters
with minimal assumptions is powerful when coupled with other qualitative
assumptions. Manski (2003) surveyed many strategies. For instance, we may
believe that the treatment does not harm any units, so the monotonicity
assumption holds: Y (1) ≥ Y (0). Then the lower bound on τ is zero but the
upper bound is unchanged. Another type of assumption is Z = I{Y (1) ≥
Y (0)}, that is, the treatment selection is based on the difference between the
latent potential outcomes. This assumption can also improve the bounds on
τ .
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18.3 Sensitivity analysis for the average causal effect

The first strategy is optimistic which assumes that the potential outcomes do
not differ across treatment and control groups, conditioning on the observed
covariates. The second strategy is pessimistic which does not infer the coun-
terfactual means based on the observed data at all. The following strategy is
in-between.

18.3.1 Identification formulas

Define

E{Y (1) | Z = 1, X}
E{Y (1) | Z = 0, X}

= ε1(X),

E{Y (0) | Z = 1, X}
E{Y (0) | Z = 0, X}

= ε0(X),

which are the sensitivity parameters. For simplicity, we can further assume
that they are constant independent of X. In practice, we need to fix them or
vary them in a pre-specified range. Recall that µ1(X) = E(Y | Z = 1, X) and
µ0(X) = E(Y | Z = 0, X). We can identify the two counterfactual means and
the average causal effect as follows.

Theorem 18.1 With known ε1(X) and ε0(X), we have

E{Y (1) | Z = 0} = E {µ1(X)/ε1(X) | Z = 0} ,
E{Y (0) | Z = 1} = E {µ0(X)ε0(X) | Z = 1}

and therefore

τ = E{ZY + (1− Z)µ1(X)/ε1(X)}
−E{Zµ0(X)ε0(X) + (1− Z)Y } (18.1)

= E{Zµ1(X) + (1− Z)µ1(X)/ε1(X)}
−E{Zµ0(X)ε0(X) + (1− Z)µ0(X)}. (18.2)

I leave the proof of Theorem 18.1 to Problem 18.1. With the fitted out-
come model, (18.1) and (18.2) motivate the following predictive and projective
estimators for τ :

τ̂pred =

{
n−1

n∑
i=1

ZiYi + n−1
n∑

i=1

(1− Zi)µ̂1(Xi)/ε1(Xi)

}

−

{
n−1

n∑
i=1

Ziµ̂0(Xi)ε0(Xi) + n−1
n∑

i=1

(1− Zi)Yi

}
,
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and

τ̂proj =

{
n−1

n∑
i=1

Ziµ̂1(Xi) + n−1
n∑

i=1

(1− Zi)µ̂1(Xi)/ε1(Xi)

}

−

{
n−1

n∑
i=1

Ziµ̂0(Xi)ε0(Xi) + n−1
n∑

i=1

(1− Zi)µ̂0(Xi)

}
.

The terminologies “predictive” and “projective” are from the survey sampling
literature (Firth and Bennett, 1998; Ding and Li, 2018). The estimators τ̂pred

and τ̂proj differ slightly: the former uses the observed outcomes when available;
in contrast, the latter replaces the observed outcomes with the fitted values.

More interesting, we can also identify τ by an inverse probability weighting
formula.

Theorem 18.2 With known ε1(X) and ε0(X), we have

E{Y (1)} = E

{
w1(X)

Z

e(X)
Y

}
, E{Y (0)} = E

{
w0(X)

1− Z

1− e(X)
Y

}
,

where

w1(X) = e(X) + {1− e(X)}/ε1(X), w0(X) = e(X)ε0(X) + 1− e(X).

I leave the proof of Theorem 18.2 to Problem 18.2. Theorem 18.2 modi-
fies the classic inverse probability weighting formulas with two extra factors
w1(X) and w0(X) depending on both the propensity score and the sensitivity
parameters. With the fitted propensity score model, Theorem 18.2 motivates
the following estimators for τ :

τ̂ht = n−1
n∑

i=1

{ê(Xi)ε1(Xi) + 1− ê(Xi)}ZiYi
ε1(Xi)ê(Xi)

−n−1
n∑

i=1

{ê(Xi)ε0(Xi) + 1− ê(Xi)}(1− Zi)Yi
1− ê(Xi)

and

τ̂haj =

n∑
i=1

{ê(Xi)ε1(Xi) + 1− ê(Xi)}ZiYi
ε1(Xi)ê(Xi)

/ n∑
i=1

Zi

ê(Xi)

−n−1
n∑

i=1

{ê(Xi)ε0(Xi) + 1− ê(Xi)}(1− Zi)Yi
1− ê(Xi)

/ n∑
i=1

1− Zi

1− ê(Xi)
.

More interestingly, with fitted propensity score and outcome models, the
following estimator for τ is doubly robust:

τ̂ht = τ̂ ipw − n−1
n∑

i=1

{Zi − ê(Xi)}
{

µ̂1(Xi)

ê(Xi)ε1(Xi)
+
µ̂0(Xi)ε0(Xi)

1− ê(Xi)

}
.
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That is, with known ε1(Xi) and ε0(Xi), the estimator τ̂dr is consistent for τ if
either the propensity score model or the outcome model is correctly specified.
We can use the bootstrap to approximate the variance of the above estimators.
See Lu and Ding (2023) for technical details.

When ε1(Xi) = ε0(Xi) = 1, the above estimators reduce to the predic-
tive estimator, inverse probability weighting estimator, and the doubly robust
estimators introduced in Part III.

18.4 Example

We revisit Example 10.3. With

ε1(X) = ε0(X) ∈ {1/2, 1/1.7, 1/1.5, 1/1.3, 1, 1.3, 1.5, 1.7, 2},

we obtain an array of doubly robust estimates of τ .

1/2 1/1.7 1/1.5 1/1.3 1 1.3 1.5 1.7

2

1/2 11.62 10.44 9.40 8.03 4.96 0.97 -1.69 -4.35 -8.34

1/1.7 9.22 8.05 7.00 5.64 2.57 -1.42 -4.08 -6.75 -10.74

1/1.5 7.63 6.45 5.41 4.05 0.97 -3.02 -5.68 -8.34 -12.33

1/1.3 6.03 4.86 3.81 2.45 -0.62 -4.61 -7.27 -9.94 -13.93

1 3.64 2.47 1.42 0.06 -3.01 -7.01 -9.67 -12.33 -16.32

1.3 1.80 0.63 -0.42 -1.78 -4.85 -8.85 -11.51 -14.17 -18.16

1.5 0.98 -0.19 -1.24 -2.60 -5.67 -9.66 -12.33 -14.99 -18.98

1.7 0.36 -0.82 -1.86 -3.23 -6.30 -10.29 -12.95 -15.61 -19.60

2 -0.35 -1.52 -2.57 -3.93 -7.00 -10.99 -13.65 -16.32 -20.31

The signs of the estimates are not sensitive to sensitivity parameters larger
than 1, but they are quite sensitivity to sensitivity parameters smaller than 1.
When the participants of the meal plan tend to have higher BMI, the average
causal effect of the meal plan on BMI is negative. However, this conclusion
can be quite sensitive if the participants of the meal plan tend to have lower
BMI.

18.5 Homework Problems

18.1 Proof of Theorem 18.1

Prove Theorem 18.1.
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18.2 Proof of Theorem 18.2

Prove Theorem 18.2.

18.3 Sensitivity analysis for the average causal effect on the treated units τT

This problem extends Chapter 13 to allow for unmeasured confounding for
estimating

τT = E{Y (1)− Y (0) | Z = 1} = E(Y | Z = 1)− E{Y (0) | Z = 1}.

We can easily estimate E(Y | Z = 1) by the sample moment. The only coun-
terfactual term is E{Y (0) | Z = 1}. Therefore, we only need the sensitivity
parameter ε0(X). We have the following two identification formulas with a
known ε0(X).

Theorem 18.3 With known ε0(X), we have

E{Y (0) | Z = 1} = E {Zµ0(X)ε0(X)} /e

= E

{
e(X)ε0(X)

1− Z

1− e(X)
Y

}
/e,

where e = pr(Z = 1)

Prove Theorem 18.3.
Remark: Theorem 18.3 motivates using τ̂∗t = µ̂t1 − µ̂∗

t0 to estimate τt,
where µ̂t1 =

∑n
i=1 ZiYi/

∑n
i=1 Zi and

µ̂reg
t0 = n−1

1

n∑
i=1

Ziε0(Xi)µ̂0(Xi),

µ̂ht
t0 = n−1

1

n∑
i=1

ε0(Xi)ô(Xi)(1− Zi)Yi,

µ̂haj
t0 =

n∑
i=1

ε0(Xi)ô(Xi)(1− Zi)Yi/

n∑
i=1

ô(Xi)(1− Zi),

with ô(Xi) = ê(Xi)/{1 − ê(Xi)} being the estimated conditional odds of the
treatment. Moreover, we can construct the doubly robust estimator τ̂drt =
µ̂t1 − µ̂dr

t0 for τt, where

µ̂dr
t0 = µ̂ht

t0 − n−1
1

n∑
i=1

ε0(Xi)
ê(Xi)− Z

1− ê(Xi)
µ̂0(Xi).

Lu and Ding (2023) provide more details and also propose a doubly robust
estimator for τT.

18.4 R code

Implement the estimators in Problem 18.3.
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18.5 Recommended reading

Rosenbaum and Rubin (1983a) and Imbens (2003) are two classic papers on
sensitivity analysis which, however, involve more complicated procedures.



19

Rosenbaum-Style p-Values for Matched
Observational Studies with Unmeasured
Confounding

Rosenbaum (1987b) introduced a sensitivity analysis technique for matched
observational studies. Although it works for general settings (Rosenbaum,
2002b), the theory is most elegant for one-to-one matching. Different from
Chapters 17 and 18, Rosenbaum-type sensitivity analysis works the best for
matched observational studies for testing the sharp null hypothesis of no in-
dividual treatment effect.

19.1 The model for sensitivity analysis with matched
data

Consider exactly matched pairs from an observational study, with (i, j) index-
ing unit j in pair i (i = 1, . . . , n; j = 1, 2). Assume iid sampling, and define
the propensity score as

eij = pr{Zij = 1 | Xi, Yij(1), Yij(0)}.

Let Si = {Yi1(1), Yi1(0), Yi2(1), Yi2(0)} denote the set of all potential outcomes
within pair i. Conditioning on the event that Zi1 + Zi2 = 1, we have

πi1 = pr{Zi1 = 1 | Xi,Si, Zi1 + Zi2 = 1}

=
pr{Zi1 = 1, Zi2 = 0 | Xi,Si}
pr{Zi1 + Zi2 = 1 | Xi,Si}

=
pr{Zi1 = 1, Zi2 = 0 | Xi,Si}

pr{Zi1 = 1, Zi2 = 0 | Xi,Si}+ pr{Zi1 = 0, Zi2 = 1 | Xi,Si}

=
ei1(1− ei2)

ei1(1− ei2) + (1− ei1)ei2

Define oij = eij/(1− eij) as the odds of the treatment for unit (i, j), and we
have

πi1 =
oi1

oi1 + oi2
.

233
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Under ignorability, eij is only a function of Xi, and therefore, ei1 = ei2 and
πi1 = 1/2. Thus the treatment assignment mechanism conditioning on covari-
ates and potential outcomes is equivalent to that from an MPE with equal
treatment and control probabilities. This is a strategy to analyze matched
observational studies we discussed in Chapter 15.1.

In general, eij is also a function of the unobserved potential outcomes, and
it can range from 0 to 1. Rosenbaum (1987b)’s model for sensitivity analysis
imposes bounds on the odds ratio oi1/oi2.

Assumption 19.1 (Rosenbaum’s sensitivity model) The odds ratios are
bounded by

oi1/oi2 ≤ Γ, oi2/oi1 ≤ Γ,

for some pre-specified Γ ≥ 1. Equivalently,

1

1 + Γ
≤ πi1 ≤ Γ

1 + Γ

for some pre-specified Γ ≥ 1.

Under Assumption 19.1, we have a biased MPE with unequal and varying
treatment and control probabilities across pairs. When Γ = 1, we have πi1
and thus a standard MPE. Therefore, Γ > 1 measures the deviation from the
ideal MPE due to the omitted variables in matching.

19.2 Worst-case p-values under Rosenbaum’s sensitivity
model

Consider testing the sharp null hypothesis

H0f : Yij(1) = Yij(0) for i = 1, . . . , n and j = 1, 2

based on the within-pair differences τ̂i = (2Zi1 − 1)(Yi1 − Yi2) (i = 1, . . . , n).
Under H0f, |τ̂i| is fixed but Si = I(τ̂i > 0) is random if τ̂i ̸= 0. Consider the
following class of test statistics:

T =

n∑
i=1

Siqi,

where qi ≥ 0 is a function of (|τ̂1|, . . . , |τ̂n|). Special cases include the sign
statistic, the pair t statistic (up to some constant shift), and the Wilcoxon
sign rank statistic:

T =

n∑
i=1

Si, T =

n∑
i=1

Si|τ̂i|, T =

n∑
i=1

SiRi,



19.4 Revisiting the LaLonde data 235

where (R1, . . . , Rn) are the ranks of (|τ̂1|, . . . , |τ̂n|).
What is the null distribution of the test statistic with general Γ? It can

be quite complicated because we do not fully specify the exact values of the
πi1’s. Fortunately, we know that the worse case distribution correspond to

Si
IID∼ Bernoulli

(
Γ

1 + Γ

)
.

Here, the FRT with T has the largest p-value under the “the worst case”
distribution. The corresponding distribution has mean

EΓ(T ) =
Γ

1 + Γ

n∑
i=1

qi,

and variance

varΓ(T ) =
Γ

(1 + Γ)2

n∑
i=1

q2i ,

with a Normal approximation

T − Γ
1+Γ

∑n
i=1 qi√

Γ
(1+Γ)2

∑n
i=1 q

2
i

d−→ N(0, 1).

In practice, we can report a sequence of p-values as a function of Γ.

19.3 Revisiting the LaLonde data

We conduct Rosenbaum-style sensitivity analysis in the matched LaLonde
data. We consider using the test statistic T =

∑n
i=1 Si|τ̂i|. Under the ideal

matched pair experiment with Γ = 1, we can simulate the distribution of T and
obtain the p-value 0.002, as shown in the first subfigure in Figure 19.1. With a
slightly larger Γ = 1.1, the distribution of T shifts to the right and the p-value
increases to 0.011. If we further increase Γ to 1.3, then the distribution of T
shifts further and the p-value exceeds 0.05. Figure 19.2 shows the histogram of
the τ̂i’s and the p-value as a function of Γ; Γ = 1.233 measures the maximum
confounding that we can still reject the null hypothesis at level 0.05.

We can also use the senmw function in the sensitivitymw package to obtain
a sequence of p-values against Γ, as shown in Figure 19.2.
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500000 600000 700000 800000 900000 1000000 1100000

p =  0.002Γ = 1

500000 600000 700000 800000 900000 1000000 1100000

p =  0.011Γ = 1.1

500000 600000 700000 800000 900000 1000000 1100000

p =  0.084Γ = 1.3

FIGURE 19.1: Distributions of T =
∑n

i=1 Si|τ̂i| with Si iid Bernoulli(Γ/(1 +
Γ)), based on the LaLonde data.
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FIGURE 19.2: p-value as a function of Γ, based on the LaLonde data.
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FIGURE 19.3: Two examples
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19.4 Homework Problems

19.1 Application of Rosenbaum’s approach

Re-analyze Example 10.3 using Rosenbaum’s approach.

19.2 Recommended reading

Rosenbaum (2015) provides a tutorial for his two R packages for sensitivity
analysis with matched observational studies.
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Overlap in Observational Studies:
Difficulties and Opportunities

20.1 Implications of overlap

In Part III of this book, causal inference with observational studies relies on
two critical assumptions: unconfoundedness

Z {Y (1), Y (0)} | X

and overlap
0 < e(X) < 1.

D’Amour et al. (2021) pointed out the tension between these two assumptions:
typically, more covariates make the unconfoundedness assumption more plau-
sible (ignoring M-bias discussed in Chapter 16.3.1), but more covariates make
the overlap assumption less plausible because the treatment becomes more
predictable.

If some units has e(X) = 0 or e(X) = 1, then we have philosophic diffi-
culty of thinking about the counterfactual potential outcomes (King and Zeng,
2006). In particular, if a unit deterministically receives the treatment, then it
may not be meaningful to conceive its potential outcome under control; vice
versa. Even if the true propensity score is not exactly 0 or 1, the estimated
propensity score can be very close to 0 or 1 in finite sample, which makes the
estimators based on inverse probability weighting numerically unstable. Many
statistical analyses in fact require a strict version of overlap:

Assumption 20.1 (strict overlap) η ≤ e(X) ≤ 1−η for some η ∈ (0, 1/2).

However, D’Amour et al. (2021, Corollary 1) showed that Assumption
20.1 has very strong implications. For simplicity, I present only one of their
results. Let Xk (k = 1, . . . , p) be the kth component of the covariate X =
(X1, . . . , Xp), and e = pr(Z = 1) be the proportion of the treated units.

Theorem 20.1 Assumption 20.1 implies that η ≤ e ≤ 1− η and

p−1

p∑
k=1

∣∣E(Xk | Z = 1)− E(Xk | Z = 0)
∣∣∣

≤ p−1/2C1/2
{
eλ

1/2
1 + (1− e)λ

1/2
0

}
, (20.1)

241
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where

C =
(e− η)(1− e− η)

e2(1− e)2η(1− η)

is a positive constant depending only on (e, η), and λ1 and λ0 are the maximum
eigenvalues of the covariance matrices cov(X | Z = 1) and cov(X | Z = 0),
respectively.

What is the order of the maximum eigenvalues in Theorem 20.1? D’Amour
et al. (2021) showed that it is usually smaller than O(p) unless the compo-
nents of X are highly correlated. If the components of X are highly correlated,
then some components are redundant after including other components. If the
components of X are not highly correlated, then the right-hand side converges
to zero. So the average difference in means of the covariates is close to zero,
that is, the treatment and control groups are nearly balanced in means aver-
aged over all dimensions of the covariates. Mathematically, the left-hand side
of (20.1) converging to zero rules out the possibility that all dimensions of X
have non-vanishing difference in means across treatment and control groups.
It is a strong requirement in observational studies with many covariates.

20.1.1 Trimming in the presence of limited overlap

When Assumption 20.1 does not hold, it is common to trim the units based on
the estimated propensity scores (Crump et al., 2009; Yang and Ding, 2018).
Trimming drops units within regions of little overlap, which changes the pop-
ulation and estimand. The restrictive implications of overlap in Assumption
20.1 suggest that trimming must be employed more often and one may need
to trim a large proportion of units to achieve desirable overlap in high dimen-
sions.

20.1.2 Outcome modeling in the presence of limited overlap

The somewhat negative results in D’Amour et al. (2021) also highlight the
limitation of focusing only on the propensity score in the presence of limited
overlap. With high dimensional covariates, outcome modeling becomes more
important. In particular, if the outcome means only depend on a function of
the original covariates in that

E{Y (z) | X} = fz(r(X)), (z = 0, 1)

then it suffices to control for r(X), a lower dimensional summary of the original
covariates. Due to the dimension reduction, the strict overlap condition on
r(X) can be much weaker than the strict overlap condition on X. This is
conceptually straightforward, but the corresponding theory and methods are
missing.
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20.2 Causal inference with no overlap: regression discon-
tinuity

Starting from the simple case with a univariate X. An extreme treatment
assignment mechanism is a deterministic one:

Z = 1(X ≥ x0),

where x0 is a predetermined threshold. An interesting consequence of this
assignment is that the unconfoundedness assumption holds automatically:

Z {Y (1), Y (0)} | X

because Z is a deterministic function of X. However, the overlap assumption
is violated by definition:

e(X) = pr(Z = 1 | X) = 1(X ≥ x0) =

{
1 if X ≥ x0,

0 if X < x0.

So our analytic strategies discussed in Part IV are no longer applicable here.
We must change our perspective.

The discussion here seems contrived, with a deterministic treatment as-
signment. Interestingly, it has many applications in practice, and is called
regression discontinuity. Below, I first review some canonical examples and
then give a mathematical formulation of this type of studies.

20.2.1 Examples and graphical diagnostics

Example 20.1 Thistlethwaite and Campbell (1960) first proposed the idea of
regression-discontinuity analysis. Their motivating example was to study the
effect of students’ winning Certificated of Merit on later career plans, where
the Certificated of Merit was determined by whether the Scholarship Qualifying
Test score was above a certain threshold. Their initial analysis was mainly
graphical. Figure 20.1 shows one of their graphs.

Example 20.2 Bor et al. (2014) used regression discontinuity to study the
effect of when to start HIV patients with antiretroviral on their mortality,
where the treatment is determined by whether the patients’ CD4 counts were
below 200 cells/µL.1

Example 20.3 Carpenter and Dobkin (2009) studied the effect of alco-
hol consumption on mortality, which leverages the minimum legal drink-
ing age as a discontinuity for alcohol consumption. They derived mortality

1CD4 cells are white blood cells that fight infection.
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FIGURE 20.1: A graph from Thistlethwaite and Campbell (1960) with minor
modifications of the unclear text in the original paper
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FIGURE 20.2: Minimum legal drinking age example

data from the National Center for Health Statistics, including the decedent’s
date of birth and date of death. They computed age profile of deaths per
100,000 person years with outcomes measured by the following nine variables:

all all deaths, the sum of internal and external

internal deaths due to internal causes
external deaths due to external causes, the sum of the rest
homicide homicides
suicide suicides

mva motor vehicle accidents
alcohol deaths with a mention of alcohol
drugs deaths with a mention of drug use

externalother deaths due to other external causes
Figure 20.2 plots the number of deaths per 100,000 person years for nine

measures based on the data used by Angrist and Pischke (2014). From the
jumps at age 21, it seems obvious that there is an increase of mortality at age
21, primarily due to motor vehicle accidents. I leave the formal analysis as
Problem 20.3.

20.2.2 A mathematical formulation of regression discontinu-
ity

The technical term for the variable X that determines the treatment is the
running variable. Intuitively, regression discontinuity can identify a local av-
erage causal effect at the cutoff point x0:

τ(x0) = E{Y (1)− Y (0) | X = x0}.
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In particular, for the potential outcome under treatment, we have

E{Y (1) | X = x0} = lim
ε→0+

E{Y (1) | X = x0 + ε} (20.2)

= lim
ε→0+

E{Y (1) | Z = 1, X = x0 + ε} (20.3)

= lim
ε→0+

E(Y | Z = 1, X = x0 + ε), (20.4)

where (20.2) holds if E{Y (1) | X = x} is continuous from the right at x0
and (20.3) follows by the definition of Z. Similarly, for the potential outcome
under control, we have

E{Y (0) | X = x0} = lim
ε→0+

E(Y | Z = 0, X = x0 − ε)

if E{Y (0) | X = x} is continuous from the left at x0. So the local average
causal effect at x0 can be identified by the difference of the two limits. I
summarize the key identification result below.

Theorem 20.2 Assume that E{Y (1) | X = x} is continuous from the right
at x0 and E{Y (0) | X = x} is continuous from the left at x0. Then the local
average treatment effect at X = x0 is identified by

τ(x0) = lim
ε→0+

E(Y | Z = 1, X = x0 + ε)− lim
ε→0+

E(Y | Z = 0, X = x0 − ε).

Since the right-hand side of the above equation only involves observables,
the parameter τ(x0) is nonparametrically identified. However, the form of
the identification formula is totally different from what we derived before. In
particular, the identification formula involves limits of two conditional expec-
tation functions.

20.2.3 Regressions near the boundary

If we are lucky, graphical diagnostic sometimes can clearly show the causal
effect at the cutoff point. However, many outcomes are noisy so graphical
diagnostic is not enough. Figure 20.3 shows two examples with obvious jumps
at the cutoff point and two examples without obvious jumps, although the
underlying data generating processes all have discontinuities.

Assume that E(Y | Z = 1, X = x) = γ1+β1x and E(Y | Z = 0, X = x) =
γ0 + β0x are linear in x. We can run OLS based on the treated and control
data to obtain the fitted lines γ̂1 + β̂1x and γ̂0 + β̂0x, respectively. We can
then estimate the average causal effect at the point X = x0 as

τ̂(x0) = (γ̂1 − γ̂0) + (β̂1 − β̂0)x0.

Numerically, τ̂(x0) is identical to the coefficient of Zi in the OLS

Yi ∼ {1, Zi, Xi − x0, Zi(Xi − x0)}, (20.5)
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FIGURE 20.3: Examples of regression discontinuity. In the first column, the
data generating processes result in visible jumps at the cutoff points; in the
second column, the jumps are not so visible. In the first row, the data gener-
ating processes have constant τ(x); in the second row, τ(x) varies with x.
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and it is also identical to the coefficient of Zi in the OLS

Yi ∼ {1, Zi, Ri, Li}, (20.6)

where
Ri = max(Xi − x0, 0), Li = min(Xi − x0, 0)

indicate the right and left parts of Xi − x0, respectively. I leave the algebraic
details to Problem 20.1.

However, this approach may be sensitive to the violation of the linear
model. Theory suggests running regression using only the local observations
near the cutoff point2. However, the rule for choosing the “local points” are
quite involved. Fortunately, the rdrobust function in the rdrobust package in R

implements various choices of “local points.” Since choosing the “local points”
is the key in regression discontinuity, it seems more sensible to report estimates
and confidence intervals based on various choices of the “local points.”

20.2.4 An example

Lee (2008) gave a famous example of using regression discontinuity to study
the incumbency advantage in the U.S. House. He wrote that “incumbents are,
by definition, those politicians who were successful in the previous election.
If what makes them successful is somewhat persistent over time, they should
be expected to be somewhat more successful when running for re-election.”
Therefore, this is a fundamentally challenging causal inference problem. The
regression discontinuity is a clever study design to study this problem.

The running variable is the lagged vote in the previous election centered
at 0, and the outcome is the vote in current election, with units being the
congressional districts. The treatment is the binary indicator for being the
current incumbent party in a district, determined by the lagged vote. Figure
20.4 show the raw data.

The rdrobust function gives three sets of the point estimate and confidence
intervals. They all suggest positive incumbency advantage.

> library(rdrobust)

> library(rddtools)

> data(house)

> RDDest = rdrobust(house$y, house$x)
[1] "Mass points detected in the running variable."

> cbind(RDDest$coef , RDDest$ci)
Coeff CI Lower CI Upper

Conventional 0.06372533 0.04224798 0.08520269

Bias -Corrected 0.05937028 0.03789292 0.08084763

Robust 0.05937028 0.03481238 0.08392818

2This is called local linear regression in nonparametric statistics, which belongs to a
broader class of local polynomial regression (Fan and Gijbels, 1996).
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FIGURE 20.4: Raw data of Lee (2008)

Figure 20.5 shows the point estimates and the confidence intervals based
on OLS with different choices of the local points defined by |X| < x0. While
the point estimates and the confidence intervals are sensitive to the choice of
x0, the qualitative result remains the same as above.
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FIGURE 20.5: Estimates based on local linear regressions

20.2.5 Problems of regression discontinuity

What can go wrong with the regression discontinuity analysis? The techni-
cal challenge is to specify the neighborhood near the cutoff point. We have
discussed this issue above.

In addition, Theorem 20.2 holds under a continuity condition. It may be
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violated in practice. For instance, if the mortality rate jumps at the age of
21, then the jumps in Figure 20.2 may not be due to the change of drinking
behavior due to the legal drink age. However, it is hard to check the violation
of the continuity condition empirically.

McCrary (2008) proposed an indirect test for the validity of the regression
discontinuity. He suggested checking the density of the running variable at
the cutoff point. The discontinuity in the density of the running variable at
the cutoff point may suggest that some units were able to manipulate their
treatment status perfectly.

20.3 Homework Problems

20.1 Linear potential outcome models

This problem gives more details for the numerical equivalence in Section
20.2.3.

Show that τ̂(x0) equals the coefficients of Zi in OLS fits (20.5) and (20.5).
Hint: It is helpful for start with the figures of Zi(Xi − x0), Li, and Ri

with Xi on the x-axis. The conclusion holds by reparametrizating the OLS
regressions.

20.2 Simulation for regression discontinuity

RDD_numerical.R simulates potential outcomes from linear models and gener-
ates Figure 20.3. Change them to nonlinear models, and compare different
point estimators and confidence intervals, including the biases and variances
of the point estimators, and the coverage properties of confidence intervals.

20.3 Re-analysis of the data on the minimum legal drink age

Analyze the data mlda.csv of Carpenter and Dobkin (2009).

20.4 Recommended reading

D’Amour et al. (2021) discussed the implications of overlap with high dimen-
sional covariates.

Thistlethwaite and Campbell (1960)’s original paper on regression dis-
continuity was re-printed as Thistlewaite and Campbell (2016) with many
insightful comments. Coincidentally, Thistlethwaite and Campbell (1960) and
Rubin (1974) were both published in the Journal of Educational Psychology.
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An Experimental Perspective

The instrumental variable method has been a powerful tool in econometrics.
It identifies causal effects in studies without unconfoundedness between the
treatment and the outcome. It relies on an additional variable, called the
instrumental variable (IV), that satisfies certain conditions. These conditions
may not be easy to digest when you read for the first time. In some sense,
IV is a magic. This chapter presents a not-so-magic perspective based on the
encouragement design. This again echos Dorn (1953)’s suggestion that the
planner of an observational study should always ask himself the following
question:

How would the study be conducted if it were possible to do it by controlled
experimentation?

The experimental analog of the IV method is the encouragement design (Zelen,
1979; Powers and Swinton, 1984; Holland, 1986).

21.1 Encouragement Design and Noncompliance

Consider an experiment with units indexed by i = 1, . . . , n. Let Zi be the
treatment assigned, with 1 for the treatment and 0 for the control. Let Di be
the treatment received, with 1 for the treatment and 0 for the control. When
Zi ̸= Di for some unit i, the noncompliance problem arises. Noncompliance is
a very common problem especially in encouragement designs involving human
beings as experimental units. In these cases, the experimenters cannot force
the units to take the treatment but rather only encourage them to do so. Let
Yi be the outcome of interest.

Consider complete randomization of Z and ignore covariates X now.
We have the potential values for the treatment received {Di(1), Di(0)}
and the potential values for the outcome {Yi(1), Yi(0)}, all with respect to
the treatment assignment levels 1 and 0. Their observed values are Di =
ZiDi(1) + (1 − Zi)Di(0) and Yi = ZiYi(1) + (1 − Zi)Yi(0), respectively.

For notational simplicity, we assume {Zi, Di(1), Di(0), Yi(1), Yi(0)}ni=1
IID∼

{Z,D(1), D(0), Y (1), Y (0)} and sometimes drop the subscript i without caus-
ing confusions.

253
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We start with completely randomized experiments.

Assumption 21.1 (randomization) Z {D(1), D(0), Y (1), Y (0)}.
Randomization allows for identification of the average causal effects on D

and Y :

τD = E{D(1)−D(0)} = E(D | Z = 1)− E(D | Z = 0)

and
τY = E{Y (1)− Y (0)} = E(Y | Z = 1)− E(Y | Z = 0).

We can use simple difference-in-means estimators τ̂D and τ̂Y to estimate τD
and τY , respectively.

Reporting the estimate τ̂Y with the associated standard error is called
the intention-to-treat (ITT) analysis. It estimates the effect of the treatment
assignment on the outcome, and complete randomization in Assumption 21.1
justifies this analysis. However, it may not answer the scientific question, that
is, the causal effect of the treatment received on the outcome.

21.2 Latent Compliance Status and Effects

21.2.1 Nonparametric identification

Following Imbens and Angrist (1994) and Angrist et al. (1996), we stratify the
population based on the joint potential values of of {Di(1), Di(0)}. Because
D is binary, we have four possible combinations:

Ui =


a, if Di(1) = 1 and Di(0) = 1;
c, if Di(1) = 1 and Di(0) = 0;
d, if Di(1) = 0 and Di(0) = 1;
n, if Di(1) = 0 and Di(0) = 0,

where “a” is for “always taker,” “c” is for “complier,” “d” is for “defier,”
and “n” is for “never taker.” Because we cannot observe Di(1) and Di(0)
simultaneously, Ui is a latent variable for the compliance behavior of unit i.

Based on U , we can use the law of total probability to decompose the
average causal effect on Y into four terms:

τY = E{Y (1)− Y (0) | U = a}pr(U = a)

+E{Y (1)− Y (0) | U = c}pr(U = c)

+E{Y (1)− Y (0) | U = d}pr(U = d)

+E{Y (1)− Y (0) | U = n}pr(U = n). (21.1)

Therefore, τY is a weighted average of four latent subgroup effects. We will
look into more details of the latent groups below.

Assumption 21.2 below restricts the third term in (21.1) to be zero.
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Assumption 21.2 (monotonicity) pr(U = d) = 0 or Di(1) ≥ Di(0), that
is, there are no defiers.

Assumption 21.2 holds automatically with one-sided noncompliance when
the units assigned to the control arm have no access to the treatment, i.e.,
Di(0) = 0 for all units. Under randomization, Assumption 21.2 has a testable
implication that

pr(D = 1 | Z = 1) ≥ pr(D = 1 | Z = 0).

But Assumption 21.2 is much stronger than the inequality above. The former
restricts Di(1) and Di(0) at the individual level and the latter restricts them
only on average. Nevertheless, when this testable implication holds, we cannot
use the observed data to refute Assumption 21.2.

Assumption 21.3 below restricts the first and last terms in (21.1) to be
zero based on the mechanism of the treatment assignment on the outcome
through only the treatment received.

Assumption 21.3 (exclusion restriction) Yi(1) = Yi(0) for always takers
with Ui = a and never takers with Ui = n.

Assumption 21.3 requires that the treatment assignment affects the out-
come only if it affects the treatment received. In double-blind clinical trial1,
it is biologically plausible because the outcome only depends on the actual
treatment received. That is, if the treatment assignment does not change the
treatment received, it does not change the outcome either. It can be violated
if the treatment assignment has direct effects on the outcome not through
the treatment received. For example, some randomized controlled trials are
not double blinded, and the treatment assignment can have some unknown
pathways to the outcome.

Under Assumptions 21.2 and 21.3, the decomposition (21.1) only has the
second term :

τY = E{Y (1)− Y (0) | U = c}pr(U = c). (21.2)

Similarly, we can decompose the average causal effect on D into four terms:

τD = E{D(1)−D(0) | U = a}pr(U = a)

+E{D(1)−D(0) | U = c}pr(U = c)

+E{D(1)−D(0) | U = d}pr(U = d)

+E{D(1)−D(0) | U = n}pr(U = n)

= 0× pr(U = a) + 1× pr(U = c) + (−1)× pr(U = d) + 0× pr(U = n),

1In general, it is better to blind the experiment to avoid various biases arising from
placebo effects, patients’ expectation, etc. In double blind trials, both doctors and patients
do not know the treatment; in single blind trials, the patients do not know the treatment
but the doctors know. Sometimes, it is impossible to conduct double or even single blind
trials. Those trials are called open trials.
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which, under Assumption 21.2, reduces to

τD = pr(U = c). (21.3)

This is an interesting fact that the proportion of the compliers πc equals the
average causal effect of the treatment assigned on D, an identifiable quantity
under complete randomization. Although we do not know all the compliers
based on the observed data, we can identify their proportion in the whole
population based on (21.3). Combining (21.2) and (21.3), we have the following
result.

Theorem 21.1 Under Assumptions 21.2–21.3, we have

E{Y (1)− Y (0) | U = c} =
τY
τD

if τD ̸= 0.

Following Imbens and Angrist (1994) and Angrist et al. (1996), we define
a new causal effect below.

Definition 21.1 (CACE or LATE) Define

τc ≡ E{Y (1)− Y (0) | U = c}

as the “complier average causal effect (CACE)” or the “local average treatment
effect (LATE)”. It has alternative forms:

τc = E{Y (1)− Y (0) | D(1) = 1, D(0) = 0}
= E{Y (1)− Y (0) | D(1) > D(0)}.

Based on Definition 21.1, we can rewrite Theorem 21.1 as

τc =
τY
τD
,

that is, the CACE or LATE equals the ratio of the average causal effects on Y
over that on D. Under Assumption 21.1, we further identify the CACE below.

Corollary 21.1 Under Assumptions 21.1–21.3, we have

τc =
E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
.

Therefore, under randomization, monotonicity, and exclusion restriction,
we can nonparametrically identify the CACE as the ratio of the difference in
means of the outcome over the difference in means of the treatment received.
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21.2.2 Estimation

Based on Corollary 21.1, we can estimate τc by a simple ratio

τ̂c =
τ̂Y
τ̂D
,

which is called the Wald estimator (Wald, 1940) or the IV estimator. In the
above discussion, Z acts as the IV for D.

We can obtain the variance estimator based on the following heuristics
(see Example A1.3):

τ̂c − τc = (τ̂Y − τcτ̂D)/τ̂D ≈ (τ̂Y − τcτ̂D)/τD = τ̂A/τD,

where τ̂A is the difference-in-means of the adjusted outcome Ai = Yi − τcDi.
So the asymptotic variance of τ̂c is close to the variance of τ̂A divided by τ2D.
The variance estimation proceeds in the following steps:

1. obtain the adjusted outcomes Âi = Yi − τ̂cDi (i = 1, . . . , n);

2. obtain the Neyman-type variance estimate based on the adjusted
outcomes:

V̂Â =
Ŝ2
Â
(1)

n1
+
Ŝ2
Â
(0)

n0
,

where Ŝ2
Â
(1) and Ŝ2

Â
(0) are the sample variances of the Âi’s under

treatment and control, respectively;

3. obtain the final variance estimator V̂Â/τ̂
2
D.

Under the null hypothesis that τc = 0, we can simply approximate the
variance by V̂Y /τ̂

2
D, where V̂Y is the Neyman-type variance estimate for the

difference in means of Y . This variance estimator is inconsistent if the true τc is
not zero. Therefore, it works for testing but not for estimation. Nevertheless, it
gives interesting insights for the ITT estimator and the Wald estimator. The

ITT estimator τ̂Y has estimated standard error
√
V̂Y . The Wald estimator

τ̂Y /τ̂D essentially equals the ITT estimator multiplied by 1/τ̂D > 1, which
is larger in magnitude but at the same time its estimated standard error
increases by the same factor. The confidence intervals for τY and τc are

τ̂Y ± z1−α/2

√
V̂Y

and

τ̂Y /τ̂D ± z1−α/2

√
V̂Y /τ̂D =

(
τ̂Y ± z1−α/2

√
V̂Y

)
/τ̂D.

These confidence intervals give the same qualitative conclusions since they
will both cover zero or not. In some sense, the IV analysis provides the same
qualitative information as the ITT analysis of Y although it involves more
complicated procedures.
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21.3 Covariates

21.3.1 Covariate adjustment in complete randomization

We now consider completely randomized experiments with covariates, and
assume Z {D(1), D(0), Y (1), Y (0), X}. With covariates X, we can obtain
Lin (2013)’s estimators τ̂D,L and τ̂Y,L for both D and Y , resulting in τ̂c,L =
τ̂Y,L/τ̂D,L. Recall that

τ̂D,L =
{
ˆ̄D(1)− β̂TD1

ˆ̄X(1)
}
−
{
ˆ̄D(0)− β̂TD0

ˆ̄X(0)
}
,

τ̂Y,L =
{
ˆ̄Y (1)− β̂TY 1

ˆ̄X(1)
}
−
{
ˆ̄Y (0)− β̂TY 0

ˆ̄X(0)
}
,

where β̂D1 and β̂Y 1 are the coefficients of X in the OLS fits of D and Y in
the treated group, and β̂D0 and β̂Y 0 are the coefficients of X in the OLS fits
of D and Y in the control group. We can approximate the standard error of
τ̂c,L based on the following heuristics (again see Example A1.3):

τ̂c,L − τc = (τ̂Y,L − τcτ̂D,L)/τ̂D,L ≈ (τ̂Y,L − τcτ̂D,L)/τD = τ̂A/τD,

where τ̂A is the difference-in-means of A, defined as

Ai =

{
(Yi − β̂TY 1Xi)− τc(Di − β̂TD1Xi), if Zi = 1,

(Yi − β̂TY 0Xi)− τc(Di − β̂TD0Xi), if Zi = 0.

The variance estimation proceeds in the following steps:

1. obtain the adjusted outcomes Âi (i = 1, . . . , n) with

Âi =

{
(Yi − β̂TY 1Xi)− τ̂c,L(Di − β̂TD1Xi), if Zi = 1,

(Yi − β̂TY 0Xi)− τ̂c,L(Di − β̂TD0Xi), if Zi = 0;

2. obtain the Neyman-type variance estimate based on the adjusted
outcomes:

V̂Â =
Ŝ2
Â
(1)

n1
+
Ŝ2
Â
(0)

n0
,

where Ŝ2
Â
(1) and Ŝ2

Â
(0) are the sample variances of the Âi’s under

the treatment and control, respectively;

3. obtain the final variance estimator V̂Â/τ̂
2
D,L.

Again under the null with τc = 0, we can approximate the estimated
standard error for τ̂c,L by the estimated standard error of τ̂Y,L (e.g., the EHW
standard error in the fully interacted linear model) divided by τ̂D,L.
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21.3.2 Covariates in conditional randomization or uncon-
founded observational studies

If randomization holds conditionally, i.e.,

Z {D(1), D(0), Y (1), Y (0)} | X,

then we must adjust for covariates to avoid bias. The analysis is also straight-
forward since we already have discussed many estimators in Part III for es-
timating the effects of Z on D and Y , respectively. We can just use them
in the ratio formula τ̂c = τ̂Y /τ̂D and use the bootstrap to approximate the
asymptotic variance.

21.4 Weak IV

Even τD > 0, there is a positive probability that τ̂D is zero, so the variance of
τ̂c is infinity. The variance from the Normal approximation discussed before is
not the variance of τ̂c but rather the variance of its asymptotic distribution.
This is a subtle technical point. When τD is close to 0, which is referred to
as the weak IV case, the ratio estimator τ̂c = τ̂Y /τ̂D has poor finite-sample
properties. Under this scenario, τ̂c has finite sample bias and non-Normal
asymptotic distribution, and the corresponding Wald-type confidence intervals
have poor coverage properties2. In the simple case with a binary outcome Y ,
we know that τY must be bounded between−1 and 1, but there is no guarantee
that τ̂c is bounded between −1 and 1. How do we deal with a weak IV?

From a testing perspective, there is an easy solution. Because τc = τY /τD,
so the following two null hypotheses are equivalent:

H0 : τc = 0 ⇐⇒ H ′
0 : τY = 0.

Therefore, we simply test H ′
0, i.e., the average causal effect of Z on Y is zero.

This echos our discussion in Section 21.2.2.
From an estimation perspective, we can focus on the confidence inter-

val although the point estimator has poor finite-sample properties. Because
τc = τY /τD, this is similar to the classical Fieller–Creasy problem in statis-
tics. Below we discuss a strategy for constructing confidence interval for τc
motivated by Fieller (1954); see Section A1.4.2. Given the true value τc, we
have

τY − τcτD = 0.

2The theory often assumes that τD has the order n−1/2. Under this regime, the propor-
tion of compliers goes to 0 as n goes to infinity. The IV method can only identify a subgroup
average causal effect with the proportion shrinking to 0. This is a contrived regime for theo-
retical analysis. It is hard to justify this assumption in practice. The follow discussion does
not assume it.
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So we can construct a confidence set for τc by inverting a sequence of null
hypotheses

H0(b) : τc = b

This null hypothesis is equivalent to the null hypothesis of zero average causal
effect on the outcome Ai(b) = Yi − bDi:

H0(b) : τA(b) = 0.

Let τ̂A(b) be a generic estimator for τA(b) with the associated variance

estimator V̂A(b). In the CRE without covariates, τ̂A(b) is the difference in
means of the outcome Ai(b) and V̂A(b) is the Neyman-type variance estimator.
In the CRE with covariates, τ̂A(b) is Lin (2013)’s estimator for the outcome
Ai(b) and V̂A(b) is the EHW variance estimator in the associated OLS fit
of Yi − bDi on (Zi, Xi, ZiXi). In unconfounded observational studies, we can
obtain the estimator for the average causal effect on Ai(b) and the associated
variance estimator based on many existing strategies in Part III.

Based on τ̂A(b) and τA(b), we can construct a Wald-type test for H0(b).
Inverting tests, we can construct the following confidence set for τc:{

b :
τ̂2A(b)

V̂A(b)
≤ z2α

}
.

This is close to the Anderson–Rubin-type confidence interval in econometrics
(Anderson and Rubin, 1950). Due to its connection to Fieller (1954), I will call
it the Fieller–Anderson–Rubin confidence interval. These weak-IV confidence
intervals reduce to the asymptotic confidence intervals when the IV is strong.
But they have additional guarantees when the IV is weak. I recommend using
them in practice.

Example 21.1 To gain intuition about the Fieller–Anderson–Rubin confi-
dence interval, we look into the simple case of the CRE without covariates.
The quadratic inequality in the confidence interval reduces to

(τ̂Y − bτ̂D)2

≤ z2α

[
n−1
1 {Ŝ2

Y (1) + b2Ŝ2
D(1)− 2bŜY D(1)}

+n−1
0 {Ŝ2

Y (0) + b2Ŝ2
D(0)− 2bŜY D(0)}

]
,

where {Ŝ2
Y (1), Ŝ

2
D(1), ŜY D(1)} and {Ŝ2

Y (0), Ŝ
2
D(0), ŜY D(0)} are the sample

variances and covariances of Y and D under treatment and control, respec-
tively. The confidence set can be a close interval, two disconnected intervals,
an empty set, or the whole real line. I relegate the detailed discussion to Prob-
lem 21.3.
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21.5 Application

The mediation package contains a dataset jobs from Job Search Intervention
Study (JOBS II), which was a randomized field experiment that investigates
the efficacy of a job training intervention on unemployed workers. The variable
treat is the indicator for whether a participant was randomly selected for the
JOBS II training program, and the variable comply is the indicator for whether
a participant actually participated in the JOBS II program. An outcome of
interest is job_seek for measuring the level of job-search self-efficacy with
values from 1 to 5. A few standard covariates are sex, age, marital, nonwhite,
educ, and income.

Without using covariates, the confidence intervals based on the delta
method and the bootstrap are

> est

[1] 0.1087904

> c(est - 1.96*dse, est + 1.96*dse)

[1] -0.05002163 0.26760235

> c(est - 1.96*bse, est + 1.96*bse)

[1] -0.04657384 0.26415455

Adjusting for covariates, the confidence intervals based on the delta
method and the bootstrap are

> est

[1] 0.1176332

> c(est - 1.96*dse, est + 1.96*dse)

[1] -0.03638421 0.27165070

> c(est - 1.96*bse, est + 1.96*bse)

[1] -0.03926737 0.27453386

We can also construct confidence interval by inverting tests. Without using
covariates, it is

> ARCI

[1] -0.050 0.267

adjusting for covariates, it is

> ARCI

[1] -0.046 0.281

Figure 21.1 plots the p-values for a sequence of tests.
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FIGURE 21.1: Confidence interval of τc by inverting tests

21.6 Interpreting the Complier Average Causal Effect

The notation for potential outcomes {D(1), D(0), Y (1), Y (0)} is with respect
to the hypothetical intervention of the treatment assigned Z. So τc is the
average causal effect of the treatment assigned on the outcome for compliers.
Fortunately, D = Z for compliers, so we can also interpret τc as the average
causal effect of the treatment received on the outcome for compliers. This
partially answers the scientific question.

Some papers (e.g., Angrist et al., 1996) use different notation. They use
Yi(z, d) for the potential outcome of unit i under a 2 × 2 factorial experi-
ment with the treatment assigned z and treatment received d. The exclusion
restriction assumption has the following form.
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Assumption 21.4 (exclusion restriction) Yi(z, d) = Yi(d) for all i, that
is, the potential outcome is only a function of d.

Based on the causal graph below, Assumption 21.4 rules out the direct
arrow from Z to Y . In such case, Z is an IV for D.

U

~~ ��
Z // D // Y

Under Assumption 21.4, the augmented notation Yi(z, d) reduces to Yi(d),
which justifies the name of “exclusion restriction.” Therefore, Yi(1, d) =
Yi(0, d) for d = 0, 1, which, coupled with Assumption 21.2, implies that

Yi(z = 1)− Yi(z = 0) = Yi(1, Di(1))− Yi(0, Di(0))

=

 0, if Ui = a,
0, if Ui = n,
Yi(d = 1)− Yi(d = 0), if Ui = c.

In the above, we emphasize the potential outcomes are with respect to z, d
or both, to avoid confusions. The previous decomposition of τY holds and we
have the following result from Imbens and Angrist (1994) and Angrist et al.
(1996).

Recall the average causal effect on D, τD = E{D(1) − D(0)}, define the
average causal effect on Y as τY = E{Y (D(1)) − Y (D(0))}, and define the
complier average causal effect as

τc = E{Y (d = 1)− Y (d = 0) | U = c}.

Theorem 21.2 Under Assumptions 21.2–21.4, we have

Y (D(1))− Y (D(0)) = {D(1)−D(0)} × {Y (d = 1)− Y (d = 0)}

and τc = τY /τD.

The proof is almost identical to the proof of Theorem 21.1 with modifica-
tions of the notation. I leave it as Problem 21.2. From the notation Yi(d), it is
more convenient to interpret τc as as the average causal effect of the treatment
received on the outcome for compliers.

21.7 Homework problems

21.1 Variance of the Wald estimator

Show that var(τ̂c) = ∞.
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21.2 Proof of the main theorem of Imbens and Angrist (1994) and Angrist
et al. (1996)

Prove Theorem 21.2.

21.3 More on the Fieller–Anderson–Rubin confidence set

The confidence set in Example 21.1 can be a close interval, two disconnected
intervals, an empty set, or the whole real line. Find the precise conditions for
each case.

21.4 Binary IV and ordinal treatment received

Angrist and Imbens (1995) discussed a more general setting with a binary
IV Z, an ordinal treatment received D ∈ {0, 1, . . . , J}, and an outcome Y .
The ordinal treatment received has potential outcomes D(1) and D(0) with
respect to the binary IV, and the outcome has potential outcomes Y (z, d) with
respect to both the binary IV and the ordinal treatment received. Extend the
discussion in Section 21.6 and the corresponding IV assumptions as below.

Assumption 21.5 We have (1) randomization that Z {D(z), Y (z, d) : z =
0, 1; d = 0, 1, . . . , J}; (2) monotonicity that D(1) ≥ D(0); and (3) exclusion
restriction that Y (z, d) = Y (d) for all z = 0, 1 and d = 0, 1, . . . , J .

They proved Theorem 21.3 below.

Theorem 21.3 Under Assumption 21.5, we have

E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
=

J∑
j=1

wjE{Y (j)−Y (j−1) | D(1) ≥ j > D(0)}

where

wj =
pr{D(1) ≥ j > D(0)}∑J

j′=1 pr{D(1) ≥ j′ > D(0)}
.

Prove Theorem 21.3.
Remark: When J = 1, Theorem 21.3 reduces to Theorem 21.2. It states

that the standard IV formula identifies a weighted average of some latent
subgroup effects. The weights are proportional to the probability of the latent
groups defined by D(1) ≥ j > D(0), and the latent subgroup effects E{Y (j)−
Y (j − 1) | D(1) ≥ j > D(0)} compare the adjacent levels of the treatment
received. However, this weighted average may not be easy to interpret because
the latent groups overlap.

The proof can be tedious. A trick is to write the treatment received and
outcome under treatment assignment z as

D(z) =

J∑
j=1

j1{D(z) = j}, Y (D(z)) =

J∑
j=1

Y (j)1{D(z) = j}
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to obtain

D(1)−D(0) =

J∑
j=0

j[1{D(1) = j} − 1{D(0) = j}]

and

Y (D(1))− Y (D(0)) =

J∑
j=0

Y (j)[1{D(1) = j} − 1{D(0) = j}].

Then use the following Abel’s lemma, also called summation by parts:

J∑
j=0

fj(gj+1 − gj) = fJgJ+1 − f0g0 −
J∑

j=1

gj(fj − fj−1)

for appropriately specified sequences (fj) and (gj).

21.5 Data analysis: a flu shot encouragement design (McDonald et al., 1992)

The dataset in fludata.txt is from a randomized encouragement design of
McDonald et al. (1992), which was also re-analyzed by Hirano et al. (2000).
It contains the following variables:

assign binary encouragement to receive the flu shot
receive binary indicator for receiving the flu shot
outcome binary outcome for flu related hospitalization
age age of the patient
sex sex of the patient
race race of the patient
copd, dm, heartd, renal, liverd various disease background covariates
Analyze the data with and without adjusting for the covariates.

21.6 Data analysis: the Karolinska data

Rubin (2008) used the Karolinska data as an example for the IV method. In
karolinska.txt, whether a patient was diagnosed at large volume hospital
can be viewed as an IV for whether a patient was treated at a large volume
hospital. This is plausible at least conditioning on other observed covariates.
See Rubin (2008)’s analysis for more details.

Reanalyze the data assuming that the IV is randomly assigned conditional
on observed covariates.

21.7 Data analysis: a job training program (Schochet et al., 2008)

jobtraining.rtf contains the description of the data files X.csv and Y.csv.
X.csv contains the pretreatment covariates; you can view the sampling

weight variable wgt as a covariate too. It is generally difficult to deal with
sampling weights. Many previous analyses made this simplification. Conduct
analyses with and without covariates.
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Y.csv contains the sampling weight, treatment assigned, treatment re-
ceived, and many post-treatment variables. Therefore, this data contains many
outcomes depending on your questions of interest. The data also have many
complications. First, some outcomes are missing. Second, unemployed indi-
viduals do not have wages or incomes. Third, the outcomes are repeatedly
observed over time. When you do the data analysis, please give details about
your choice of the questions of interest and estimators.

21.8 Recommended reading

Angrist et al. (1996) bridged the econometric IV perspective and statistical
causal inference based on potential outcomes and demonstrated its usefulness
with an application.

Some other early references on IV are Permutt and Hebel (1989), Sommer
and Zeger (1991), Baker and Lindeman (1994), and Cuzick et al. (1997).
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Disentangle Mixture Distributions and
Instrumental Variable Inequalities

The IV model in Chapter 21 imposes Assumptions 21.1–21.3:

1. Z {D(1), D(0), Y (1), Y (0)};
2. pr(U = d) = 0;

3. Y (1) = Y (0) for U = a or n.

Table 22.1 summarizes the observed groups and the corresponding latent
groups.

TABLE 22.1: Observed groups and latent groups under Assumption 21.2

Z = 1 D = 1 D(1) = 1 U = c or a
Z = 1 D = 0 D(1) = 0 U = n
Z = 0 D = 1 D(0) = 1 U = a
Z = 0 D = 0 D(0) = 0 U = c or n

Interestingly, Assumptions 21.1–21.3 together have some testable implica-
tions. Balke and Pearl (1997) called them the instrumental variable inequal-
ities. This chapter will give an intuitive derivation of a special case of these
inequalities. The proof is a direct consequence of identifying the means of the
potential outcomes for all latent groups defined by U .

22.1 Disentangle Mixture Distributions and Instrumen-
tal Variable Inequalities

We summarize the main results in Theorem 22.1 below. Recall πu as the
proportion of type U = u, and define

µzu = E{Y (z) | U = u}, (d = 0, 1;u = a,n, c).

267
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Theorem 22.1 Under Assumptions 21.1–21.3, we can identify the propor-
tions of the latent types by

πn = pr(D = 0 | Z = 1),

πa = pr(D = 1 | Z = 0),

πc = E(D | Z = 1)− E(D | Z = 0),

and the type-specific means of the potential outcomes by

µ1n = µ0n ≡ µn = E(Y | Z = 1, D = 0),

µ1a = µ0a ≡ µa = E(Y | Z = 0, D = 1),

µ1c = π−1
c {E(DY | Z = 1)− E(DY | Z = 0)} ,

µ0c = π−1
c

[
E{(1−D)Y | Z = 0} − E{(1−D)Y | Z = 1}

]
.

Proof of Theorem 17.1: Part I: We first identify the proportions of the
latent compliance types. We can identify the proportion of the never takers
by

pr(D = 0 | Z = 1) = pr(U = n | Z = 1)

= pr(U = n) = πn,

and the proportion of the always takes by

pr(D = 1 | Z = 0) = pr(U = a | Z = 0)

= pr(U = a) = πa.

Therefore, the proportion of compliers is

πc = pr(U = c) = 1− πn − πa

= 1− pr(D = 0 | Z = 1)− pr(D = 1 | Z = 0)

= E(D | Z = 1)− E(D | Z = 0) = τD,

which is coherent with our discussion before. Although we do not know indi-
vidual latent compliance types for all units, we can identify the proportions
of never takers, always takers, and compliers.

Part II: We then identify the means of the potential outcomes within latent
compliance types. Under Assumption 21.3,

µ1a = µ0a ≡ µa, µ1n = µ0n ≡ µn.

The observed group (Z = 1, D = 0) only has never takers, so

E(Y | Z = 1, D = 0) = E{Y (1) | Z = 1, U = n} = E{Y (1) | U = n} = µn.

The observed group (Z = 0, D = 1) only has always takers, so

E(Y | Z = 0, D = 1) = E{Y (0) | Z = 0, U = a} = E{Y (0) | U = a} = µa.
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The observed group (Z = 1, D = 1) has both compliers and always takers, so

E(Y | Z = 1, D = 1) = E{Y (1) | Z = 1, D(1) = 1}
= E{Y (1) | D(1) = 1}
= pr{D(0) = 1 | D(1) = 1}E{Y (1) | D(1) = 1, D(0) = 1}

+pr{D(0) = 0 | D(1) = 1}E{Y (1) | D(1) = 1, D(0) = 0}

=
πc

πc + πa
µ1c +

πa
πc + πa

µa.

Solve the linear equation above to obtain

µ1c = π−1
c {(πc + πa)E(Y | Z = 1, D = 1)− πaE(Y | Z = 0, D = 1)}

= π−1
c {pr(D = 1 | Z = 1)E(Y | Z = 1, D = 1)

−pr(D = 1 | Z = 0)E(Y | Z = 0, D = 1)}
= π−1

c {E(DY | Z = 1)− E(DY | Z = 0)} .

The observed group (Z = 0, D = 0) has both compliers and never takers, so
we have

E(Y | Z = 0, D = 0) = E{Y (0) | Z = 0, D(0) = 0}
= E{Y (0) | D(0) = 0}
= pr{D(1) = 1 | D(0) = 0}E{Y (0) | D(1) = 1, D(0) = 0}

+pr{D(1) = 0 | D(0) = 0}E{Y (0) | D(1) = 0, D(0) = 0}

=
πc

πc + πn
µ0c +

πn
πc + πn

µn.

Solve the linear equation above to obtain

µ0c = π−1
c {(πc + πn)E(Y | Z = 0, D = 0)− πnE(Y | Z = 1, D = 0)}

= π−1
c {pr(D = 0 | Z = 0)E(Y | Z = 0, D = 0)

−pr(D = 0 | Z = 1)E(Y | Z = 1, D = 0)}
= π−1

c

[
E{(1−D)Y | Z = 0} − E{(1−D)Y | Z = 1}

]
.

□
Based on the formulas of µ1c and µ0c in Theorem 22.1, we have

τc = µ1c − µ0c = {E(Y | Z = 1)− E(Y | Z = 0)}/πc,

which is the same as the formula in Theorem 21.1 before.
Theorem 22.1 focuses on identifying the means of the potential outcomes,

µzu. Imbens and Rubin (1997) derived more general identification formulas
for the distribution of the potential outcomes; I leave the details to Problem
22.2.
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22.2 Testable implications

Is there any additional value of the this detour for deriving the formula of
τc? The answer is yes. For binary outcome, the following inequalities must be
true:

0 ≤ µ1c ≤ 1, 0 ≤ µ0c ≤ 1,

which implies four inequalities

E(DY | Z = 1)− E(DY | Z = 0) ≥ 0,

E(DY | Z = 1)− E(DY | Z = 0) ≤ E(D | Z = 1)− E(D | Z = 0),

E{(1−D)Y | Z = 0} − E{(1−D)Y | Z = 1} ≥ 0,

E{(1−D)Y | Z = 0} − E{(1−D)Y | Z = 1} ≤ E(D | Z = 1)− E(D | Z = 0).

Rearranging terms, we obtain the following unified inequalities.

Theorem 22.2 (Instrumental Variable Inequalities) With a binary out-
come Y , Assumptions 21.1–21.3 imply

E(Q | Z = 1)− E(Q | Z = 0) ≥ 0, (22.1)

where Q = DY,D(1− Y ), (D − 1)Y and D + Y −DY .

Under the IV assumptions 21.1–21.3, the difference in means for Q =
DY,D(1− Y ), (D − 1)Y and D + Y −DY must all be non-negative. Impor-
tantly, these implications only involve the distribution of the observed vari-
ables. Rejection of the IV inequalities leads to rejection of the IV assumptions.

Balke and Pearl (1997) derived more general IV inequalities without as-
suming monotonicity. The above proving strategy is due to Jiang and Ding
(2020) for a slightly more complex setting. Theorem 22.2 states the testable
implications only for a binary outcome. Problem 22.3 gives an equivalent form,
and Problem 22.4 gives the result for a general outcome.

22.3 Examples

For a binary outcome, we can estimate all the parameters by the method of
moment as below.

## function for binary data (Z, D, Y)

## n_{zdy}’s are the counts from 2X2X2 table

IVbinary = function(n111 , n110 , n101 , n100 ,

n011 , n010 , n001 , n000){
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n_tr = n111 + n110 + n101 + n100

n_co = n011 + n010 + n001 + n000

n = n_tr + n_co

## proportions of the latent strata

pi_n = (n101 + n100)/n_tr

pi_a = (n011 + n010)/n_co

pi_c = 1 - pi_n - pi_a

## four observed means of the outcomes (Z=z,D=d)

mean_y_11 = n111/(n111 + n110)

mean_y_10 = n101/(n101 + n100)

mean_y_01 = n011/(n011 + n010)

mean_y_00 = n001/(n001 + n000)

## means of the outcomes of two strata

mu_n1 = mean_y_10

mu_a0 = mean_y_01

## ER implies the following two means

mu_n0 = mu_n1

mu_a1 = mu_a0

## stratum (Z=1,D=1) is a mixture of c and a

mu_c1 = ((pi_c + pi_a)*mean_y_11 - pi_a*mu_a1)/pi_c

## stratum (Z=0,D=0) is a mixture of c and n

mu_c0 = ((pi_c + pi_n)*mean_y_00 - pi_n*mu_n0)/pi_c

## identifiable quantities from the observed data

list(pi_c = pi_c,

pi_n = pi_n,

pi_a = pi_a,

mu_c1= mu_c1,

mu_c0= mu_c0,

mu_n1= mu_n1,

mu_n0= mu_n0,

mu_a1= mu_a1,

mu_a0= mu_a0)

}

We then re-visit two canonical examples.

Example 22.1 Investigators et al. (2014) assess the effectiveness of the
emergency endovascular versus the open surgical repair strategies for patients
with a clinical diagnosis of ruptured aortic aneurism. Patients are randomized
to either the emergency endovascular or the open repair strategy. The primary
outcome is the survival status after 30 days. Let Z be the treatment assigned,
with Z = 1 for the endovascular strategy and Z = 0 for the open repair. Let
D be the treatment received. Let Y be the survival status, with Y = 1 for dead,
and Y = 0 for alive. The estimate of τc is 0.131 with 95% confidence interval
(−0.036, 0.298) including 0. Using the function above, we can obtain
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TABLE 22.2: Binary data and IV inequalities

(a) Investigators et al. (2014)’s study

Z = 1 Z = 0
D = 1 D = 0 D = 1 D = 0

Y = 1 107 68 24 131
Y = 0 42 42 8 79

(b) Hirano et al. (2000)’s study

Z = 1 Z = 0
D = 1 D = 0 D = 1 D = 0

Y = 1 31 85 30 99
Y = 0 424 944 237 1041

$mu_c1
[1] 0.7086064

$mu_c0
[1] 0.6292042

There is no evidence of violating the IV assumptions.

Example 22.2 In Hirano et al. (2000), physicians are randomly selected to
receive a letter encouraging them to inoculate patients at risk for flu. The
treatment is the actual flu shot, and the outcome is an indicator for flu-related
hospital visits. However, some patients do not comply with their assignments.
Let Zi be the indicator of encouragement to receive the flu shot, with Z = 1 if
the physician receives the encouragement letter, and Z = 0 otherwise. Let D
be the treatment received. Let Y be the outcome, with Y = 0 if for a flu-related
hospitalization during the winter, and Y = 1 otherwise. The estimate of τc
is 0.116 with 95% confidence interval (−0.061, 0.293) including 0. Using the
function above, we can obtain

$mu_c1
[1] -0.004548064

$mu_c0
[1] 0.1200094

Since µ̂1c < 0, there is evidence of violating the IV assumptions.
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22.4 Homework problems

22.1 Risk ratio for compliers

With binary outcome, we can define the risk ratio for compliers as

rrc =
pr{Y (1) = 1 | U = c}
pr{Y (0) = 1 | U = c}

.

Show that under Assumptions 21.1–21.3, we can identify it by

rrc =
E(DY | Z = 1)− E(DY | Z = 0)

E{(D − 1)Y | Z = 1} − E{(D − 1)Y | Z = 0}
.

Remark: Using Theorem 22.1, we can identify any comparisons between
E{Y (1) | U = c} and E{Y (0) | U = c}.

22.2 Disentangle the mixtures: distributional results

This problem extends Theorem 22.1. Define

fzu(y) = pr{Y (z) = y | U = u}, (d = 0, 1;u = a,n, c)

as the density of Y (z) for latent stratum U = u, and define

gzd(y) = pr(Y = y | Z = z,D = d)

as the density of the outcome within the observed group (Z = z,D = d).
Show Theorem 22.3 below.

Theorem 22.3 Under Assumptions 21.1–21.3, we can identify the type-
specific densities of the potential outcomes by

f1n(y) = f0n(y) ≡ fn(y) = g10(y),

f1a(y) = f0a(y) ≡ fa(y) = g01(y),

f1c(y) = π−1
c {pr(D = 1 | Z = 1)g11(y)− pr(D = 1 | Z = 0)g01(y)},

f0c(y) = π−1
c {pr(D = 0 | Z = 0)g00(y)− pr(D = 0 | Z = 1)g10(y)}.

22.3 Alternative form of Theorem 22.2

The inequalities in (22.1) can be re-written as

pr(D = 1, Y = y | Z = 1) ≥ pr(D = 1, Y = y | Z = 0),

pr(D = 0, Y = y | Z = 0) ≥ pr(D = 0, Y = y | Z = 1)

for both y = 0, 1.
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22.4 Instrumental variable inequalities for a general outcome

For a general outcome Y , show that Assumptions 21.1–21.3 imply

pr(D = 1, Y ≥ y | Z = 1) ≥ pr(D = 1, Y ≥ y | Z = 0),

pr(D = 1, Y < y | Z = 1) ≥ pr(D = 1, Y < y | Z = 0),

pr(D = 0, Y ≥ y | Z = 0) ≥ pr(D = 0, Y ≥ y | Z = 1),

pr(D = 0, Y < y | Z = 0) ≥ pr(D = 0, Y < y | Z = 1)

for all y.
Remark: Imbens and Rubin (1997) and Kitagawa (2015) discussed similar

results. For instance, we can test the first inequality based on an analog of the
Kolmogorov–Smirnov statistic:

KS1 = max
y

∣∣∣∑n
i=1 ZiDi1(Yi ≤ y)∑n

i=1 ZiDi
−
∑n

i=1(1− Zi)Di1(Yi ≤ y)∑n
i=1(1− Zi)Di

∣∣∣.
22.5 Example for the IV inequalities

Give an example in which all the IV inequalities hold and another example in
which not all the IV inequalities hold. You need to specify the joint distribution
of (Z,D, Y ) with binary Z and D.

22.6 Violations of the key assumptions

Theorem 21.1 relies on randomization, monotonicity, and exclusion restric-
tion. The latter two are not testable even in randomized experiments. When
they are violated, the IV estimator no longer identifies the complier average
causal effect. This problem gives two cases below, which are restatement of
Propositions 2 and 3 in Angrist et al. (1996).

Under Assumptions 21.1 and 21.2 without the exclusion restriction, we
have

E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
− τc =

πaτa + πnτn
πc

where
τu = E{Y (1)− Y (0) | U = u}, (U = a,n, c).

Under Assumptions 21.1 and 21.3 without the monotonicity, we have

E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
− τc =

πd(τc + τd)

πc − πd
.

Prove the above two results.

22.7 Problems of other analyses

In the process of deriving the IV inequalities in Section 22.1, we disentangled
the mixture distributions by identifying the proportions of the latent strata



22.4 Homework problems 275

as well as the conditional means of their potential outcomes. These results
are helpful for understanding the drawbacks of other seemingly reasonable
analyses. I review three estimators below and suppose Assumptions 21.1–21.3
holds.

1. The as-treated analysis compares the means of the outcomes among
units receiving the treatment and control, yielding

τat = E(Y | D = 1)− E(Y | D = 0).

Show that

τat =
πaµa + pr(Z = 1)πcµ1c

pr(D = 1)
− πnµn + pr(Z = 0)πcµ0c

pr(D = 0)
.

2. The per-protocol analysis compares the units who comply with the
treatment assigned in treatment and control groups, yielding

τpp = E(Y | Z = 1, D = 1)− E(Y | Z = 0, D = 0).

Show that

τpp =
πaµa + πcµ1c

πa + πc
− πnµn + πcµ0c

πn + πc
.

3. We may also want to compare the outcomes among units receiving
the treatment and control, conditioning on their treatment assign-
ment, yielding

τZ=1 = E(Y | Z = 1, D = 1)− E(Y | Z = 1, D = 0),

τZ=0 = E(Y | Z = 0, D = 1)− E(Y | Z = 0, D = 0).

Show that they reduce to

τZ=1 =
πaµa + πcµ1c

πa + πc
− µn, τZ=0 = µa −

πnµn + πcµ0c

πn + πc
.

22.8 Bounds on the average causal effect on the whole population

Extend the discussion in Section 22.1 based on the notation in Section 21.6.
With the potential outcome Y (d), define the average causal effect of the treat-
ment received on the outcome as

δ = E{Y (d = 1)− Y (d = 0)},

and modify the definition of µdu as

mdu = E{Y (d) | U = u}, (z = 0, 1;u = a,n, c).

They satisfy

δ =
∑

u=a,n,c

πu(m1u −m0u).



27622 Disentangle Mixture Distributions and Instrumental Variable Inequalities

Section 22.1 identifies πa, πn, πc, m1a = µ1a, m0n = µ0n, m1c = µ1c and
m0c = µ0c. But the data do not contain any information about m0a and m1n.
Therefore, we cannot identify δ. With a bounded outcome, we can bound δ.
Show the following result:

Theorem 22.4 Under Assumptions 21.2–21.4 with a bounded outcome in
[y, y], we have δ ≤ δ ≤ δ, where

δ = δ′ − ypr(D = 1 | Z = 0) + ypr(D = 0 | Z = 1)

and
δ = δ′ − ypr(D = 1 | Z = 0) + ypr(D = 0 | Z = 1)

with δ′ = E(DY | Z = 1)− E(Y −DY | Z = 0).

Remark: In the special case with a binary outcome, the bounds simplify
to

δ = E(DY | Z = 1)− E(D + Y −DY | Z = 0)

and
δ = E(DY + 1−D | Z = 1)− E(Y −DY | Z = 0).

22.9 One-sided noncompliance and statistical inference

Consider a randomized encouragement design where the units assigned to the
control have no access to the treatment. For unit i, let Zi be the binary treat-
ment assigned, Di be the binary treatment received, and Yi be the outcome
of interest. One-sided noncompliance happens when

Zi = 0 =⇒ Di = 0 (i = 1, . . . , n).

Suppose that Assumption 21.1 holds.

1. Does monotonicity Assumption 21.2 hold in this case? How many
latent strata defined by {Di(1), Di(0)} are there in this problem?
How do we identify their proportions by the observed data distri-
bution?

2. State the assumption of exclusion restriction. Under exclusion re-
striction, show that E{Y (z) | U = u} can be identified by the
observed data distributions. Give the formulas for all possible val-
ues of z and u. How do we identify the complier average causal
effect in this case?

3. If we observe pretreatment covariates Xi for all units i, how do we
use the covariate information to improve the estimation efficiency
of the complier average causal effect?

4. Under Assumption 21.1, the exclusion restriction Assumption 21.3
has testable implications, which are the IV inequalities for one-sided
noncompliance. State the IV inequalities.
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5. Sommer and Zeger (1991) provided the following dataset:

Z = 1 Z = 0
D = 1 D = 0 D = 1 D = 0

Y = 1 9663 2385 0 11514
Y = 0 12 34 0 74

Re-analyze it.

Remark: Bloom (1984) first discussed one-sided noncompliance and pro-
posed the IV estimator τ̂c = τ̂Y /τ̂D. His notation is different from this chapter.

22.10 One-sided noncompliance with partial adherence

Sanders and Karim (2021, Table 3) reported the following data from a ran-
domized clinical trial aiming to estimate the efficacy of smoking cessation
interventions among individuals with psychotic disorders.

group assigned treatment received group size # positive outcomes

Control None 151 25
Treatment None 35 7
Treatment Partial 42 17
Treatment Full 70 40

Three tiers of treatment received are defined as follows: “full” treatment
corresponds to attending all 8 treatment sessions, “partial” corresponds to
attending 5 to 7 sessions, and “none” corresponds to< 5 sessions. The outcome
is defined as the binary indicator of smoking reduction of 50% or greater
relative to baseline, measured at three months.

In this problem, the treatment assignment Z is binary but the treatment
received D takes three values 0, 0.5, 1 for “none”, “partial”, and “full.” The
three-leveled D causes complications, but it can only be 0 under the control
assignment. How many latent strata U = {D(1), D(0)} do we have in this
problem? Can we identify their proportions?

How do we extend the exclusion restriction to this problem? What can be
the causal effects of interest? Can we identify them?

Analyze the data based on the questions above.

22.11 Recommended reading

Balke and Pearl (1997) derived more general IV inequalities.
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An Econometric Perspective

Chapters 21 and 22 discuss the IV method from the experimental perspective.
Figure 23.1 illustrates the intuition behind the discussion.

U

~~ ��
Z // D // Y

FIGURE 23.1: Causal diagram for IV

In an encouragement design with noncompliance, Z is randomized, so it
is independent of the confounder U between the treatment received D and
the outcome Y . Importantly, the treatment assignment Z does not have any
direct effect on the outcome Y . It acts as an IV for the treatment received D
in the sense that it affects the outcome Y only through the treatment received
D. This IV is generated by the experimenter.

In many applications, randomization is infeasible. Then how can we draw
causal inference in the presence of unmeasured confounding between the treat-
ment and outcome? A clever idea from econometrics is to find natural exper-
iments to mimic the setting of encouragement designs. To identify the causal
effect of D on Y with unmeasured confounding, we can find another variable
Z that satisfies the assumptions of the diagram in Figure 23.1. The variable
Z must satisfy the following conditions:

1. it should be close to be randomized so that it is independent of the
unmeasured confounding;

2. it should change the distribution of D;

3. it should not affect the outcome Y directly.

If all these conditions hold, then Z is a valid IV.
This chapter will provide the traditional econometrics perspective on IV.

It is based on linear regression. Imbens and Angrist (1994) and Angrist et al.
(1996) made a fundamental contribution by clarifying connection between
this perspective and the experimental perspective in Chapters 21 and 22. I
will start with examples and then give more algebraic details.

279
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23.1 Examples of studies with IVs

Finding IV for causal inference is more an art than a science. The algebraic
details in later sections are not the most complicated ones in statistics. How-
ever, it is fundamentally challenging to find IV in empirical research. Below
are some famous examples.

Example 23.1 In an encouragement design, Z in the randomly assigned
treatment, D is the final treatment received, and Y is the outcome. The IV
assumptions encoded by Figure 23.1 is plausible in double-blind trials as dis-
cussed in Chapter 21. This is the ideal case for IV.

Example 23.2 Hearst et al. (1986) reported that men with low lottery num-
ber in the Vietnam Era draft lottery had higher mortality rates afterwards.
They attributed this to the negative effect of military service. Angrist (1990)
further reported that men with low lottery number in the Vietnam Era draft
lottery had lower subsequent earnings. He attributed this to the negative effect
of military service. These explanations are plausible because the lottery num-
bers were randomly generated, men with low lottery number were more likely
to have military service, and the lottery numbers were unlikely to affect the
subsequent mortality or earnings. That is, Figure 23.1 is plausible. Angrist
et al. (1996) reanalyzed the data using the IV framework. Here, the lottery
number is the IV, military service is the treatment, and mortality or earnings
is the outcome.

Example 23.3 Angrist and Krueger (1991) studied the return of schooling
in years on earnings, using the quarter of birth as an IV. This IV is plausible
because of the pseuso randomization of the quarter of birth. It affected the years
of schooling because (1) most states required the students to enter school in
the calendar year in which they turned six, and (2) compulsory schooling laws
typically required students remain in the school before their sixteenth birthday.
More important, it is plausible that the quarter of birth did not affect earnings
directly.

Example 23.4 Angrist and Evans (1998) studied the effect of family size on
mother’s employment and work, using the sibling sex composition as an IV.
This IV is plausible because of the pseudo randomization of the sibling sex
composition. Moreover, parents in the US with two children of the same sex
are more likely to have a third child than those parents with two children of
different sex. It is also plausible that the sibling sex composition does not affect
mother’s employment and work directly.

Example 23.5 Card (1993) studied the effect of schooling on wage, using the
geographic variation in college proximity as an IV. In particular, Z contains
dummy variables for whether a subject grew up near a two-year college or a
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four-year college. Although this study is classic, it might be a poor example
for IV because parents’ choices of where to live might not be random, and
moreover, where a subject grew up might matter for the subsequent wage.

Example 23.6 Voight et al. (2012) studied the causal effect of plasma high-
density lipoprotein (HDL) cholesterol on the risk of heart attack based on
Mendelian randomization. They used some single-nucleotide polymorphisms
(SNPs) as genetic IV for HDL, which are random with respect to the unmea-
sured confounders between HDL and heart attack by Mendel’s second law, and
affect heart attack only though HDL. I will give more details of Mendelian
randomization in Chapter 25.

23.2 Brief Review of the Ordinary Least Squares

Before discussing the econometric view of IV, I will first review the OLS in
statistics (see Chapter A2). This is a standard topic in statistics. However, it
has different mathematical formulations, and the choice of formulation matters
for the interpretation.

The first view is based on projection. Given any pair of random variables
(D,Y ) with finite second moments, define the population OLS coefficient as

β = argmin
b
E(Y −DTb)2 = E(DDT)−1E(DY ),

and then define the residual as ε = Y − DTβ. By definition, Y decomposes
into

Y = DTβ + ε, (23.1)

which must satisfy
E(Dε) = 0.

Based on (Di, Yi)
n
i=1

IID∼ (D,Y ), the OLS estimator of β is

β̂ =

(
n∑

i=1

DiD
T
i

)−1 n∑
i=1

DiYi.

Because

β̂ =

(
n∑

i=1

DiD
T
i

)−1 n∑
i=1

Di(D
T
i β + εi) = β +

(
n∑

i=1

DiD
T
i

)−1 n∑
i=1

Diεi,

we can show that β̂ is consistent for β because of E(εD) = 0. The classical
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EHW robust variance estimator for cov(β̂) is

V̂ehw =

(
n∑

i=1

DiD
T
i

)−1( n∑
i=1

ε̂2iDiD
T
i

)(
n∑

i=1

DiD
T
i

)−1

where ε̂i = Yi −DT
i β̂ is the residual.

The second view is to treat

Y = DTβ + ε, (23.2)

as a true model for data generating process. That is, given the random vari-
ables (D, ε), we generate Y based on the linear equation (23.2). Importantly,
in the data generating process, ε and D may be correlated in that E(Dε) ̸= 0.
Figure 23.2 gives such an example. This is the fundamental difference com-
pared to the first view where E(εD) = 0 holds by the definition of the popu-
lation OLS. Consequently, the OLS estimator can be inconsistent:

β̂ → β + E(DDT)−1E(Dε) ̸= β

in probability.
I end this section with definitions of endogenous and exogenous regressors

based on (23.2), although their definitions are not unique in econometrics.

Definition 23.1 When E(εD) ̸= 0, the regressor D is called endogenous;
when E(εD) = 0, the regressor D is called exogenous.

The terminologies in Definition 23.1 are standard in econometrics. When
E(εD) ̸= 0, we also say that we have endogeneity; when E(εD) = 0, we also
say that we have exogeneity.

In first view of OLS, the notions of endogeneity and exogeneity do not
play any roles because E(εD) = 0 by definition. Statisticians holding the first
view usually find the notations of endogeneity and exogeneity strange, and
consequently, find the idea of IV unnatural. To understand the econometric
view of IV, we must switch to the second view of OLS.

23.3 Linear Instrumental Variable Model

When D is endogenous, the OLS estimator is inconsistent. We must use ad-
ditional information to construct a consistent estimator for β. I will focus on
the following linear IV model:

Definition 23.2 (linear IV model) We have

Y = DTβ + ε,
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U

~~ ��
D

  

ε

��
Y

(a) E(Dε) ̸= 0

ε

�� ��
D // Y

(b) marginalized over ε

FIGURE 23.2: Different representations of the endogenous regressor

with

E(εZ) = 0. (23.3)

The linear IV model in Definition 23.2 can be illustrated by the following
causal graph:

ε

�� ��
Z // D // Y

The above linear IV model allows that E(εD) ̸= 0 but requires an alterna-
tive moment condition (23.3). With E(ε) = 0 by incorporating the intercept,
the new condition states that Z is uncorrelated with the error term ε. But
any randomly generated noise is uncorrelated with ε, so an additional con-
dition must hold to ensure that Z is useful for estimating β. Intuitively, the
additional condition requires that Z is correlated to D, with more technical
details stated below.

The mathematical requirement (23.3) seems simple. However, it is a key
challenge in empirical research to find such a variable or variables Z that
satisfies (23.3). Since the condition (23.3) involves the unobservable ε, it is
generally untestable.
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23.4 The Just-Identified Case

We first consider the case in which Z and D have the same dimension and
E(ZDT) has full rank. The condition E(εZ) = 0 implies that

E{Z(Y −DTβ)} = 0 =⇒ E(ZY ) = E(ZDT)β

=⇒ β = E(ZDT)−1E(ZY )

if E(ZDT) is not degenerate. The OLS is a special case if E(εD) = 0, i.e., D
itself acts as an IV for itself. The resulting moment estimator is

β̂iv =

(
n∑

i=1

ZiD
T
i

)−1 n∑
i=1

ZiYi. (23.4)

In the simple case with an intercept and scalar D and Z, we have{
Y = α+ βD + ε,
E(ε) = 0, cov(ε, Z) = 0,

which implies that

cov(Z, Y ) = βcov(Z,D) =⇒ β =
cov(Z, Y )

cov(Z,D)
.

Standardizing the numerator and denominator by var(Z), we have

β =
cov(Z, Y )/var(Z)

cov(Z,D)/var(Z)
,

which equals the ratio between the coefficients of Z in the OLS fits of Y and D
on Z. If Z is binary, these coefficients are differences in means and β reduces
to

β =
E(Y | Z = 1)− E(Y | Z = 0)

E(D | Z = 1)− E(D | Z = 0)
.

This is identical to the identification formula in Theorem 21.1. That is, with a
binary IV Z and a binary treatment D, the IV estimator recovers the CACE
under the potential outcomes framework. This is a key result in Imbens and
Angrist (1994) and Angrist et al. (1996).

23.5 The Over-Identified Case

The discussion in Section 23.4 focuses on the just-identified case. When Z
has lower dimension than X and E(ZDT) does not have full column rank, the
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equation E(ZY ) = E(ZDT)β has infinitely many solutions. This is the under-
identified case in which the coefficient β cannot be uniquely determined even
with Z. It is a challenging case beyond the scope of this book. In practice, we
need at least as many IVs as the endogenous regressors.

When Z has higher dimension than D and E(ZDT) has full column rank,
we have many ways to determine β from E(ZY ) = E(ZDT)β. What is more,
the sample analog

n−1
n∑

i=1

ZiYi = n−1
n∑

i=1

ZiD
T
i β

may not have any solution because the number of equations is larger than the
number of unknown parameters.

A computational trick in this case is the two-stage least squares (TSLS)
estimator (Theil, 1953; Basmann, 1957). It is a clever computational trick,
which has two steps.

Definition 23.3 (Two-stage least squares) Define the TSLS estimator of
the coefficient of D with Z being the IV as follows.

1. Run OLS of D on Z, and obtain the fitted value D̂i (i =
1, . . . , n). If Di is a vector, then we need to run component-wise
OLS to obtain D̂i. Put the fitted vectors in a matrix D̂ with rows
D̂T

i ;

2. Run OLS of Y on D̂, and obtain the coefficient β̂tsls.

To see why TSLS works, we need more algebra. Write it more explicitly as

β̂tsls =

(
n∑

i=1

D̂iD̂
T
i

)−1 n∑
i=1

D̂iYi (23.5)

=

(
n∑

i=1

D̂iD̂
T
i

)−1 n∑
i=1

D̂i(D
T
i β + εi)

=

(
n∑

i=1

D̂iD̂
T
i

)−1 n∑
i=1

D̂iD
T
i β +

(
n∑

i=1

D̂iD̂
T
i

)−1 n∑
i=1

D̂iεi.

The first stage OLS fit ensures Di = D̂i + Ďi with

n∑
i=1

D̂iĎ
T
i = 0 (23.6)

being a zero square matrix with the same dimension as Di. The orthogonality
(23.6) implies

n∑
i=1

D̂iD
T
i =

n∑
i=1

D̂iD̂
T
i ,
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which further implies that

β̂tsls = β +

(
n∑

i=1

D̂iD̂
T
i

)−1 n∑
i=1

D̂iεi. (23.7)

The first stage OLS fit also ensures

D̂i = Γ̂TZi (23.8)

which implies that

β̂tsls = β +

{
Γ̂T

(
n−1

n∑
i=1

ZiZ
T
i

)
Γ̂

}−1

Γ̂T

(
n−1

n∑
i=1

Ziεi

)
. (23.9)

Based on (23.9), we can see the consistency of the TSLS estimator because the
term n−1

∑n
i=1 Ziεi has probability limit E(Zε) = 0. We can also use (23.9)

to show that when Z and D have the same dimension, β̂tsls is numerically
identical to β̂iv defined in Section 23.4, which is left as Problem 23.1.

Based on (23.7), we can obtain the standard error as follows. We first

obtain the residual ε̂i = Yi − β̂TtslsDi, and then obtain the robust variance
estimator as

V̂tsls =

(
n∑

i=1

D̂iD̂
T
i

)−1( n∑
i=1

ε̂2i D̂iD̂
T
i

)(
n∑

i=1

D̂iD̂
T
i

)−1

.

Importantly, the ε̂i’s are not the residual from the second stage OLS Yi −
β̂TtslsD̂i, so V̂tsls differs from the robust variance estimator from the second
stage OLS.

23.6 A Special Case: A Single IV for a Single Endoge-
nous Treatment

This section focuses on a simple case with a single IV and a single endoge-
nous treatment. It has wide applications. Consider the following structural
equations: {

Yi = β0 + β1Di + βT2Xi + εi,
Di = γ0 + γ1Zi + γT2Xi + ε2i,

(23.10)

where Di is a scalar endogenous regressor representing the treatment variable
of interest (i.e., E(εiDi) ̸= 0), Zi is a scalar IV for Di (i.e., E(εiZi) = 0), and
Xi contains other exogenous regressors (i.e., E(εiXi) = 0). This is a special
case with D replaced by (1, D,X) and Z replaced by (1, Z,X).
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23.6.1 Two-stage least squares

The TSLS estimator in Definition 23.3 simplifies to the following form.

Definition 23.4 (TSLS with a single endogenous regressor) Based on
(23.10), the TSLS estimator has the following two steps:

1. run OLS of D on (1, Z,X), and obtain the fitted value D̂i (i =
1, . . . , n);

2. run OLS of Y on (1, D̂,X), and obtain the coefficient β̂tsls, and

in particular, β̂1,tsls, the coefficient of D̂.

23.6.2 Indirect least squares

The structural equation (23.10) implies

Yi = β0 + β1(γ0 + γ1Zi + γT2Xi + ε2i) + βT2Xi + εi

= (β0 + β1γ0) + β1γ1Zi + (β2 + β1γ2)
TXi + (εi + β1ε2i).

Define Γ0 = β0 + β1γ0,Γ1 = β1γ1,Γ2 = β2 + β1γ2, and ε1i = εi + β1ε2i. We
have the following equations{

Yi = Γ0 + Γ1Zi + ΓT2Xi + ε1i,
Di = γ0 + γ1Zi + γT2Xi + ε2i,

(23.11)

which is called the reduced form. The parameter of interest equals the ratio of
two coefficients

β1 = Γ1/γ1.

In the reduced form, the left-hand side are dependent variables Y and D, and
the right-hand side are the exogenous variable Z and X satisfying

E(Zε1i) = E(Zε2i) = 0, E(Xε1i) = E(Xε2i) = 0.

More importantly, OLS gives consistent estimators for the coefficients in the
reduced form.

The reduced form (23.11) suggests that the ratio of two OLS coefficients
Γ̂1 and γ̂1 is a reasonable estimator for β1. This is called the indirect least
squares (ILS) estimator:

β̂1,ils ≡ Γ̂1/γ̂1.

Interestingly, it is numerically identical to the TSLS estimator under (23.10).

Theorem 23.1 With a single endogenous treatment and a single IV, we have

β̂1,ils = β̂1,tsls.

Theorem 23.1 is an algebraic fact. Imbens (2014, Section A.3) pointed it
out without giving a proof. I relegate its proof to Problem 23.2. The ratio for-
mula makes it clear that the TSLS estimator has poor finite sample properties
with a weak instrument variable, i.e., γ1 is close to zero.
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23.6.3 Weak IV

The following inferential procedure is simpler, more transparent, and more
robust to weak IV. It is more computationally intensive though. The reduced
form (23.11) also implies that

Yi − bDi = (Γ0 − bγ0) + (Γ1 − bγ1)Zi + (Γ2 − bγ2)
TXi + (ε1i − bε2i).(23.12)

At the true value b = β1, the coefficient of Zi must be 0. This simple fact
suggests a confidence interval for β1 by inverting tests for H0(b) : β1 = b:

{b : |tZ(b)| ≤ zα} ,

where tZ(b) is the t-statistic for the coefficient of Z based on the OLS fit
of (23.12) with the EHW standard error. This confidence interval is more
robust than the Wald-type confidence interval based on the TSLS estimator.
It is similar to the Fieller–Anderson–Rubin confidence interval discussed in
Chapter 21. This procedure makes the TSLS estimator unnecessary, and what
is more, we only need to run the OLS fit of Y based on the reduced form if
the goal is to test β1 = 0 under (23.10).

23.7 Application

Card (1993) used the National Longitudinal Survey of Young Men to estimate
the causal effect of education on earnings. The data set contains 3010 men
with age between 14 and 24 in the year 1966, and Card (1993) leveraged the
geographic variation in college proximity as an IV for education. Here, Z is
the indicator of growing up near a four-year college, D measures the years of
education, and the outcome Y is the log wage in the year 1976, ranging from
4.6 to 7.8. Additional covariates are ace, age and squared age, a categorical
variable indicating living with both parents, single mom, or both parents, and
variables summarizing the living areas in the past.

> library("car")

>

> ## Card Data

> card.data = read.csv("card1995.csv")

> Y = card.data[, "lwage"]

> D = card.data[, "educ"]

> Z = card.data[, "nearc4"]

> X = card.data[, c("exper", "expersq", "black", "south",

+ "smsa", "reg661", "reg662", "reg663",

+ "reg664", "reg665", "reg666",

+ "reg667", "reg668", "smsa66")]

> X = as.matrix(X)
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Based on TSLS, the point estimator is 0.132 and the 95% confidence in-
terval is [0.026, 0.237].

> Dhat = lm(D ~ Z + X)$fitted.values
> tslsreg = lm(Y ~ Dhat + X)

> tslsest = coef(tslsreg )[2]

> ## correct se by changing the residuals

> res.correct = Y - cbind(1, D, X)%*%coef(tslsreg)

> tslsreg$residuals = as.vector(res.correct)

> tslsse = sqrt(hccm(tslsreg , type = "hc0")[2, 2])

> res = c(tslsest , tslsest - 1.96*tslsse , tslsest + 1.96*tslsse)

> names(res) = c("est", "l.ci", "u.ci")

> round(res , 3)

est l.ci u.ci

0.132 0.026 0.237

Figure 23.3 shows the p-values for a sequence of tests for the coefficient of
D. It also implies the 95% confidence interval for the coefficient of D based
on inverting tests, which is [0.028, 0.282].

> BetaAR = seq(-0.1, 0.4, 0.001)

> PvalueAR = sapply(BetaAR ,

+ function(b){

+ Y_b = Y - b*D

+ ARreg = lm(Y_b ~ Z + X)

+ coefZ = coef(ARreg )[2]

+ seZ = sqrt(hccm(ARreg)[2, 2])

+ Tstat = coefZ/seZ

+ (1 - pnorm(abs(Tstat )))*2

+ })

> point.est = BetaAR[which.max(PvalueAR )]

> point.est

[1] 0.132

> ARCI = range(BetaAR[PvalueAR >= 0.05])

> ARCI

[1] 0.028 0.282

Comparing the above two methods, the lower confidence limits are very
close but the upper confidence limits are slightly different due to the possibly
heavy right tail of the distribution of the TSLS estimator.
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FIGURE 23.3: Re-analysis of Card (1993)’s data

23.8 Homework

23.1 More algebra for TSLS in Section 23.5

1. Show that the Γ̂ in (23.8) equals

Γ̂ =

(
n∑

i=1

ZiZ
T
i

)−1 n∑
i=1

ZiD
T
i .

2. Show β̂tsls defined in (23.5) reduces to β̂iv defined in (23.4) if Z and
D have the same dimension and

n−1
n∑

i=1

ZiZ
T
i , n−1

n∑
i=1

ZiD
T
i

are both invertible.

23.2 Equivalence between TSLS and ILS

Prove Theorem 23.1.
Hint: Use the Frisch–Waugh–Lovell theroem.

23.3 Control function in the linear instrumental variable model

Definition 23.5 below parallels Definition 23.3 above.
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Definition 23.5 (control function) Define the control function estimator

β̂cf as follows.

1. Run OLS of D on Z, and obtain the residual Ďi (i = 1, . . . , n).
If Di is a vector, then we need to run component-wise OLS to obtain
Ďi. Put the residual vectors in a matrix Ď with rows ĎT

i ;

2. Run OLS of Y on D and Ď, and obtain the coefficient of D,
β̂cf.

Show that β̂cf = β̂tsls.
Remark: In Definition 23.5, Ď from Step 1 is called the control function for

Step 2. Hausman (1978) pointed out this result. Wooldridge (2015) provided
more general discussion of the control function methods in more complex
models.

Hint: Use the results in Problems A2.3 and A2.4.

23.4 Data analysis: Efron and Feldman (1991)

Efron and Feldman (1991) was one of the early studies dealing with noncomp-
pliance under the potential outcomes framework. The original randomized
experiment, the Lipid Research Clinics Coronary Primary Prevention Trial
(LRC-CPPT), was designed to evaluate the effect of the drug cholestyramine
on cholesterol levels. In the dataset EF.csv, the first column contains the bi-
nary indicators for treatment and control, the second column contains the
proportions of the nominal cholestyramine dose actually taken, the last three
columns are cholesterol levels. Note that the individuals did not know whether
they were assigned to cholestyramine or to the placebo, but differences in ad-
verse side effects could induce differences in compliance behavior by treatment
status. All individuals were assigned the same nominal dose of the drug or
placebo, for the same time period. Column 3, C3, was taken prior to a commu-
nication about the benefits of a low- cholesterol diet, Column 4, C4, was taken
after this suggestion, but prior to the random assignment to cholestyramine
or placebo, and Column 5, C5, an average of post-randomization cholesterol
readings, averaged over two-month readings for a period of time averaging
7.3 years for all the individuals in the study. Efron and Feldman (1991) used
the change in cholesterol level as the final outcome of interest, defined as
C5−0.25C3−0.75C4. The original paper contains more detailed descriptions.

This dataset is more complicated than the noncompliance problem dis-
cussed in class. You can analyze it based on your understanding of the prob-
lem, but you need to justify your choice of method. There is no gold-standard
solution for this problem.

23.5 Recommended reading

Imbens (2014) gave an econometrician’s perspective of IV.
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Application of the Instrumental Variable
Method: Fuzzy Regression Discontinuity

The regression discontinuity introduced in Chapter 20 and the instrumental
variable introduced in Chapters 21–23 are two important examples of natural
experiments. The study designs are not as ideal as the randomized experiments
in Part II, but they have features similar to the experiments. That’s why they
are called natural experiments.

Compounding regression discontinuity with instrumental variable yields
the fuzzy regression discontinuity, another important natural experiment. I
will start with examples and then provide a mathematical formulation.

24.1 Motivating examples

Chapter 20 introduces the regression discontinuity. The following two exam-
ples are slightly different because the treatments received are not deterministic
functions of the running variables. Rather, the running variables discontinu-
ously change the probabilities of the treatments received at the cutoff point.

Example 24.1 In 2000, the Government of India launched the Prime Min-
ister’s Village Road Program, and by 2015, this program had funded the con-
struction of all-weather roads to nearly 200,000 villages. Based on village level
data, Asher and Novosad (2020) use a regression discontinuity to estimate the
effect of new feeder roads on various economic variables. The national program
guidelines prioritized larger villages according to arbitrary thresholds based on
the 2001 Population Census. The treatment variable equals one if the village
received a new road before the year in which the outcomes were measured. The
difference between the population size of a village and the threshold did not
determine the treatment variable but affected its probability discontinuously at
the cutoff point zero.

Example 24.2 Li et al. (2015) used the data on the first-year students en-
rolled in 2004 to 2006 from two Italian universities to evaluate the causal effect
of a university grant on the drop out rate. The students were eligible for this
grant if their standardized family income was below 15,000 euros. For sim-
plicity, we use the running variable defined as 15,000 minus the standardized

293
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FIGURE 24.1: The treatment assignments of sharp regression discontinuity
(left) and fuzzy regression discontinuity (right)

family income. To receive this grant, the students must apply first. Therefore,
the eligibility and the application status jointly determined the final treatment
status. The running variable alone did not determine the treatment status al-
though it changed the treatment probability at the cutoff point zero.

Example 24.3 Amarante et al. (2016) estimated the impact of in utero expo-
sure to a social assistance program on children’s birth outcomes. They used a
regression discontinuity induced by the Uruguayan Plan de Atención Nacional
a la Emergencia Social. It was a temporary social assistance program targeted
to the poorest 10 percent of households, implemented between April 2005 and
December 2007. Households with a predicted low income score below a prede-
termined threshold were assigned to the program. The predicted income score
did not determine whether the mother received at least one program trans-
fer during the pregnancy but it changed the probability of the final treatment
received. The birth outcomes included birth weight, weeks of gestation, etc.

The above examples are called fuzzy regression discontinuity in contrast
to the (sharp) regression discontinuity in Chapter 20. I will analyze the data
in Examples 24.1 and 24.2 in Section 24.3 below.

24.2 Mathematical formulation

Let Xi denote the running variable which determines Zi = 1(Xi ≥ x0)
with the cutoff point x0. The treatment received Di may not equal Zi, but
pr(Di = 1 | Xi = x) has a jump at x0. Figure 24.1 compares the treatment re-
ceived probabilities of the sharp regression discontinuity and fuzzy regression
discontinuity. It shows a special case of fuzzy regression discontinuity with
pr(D = 1 | X < x0) = 0, which is coherent to Example 24.2.

Let Yi denote the outcome of interest. Viewing Zi as the treatment as-
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signed, we can define potential outcomes {Di(1), Di(0), Yi(1), Yi(0)}. The
sharp regression discontinuity of Z allows for identification of

τD(x0) = E{D(1)−D(0) | X = x0}
= lim

ε→0+
E(D | Z = 1, X = x0 + ε)− lim

ε→0+
E(D | Z = 0, X = x0 − ε)

and

τY (x0) = E{Y (1)− Y (0) | X = x0}
= lim

ε→0+
E(Y | Z = 1, X = x0 + ε)− lim

ε→0+
E(Y | Z = 0, X = x0 − ε)

based on Theorem 20.2. Using Z as an IV for D and imposing the IV assump-
tions at X = x0, we can identify the local complier average causal effect by
applying Theorem 21.1.

Theorem 24.1 Assume
Di(1) ≥ Di(0)

and
Di(1) = Di(0) =⇒ Yi(1) = Yi(0)

in the infinitesimal neighborhood of x0. The local complier average causal effect
equals

τc(x0) ≡ E{Y (1)− Y (0) | D(1) > D(0), X = x0}

=
E{Y (1)− Y (0) | X = x0}
E{D(1)−D(0) | X = x0}

.

Further assume that E{D(1) | X = x} and E{Y (1) | X = x} are continuous
from the right at X = x0, and E{D(0) | X = x} and E{Y (0) | X = x} are
continuous from the left at X = x0. The local complier average causal effect
can be identified by

τc(x0) =
limε→0+E(Y | Z = 1, X = x0 + ε)− limε→0+E(Y | Z = 0, X = x0 − ε)

limε→0+E(D | Z = 1, X = x0 + ε)− limε→0+E(D | Z = 0, X = x0 − ε)

if the E(D | Z = 1, X = x) has a non-zero jump at X = x0.

Theorem 24.1 is a superposition of Theorems 20.2 and 21.1. I leave its
proof as Problem 24.1.

In both sharp and fuzzy regression discontinuity, the key is to specify the
neighborhood around the cutoff point. Practically, a smaller neighborhood
leads to smaller bias but larger variance, while a larger neighborhood leads
to larger bias but smaller variance. That is, we face a bias-variance trade-
off. Some automatic procedures exist based on some statistical criteria, which
relies on some strong conditions. It seems wiser to conduct sensitivity analysis
over a range of the choice of h.
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Assume that we have specified the neighborhood of x0 determined by a
bandwidth h. For data with Xi ∈ [x0 − h, x0 + h], we can estimate τD(x0) by

τ̂D(x0) = the coefficient of Zi in the OLS fit of Di on {1, Zi, Ri, Li},

and estimate τY (x0)

τ̂Y (x0) = the coefficient of Zi in the OLS fit of Yi on {1, Zi, Ri, Li},

recalling the definitions Ri = max(Xi−x0, 0) and Li = min(Xi−x0, 0). Then
we can estimate the local complier average causal effect by

τ̂c(x0) = τ̂Y (x0)/τ̂D(x0).

This is an indirect least squares estimator. By Theorem 23.1, it is numerically
identical to

the coefficient of Di in the TSLS fit of Yi on {1, Di, Ri, Li}

with Di instrumented by Zi. In sum, after specifying h, the estimation of
τc(x0) reduces to a TSLS procedure with the local data around the cutoff
point.

24.3 Application

24.3.1 Re-analyzing Asher and Novosad (2020)’s data

Figure 24.2 shows the result using occupation_index_andrsn as the outcome.
The package rdrobust selects the bandwidth automatically. The results

suggest that receiving a new road did not affect the outcome significantly.

> road_dat = read.csv("indianroad.csv")

> road_dat$runv = road_dat$left + road_dat$right
> library("rdrobust")

> frd_road = with(road_dat ,

+ {

+ rdrobust(y = occupation_index_andrsn ,

+ x = runv ,

+ c = 0,

+ fuzzy = r2012)

+ })

> res = cbind(frd_road$coef , frd_road$se)
> round(res , 3)

Coeff Std. Err.

Conventional -0.253 0.301

Bias -Corrected -0.283 0.301

Robust -0.283 0.359
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FIGURE 24.2: Re-analyzing Asher and Novosad (2020)’s data, with point
estimates and standard errors from TSLS.
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FIGURE 24.3: Re-analyzing Li et al. (2015)’s data, with point estimates and
standard errors from TSLS.

24.3.2 Re-analyzing Li et al. (2015)’s data

Recall that the running variable is 15,000 minus the standardized income in
Example 24.2. In the analysis, I restrict the data to a subset with this running
between [−5, 000, 5, 000], and then divide the running variable by 5, 000 so that
the running variable is bounded between [−1, 1] at cutoff point zero.

The results based on the package rdrobust suggest that the university
grant did not affect the dropout rate significantly.

> italy = read.csv("italy.csv")

> library("rdrobust")

> frd_italy = with(italy ,

+ {

+ rdrobust(y = outcome ,

+ x = rv0 ,

+ c = 0,

+ fuzzy = D)
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+ })

> res = cbind(frd_italy$coef , frd_italy$se)
> round(res , 3)

Coeff Std. Err.

Conventional -0.149 0.101

Bias -Corrected -0.155 0.101

Robust -0.155 0.121

24.4 Discussion

Both Chapter 20 and this chapter formulate regression discontinuity based on
the continuity of the conditional expectations of the potential outcomes given
the running variables. This perspective is mathematically simpler but it only
identifies the local effects precisely at the cutoff point of the running variable.
Hahn et al. (2001) started this line of literature.

An alternative, not so dominant perspective is based on local randomiza-
tion (Cattaneo et al., 2015; Li et al., 2015). If we view the running variable as
a noisy measure of some underlying truth and the cutoff point is somewhat
arbitrarily chosen, the units near the cutoff point do not differ systematically.
This suggests that in a small neighborhood of the cutoff point, the units receive
the treatment and the control in a random fashion just as in a randomized
experiment. Similar to the issue of choosing h in the first perspective, it is
crucial to decide how local should the randomized experiment be under the
regression discontinuity. It is not easy to quantify the intuition mathemat-
ically, and again conducting sensitivity analysis with a range of h seems a
reasonable approach in the second perspective as well.

See Sekhon and Titiunik (2017) for more conceptual discussion of regres-
sion discontinuity.

24.5 Homework Problems

24.1 Proof of Theorem 24.1

Prove Theorem 24.1.

24.2 Data analysis

Section 24.3.1 estimated the effect on occupation_index_andrsn. Four
other outcome variables are transport_index_andrsn, firms_index_andrsn,
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consumption_index_andrsn, and agriculture_index_andrsn, with meanings de-
fined in the original paper. Estimate the effects on these outcomes.

24.3 Reflection on the analysis of Li et al. (2015)’s data

In Li et al. (2015), a key variable determining the treatment status is the
binary application status A, which has potential outcomes A(1) and A(0)
corresponding to the treatment Z = 1 and control Z = 0. By definition,

D(1) = A(1), D(0) = 0,

so the compliers {D(1), D(0)} = (1, 0) is equivalent to A(1) = 1. So

τc(x0) = E{Y (1)− Y (0) | A(1) = 1, X = x0}.

Section 24.3.2 used the whole data set to estimate τc(x0).
An alternative analysis is based on units with A = 1 only. Then the treat-

ment status is determined by X. However, this analysis can be problematic
because

lim
ε→0+

E{Y | A = 1, X = x0 + ε} − lim
ε→0+

E{Y | A = 1, X = x0 − ε}

= E{Y (1) | A(1) = 1, X = x0} − E{Y (0) | A(0) = 1, X = x0}. (24.1)

Prove (24.1) and explain why this analysis can be problematic.
Remark: The left-hand side of (24.1) is the identification formula of the lo-

cal average treatment effect at X = x0, conditioning on A = 1. The right-hand
side of (24.1) is the difference in means of the potential outcomes for subgroup
of units with (A(1) = 1, X = x0) and (A(0) = 1, X = x0), respectively.

24.4 Recommended reading

Imbens and Lemieux (2008) gave a practical guidance to regression disconti-
nuity based on the potential outcomes framework. Lee and Lemieux (2010)
reviewed regression discontinuity and its applications in economics.
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Application of the Instrumental Variable
Method: Mendelian Randomization

Katan (1986) was concerned with the observational studies suggesting that
low serum cholesterol levels were associated with the risk of cancer. As we
have discussed, however, observational studies suffer from unmeasured con-
founding. Consequently, it is difficult to interpret the apparent association as
causality. In the particular problem studied by Katan (1986), it is even pos-
sible that early stages of cancer reversely cause low serum cholesterol levels.
Disentangling the causal effect of the serum cholesterol level on cancer seems
a hard problem using standard epidemiologic studies. Katan (1986) argued
that Apolipoprotein E genes are associated with the serum cholesterol levels
but do not directly affect the cancer status. So if low serum cholesterol lev-
els causes cancer, we should observe differences in cancer risks among people
with and without the genotype that leads to different serum cholesterol lev-
els. Using our language for causal inference, Katan (1986) proposed to use
Apolipoprotein E genes as IVs.

Katan (1986) did not conduct any data analysis but just proposed a con-
ceptual design that could address not only unmeasured confounding but also
reverse causality. Since then, more complicated and sophisticated studies have
been conducted thanks to the modern genome-wide association studies. These
studies used genetic information as IVs for exposures in epidemiologic stud-
ies to estimate causal effects of exposures on outcomes. They were all moti-
vated by Mendel’s second law, the law of random assortment, which suggests
the inheritance of one trait is independent of the inheritance of other traits.
Therefore, the method of using genetic information as IV is called Mendelian
Randomization (MR).

25.1 Background and motivation

Graphically, Figure 25.1 shows the causal diagram on the treatment D, out-
come Y , unmeasured confounder U , as well as the genetic IVs G1, . . . , Gp. In
many Mendelian Randomization studies, the genetic IVs are single nucleotide
polymorphisms (SNPs). Because of pleiotropy, it is possible that the genetic
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FIGURE 25.1: Causal graph for Mendelian randomization

IVs have direct effect on the outcome of interest, so Figure 25.1 also allows
for the violation of the exclusion restriction assumption.

The standard linear IV model assumes away the direct effect of the IVs
on the outcome. Definition 25.1 below gives both the structural and reduces
forms.

Definition 25.1 (linear IV model) The standard linear IV model

Y = β0 + βD + βuU + εY , (25.1)

D = γ0 + γ1G1 + · · ·+ γpGp + γuU + εD, (25.2)

has reduced form

Y = β0 + βγ0 + βγ1G1 + · · ·+ βγpGp + (βu + β0γu)U + εY , (25.3)

D = γ0 + γ1G1 + · · ·+ γpGp + γuU + εD, (25.4)

Definition 25.2 below allows for the violation of exclusion restriction. Then,
G1, . . . , Gp are not valid IVs.

Definition 25.2 (linear model with possibly invalid IVs) The linear model

Y = β0 + βD + α1G1 + · · ·+ αpGp + βuU + εY , (25.5)

D = γ0 + γ1G1 + · · ·+ γpGp + γuU + εD, (25.6)

has reduced form

Y = (β0 + βγ0) + (α1 + βγ1)G1 + · · ·+ (αp + βγp)Gp

+(βu + βγu)U + εY , (25.7)

D = γ0 + γ1G1 + · · ·+ γpGp + γuU + εD. (25.8)
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Therefore, in Definition 25.1 with exclusion restriction, we have

Γj = βγj , (j = 1, . . . , p);

in Definition 25.2 without exclusion restriction, we have

Γj = αj + βγj , (j = 1, . . . , p).

If we have individual data, we can apply the classic TSLS estimator to esti-
mate β under the linear IV model in Definition 25.1. However, most Mendelian
Randomization studies do not have individual data but rather summary statis-
tics from multiple genome-wide association studies. A canonical setting con-
sists of the regression coefficients of the treatment on the genetic IVs:

γ̂1 → γ1, . . . , γ̂p → γp (25.9)

in probability with standard errors

seD1, . . . , seDp, (25.10)

and the regression coefficients of the outcome on the genetic IVs:

Γ̂1 → Γ1, . . . , Γ̂p → Γp (25.11)

in probability with standard errors

seY 1, . . . , seY p. (25.12)

I will focus on the statistical inference of β based on the above summary
statistics. For simplicity, we assume that the estimates in (25.9) and (25.11)
are jointly independent, they are all asymptotically normal, and the stan-
dard errors in (25.10) and (25.12) are all fixed and known. The asymptotic
normality can often be justified by central limit theorems of the regression
coefficients. The standard errors are accurate estimates of the true standard
errors. Therefore, the only subtle assumption is the joint independence of the
regression coefficients in (25.9) and (25.11). The independence of the γ̂j ’s and

the Γ̂j ’s are reasonable because they are often calculated based on different
samples. The independence among the γ̂j ’s can be reasonable if the Gj ’s are
independent and the true linear model for D holds with homoskedastic error
terms1. The independence among the Γ̂j ’s follows from a similar argument.

25.2 MR based on summary statistics

25.2.1 Fixed-effect estimator

Under Definition 25.1, αj = 0 which implies that β = Γj/γj for all j. A simple
approach is based on the so-called meta-analysis (Bowden et al., 2018), that is,

1This can be tricky if the error term of the linear model is heteroskedastic. Without the
independence of the Gj ’s, it is hard to justify the independence.
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combining multiple estimates β̂j = Γ̂j/γ̂j for the common parameter β. Using

delta method (see Example A1.3), β̂j has approximate squared standard error

se2j = (se2Y j + β̂2
j se

2
Dj)/γ̂

2
j .

Therefore, the best linear combination to estimate β is the Fisher weighting
based on inverse of the variances:

β̂fisher0 =

∑p
j=1 β̂j/se

2
j∑p

j=1 1/se
2
j

which has variance (
∑p

j=1 1/se
2
j )

−1. Ignoring the uncertainty due to γ̂j quan-
tified by seDj , the estimator reduces to

β̂fisher1 =

∑p
j=1 β̂j γ̂

2
j /se

2
Y j∑p

j=1 γ̂
2
j /se

2
Y j

=

∑p
j=1 Γ̂j γ̂j/se

2
Y j∑p

j=1 γ̂
2
j /se

2
Y j

,

which has variance (
∑p

j=1 1γ̂
2
j /se

2
Y j)

−1. Inference based on β̂fisher1 is subopti-
mal although it is more widely used in practice (Bowden et al., 2018).

Focus on the suboptimal yet simpler estimator β̂fisher1. Under Definition
25.2, we can show that

β̂fisher1 →
∑p

j=1 Γjγj/se
2
Y j∑p

j=1 γ
2
j /se

2
Y j

= β +

∑p
j=1 αjγj/se

2
Y j∑p

j=1 γ
2
j /se

2
Y j

in probability. If αj = 0 for all j, β̂fisher1 is consistent. Even this does not

hold, it is still possible that β̂fisher1 is consistent as long as the inner product
between αj and γj weighted by 1/se2Y j is zero. This holds if we have many
genetic instruments and violation of the exclusion restriction, captured by αj ,
is an independent random draw from a distribution with mean zero.

25.2.2 Egger regression

Start with Definition 25.1. With the true parameters, we have

Γj = βγj (j = 1, . . . , p);

with the estimates, the above identify holds only approximately

Γ̂j ≈ βγ̂j (j = 1, . . . , p).

This seems a classic OLS problem of {Γ̂j}pj=1 on {γ̂j}pj=1. We can fit an OLS

of Γ̂j on γ̂j , with or without an intercept, possibly weighted by wj , to estimate
β. The following results hold thanks to the algebraic properties of the WLS
reviewed in Section A2.5.
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Without an intercept, the coefficient of γ̂j is

β̂egger1 =

∑p
j=1 γ̂jΓ̂jwj∑p
j=1 γ̂

2
jwj

,

which reduces to β̂fisher1 if wj = 1/se2Y j . So the Egger regression is more
general than the fixed-effect estimator in Section 25.2.1.

With an intercept, the coefficient of γ̂j is

β̂egger0 =

∑p
j=1(γ̂j − γ̂w)(Γ̂j − Γ̂w)wj∑p

j=1(γ̂j − γ̂w)2wj

where γ̂w =
∑p

j=1 γ̂jwj/
∑p

j=1 wj and Γ̂w =
∑p

j=1 Γ̂jwj/
∑p

j=1 wj are the

weighted averages of the γ̂j ’s and Γ̂j ’s, respectively. Even without assuming
that all γj ’s are zero under Definition 25.2, we have

β̂egger0 →
∑p

j=1(γj − γw)(Γj − Γw)wj∑p
j=1(γj − γw)2wj

= β +

∑p
j=1(γj − γw)(αj − αw)wj∑p

j=1(γj − γw)2wj

in probability, where γw,Γw and αw are the corresponding weighted averages
of the true parameters. So β̂egger0 is consistent for β as long as the weighted
least squares coefficient of αj on γj is zero. This is weaker than αj = 0 for all
j. This weaker assumption holds if γj and αj are realizations of independent
random variables, which is called the Instrument Strength Independent of Di-
rect Effect assumption (Bowden et al., 2015). More interestingly, the intercept
from the Egger regression is

α̂egger0 = Γ̂w − β̂egger0γ̂w,

which, under the InSIDE assumption converges to

Γw − βγw = αw

in probability. So the intercept estimates the weighted average of the direct
effects.

25.3 An example

I use the bmi.sbp data in the mr.raps package to illustrate the Egger regres-
sions.

> library("mr.raps")

> bmisbp = subset(bmi.sbp ,
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+ select = c("beta.exposure",

+ "beta.outcome",

+ "se.exposure",

+ "se.outcome"))

The Egger regressions with or without the intercept give very similar re-
sults.

> mr.egger = lm(beta.outcome ~ 0 + beta.exposure ,

+ data = bmisbp ,

+ weights = 1/se.outcome ^2)

> summary(mr.egger)

Call:

lm(formula = beta.outcome ~ 0 + beta.exposure , data = bmisbp ,

weights = 1/se.outcome ^2)

Weighted Residuals:

Min 1Q Median 3Q Max

-5.6999 -1.1691 -0.0199 1.0073 11.3449

Coefficients:

Estimate Std. Error t value Pr(>|t|)

beta.exposure 0.3173 0.1106 2.869 0.00468 **

Residual standard error: 2.052 on 159 degrees of freedom

Multiple R-squared: 0.04921 , Adjusted R-squared: 0.04323

F-statistic: 8.229 on 1 and 159 DF, p-value: 0.004682

>

> mr.egger.w = lm(beta.outcome ~ beta.exposure ,

+ data = bmisbp ,

+ weights = 1/se.outcome ^2)

> summary(mr.egger.w)

Call:

lm(formula = beta.outcome ~ beta.exposure , data = bmisbp , weights = 1/se.outcome ^2)

Weighted Residuals:

Min 1Q Median 3Q Max

-5.7099 -1.1774 -0.0296 0.9969 11.3393

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0001133 0.0020794 0.055 0.95660

beta.exposure 0.3172989 0.1109485 2.860 0.00481 **

Residual standard error: 2.059 on 158 degrees of freedom

Multiple R-squared: 0.04922 , Adjusted R-squared: 0.0432

F-statistic: 8.179 on 1 and 158 DF, p-value: 0.004811
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FIGURE 25.2: Scatter plot proportional to the inverse of the variance, with
the Egger regression line

Figure 25.2 shows the raw data as well as the fitted Egger regression line.

25.4 Critiques of the analysis based on Mendelian ran-
domization

MR is an application of the idea of IV. It relies on strong assumptions. I
provide three sets of critiques from the conceptual, biological and technical
perspectives.

Conceptually, most studies based on MR have illy defined treatments from
the potential outcomes perspective. For instance, the treatments are often de-
fined as the cholesterol level or body mass index. They are composite variables
and can correspond to complex, non-unique definitions of the hypothetical ex-
periments. The SUTVA often does not hold for these treatments.

Biologically, the fundamental assumptions for the IV analysis may not
hold. Mendel’s second law ensures that the inheritances of different traits are
independent. However, it does not ensure that the candidate IVs are inde-
pendent of the hidden confounders between the treatment and the outcome.
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It is possible that these IVs have direct effects on the confounders. It is also
possible that some unmeasured genes affect both the IVs and the confounders.
Mendel’s second law does not ensure the exclusion restriction assumption ei-
ther. It is possible that the IVs have other causal pathways to the outcome,
beyond the pathway through the treatment of interest.

Technically, the statistical assumptions for MR are quite strong. Clearly,
the linear IV model is a strong modeling assumption. The independence of
the γ̂j ’s and the Γ̂j ’s is also quite strong. Other issues in the data collecting
process can further complicate the interpretation of the IV assumptions. For
instance, the treatments and outcomes are often measured with errors, and
the genome wide associate studies are often based on the case-control design.

VanderWeele et al. (2014) is an excellent review paper that discusses the
methodological challenges in MR.

25.5 Homework Problems

25.1 Data analysis

Analyze the bmi.bmi data in the R package mr.raps. See the package and Zhao
et al. (2020, Section 7.2) for more details.

25.2 Recommended reading

Davey Smith and Ebrahim (2003) reviewed the potentials and limitations of
Mendelian randomization.
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Principal Stratification

Parts II–V focus on causal effects of a treatment on an outcome, possibly
adjusting for observed pretreatment covariates. Many applications also have
some post-treatment variableM which happens after the treatment but before
the outcome. An important question is how to use the post-treatment vari-
able M appropriately. I will start with several motivating examples and then
introduce Frangakis and Rubin (2002)’s formulation of this problem based on
potential outcomes.

26.1 Motivating Examples

Example 26.1 (noncompliance) In randomized experiments with noncom-
pliance, we can use M to represent the treatment received, which is affected
by the treatment assignment Z and affects the outcome Y . In this example,
M has the same meaning as D in Chapter 21.

Example 26.2 (truncation by death) In randomized experiments to pa-
tients with severe diseases, some patients may die before the measurement of
the outcome Y , e.g., the quality of life. The post-treatment variable M in this
example is the binary indicator of the survival status.

Example 26.3 (unemployment) In job training programs, units are ran-
domly assigned to treatment and control groups, and report their employment
status M and wage Y . Then the post-treatment variable is the binary indicator
of the employment status M .

Example 26.4 (surrogate endpoint) In clinical trials, the outcomes of in-
terest (e.g., 30 years of survival) require a long and costly follow-up. Practi-
tioners instead collect data on some other variables early in the follow-up that
are easy to measure. These variables are called the “surrogate endpoints.” A
concrete example is from clinical trials on HIV patients, where the candidate
surrogate endpoint M is the CD4 cell count.

Examples 26.1–26.4 have the similarity that an intermediate variable M
occurs between the treatment and the outcome. Here “between” can mean
that
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1. M is on the causal pathway from Z to Y as Figure 26.1(a);

2. M is not on the causal pathway from Z to Y as Figure 26.1(b).

Example 26.1 corresponds to Figure 26.1(a). Examples 26.2 and 26.3 corre-
spond to Figure 26.1(b). Example 26.4 can correspond to Figure 26.1(a) or
(b), depending on the choice of the surrogate end point.

U

~~ ��
Z // 66M // Y

(a) M is on the causal pathway from Z to Y , with Z randomized and U representing
unmeasured confounding

U

~~ ��
Z // 66M Y

(b) M is not on the causal pathway from Z to Y , with Z randomized and U repre-
senting unmeasured confounding

FIGURE 26.1: Causal diagrams with a post-treatment variable M

26.2 The Problem of Conditioning on the Post-
Treatment Variable

A naive method to deal with the post-treatment variable M is to condition
on its observed value as if it were a pretreatment covariate. However, M is
fundamentally different from X, because the former is affected by the treat-
ment in general but the latter is not. It is also a “rule of thumb” that data
analyzers should not condition on any post-treatment variables in evaluating
the average effect of the treatment on the outcome (Cochran, 1957; Rosen-
baum, 1984). Based on potential outcomes, Frangakis and Rubin (2002) gave
the following insightful explanation.

For simplicity, we focus on completely randomized experiment in this chap-
ter.



26.3 The Problem of Conditioning on the Post-Treatment Variable 313

Assumption 26.1 (complete randomization with an intermediate variable)
Z {M(1),M(0), Y (1), Y (0)}.

Conditioning on M = m, we compare

pr(Y | Z = 1,M = m)

and
pr(Y | Z = 0,M = m).

This comparison seems intuitive which measures the difference in the outcome
distributions in treated and control groups given the same value of the post-
treatment variable. When M is a pre-treatment covariate, this comparison
yields a reasonable subgroup effect. However, when M is a post-treatment
variable, the interpretation of this comparison is problematic. Under Assump-
tion 26.1, we can re-write

pr(Y | Z = 1,M = m) = pr{Y (1) | Z = 1,M(1) = m}
= pr{Y (1) |M(1) = m}

and

pr(Y | Z = 0,M = m) = pr{Y (0) | Z = 0,M(0) = m}
= pr{Y (0) |M(0) = m}.

Therefore, we are comparing the distributions of Y (1) and Y (0) for different
subset of units because the units with M(1) = m are different from the units
withM(0) = m if the Z affectsM . Consequently, the comparison conditioning
on M = m does not have a causal interpretation in general unless M(1) =
M(0).1

Revisit Example 26.1. Comparing pr(Y | Z = 1,M = 1) and pr(Y |
Z = 0,M = 1) is equivalent to comparing the treated potential outcomes for
compliers and always-takers and control potential outcomes for always-takers,
under the monotonicity assumption that M(1) ≥ M(0). Part 3 of Problem
22.7 has pointed out the drawbacks of this analysis.

Revisit Example 26.2. If the treatment improves the survival status, the
treatment can save more weak patients than the control. In this case, units
withM(1) = 1 are weaker than units withM(0) = 1, so the naive comparison
gives biased results that is in favor of the control.

1Based on the causal diagrams, we can reach the same conclusion. In Figure 26.1, even

though Z U by randomization of Z, conditioning on M introduces the “collider bias” that

causes Z / U .
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26.3 Conditioning on the Potential Values of the Post-
Treatment Variable

Frangakis and Rubin (2002) proposed to condition on the joint potential value
of the post-treatment variable U = {M(1),M(0)} and compare

pr{Y (1) |M(1) = m1,M(0) = m0}

and
pr{Y (0) |M(1) = m1,M(0) = m0}

for some (m1,m0). This is a comparison of the potential outcomes under
treatment and control for the same subset of units with M(1) = m1 and
M(0) = m0. Frangakis and Rubin (2002) called this strategy principal strat-
ification, viewing {M(1),M(0)} as a pre-treatment covariate. Based on this
idea, we can define

τ(m1,m0) = E{Y (1)− Y (0) |M(1) = m1,M(0) = m0}

as the principal stratification average causal effect for the subgroup with
M(1) = m1,M(0) = m0. For a binary M , we have four subgroups

τ(1, 1) = E{Y (1)− Y (0) |M(1) = 1,M(0) = 1},
τ(1, 0) = E{Y (1)− Y (0) |M(1) = 1,M(0) = 0},
τ(0, 1) = E{Y (1)− Y (0) |M(1) = 0,M(0) = 1},
τ(0, 0) = E{Y (1)− Y (0) |M(1) = 0,M(0) = 0}.

(26.1)

Since {M(1),M(0)} is unaffected by the treatment, it is a covariate so
τ(m1,m0) is a subgroup causal effect. For subgroups with M(1) =M(0), the
treatment does not change the intermediate variable, so τ(1, 1) and τ(0, 0)
measure the dissociative effects. For other subgroups with m1 ̸= m0, the prin-
cipal stratification average causal effects τ(m1,m0) measure the associative
effects. These terminologies are from Frangakis and Rubin (2002), which do
not assume that M is on the causal pathway from Z to Y . When we have
Figure 26.1(a), we can interpret the dissociative effects as direct effects of Z
on Y that act independent of M , although we cannot simply interpret the
associative effects as direct or indirect effects of Z on Y .

Example 26.1 (noncompliance) With noncompliance, (26.1) consists of
the average causal effects for the always takers, compliers, defiers, and never
takers (Imbens and Angrist, 1994; Angrist et al., 1996).

Example 26.2 (truncation by death) Because the outcome is well define
only if the patient survives, three subgroup causal effects in (26.1) are not
meaningful, and the only well-defined subgroup effect is

τ(1, 1) = E{Y (1)− Y (0) |M(1) = 1,M(0) = 1}. (26.2)
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It is called the survivor average causal effect (Rubin, 2006a). It is the aver-
age causal effect of the treatment on the outcome for those units who survive
regardless of the treatment status.

Example 26.3 (unemployment) The unemployment problem is isomor-
phic to the truncation by death problem because the wage is well-defined only
if the unit is employed in the first place. Therefore, the only well defined sub-
group effect is (26.2), the employed average causal effect. Previously, Heckman
(1979) proposed a model, now called the Heckman Selection Model, to deal with
unemployment in modeling the wage, viewing the wages of those unemployed
as missing values2. However, Zhang and Rubin (2003) and Zhang et al. (2009)
argued that τ(1, 1) is a more meaningful quantity under the potential outcomes
framework.

Example 26.4 (surrogate endpoint) Intuitively, we want to assess the ef-
fect of the treatment on the outcome via the effect of the treatment on the
surrogate endpoint. Therefore, a good surrogate endpoint should satisfy two
conditions: first, if the treatment does not affect the surrogate, then it does
not affect the outcome either; second, if the treatment affects the surrogate,
then it affects the outcome too. The first condition is called the “causal ne-
cessity” by Frangakis and Rubin (2002), and the second condition is called
the “causal sufficiency” by Gilbert and Hudgens (2008). Based on (26.1) for
a binary surrogate endpoint, causal necessity requires that τ(1, 1) and τ(0, 0)
are zero, and causal sufficiency requires that τ(1, 0) and τ(0, 1) are not zero.

26.4 Statistical Inference and Its Difficulty

In Example 26.1, if we have randomization, monotonicity and exclusion re-
striction, then we can identify the complier average causal effect. This is the
key result derived in Chapter 21.

However, in other examples, we cannot impose the exclusion restriction
assumption. For instance, τ(1, 1) is the main parameter of interest in Examples
26.2 and 26.3, and τ(1, 1) and τ(0, 0) are both of interest in Example 26.4.

2Heckman won nobel prize of economics in 2000 “for his development of theory and meth-
ods for analyzing selective samples.” His model contains two stages. First, the employment
status is determined by a latent linear model

Mi = 1(XT
i β + ui ≥ 0).

Second, the latent log wage is determined by a linear model

Y ∗
i = WT

i γ + vi

and Y ∗
i is observed as Yi only if Mi = 1. In his two-stage model, the covariates Xi and Wi

may differ, and the errors (ui, vi) are correlated bivariate Normal.
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Without the exclusion restriction assumption, it is very challenging to identify
the principal stratification average causal effect. Sometimes, we cannot even
impose the monotonicity assumption, and thus cannot identify the proportions
of the latent strata in the first place.

26.4.1 Special case: truncation by death with binary out-
come

I use the simple setting with a binary treatment, binary survival status and
binary outcome to illustrate the idea and especially the difficulty of statistical
inference based on principal stratification.

In addition to Assumption 26.1, we impose the monotonicity.

Assumption 26.2 (monotonicity) M(1) ≥M(0).

Theorem 22.1 demonstrates that under Assumptions 26.1 and 26.2, we can
identify the proportions of the three latent strata by

π(1,1) = pr(M = 1 | Z = 0),

π(0,0) = pr(M = 0 | Z = 1),

π(1,0) = pr(M = 1 | Z = 1)− pr(M = 1 | Z = 0).

Our goal is to identify the survivor average causal effect τ(1, 1). First, we
can easily identify E{Y (0) |M(1) = 1,M(0) = 1} because the observed group
(Z = 0,M = 1) consists of only survivors:

E{Y (0) |M(1) = 1,M(0) = 1} = E(Y | Z = 0,M = 1).

The key is then to identify E{Y (1) | M(1) = 1,M(0) = 1}. The observed
group (Z = 1,M = 1) is a mixture of two strata (1, 1) and (1, 0), therefore we
have

E(Y | Z = 1,M = 1) =
π(1,1)

π(1,1) + π(1,0)
E{Y (1) |M(1) = 1,M(0) = 1}

+
π(1,0)

π(1,1) + π(1,0)
E{Y (1) |M(1) = 1,M(0) = 0}.

We have two unknown parameters but only one equation. So we cannot
uniquely determine E{Y (1) | M(1) = 1,M(0) = 1} from the above equation.
Nevertheless, this equation contains some information about the quantity of
interest. That is, E{Y (1) | M(1) = 1,M(0) = 1} is partially identified by
Definition 18.1.

For a binary outcome Y , we know that E{Y (1) | M(1) = 1,M(0) = 0} is
bounded between 0 and 1, and consequently, E{Y (1) | M(1) = 1,M(0) = 1}
is bounded between the solutions to the following two equations:

E(Y | Z = 1,M = 1) =
π(1,1)

π(1,1) + π(1,0)
E{Y (1) |M(1) = 1,M(0) = 1}

+
π(1,0)

π(1,1) + π(1,0)
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and

E(Y | Z = 1,M = 1) =
π(1,1)

π(1,1) + π(1,0)
E{Y (1) |M(1) = 1,M(0) = 1}.

Therefore, E{Y (1) |M(1) = 1,M(0) = 1} has lower bound

{π(1,1) + π(1,0)}E(Y | Z = 1,M = 1)− π(1,0)

π(1,1)
,

and upper bound

{π(1,1) + π(1,0)}E(Y | Z = 1,M = 1)

π(1,1)
.

We can then derive the bounds on τ(1, 1), summarized below.

Theorem 26.1 Under Assumptions 26.1 and 26.2 with a binary Y , we have

{π(1,1) + π(1,0)}E(Y | Z = 1,M = 1)− π(1,0)

π(1,1)
− E(Y | Z = 0,M = 1)

≤ τ(1, 1)

≤
{π(1,1) + π(1,0)}E(Y | Z = 1,M = 1)

π(1,1)
− E(Y | Z = 0,M = 1).

In most truncation by death problems, the lower and upper bounds are
quite different, and they are bounded away from the extreme values −1 and 1.
So we can use Imbens and Manski (2004)’s confidence interval for τ(1, 1) which

involves two steps: first, we obtain the estimated lower and upper bounds [l̂, û]
with estimated standard errors (sel, seu); second, we construct the confidence

interval as [l̂− zαsel, û+ zαseu], where zα is the 1−α quantile of the standard
normal distribution.

To summarize, this is a challenging problem since we cannot identify the
parameter based on the observed data even with infinite sample size. We can
derive large-sample bounds for τ(1, 1) but the statistical inference based on
the bounds are not standard. If we do not have monotonicity, the large-sample
bounds have even more complex forms (Zhang and Rubin, 2003; Jiang et al.,
2016).

26.4.2 An application

I use the data in Yang and Small (2016) from the Acute Respiratory Distress
Syndrome Network study involving 861 patients with lung injury and acute
respiratory distress syndrome. Patients were randomized to receive mechanical
ventilation with either lower tidal volumes or traditional tidal volumes. The
outcome is the binary indicator for whether patients could breathe without
assistance by day 28. Table 26.1 summarizes the observed data.
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TABLE 26.1: Data truncated by death with * indicating the outcomes for
dead patients

Treatment Z = 1

Y = 1 Y = 0 total
M = 1 54 268 322
M = 0 * * 109

Control Z = 0

Y = 1 Y = 0 total
M = 1 59 218 277
M = 0 * * 152

We first obtain the point estimators of the latent strata:

π̂(1,1) =
277

277 + 152
= 0.646, π̂(0,0) =

109

109 + 322
= 0.253, π̂(1,0) = 0.101.

The sample means of the outcome for survived patients are

Ê(Y | Z = 1,M = 1) =
54

302
= 0.168, Ê(Y | Z = 0,M = 1) =

59

277
= 0.213.

The estimates for the bounds on E{Y (1) |M(1) = 1,M(0) = 1} are[
(0.646 + 0.101)× 0.168− 0.101

0.101
,
(0.646 + 0.101)× 0.168

0.101

]
= [0.037, 0.194],

so the bounds on τ(1, 1) are

[0.037− 0.213, 0.194− 0.213] = [−0.176,−0.019].

Incorporating the sampling uncertainty based on the bootstrap, the upper
bound becomes positive.

26.4.3 Extensions

Zhang and Rubin (2003) started the literature of large-sample bounds. Imai
(2008a) and Lee (2009) were two follow-up papers. Cheng and Small (2006)
derived the bounds with multiple treatment arms. Yang and Small (2016) used
a secondary outcome to sharpen the bounds on the survivor average causal
effect.

26.5 Principal score method

Without additional assumptions, we can only derive bounds on the causal
effects within principal strata, but cannot identify them in general. We must
impose additional assumptions to achieve nonparametric identification of the
τ(m1,m0)’s. There is no consensus on the choice of the assumptions. Those
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additional assumptions are not testable, and their plausibility depends on the
application. A line of research parallels causal inference with unconfounded
observational studies. For simplicity, I focus on the case with strong mono-
tonicity.

26.5.1 Principal score method under strong monotonicity

Assumption 26.3 (strong monotonicity) M(0) = 0.

Similar to the ignorability assumption, we now assume the principal ig-
norability assumption.

Assumption 26.4 (principal ignorability) E{Y (0) | M(1) = 1, X} =
E{Y (0) |M(1) = 0, X}.

These assumptions ensures nonparametric identification of the causal ef-
fects within principal strata.

Theorem 26.2 Under Assumptions 26.1, 26.3 and 26.4, the principal strat-
ification average causal effects can be identified by

τ(1, 0) = E(Y | Z = 1,M = 1)− E{π(X)Y | Z = 0}/π

and

τ(0, 0) = E(Y | Z = 1,M = 0)− E{(1− π(X)}Y | Z = 0}/(1− π)

where π(X) = pr{M(1) = 1 | X} and π = pr{M(1) = 1} can be identified by

π(X) = pr(M = 1 | Z = 1, X)

and
π = pr(M = 1 | Z = 1).

The conditional probability π(X) = pr{M(1) = 1 | X} is called the prin-
cipal score. Theorem 26.2 states that τ(1, 0) and τ(0, 0) can be identified by
difference in means with appropriate weights depending on the principal score.
Proof of Theorem 26.2: I will only prove that

E{Y (0) |M(1) = 1} = E{π(X)Y | Z = 0}/π.

The left-hand side equals

E{M(1)Y (0)}/π = E [E{M(1) | X}E{Y (0) | X}] /π
= E [π(X)E{Y (0) | X}] /π
= E [E{π(X)Y (0) | X}] /π
= E{π(X)Y (0)}/π
= E{π(X)Y | Z = 0}/π.
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□
Theorem 26.2 motivates the following simple estimators for τ(1, 0) and

τ(0, 0), respectively:

1. fit a logistic regression of M on X using only data from the treated
group to obtain π̂(Xi);

2. estimate π by π̂ =
∑n

i=1 ZiMi/
∑n

i=1 Zi;

3. obtain moment estimators:

τ̂(1, 0) =

∑n
i=1 ZiMiYi∑n
i=1 ZiMi

−
∑n

i=1(1− Zi)π̂(Xi)Yi
π̂
∑n

i=1(1− Zi)

and

τ̂(0, 0) =

∑n
i=1 Zi(1−Mi)Yi∑n
i=1 Zi(1−Mi)

−
∑n

i=1(1− Zi)(1− π̂(Xi)}Yi
(1− π̂)

∑n
i=1(1− Zi)

;

4. use the bootstrap to approximate the variances of τ̂(1, 0) and
τ̂(0, 0).

26.5.2 Extensions

Follmann (2000), Hill et al. (2002), Jo and Stuart (2009), Jo et al. (2011)
and Stuart and Jo (2015) started the literature of using the principal score to
identify causal effects within principal strata. Ding and Lu (2017) provided
theoretical foundation for this strategy. They prove Theorem 26.2 as well as a
more general version under monotonicity; see Problem 26.1. Jiang et al. (2022)
give a unified discussion of this strategy for observational studies and propose
multiply robust estimators for causal effects within principal strata.

26.6 Other methods

To estimate principal stratification average causal effects without the exclu-
sion restriction assumption, Zhang et al. (2009) proposed to use the normal
mixture models. However, the inference based on the normal mixture models
can be quite fragile. A strategy is to use additional information to improve
the inference under some restrictions (Ding et al., 2011; Mealli and Pacini,
2013; Mattei et al., 2013; Jiang et al., 2016).

Conceptually, the principal stratification framework works for general M .
A multi-valued M generates many latent principal strata, and a continuous
M generates infinitely many latent principal strata. In those cases, identifying
the probability of the principal strata is non-trivial in the first place let alone
identifying the principal stratification average causal effects. Jiang and Ding
(2021) reviewed some useful strategies.
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26.7 Homework problems

26.1 Principal score method under monotonicity

This problem extends Theorem 26.2, with Assumption 26.3 replaced by As-
sumption 26.2 and Assumption 26.4 replaced by the assumption below.

Assumption 26.5 (principal ignorability) We have

E{Y (1) |M(1) = 1,M(0) = 0, X} = E{Y (1) |M(1) = 1,M(0) = 1, X}

and

E{Y (0) |M(1) = 1,M(0) = 0, X} = E{Y (0) |M(1) = 0,M(0) = 0, X}.

Theorem 26.3 Under Assumptions 26.1, 26.2 and 26.5, the principal strat-
ification average causal effects can be identified by

τ(1, 0) = E
{
w1,(1,0)(X)Y | Z = 1,M = 1

}
− E

{
w0,(1,0)(X)Y | Z = 0,M = 0

}
,

τ(0, 0) = E(Y | Z = 1,M = 0)− E
{
w0,(0,0)(X)Y | Z = 0,M = 0

}
,

τ(1, 1) = E
{
w1,(1,1)(X)Y | Z = 1,M = 1

}
− E(Y | Z = 0,M = 1)

with

w1,(1,0)(X) =
π(1,0)(X)

π(1,0)(X) + π(1,1)(X)

/ π(1,0)

π(1,0) + π(1,1)
,

w0,(1,0)(X) =
π(1,0)(X)

π(1,0)(X) + π(0,0)(X)

/ π(1,0)

π(1,0) + π(0,0)
,

w0,(0,0)(X) =
π(0,0)(X)

π(1,0)(X) + π(0,0)(X)

/ π(0,0)

π(1,0) + π(0,0)
,

w1,(1,1)(X) =
π(1,1)(X)

π(1,0)(X) + π(1,1)(X)

/ π(1,1)

π(1,0) + π(1,1)
.

Moreover, the conditional and marginal principal scores are all identifiable by

π(0,0)(X) = pr(M = 0 | Z = 1, X),

π(1,1)(X) = pr(M = 1 | Z = 0, X),

π(1,0)(X) = pr(M = 1 | Z = 1, X)− pr(M = 1 | Z = 0, X).

and

π(0,0) = pr(M = 0 | Z = 1),

π(1,1) = pr(M = 1 | Z = 0),

π(1,0) = pr(M = 1 | Z = 1)− pr(M = 1 | Z = 0).

Remark: Based on Theorem 26.3, we can construct weighting estimators.
Theorem 26.3 is Proposition 2 in Ding and Lu (2017), which also provided
more details for the estimation.
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26.2 Recommended reading

Frangakis and Rubin (2002) proposed the principal stratification framework.
Zhang and Rubin (2003) derived large-sample bounds on the survivor average
causal effect. Jiang and Ding (2021) reviewed various strategies to identify the
causal effects within principal strata.
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Mediation Analysis: Natural Direct and
Indirect Effects

With an intermediate variable M between the treatment Z and outcome Y ,
the causal effects within principal strata defined by U = {M(1),M(0)} can
assess the treatment effect heterogeneity across latent groups U . When M is
indeed on the causal pathway from Z to Y , causal effects within some principal
strata, τ(1, 1) and τ(0, 0), can give information about the direct effect of Z
on Y . However, these direct effects are only for two latent groups. The causal
effects within the other two principal strata, τ(1, 0) and τ(0, 1), contain both
the direct and indirect effects. Fundamentally, principal stratification does
not provide any information about the indirect effect of Z on Y through M
because it does not even assume that M can be intervened.

In the above discussion, I use the notions of “direct effect” and “indirect
effect” in a casual way. WhenM lies on the pathway from Z to Y , researchers
often want to assess the extent to which the effect of Z on Y is through M
and the extent to which the effect is through other pathways. This is called
mediation analysis. It is the topic of this chapter.

27.1 Motivating Examples

In mediation analysis, we have a treatment Z, an outcome Y , a mediator M ,
and some background covariates X. Figure 27.3 illustrates their relationship.
Below we give some concrete examples.

X

xx �� ''
Z // 77M // Y

FIGURE 27.1: Directed acyclic graph for mediation

323
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Example 27.1 VanderWeele et al. (2012) conducted mediation analysis to
assess the extent to which the effect of variants on chromosome 15q25.1 on
lung cancer is mediated through smoking and to which it operates through
other causal pathways. The exposure levels correspond to changes from 0 to 2
C alleles, smoking intensity is measured by the square root of cigarettes per
day, and the outcome is the lung cancer indicator. VanderWeele et al. (2012)’s
study contained many sociodemographic covariates.

Example 27.2 Rudolph et al. (2018) studies the causal mechanism from
neighborhood poverty to adolescent substance use, mediated by the school and
peer environment. They used data from the National Comorbidity Survey
Replication Adolescent Supplement, a nationally representative survey of U.S.
adolescents conducted during 2001–2004. The treatment is the binary indi-
cator of neighborhood disadvantage, defined as living in the lowest tertile of
neighborhood socioeconomic status based on data from the 2000 U.S. Census.
Four binary mediators are measures of school and peer environments, and six
binary outcomes are measures of substance use. Baseline covariates included
the adolescent’s sex, age, race, immigration generation, family income, etc.

Example 27.3 The mediation package in R contains a dataset called jobs,
which is from JOBS II, a randomized field experiment that investigates the
efficacy of a job training intervention on unemployed workers. We used this
dataset in Chapter 21.5. The program is designed to not only increase reem-
ployment among the unemployed but also enhance the mental health of the job
seekers. It is therefore of interest to assess the indirect effect of the interven-
tion on the mental health through job search efficacy and its direct effect acting
through other pathways. We will revisit this example later.

27.2 Nested Potential Outcomes

27.2.1 Natural Direct and Indirect Effects

Below we drop the index i for unit i and assume all random variables are iid
draws from a super population. For simplicity, we focus on a binary treatment
Z.

We first consider the hypothetical intervention on z and define potential
mediators and outcomes corresponding to the intervention on z:

{M(z), Y (z) : z = 0, 1}.

We then consider hypothetical intervention on both z and m and define po-
tential outcomes corresponding to the interventions on z and m:

{Y (z,m) : z = 0, 1;m ∈ M},
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where M contains all possible values of m. Robins and Greenland (1992) and
Pearl (2001) further consider the nested potential outcomes corresponding to
intervention on z and m =M(z′) ≡Mz′ :

{Y (z,Mz′) : z = 0, 1; z′ = 0, 1}

where we write M(z′) as Mz′ to avoid excessive parentheses. The notation
Y (z,Mz′) is the hypothetical outcome if the treatment were set at level z
and the mediator were set at its potential level M(z′) under treatment z′.
Importantly, z and z′ can be different. With a binary treatment, we have four
nested potential outcomes in total:

{Y (1,M1), Y (1,M0), Y (0,M1), Y (0,M0)}.

The nested potential outcome Y (1,M1) is the hypothetical outcome if the
treatment were set at z = 1 and the mediator were set at what would happen
under z = 1. Similarly, Y (0,M0) is the outcome if the treatment were set at
z = 0 and the mediator were set at what would happen under z = 0. It would
be surprising if Y (1,M1) ̸= Y (1) or Y (0,M0) ̸= Y (0). Therefore, we make the
following assumption throughout this chapter.

Assumption 27.1 (composition) Y (z,Mz) = Y (z) for z = 0, 1.

The composition assumption cannot be proved. It is indeed an assumption.
Without causing philosophical debates, we can even define Y (1) as Y (1,M1),
and define Y (0) as Y (0,M0).

The nested potential outcome Y (1,M0) is the hypothetical outcome if the
unit received treatment 1 but its mediator were set at its natural value M0

without the treatment. Similarly, Y (0,M1) is the hypothetical outcome if the
unit received control 0 but its mediator were set at its natural valueM1 under
the treatment. They are two cross-world counterfactual terms and useful for
defining the direct and indirect effects.

Definition 27.1 (total, direct and indirect effects) Define the total ef-
fect of the treatment on the outcome as

τ = E{Y (1)− Y (0)}.

Define the natural direct effect as

nde = E{Y (1,M0)− Y (0,M0)}.

Define the natural indirect effect as

nie = E{Y (1,M1)− Y (1,M0)}.

The total effect is the standard average causal effect of Z on Y . The nat-
ural direct effect measures the effect of the treatment on the outcome if the
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mediator were set at the natural value M0 without the intervention. The nat-
ural indirect effect measures the the effect of the treatment through changing
the mediator if the treatment itself were set at z = 1. Under the composition
assumption, the natural direct and indirect effects reduce to

nde = E{Y (1,M0)− Y (0)}, nie = E{Y (1)− Y (1,M0)},

and therefore, we can decompose the total effect as the sum of the natural
direct and indirect effects.

Proposition 27.1 By Definition 27.1 and Assumption 27.1, τ = nde+nie.

Mathematically, we can also define the natural indirect effect as
E{Y (0,M1) − Y (0,M0)} where the treatment is fixed at 0. However, this
definition does not lead to the decomposition in Proposition 27.1.

Unfortunately, the nest potential outcome Y (1,M0) is not an easy quantity
to understand due to the cross-world nature of the interventions: the treatment
is set at z = 1 but the mediator is set at its natural valueM0 under treatment
z = 0. Clearly, these two interventions on the treatment cannot simultaneously
happen in any realized experiment. To understand the cross-world potential
outcome Y (1,M0), we need to imagine the existence of parallel worlds as
shown in Figure 27.2. Let’s focus on Y (1,M0). When the treatment is set at
z = 1, the mediator must take value M1. If at the same time we want to
set the mediator at m = M0, we must know the value of M0 for the same
unit from another experiment in the parallel world. This can be an unrealistic
physical experiment because it requires that the same unit is intervened at
two different levels of the treatment. Under some strong assumptions about
the homogeneity of units, we may use another unit’s mediator value under
control as a proxy for M0.

27.2.2 Metaphysics or Science

Causal inference is hard, and there is no agreement even on its mathemati-
cal notation. Robins and Greenland (1992) and Pearl (2001) used the nested
potential outcomes to define the natural direct and indirect effects. However,
Frangakis and Rubin (2002) called Y (1,M0) and Y (0,M1) a priori counter-
factuals because we cannot observed them in any physical experiments. In
this sense, they do not exist a priori. According to Popper (1963), a way
to distinguish science and metaphysics is the falsifiability of the statements.
That is, if a statement is not falsifiable based on any physical experiments or
observations, then it is not a scientific but rather a metaphysical statement.
Because we cannot observe Y (1,M0) and Y (0,M1) in any experiments, we
cannot falsify any statements involving them except for the trivial ones (e.g.,
some outcomes are binary, or continuous, or bounded). Therefore, a strict
Popperian statistician would view mediation analysis as metaphysics.

More strikingly, Dawid (2000) criticized the potential outcomes framework
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to be metaphysical, and he called Rubin’s Science Table a “metaphysical ar-
ray.” This is a critique on not only the a priori counterfactuals Y (1,M0)
and Y (0,M1) but also the simple potential outcomes Y (1) and Y (0). Dawid
(2000) argued that because we can never observe Y (1) and Y (0) jointly, then
introducing the notation {Y (1), Y (0)} is a metaphysical activity. He is correct
about the metaphysical nature of the joint distribution of pr{Y (1), Y (0)}, but
he is incorrect about the marginal distributions. Based on the observed data,
we indeed can falsify some statement about the marginal distributions, al-
though we cannot falsify any statements about the joint distribution.1 There-
fore, even according to Popper (1963), Rubin’s Science Table is not meta-
physical because it has some nontrivial falsifiable implications although not
all implications are falsifiable. This is the fundamental difference between
{Y (1), Y (0)} and {Y (1,M0), Y (0,M1)}.

intervetion z = 0 intervetion z = 1

parallel worlds

M0
Y (0) = Y (0,M0)

M1
Y (1) = Y (1,M1)

world 0 world 0′ world 1 world 1′ 

intervention m = M0
Y (z , m) = Y (1,M0)

intervention m = M1
Y (z , m) = Y (0,M1)

cross-world communications

FIGURE 27.2: Crossworld potential outcomes Y (1,M0) and Y (0,M1)

1By the probability theory, given the marginal distributions of pr(Y (1) ≤ y1) and
pr(Y (0) ≤ y0), we can bound the joint distribution of pr(Y (1) ≤ y1, Y (0) ≤ y0) by the
Frechet–Hoeffding inequality:

max{0,pr(Y (1) ≤ y1) + pr(Y (0) ≤ y0)− 1}
≤ pr(Y (1) ≤ y1, Y (0) ≤ y0)

≤ min{pr(Y (1) ≤ y1),pr(Y (0) ≤ y0)}.

This is often a loose inequality. Unfortunately, we do not have any information beyond this
inequality without imposing additional assumptions.
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27.3 The Mediation Formula

Pearl (2001)’s mediation formula relies on the following four assumptions. The
first three essentially assumes that the treatment and the mediator are both
randomized conditional on observed covariates.

Assumption 27.2 There is no treatment-outcome confounding:

Z Y (z,m) | X

for all z and m.

Assumption 27.3 There is no mediator-outcome confounding:

M Y (z,m) | (X,Z)

for all z and m.

Assumptions 27.2 and 27.3 together are often called sequential ignorability.
They are equivalent to the assumption that (Z,M) are jointly randomized
conditioning on X:

(Z,M) Y (z,m) | X (27.1)

for all z and m. I leave the proof as Problem 27.1.

Assumption 27.4 There is no treatment-mediator confounding:

Z M(z) | X

for all z.

The last assumption is the cross-world independence.

Assumption 27.5 There is no cross-world independence between the poten-
tial outcomes and potential mediators:

Y (z,m) M(z′) | X

for all z, z′ and m.

Assumptions 27.2–27.4 are very strong, but at least they hold under exper-
iments with randomized treatment and mediator. Assumption 27.5 is stronger
because no physical experiment can ensure it. Because we can never observe
Y (z,m) and M(z′) in any experiment if z ̸= z′, Assumption 27.5 can never
be validated so it is fundamentally meta-physical.

I give an example below in which Assumptions 27.2–27.5 all hold.
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Example 27.4 Given X, we generate

Z = 1{fZ(X, εZ)},
M(z) = 1{fM (X, z, εM )},

Y (z,m) = fY (X, z,m, εY ),

for z,m = 0, 1, where εZ , εM , εY are all independent. Consequently, we gen-
erate the observed values of M and Y from

M = M(Z) = 1{fM (X,Z, εM )},
Y = Y (Z,M) = fY (X,Z,M, εY ).

We can verify that Assumptions 27.2–27.5 hold under this data generating
process; see Problem 27.2.

Pearl (2001) proved the following key result for mediation analysis.

Theorem 27.1 Under Assumptions 27.2–27.5, we have

E{Y (z,Mz′) | X = x} =
∑
m

E(Y | Z = z,M = m,X = x)pr(M = m | Z = z′, X = x)

and therefore,

E{Y (z,Mz′)} =
∑
x

E{Y (z,Mz′) | X = x}pr(X = x).

Theorem 27.1 assumes that both M and X are discrete. With general M
and X, the mediation formulas become

E{Y (z,Mz′) | X = x} =

∫
E(Y | Z = z,M = m,X = x)fM (m | Z = z′, X = x)dm

and

E{Y (z,Mz′)} =

∫
E{Y (z,Mz′) | X = x}fX(x)dx.

From Theorem 27.1, the identification formulas for the means of the nested
potential outcomes depend on the conditional mean of the outcome given the
treatment, mediator, and covariates, as well as the conditional mean of the
mediator given the treatment and covariates. We need to evaluate these two
conditional means at different treatment levels if the nested potential outcome
involves cross-world interventions.

If we drop the cross-world independence assumption, we can modify the
definition of the natural direct and indirect effects and the same formulas hold.
See Problem 27.8 for more details.

I give the proof below.
Proof of Theorem 27.1: By the tower property, E{Y (z,Mz′)} =
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E[E{Y (z,Mz′) | X}], so we need only to prove the formula for E{Y (z,Mz′) |
X = x}. Starting with the law of total probability, we have

E{Y (z,Mz′) | X = x}
=

∑
m

E{Y (z,Mz′) |Mz′ = m,X = x}pr(Mz′ = m | X = x)

=
∑
m

E{Y (z,m) |Mz′ = m,X = x}pr(Mz′ = m | X = x)

=
∑
m

E{Y (z,m) | X = x}︸ ︷︷ ︸
Assumption 27.5

pr(M = m | Z = z′, X = x)︸ ︷︷ ︸
Assumption 27.4

=
∑
m

E(Y | Z = z,M = m,X = x)︸ ︷︷ ︸
Assumptions 27.2 and 27.3

pr(M = m | Z = z′, X = x).

□
The above proof is actually trivial from a mathematical perspective. It

illustrates the necessity of Assumptions 27.2–27.5.
Conditioning onX = x, the mediation formulas for Y (1,M1) and Y (0,M0)

simplifies to

E{Y (1,M1) | X = x}
=

∑
m

E(Y | Z = 1,M = m,X = x)pr(M = m | Z = 1, X = x)

= E(Y | Z = 1, X = x)

and

E{Y (0,M0) | X = x}
=

∑
m

E(Y | Z = 0,M = m,X = x)pr(M = m | Z = 0, X = x)

= E(Y | Z = 0, X = x)

based on the law of total probability; the mediation formula for Y (1,M0)
simplifies to

E{Y (1,M0) | X = x} =
∑
m

E(Y | Z = 1,M = m,X = x)pr(M = m | Z = 0, X = x),

where the conditional expectation of the outcome is given Z = 1 but the
conditional distribution of the mediator is given Z = 0. This leads to the
indentification formulas of the natural direct and indirect effects.

Corollary 27.1 Under Assumptions 27.2–27.5, the conditional natural direct
and indirect effects are identified by

nde(x) = E{Y (1,M0)− Y (0,M0) | X = x}
=

∑
m

{E(Y | Z = 1,M = m,X = x)− E(Y | Z = 0,M = m,X = x)}

×pr(M = m | Z = 0, X = x)
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and

nie(x) = E{Y (1,M1)− Y (1,M0) | X = x}
=

∑
m

E(Y | Z = 1,M = m,X = x)

×{pr(M = m | Z = 1, X = x)− pr(M = m | Z = 0, X = x)};

the unconditional ones can be identified by nde =
∑

x nde(x)pr(X = x) and
nie =

∑
x nie(x)pr(X = x).

As a special case, with a binary M , the formula of the nie reduces to a
product form below.

Corollary 27.2 Under Assumptions 27.2–27.5, for a binary mediator M , we
have

nie(x) = τZ→M (x)τM→Y (1, x)

and nie = E{nie(X)}, where

τZ→M (x) = pr(M = 1 | Z = 1, X = x)− pr(M = 1 | Z = 0, X = x).

and

τM→Y (z, x) = E(Y | Z = z,M = 1, X = x)− E(Y | Z = z,M = 0, X = x)

I leave the proof of Corollary 27.2 as Problem 27.4. Corollary 27.2 gives
a simple formula in the case of a binary M . With randomized Z conditional
on X, we can view τZ→M (x) as the conditional average causal effect of Z
on M . With randomized M conditional on (X,Z), we can view τM→Y (z, x)
as the conditional average causal effect of M on Y . The conditional natural
indirect effect equals their product. This is coherent with our intuition that
the indirect effect acts from Z to M and then from M to Y .

27.4 The Mediation Formula Under Linear Models

Theorem 27.1 gives the nonparametric identification formula for mediation
analysis. It allows us to derive various formulas for mediation analysis un-
der different models. I will introduce the famous Baron–Kenny method under
linear models below. VanderWeele (2015) gives explicit formulas for the natu-
ral direct and indirect effects for many commonly-used models. I relegate the
details of other models to Section 27.6.
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FIGURE 27.3: The Baron–Kenny Method for mediation under linear models

27.4.1 The Baron–Kenny Method

The Baron–Kenny method assumes the following linear models for the medi-
ator and outcome given the treatment and covariates.

Assumption 27.6 (linear models for the Baron–Kenny method) Both
the mediator and outcome follow linear models:{

E(M | Z,X) = β0 + β1Z + βT2X,
E(Y | Z,M,X) = θ0 + θ1Z + θ2M + θT4X.

Under these linear models, the formulas for the natural direct and indirect
effects simplify to functions of the coefficients.

Corollary 27.3 (Baron–Kenny formulas for mediation) Under Assump-
tions 27.2–27.5 and 27.6,

nde = θ1, nie = θ2β1.

Proof of Corollary 27.3: We have

nde(x) =
∑
m

θ1pr(M = m | Z = 0, X = x) = θ1

and

nie(x) =
∑
m

(θ0 + θ1 + θ2m+ θT4x)

×{pr(M = m | Z = 1, X = x)− pr(M = m | Z = 0, X = x)}
= θ2{E(M = m | Z = 1, X = x)− E(M = m | Z = 0, X = x)}
= θ2β1,
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which do not depend on x. Therefore, they are also the formulas for the
unconditional natural direct and indirect effects. □

If we obtain OLS estimators of these coefficients, we can estimate the direct
and indirect effects by

ˆnde = θ̂1, n̂ie = θ̂2β̂1,

which is called the Baron–Kenny method (Judd and Kenny, 1981; Baron and
Kenny, 1986) although it had several antecedents (e.g., Hyman, 1955; Alwin
and Hauser, 1975; Judd and Kenny, 1981; Sobel, 1982).

Standard software packages report the standard error of ˆnde from OLS.
Sobel (1982, 1986) used the delta method to obtain the standard error of n̂ie.

Based on the formula in Example A1.2, the asymptotic variance of θ̂2β̂1 equals
var(θ̂2)β

2
1 + θ22var(β̂1). So the estimated variance is

v̂ar(θ̂2)β̂
2
1 + θ̂22v̂ar(β̂1).

Testing the null hypothesis of nie based on θ̂2β̂1 and the estimated variance
above is called Sobel’s test in the literature of mediation analysis.

27.4.2 An Example

We can easily implement the Baron–Kenny method via the following code.

library("car")

BKmediation = function(Z, M, Y, X)

{

## two regressions and coefficients

mediator.reg = lm(M ~ Z + X)

mediator.Zcoef = mediator.reg$coef [2]
mediator.Zse = sqrt(hccm(mediator.reg)[2, 2])

outcome.reg = lm(Y ~ Z + M + X)

outcome.Zcoef = outcome.reg$coef [2]
outcome.Zse = sqrt(hccm(outcome.reg)[2, 2])

outcome.Mcoef = outcome.reg$coef [3]
outcome.Mse = sqrt(hccm(outcome.reg)[3, 3])

## Baron -Kenny point estimates

NDE = outcome.Zcoef

NIE = outcome.Mcoef*mediator.Zcoef

## Sobel ’s variance estimate based the delta method

NDE.se = outcome.Zse

NIE.se = sqrt(outcome.Mse^2*mediator.Zcoef^2 +

outcome.Mcoef^2*mediator.Zse ^2)

res = matrix(c(NDE , NIE ,
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NDE.se , NIE.se ,

NDE/NDE.se , NIE/NIE.se),

2, 3)

rownames(res) = c("NDE", "NIE")

colnames(res) = c("est", "se", "t")

res

}

Revisiting Example 27.3, we obtain the following estimates for the direct
and indirect effects:

> library(mediation)

> Z = jobs$treat
> M = jobs$job_seek
> Y = jobs$depress2
> getX = lm(treat ~ econ_hard + depress1 +

+ sex + age + occp + marital +

+ nonwhite + educ + income ,

+ data = jobs)

> X = model.matrix(getX)[, -1]

> res = BKmediation(Z, M, Y, X)

> round(res , 3)

est se t

NDE -0.037 0.042 -0.885

NIE -0.014 0.009 -1.528

Both the estimates for the direct and indirect effects are negative although
they are insignificant.

27.5 Sensitivity analysis

Mediation analysis relies on strong and untestable assumptions. One crucial
assumption is that there is no unmeasured confounding among the treatment,
mediator and outcome. Various sensitivity analysis methods appeared in the
literature. In particular, Ding and Vanderweele (2016) proposed Cornfield-
type sensitivity bounds and Zhang and Ding (2022) proposed a sensitivity
analysis method tailored to the Baron–Kenny method based on linear struc-
tural equation models.
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27.6 Homework problems

27.1 Sequential randomization and joint randomization

Show (27.1) is equivalent to Assumptions 27.2 and 27.3.

27.2 Verifying the assumptions for mediation analysis

Show that Assumptions 27.2–27.5 hold under the data generating process in
Example 27.4.

27.3 Another set of assumptions for the mediation formula

Imai et al. (2010) invoked the following set of assumptions to derive the me-
diation formula.

Assumption 27.7 Assume

{Y (z,m),M(z′)} Z | X

and
Y (z,m) M(z′) | (Z = z′, X)

for all z, z′,m.

Theorem 27.2 Under Assumption 27.7, the mediation formula holds.

Prove Theorem 27.2.

27.4 Natural indirect effect with a binary mediator

Prove Corollary 27.2.

27.5 With Treatment-Outcome Interaction on the Outcome

VanderWeele (2015) suggested using the following linear models:{
E(M | Z,X) = β0 + β1Z + βT2X,

E(Y | Z,M,X) = θ0 + θ1Z + θ2M + θ3ZM + θT4X,

where the outcome model has the interaction term between the treatment and
the mediator.

Under the above linear models, show that

nde = θ1 + θ3{β0 + βT2E(X)}, nie = (θ2 + θ3)β1.

How do we estimate nde and nie with IID data?
Remark: Consider the simple case with a binary Z and binary M . Under



336 27 Mediation Analysis: Natural Direct and Indirect Effects

the linear models, the average causal effect of Z ofM equals β1, and the aver-
age causal effect of M on Y equals θ2 + θ3E(Z). Therefore, it is possible that
both of these effects are positive, but the natural indirect effect is negative.
For instance:

β1 = 1, θ2 = 1, θ3 = −1.5, E(Z) = 0.5.

This is somewhat paradoxical, and can be called the mediator paradox. Chen
et al. (2007) reported a related surrogate endpoint paradox or intermediate
variable paradox.

27.6 Logistic Model for Binary Mediator

Consider the following Logistic model for the binary mediator and linear model
for the outcome:{

logit{pr(M = 1 | Z,X)} = β0 + β1Z + βT2X,
E(Y | Z,M,X) = θ0 + θ1Z + θ2M + θT4X,

where logit(w) = log{w/(1− w)} with inverse expit(w) = (1 + e−w)−1.
Under these models, show that

nde = θ1, nie = θ2E
{
expit(β0 + β1 + βT2X)− expit(β0 + βT2X)

}
.

How do we estimate nde and nie with IID data?

27.7 Mediation analysis with binary mediator and outcome

Consider the following Logistic models for the binary mediator and outcome:{
logit{pr(M = 1 | Z,X)} = β0 + β1Z + βT2X,

logit{pr(Y = 1 | Z,M,X)} = θ0 + θ1Z + θ2M + θT4X.

Express nde and nie in terms of the model parameters and the distribution
of X. How do we estimate nde and nie with IID data?

27.8 Modify the definitions to drop the cross-world independence

Define

Y (z, FMz′ |X) =

∫
Y (z,m)fMz′ (m | X)dm

as the potential outcome under treatment z and a random draw from the dis-
tribution of Mz′ | X. The key difference between Y (z,Mz′) and Y (z, FMz′ |X)
is that Mz′ is the potential mediator for the same unit whereas FMz′ |X is a
random draw from the conditional distribution of the potential mediator in
the whole population. Define the natural direct and indirect effects as

nde = E{Y (1, FM0|X)−Y (0, FM0|X)}, nie = E{Y (1, FM1|X)−Y (1, FM0|X)}.
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Show that under Assumptions 27.2–27.4, the identification formulas for
nde and nie remain the same as in the main text.

Remark: Modifying the definitions of the nested potential outcomes al-
lows us to relax the strong cross-world independence assumption but weakens
the interpretation of the natural direct and indirect effects. See VanderWeele
(2015) for more discussion and VanderWeele and Tchetgen Tchetgen (2017)
for an application to a more complex setting with time varying treatment and
mediator.

27.9 Connections between principal stratification and mediation analysis

VanderWeele (2008) and Forastiere et al. (2018) reviewed and compared prin-
cipal stratification and mediation analysis.
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Controlled Direct Effect

The formulation of mediation analysis in Chapter 27 relies on the nested po-
tential outcomes, and fundamentally, some nested potential outcomes are not
observable in any physical experiments. If we stick to the Popperian philoso-
phy of science, we should only define causal parameters in terms of quantities
that are observable under some experiments. This chapter discusses an alter-
native view of causal inference with an intermediate variable. In this view, we
only define the direct effect but can not define the indirect effect.

28.1 Identification and estimation of the controlled di-
rect effect

We view Z and M as two factors, and define potential outcomes Y (z,m) for
z = 0, 1 and m ∈ M. Based on these potential outcomes, we can define the
controlled direct effect (CDE) below.

Definition 28.1 (CDE) Define

cde(m) = E{Y (1,m)− Y (0,m)}.

By definition, cde(m) is the average causal effect of the treatment if
the intermediate variable is fixed at m. The parameter cde(m) can capture
the direct effect of the treatment holding the mediator at m. However, this
formulation cannot capture the indirect effect. In particular, the parameter
E{Y (z, 1)−Y (z, 0)} only measures the effect of the mediator on the outcome
holding the treatment at z. This is not a meaningful definition of the indirect
effect.

To identify cde(m), we need the following assumption, which basically
requires that Z and M are jointly randomized given X.

Assumption 28.1 Sequential ignorability requires

Z Y (z,m) | X, M Y (z,m) | (Z,X)

or, equivalently,
(Z,M) Y (z,m) | X.

339
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I will focus on the case with a binary Z and M . Mathematically, we can
just view this problem as an observational study with four treatment levels

(z,m) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

The following theorem extends the results for observational studies with a
binary treatment, identifying

µzm = E{Y (z,m)}

based on outcome regression, inverse probability weighting, and doubly robust
estimation.

Define
µzm(x) = E(Y | Z = z,M = m,X = x)

as the outcome mean conditional on the treatment, mediator and covariates.
Define

ezm(x) = pr(Z = z,M = m | X = x) = pr(Z = z | X = x)pr(M = m | Z = z,X = x)

as the probability of the joint value of Z and M conditional on the covariates.

Theorem 28.1 Under Assumption 28.1, we have

µzm = E{µzm(X)}

or

µzm = E

{
I(Z = z,M = m)Y

ezm(X)

}
.

Moreover, based on the working models ezm(X,α) and µzm(X,β), we have the
doubly robust formula

µdr
zm = E{µzm(X,β)}+ E

[
I(Z = z,M = m){Y − µzm(X,β)}

ezm(X,α)

]
,

which equals µzm if either ezm(X,α) = ezm(X) or µzm(X,β) = µzm(X).

The proof of Theorem 28.1 is similar to those for the standard uncon-
founded observational studies. Problem 28.2 gives a general result. Based on
the outcome mean model, we can obtain µ̂zm(x) for µzm(x). Based on the
treatment model, we can obtain êz(x) for pr(Z = z | X = x); based on the
intermediate variable model, we can obtain êm(z, x) for pr(M = m | Z =
z,X = x). We can then estimate µzm by outcome regression

µ̂reg
zm = n−1

n∑
i=1

µ̂zm(Xi),
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by inverse probability weighting

µ̂ht
zm = n−1

n∑
i=1

I(Zi = z,Mi = m)Yi
êz(Xi)êm(z,Xi)

,

µ̂haj
zm =

n∑
i=1

I(Zi = z,Mi = m)Yi
êz(Xi)êm(z,Xi)

/ n∑
i=1

I(Zi = z,Mi = m)

êz(Xi)êm(z,Xi)
,

or by augmented inverse probability weighting

µ̂dr
zm = µ̂reg

zm + n−1
n∑

i=1

I(Zi = z,Mi = m){Yi − µ̂zm(Xi)}
êz(Xi)êm(z,Xi)

.

We can then estimate cde(m) by µ̂1m − µ̂0m and use the bootstrap to ap-
proximate the standard error.

If we are willing to assume a linear outcome model, the controlled direct
effect simplifies to the coefficient of the treatment. Example 28.1 below gives
the details.

Example 28.1 Under Assumption 28.1 and a linear outcome model,

E(Y | Z,M,X) = θ0 + θ1Z + θ2M + θT4X,

we can show that cde(m) equals the coefficient θ1, which coincides with the
natural direct effect in the Baron–Kenny method. I relegate the proof to Prob-
lem 28.3.

28.2 Discussion

The formulation of the controlled direct effect does not involve nested or a
priori counterfactual potential outcomes, and its identification does not re-
quire the cross-world counterfactual independence assumption. The parameter
cde(m) can capture the direct effect of the treatment holding the mediator at
m. However, this formulation cannot capture the indirect effect. I summarize
the causal frameworks for intermediate variables below.

chapter framework direct effect indirect effect

26 principal stratification τ(1, 1), τ(0, 0) ?
27 mediation analysis nde nie
29 controlled direct effect cde(m) ?

The mediation analysis framework can decompose the total effect into
natural direct and indirect effects, but it requires nested potential outcomes
and cross-world independence. The principal stratification and controlled di-
rect effect frameworks cannot define indirect effects but they do not involve
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nested potential outcomes and cross-world independence. Moreover, the prin-
cipal stratification framework does not necessarily require that M lies on the
causal pathway from the treatment to the outcome. But its identification and
estimation involves disentangling mixture distributions, which is a nontrivial
task in statistics.

28.3 Homework problems

28.1 cde and nde

Show that under cross-world independence Y (z,m) M(z′) | X for all z, z′

and m, the conditional cde(m | x) = E{Y (1,m) − Y (0,m) | X = x} and
nde(x) = E{Y (1,M0)− Y (0,M0) | X = x} have the following relationship:

nde(x) = E{cde(M0 | x)},

which reduces to

nde(x) =
∑
m

cde(m | x)pr(M0 = m | X = x)

for a discreteM . Without the cross-world independence, does this relationship
still hold in general?

28.2 Observational studies with a multi-valued treatment

Theorem 28.1 is a special case of the following theorem for unconfounded
observational studies with multiple treatment levels (Imai and Van Dyk, 2004;
Cattaneo, 2010). Below, I state the general problem and theorem.

Consider an observational study with a multi-valued treatment Z ∈
{1, . . . ,K}, covariates X, and outcome Y . Unit i has K potential outcomes
Yi(1), . . . , Yi(K) corresponding to the K treatment levels. Causal effects can
be defined as comparisons of the potential outcomes. In general, we can define
causal effect in terms of contrasts of the potential outcomes:

τc =

K∑
k=1

ckE{Y (k)}

where
∑K

k=1 ck = 0. The canonical choice of the pairwise comparison

τk,k′ = E{Y (k)− Y (k′)}.

Therefore, the key is to identify and estimate the means of the potential
outcomes µk = E{Y (k)} under the ignorability assumption below based on
IID data of (Zi, Xi, Yi)

n
i=1.
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Assumption 28.2 Z {Y (1), . . . , Y (K)} | X.

Define the generalized propensity score as

ek(X) = pr(Z = k | X),

and define the conditional outcome mean as

µk(X) = E(Y | Z = k,X)

for k = 1, . . . ,K. We have the following theorem.

Theorem 28.2 Under Assumption 28.2, we have

µk = E{µk(X)}

or

µk = E

{
I(Z = k)Y

ek(X)

}
.

Moreover, based on the working models ek(X,α) and µk(X,β), we have the
doubly robust formula

µdr
k = E{µk(X,β)}+ E

[
I(Z = k){Y − µk(X,β)}

ek(X,α)

]
,

which equals µk if either ek(X,α) = ek(X) or µk(X,β) = µk(X).

Prove Theorem 28.2.
Remark: Theorem 28.1 is a special case of Theorem 28.2 if we view the

(Z,M) in Theorem 28.1 as a treatment with four levels. The cde(m) is a
special case of τc.

28.3 cde in the linear outcome model

Show that under Assumption 28.1, if E(Y | Z,M,X) = θ0+θ1Z+θ2M+θT4X,
then

cde(m) = θ1

for all m; if E(Y | Z,M,X) = θ0 + θ1Z + θ2M + θ3ZM + θT4X, then

cde(m) = θ1 + θ3m.

28.4 cde in the logit outcome model

Show that for a binary outcome, under Assumption 28.1, if

logit{pr(Y = 1 | Z,M,X)} = θ0 + θ1Z + θ2M + θT4X,

then

cde(m) = E{expit(θ0 + θ1 + θ2m+ θT4X)− expit(θ0 + θ2m+ θT4X)};
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if
logit{pr(Y = 1 | Z,M,X)} = θ0 + θ1Z + θ2M + θ3ZM + θT4X,

then

cde(m) = E{expit(θ0 + θ1 + θ2m+ θ3m+ θT4X)− expit(θ0 + θ2m+ θT4X)}.

28.5 Recommended reading

Nguyen et al. (2021) provided a friendly review of of the topics in Chapters
27 and 29.



29

Time-Varying Treatment and Confounding

Studies with time-varying treatments are common in biomedical and social
sciences. James Robins championed the research in biostatistics. A classic
example is that HIV patients may take the azidothymidine, an antiretroviral
medication, on and off over time (Robins et al., 2000; Hernán et al., 2000).
Similar problems also exist in other fields. In education, a classic example is
that students may receive different types of instructions over time (Hong and
Raudenbush, 2008). In political science, a classic example is that candidates
continuously recalibrate their campaign strategy based on time-varying polls
and opponent actions (Blackwell, 2013).

Causal inference with a time-varying treatment is not a simple extension of
causal inference with a treatment at a single time point. The main challenge is
time-varying confounding. Even if we assume all time-varying confounders are
observed, we still face statistical challenges in adjusting for those confounders.
One the one hand, we should stratify on these confounders to adjust for con-
founding; on the other hand, stratifying on post-treatment variables will cause
bias. Due to these two conflicting goals, causal inference with time-varying
treatments and confounding requires more sophisticated statistical methods.
It is the main topic of this chapter.

To minimize the notational burden, I will use the setting with a treat-
ment at two time points to convey the most important ideas. Extensions to
treatments at multiple time points can be conceptually straightforward al-
though technical complexities will arise in finite samples. I will discuss the
complexities and relegate general results to Problems 29.6–29.9.

29.1 Basic setup and sequential ignorability

Start with a treatment at two time points. The temporal order of the variables
with two time points is below:

X0 → Z1 → X1 → Z2 → Y

where

• X0 denotes the baseline pre-treatment covariates;

345
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Z1
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X1

''// Z2
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FIGURE 29.1: Without unmeasured confounding U between X1 and Y . The
causal diagram conditions on the pre-treatment covariates X0.

• Z1 denotes the treatment at time point 1;

• X1 denotes the time-varying covariates between the treatments at time
points 1 and 2;

• Z2 denotes the treatment at time point 2;

• Y denotes the outcome.

With binary treatment (Z1, Z2), each unit has four potential outcomes

Y (z1, z2) for z1, z2 = 0, 1.

The observed outcome equals

Y = Y (Z1, Z2) =
∑

z1=0,1

∑
z2=0,1

1(Z1 = z1)1(Z2 = z2)Y (z1, z2).

I will focus on the canonical setting with sequential ignorability, that is, the
treatments are sequentially randomized given the observed history.

Assumption 29.1 (sequential ignorability) (1) Z1 is randomized given
X0:

Z1 Y (z1, z2) | X0 for z1, z2 = 0, 1.

(2) Z2 is randomized given (Z1, X1, X0):

Z2 Y (z1, z2) | (Z1, X1, X0) for z1, z2 = 0, 1.

Figure 29.1 is a simple causal diagram corresponding to Assumption 29.1,
which does not contains any unmeasured confounding.

Figure 29.2 is a more complex causal diagram corresponding to Assump-
tion 29.1. Sequential ignorability rules out only the confounding between the
treatment (Z1, Z2) and the outcome Y , but allows for unmeasured confound-
ing between the time-varying covariate X1 and the outcome Y . The possible
existence of U causes many subtle issues even under sequential ignorability.
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FIGURE 29.2: With unmeasured confounding between X1 and Y . The causal
diagram conditions on the pre-treatment covariates X0.

29.2 g-formula and outcome modeling

Recall the outcome-based identification formula with a treatment at a single
time point:

E{Y (z)} = E{E(Y | Z = z,X)}.

With discrete X, it reduces to

E{Y (z)} =
∑
x

E(Y | Z = z,X = x)pr(X = x);

with continuous X, it reduces to

E{Y (z)} =

∫
E(Y | Z = z,X = x)fX(x)dx.

The following result extends it to the setting with a treatment at two time
points.

Theorem 29.1 Under Assumption 29.1,

E{Y (z1, z2)} = E
[
E{E(Y | z2, z1, X1, X0) | z1, X0}

]
. (29.1)

In Theorem 29.1, I simplify the notation ‘Z2 = z2” to “z2” for simplicity.
To void complex formulas in this Chapter, I will use the lower case letter to
represent the event that the random variable takes the corresponding value.
With discrete X0 and X1, the identification formula (29.1) reduces to

E{Y (z1, z2)} =
∑
x0

∑
x1

E(Y | z2, z1, x1, x0)pr(x1 | z1, x0)pr(x0); (29.2)

with continuous X0 and X1, the identification formula (29.1) reduces to

E{Y (z1, z2)} =

∫ ∫
E(Y | z2, z1, x1, x0)f(x1 | z1, x0)f(x0)dx1dx0. (29.3)
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Compare (29.2) with the formula based on the law of total probability to gain
more insights:

E(Y ) =
∑
x0

∑
z1

∑
x1

∑
z2

E(Y | z2, z1, x1, x0)

pr(z1 | z1, x1, x0)pr(x1 | z1, x0)pr(z1 | x0)pr(x0). (29.4)

Erasing the probabilities of z2 and z1 in (29.4), we can obtain the formula
(29.3). This is intuitive because the potential outcome Y (z1, z2) has the mean-
ing of fixing Z1 and Z2 at z1 and z2, respectively.

Robins called (29.2) and (29.3) the g-formulas. Now I will prove Theorem
29.1.
Proof of Theorem 29.1: By the tower property,

E{Y (z1, z2)} = E
[
E{Y (z1, z2) | X0}

]
,

so we focus on E{Y (z1, z2) | X0}. By Assumption 29.1(1) and the tower
property,

E{Y (z1, z2) | X0} = E{Y (z1, z2) | z1, X0}

= E
[
E{Y (z1, z2) | z1, X1, X0} | z1, X0

]
.

By Assumption 29.1(2),

E{Y (z1, z2) | X0} = E
[
E{Y (z1, z2) | z2, z1, X1, X0} | z1, X0

]
= E

[
E{Y | z2, z1, X1, X0} | z1, X0

]
.

The formula (29.1) follows. □

29.2.1 Plug-in estimation based on outcome modeling

The g-formulas (29.2) and (29.3) suggest that to estimate the means of the
potential outcomes, we need to model E(Y | z2, z1, x1, x0), pr(x1 | z1, x0) and
pr(x0). With these fitted models, we can plug them in the g-formulas.

With some special functional forms, this task can be simplified. Example
29.1 below gives the results under a linear model for the outcome.

Example 29.1 Assume a linear outcome model

E(Y | z2, z1, x1, x0) = β0 + β1z2 + β2z1 + β3x1 + β4x0.

We can verify that

E{Y (z1, z2)} =
∑
x0

∑
x1

(β0 + β1z2 + β2z1 + β3x1 + β4x0)pr(x1 | z1, x0)pr(x0)

= β0 + β1z2 + β2z1 + β3
∑
x0

E(X1 | z1, x0)pr(x0) + β4E(X0).
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Define

E{X1(z1)} =
∑
x0

E(X1 | z1, x0)pr(x0) (29.5)

to simplify the formula as

E{Y (z1, z2)} = β0 + β1z2 + β2z1 + β3E{X1(z1)}+ β4E(X0).

In (29.5), I introduce the potential outcome of X1 under the treatment Z1 =
z1 at time point 1. It is reasonable because the right-hand side of (29.5) is
the identification formula of E{X1(z1)} under ignorability X1(z1) Z1 | X0

for z1 = 0, 1. We do not really need the potential outcome X1(z1) and the
ignorability, but it is a convenient notation and matches with our discussion
before.

Define τZ1→X1
= E{X1(1)−X1(0)}. We can verify that

E{Y (1, 0)− Y (0, 0)} = β2 + β3τZ1→X1 ,

E{Y (0, 1)− Y (0, 0)} = β1,

E{Y (1, 1)− Y (0, 0)} = β1 + β2 + β3τZ1→X1 .

Therefore, we can estimate the effect of (Z1, Z2) on Y based on the above for-
mulas by first estimating the regression coefficients βs and the average causal
effect of Z1 on X1 using standard methods.

However, Robins and Wasserman (1997) pointed out a surprising drawback
of the plug-in estimation based on outcome modeling. They showed that with
model misspecification in this strategy, data analyzers may falsely reject the
null hypothesis of zero causal effect of (Z1, Z2) on Y even when the true
effect is zero in the data-generating process. They called it the g-null paradox.
Perhaps surprisingly, they show that the g-null paradox may even arise in the
simple linear outcome model in Example 29.1. McGrath et al. (2021) revisited
this paradox. See Problem 29.1 for more details.

29.2.2 Recursive estimation based on outcome modeling

The plug-in estimation in Section 29.2.1 involves modeling the time-varying
confounder X1 and causes the unpleasant g-null paradox. It is not a desirable
method.

Recall the outcome regression estimator with a treatment at a single time
based on E{Y (z)} = E{E(Y | Z = z,X)}. We first fit a model of Y on X
using the subset of the data with Z = z, and obtain the fitted values Ŷi(z) for
all units. We then obtain the estimator

Ê{Y (z)} = n−1
n∑

i=1

Ŷi(z).

Similarly, the recursive expectation formula in (29.1) motivates a simpler
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method for estimation. Start from the inner conditional expectation, denoted
by

Ỹ2(z1, z2) = E(Y | Z2 = z2, Z1 = z1, X1, X0).

We can fit a model of Y on (X1, X0) using the subset of the data with (Z2 =
z2, Z1 = z1), and obtain the fitted values Ŷ2i(z1, z2) for all units. Move on to
outer conditional expectation, denoted by

Ỹ1(z1, z2) = E{Ỹ2(z1, z2) | Z1 = z1, X0}.

We can fit a model of Ŷ2(z1, z2) on X0 using the subset of data with Z1 = z1,
and obtain the fitted values Ŷ1i(z1, z2) for all units. The final estimator for
E{Y (z1, z2)} is then

Ê{Y (z1, z2)} = n−1
n∑

i=1

Ŷ1i(z1, z2).

The above recursive estimation does not involve fitting a model for X1 and
avoids the g-null paradox. See Problem 29.2 for a special case.

29.3 Inverse propensity score weighting

Recall the propensity-score-based identification formula with a treatment at
a single time point:

E{Y (z)} = E

{
1(Z = z)Y

pr(Z = z | X)

}
.

The following result extends it to the setting with a treatment at two time
points. Define

e(z1, X0) = pr(Z1 = z1 | X0)

and
e(z2, Z1, X1, X0) = pr(Z2 = z2 | Z1, X1, X0)

as the propensity scores at time points 1 and 2, respectively.

Theorem 29.2 Under Assumption 29.1,

E{Y (z1, z2)} = E

{
1(Z1 = z1)1(Z2 = z2)Y

e(z1, X0)e(z2, Z1, X1, X0)

}
. (29.6)

Theorem 29.2 reveals the omitted overlap assumption:

0 < e(z1, X0) < 1, 0 < e(z2, Z1, X1, X0) < 1
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for all z1 and z2. If some propensity scores are 0 or 1, then the identification
formula (29.6) blows up to infinity.
Proof of Theorem 29.2: Conditioning on (Z1, X1, X0) and using Assump-
tion 29.1(2), we can simplify the right-hand side of (29.6) as

E

{
1(Z1 = z1)1(Z2 = z2)Y (z1, z2)

pr(Z1 = z1 | X0)pr(Z2 = z2 | Z1, X1, X0)

}
= E

{
1(Z1 = z1)pr(Z2 = z2 | Z1, X1, X0)E(Y (z1, z2) | Z1, X1, X0)

pr(Z1 = z1 | X0)pr(Z2 = z2 | Z1, X1, X0)

}
= E

{
1(Z1 = z1)

pr(Z1 = z1 | X0)
E(Y (z1, z2) | Z1, X1, X0)

}
= E

{
1(Z1 = z1)

pr(Z1 = z1 | X0)
Y (z1, z2)

}
, (29.7)

where (29.7) follows from the tower property.
Conditioning on X0 and using Assumption 29.1(1), we can simplify the

right-hand side of (29.7) as

E

{
pr(Z1 = z1 | X0)

pr(Z1 = z1 | X0)
E(Y (z1, z2) | X0)

}
= E {E(Y (z1, z2) | X0)}
= E{Y (z1, z2)},

where, again, the last line follows from the tower property. □
The estimator based on IPW is much simpler which only involves modeling

two binary indicators. First, we can fit a model of Z1 onX0 to obtain the fitted
values ê1(z1, X0i) and fit a model of Z2 on (Z1, X1, X0) to obtain the fitted
values ê2(z2, Z1i, X1i, X0i) for all units. Then, we obtain the following IPW
estimator:

Êht{Y (z1, z2)} = n−1
n∑

i=1

1(Z1i = z1)1(Z2i = z2)Yi
ê1(z1, X0i)ê2(z2, Z1i, X1i, X0i)

.

Similar to the discussion in Chapter 11, the Horvitz–Thompson-type estima-
tor is not invariant to location shift of the outcome and suffers from instabil-
ity in finite samples. A modified Hajek-type estimator is Êhaj{Y (z1, z2)} =
Êht{Y (z1, z2)}/1̂ht(z1, z2), where

1̂ht(z1, z2) = n−1
n∑

i=1

1(Z1i = z1)1(Z2i = z2)

ê1(z1, X0i)ê2(z2, Z1i, X1i, X0i)
.
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29.4 Multiple time points

Extending the estimation strategies in Sections 29.2 and 29.3 is not imme-
diate with multiple time points. Even with a binary treatment and K time
points, the number of treatment combination grows exponentially with K (for
example, 25 = 32 and 210 = 1024). Consequently, the outcome regression and
IPW estimators in Sections 29.2 and 29.3 are not feasible in finite samples.

29.4.1 Marginal structural model

A powerful approach is based on the marginal structural model (MSM)
(Robins et al., 2000; Hernán et al., 2000). For simplicity of notation, I will
only present the MSM with K = 2 although its main use is in the general
case.

Definition 29.1 (MSM) The marginal mean of Y (z1, z2) equals

E{Y (z1, z2)} = f(z1, z2;β).

A leading example of Definition 29.1 is E{Y (z1, z2)} = β0+β1z1+β2z2. It is
also straightforward to include the baseline covariates in the model. Definition
29.2 below extends Definition 29.1.

Definition 29.2 (MSM with baseline covariates) The mean of Y (z1, z2)
conditional on X0 equals

E{Y (z1, z2) | X0} = f(z1, z2, X0;β).

A leading example of Definition 29.2 is

E{Y (z1, z2) | X0} = β0 + β1z1 + β2z2 + βT3X0. (29.8)

If we observe all potential outcomes, we can solve β from the following mini-
mization problem:

β = argmin
b

∑
z2

∑
z1

E{Y (z1, z2)− f(z1, z2, X0; b)}2.

For simplicity, I focus on the least squares formulation. We can also extend
the discussion to a general loss function.

Under sequential ignorability, we can solve β from the following minimiza-
tion problem that only involves observables.

Theorem 29.3 (IPW under MSM) Under Assumption 29.1 and Defini-
tion 29.2,

β = argmin
b

∑
z2

∑
z1

E

[
1(Z1 = z1)1(Z2 = z2)

e(z1, X0)e(z2, Z1, X1, X0)
{Y − f(z1, z2, X0; b)}2

]
.
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The proof of Theorem 29.3 is similar to that of Theorem 29.2. I relegate
it to Problem 29.3.

Theorem 29.3 implies a simple estimation strategy based on weighted re-
gressions. For instance, under (29.8), we can fit WLS of Yi on (1, Z1i, Z2i, X0i)
with weights ê−1

1 (Z1i, X0i)ê
−1
2i (Z2i, Zi1, X1i, X0i).

29.4.2 Structural nested model

A key problem of IPW is that it is not applicable if the overlap assumption
is violated. To address this challenge, Robins proposed the structural nested
model. Again, to simplify the presentation, I only review the version with two
time points.

Definition 29.3 (structural nested model) The conditional effect at time
point 1 is

E{Y (z1, 0)− Y (0, 0) | Z1 = z1, X0} = g1(z1, X0;β) for all z1

and the conditional effect at time point 2 is

E{Y (z1, z2)−Y (z1, 0) | Z2 = z2, Z2 = z1, X1, X0} = g2(z2, z1, X1, X0;β) for all z1, z2.

In Definition 29.3, two logical restrictions are

g1(0, X0;β) = 0

and
g2(0, z1, X1, X0;β) = 0 for all z1.

Two leading choices of Definition 29.3 are below.

Example 29.2 Assume{
g1(z1, X0;β) = β1z1,

g2(z2, z1, X1, X0;β) = (β2 + β3z1)z2.

Example 29.3 Assume{
g1(z1, X0;β) = (β1 + βTX0)z1,

g2(z2, z1, X1, X0;β) = (β2 + β3z1 + βT4X1)z2.

Compare Definitions 29.2 and 29.3. The structural nested model allows
for adjusting for the time-varying covariates whereas the marginal structural
model only allows for adjusting for baseline covariates. The estimation under
Definition 29.3 is more involved. A strategy is to estimate the parameter based
on estimating equations.
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I first introduce two important building blocks for the discussing the esti-
mation. Define

U2(β) = Y − g2(Z2, Z1, X1, X0;β)

and
U1(β) = Y − g2(Z2, Z1, X1, X0;β)− g1(Z1, X0;β).

They are not directly computable from the data because they depend on the
true value of the parameter β. At the true value, they have the following
properties.

Lemma 29.1 Under Assumption 29.1 and Definition 29.3, we have

E{U2(β) | Z2, Z1, X1, X0} = E{U2(β) | Z1, X1, X0}
= E{Y (Z1, 0) | Z1, X1, X0}

and

E{U1(β) | Z1, X0} = E{U1(β) | X0}
= E{Y (0, 0) | X0}.

Lemma 29.1 involves a subtle notation Y (Z1, 0) because Z1 is random.
It should be read as Y (Z1, 0) = Z1Y (1, 0) + (1 − Z1)Y (0, 0). Based on the
definitions and Lemma 29.1, U1(β) acts as the control potential outcome before
receiving any treatment and U2(β) acts as the control potential outcome after
receiving the treatment at time point 1.
Proof of Lemma 29.1: First, we have

E{U2(β) | Z2 = 1, Z1, X1, X0} = E{Y (Z1, 1)− g2(1, Z1, X1, X0;β) | Z2 = 1, Z1, X1, X0}
= E{Y (Z1, 0) | Z2 = 1, Z1, X1, X0}

E{U2(β) | Z2 = 0, Z1, X1, X0} = E{Y (Z1, 0)− g2(0, Z1, X1, X0;β) | Z2 = 0, Z1, X1, X0}
= E{Y (Z1, 0) | Z2 = 0, Z1, X1, X0}

so

E{U2(β) | Z2, Z1, X1, X0} = E{Y (Z1, 0) | Z2, Z1, X1, X0} = E{Y (Z1, 0) | Z1, X1, X0}

where the last identity follows from sequential ignorability. Since the last term
does not depend on Z2, we also have

E{U2(β) | Z2, Z1, X1, X0} = E{U2(β) | Z1, X1, X0}.

Using the above results, we have

E{U1(β) | Z1, X0} = E{U2(β)− g1(Z1, X0;β) | Z1, X0}
= E [E{U2(β)− g1(Z1, X0;β) | X1, Z1, X0} | Z1, X0]

= E [E{Y (Z1, 0)− g1(Z1, X0;β) | X1, Z1, X0} | Z1, X0]

= E{Y (Z1, 0)− g1(Z1, X0;β) | Z1, X0}
= E{Y (0, 0) | Z1, X0}
= E{Y (0, 0) | X0}
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where the last identity follows from sequential ignorability. Since the last term
does not depend on Z1, we also have

E{U1(β) | Z1, X0} = E{U1(β) | X0}.

□
With Lemma 29.1, we can prove Theorem 29.4 below.

Theorem 29.4 Under Assumption 29.1 and Definition 29.3,

E
[
h2(Z1, X1, X0){Z2 − e(1, Z1, X1, X0)}U2(β)

]
= 0

and
E
[
h1(X0){Z1 − e(1, X0)}U1(β)

]
= 0.

for any functions h1 and h2, provided that the moments exist.

Proof of Theorem 29.2: Use the tower property by conditioning on
(Z2, Z1, X1, X0) and Lemma 29.1 to obtain

E [h2(Z1, X1, X0){Z2 − e(1, Z1, X1, X0)}E{U2(β) | Z2, Z1, X1, X0}]
= E [h2(Z1, X1, X0){Z2 − e(1, Z1, X1, X0)}E{U2(β) | Z1, X1, X0}] .

Use the tower property by conditioning on (Z1, X1, X0) to show that the last
identity equals 0.

Similarly, use the tower property by conditioning on (Z1, X0) and Lemma
29.1 to obtain

E [h1(X0){Z1 − e(1, X0)}E{U1(β) | Z1, X0}]
= E [h1(X0){Z1 − e(1, X0)}E{U1(β) | X0}] .

Use the tower property by conditioning on X0 to show that the last identity
equals 0. □

To use Theorem 29.4, we must specify h1 and h2 to ensure that there are
enough equations for solving β. Example 29.4 below revisits Example 29.2.

Example 29.4 Under Example 29.2, we can choose h1 = 1 and h2 = (1, Z1)
to obtain

E [{Z2 − e(1, Z1, X1, X0)}{Y − (β2 + β3Z1)Z2}] = 0,

E [Z1{Z2 − e(1, Z1, X1, X0)}{Y − (β2 + β3Z1)Z2}] = 0,

E [{Z1 − e(1, X0)}{Y − (β2 + β3Z1)Z2 − β1Z1}] = 0.

We can then solve for the β’s from the above linear equations; see Problem
29.5. A natural question is that whether alternative choices of (h1, h2) can lead
to more efficient estimators. The answer is yes. For example, we can choose
many (h1, h2) and use the generalized method of moment (Hansen, 1982). The
technical details are beyond this book.

Naimi et al. (2017) and Vansteelandt and Joffe (2014) provided tutorials
on the structural nested models.
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FIGURE 29.3: With unmeasured confounding between X1 and Y . The causal
diagram ignores the pre-treatment covariates X0.

29.5 Homework problems

29.1 g-null paradox

Consider the simple causal diagram in Figure 29.3 without pre-treatment co-
variatesX0 and without the arrows from (Z1, Z2) to Y . So the effect of (Z1, Z2)
on Y is zero.

Revisit Example 29.1. Show that the expectation E{Y (z1, z2)} does not
depend on (z1, z2) if

β1 = β3 = 0 and β2 = 0

or
β1 = β3 = 0 and E{X1(z1)} does not depend on z1.

holds.
Remark: However, β2 = 0 in the first condition rules out the dependence

of Y on X1, contradicting with the existence of unmeasured confounder U
between X1 and Y ; the independence of E{X1(z1)} on z1 rules out the de-
pendence of X1 on Z1, contradicting with the existence of the arrow from Z1

on X1. That is, if there is an unmeasured confounder U between X1 and Y
and there is an arrow from Z1 on X1, then the formula of E{Y (z1, z2)} in
Example 29.1 must depend on (z1, z2), which leads to a contradiction with
the absence of arrows from (Z1, Z2) to Y .

29.2 Recursive estimation under the null model

Consider the recursive estimation method in 29.2.2 under the causal diagram
in Problem 29.1. Show that based linear models, the estimator converges to
0.

29.3 IPW under MSM

Prove Theorem 29.3.
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29.4 Structural nested model with a single time point

Recall the standard setting of observational studies with IID data draw from
{X,Z, Y (1), Y (0)}. Define the propensity score as e(X) = pr(Z = 1 | X).
Assume

Z Y (0) | X

and the following structural nested model.

Definition 29.4 (structural nested model with a single time point) The
conditional mean of the individual effect is

E{Y (z)− Y (0) | Z = z,X} = g(z,X;β).

In Definition 29.4, a logical restriction is g(0, X;β) = 0. Prove the following
results.

1. We have

E{Y −g(Z,X;β) | X,Z} = E{Y −g(Z,X;β) | X} = E{Y (0) | X}.

2. We have

E
[
h(X){Z − e(X)}{Y − g(Z,X;β)}

]
= 0 (29.9)

for any function h, provided that the moment exists.

Remark: (29.9) is the basis for parameter estimation. Consider a special
case of Definition 29.4 with g(z,X;β) = βz. Choose h(X) = 1 to obtain

E{(Z − e(X))(Y − βZ)} = 0.

Solve for β to obtain

β =
E{(Z − e(X))Y }
E{(Z − e(X))Z}

.

That is, β equals the coefficient of Z in the two-stage least squares of Y on Z
with Z − e(X) being the instrument variable for Z

Consider a special case of Definition 29.4 with g(z,X;β) = (β0 + βT1X)z.
Choose h(X) = (1, X) to obtain

E

{(
Z − e(X)

(Z − e(X))X

)
(Y − β0Z − βT1XZ)

}
= 0.

That is, (β0, β1) equal the coefficients in the two-stage least squares of Y
on (Z,XZ) with (Z − e(X), (Z − e(X))X) being the instrument variable for
(Z,XZ).
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29.5 Estimation under Example 29.4

We can estimate the β’s by solving the empirical version of the estimating
equations in Example 29.4. We first estimate the two propensity scores and
obtain the centered treatment

Ž1i = Z1i − ê(1, X0i)

at time point 1 and

Ž2i = Z2i − ê(1, Z1i, X1i, X0i)

at time point 2.
Show that we can estimate β2 and β3 by running two-stage least squares

of Yi on (Z2i, Z1iZ2i) with (Ž2i, Z1iŽ2i) as the instrumental variable for
(Z2i, Z1iZ2i), and then we can estimate β1 by running two-stage least squares

of Yi − (β̂2 + β̂3Z1i)Z2i on Z1i with Ž1i as the instrumental variable for Z1i.

29.6 g-formula with a treatment at multiple time points

Extend the discussion to the setting with K time points. The temporal order-
ing of the variables is

X0 → Z1 → X1 → Z2 → · · ·XK−1 → ZK .

Introduce the notation Zk = (Z1, . . . , Zk) and Xk = (X0, X1, . . . , Xk) with
lower case zk and xk denoting the corresponding realized values. With k = 0,
we have X0 = X0 and Z0 is empty. Each unit has 2K potential outcomes:

Y (zK) for all z1, . . . , zK = 0, 1.

Assume sequential ignorability below.

Assumption 29.2 (sequential ignorability at multiple time points) We
have

Zk Y (zK) | (Zk−1, Xk−1)

for all k = 1, . . . ,K and all z1, . . . , zK = 0, 1.

Prove Theorem 29.5 below.

Theorem 29.5 (g-formula with multiple time points) Under Assump-
tion 29.2,

E{Y (zK)} = E
[
· · ·E{E(Y | zK , XK−1) | zK−1, XK−2} · · · | z1, X0

]
.

Remark: In Theorem 29.5, I use the simplified notation “zk” for “Zk = zk.”
With discrete X, Theorem 29.5 reduces to

E{Y (zK)} =
∑
x0

∑
x1

· · ·
∑
xK−1

E(Y | zK , xK−1)

·pr(xK−1 | zK−1, xK−2) · · · pr(x1 | z1, x0)pr(x0);
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with continuous X, Theorem 29.5 reduces to

E{Y (zK)} =

∫
E(Y | zK , xK−1)

·f(xK−1 | zK−1, xK−2) · · · f(x1 | z1, x0)f(x0)dxK−1.

29.7 IPW with a treatment at multiple time points

Inherit the setting of Problem 29.6. Define the propensity score at K time
points as

e(z1, X0) = pr(Z1 = z1 | X0),

...

e(zk, Zk−1, Xk−1) = pr(Zk = zk | Zk−1, Xk−1),

...

e(zK , ZK−1, XK−1) = pr(ZK = zK | ZK−1, XK−1).

Prove Theorem 29.7 below assuming overlap implicitly.

Theorem 29.6 (IPW with multiple time points) Under Assumption 29.2,

E{Y (zK)} = E

{
1(Z1 = z1) · · · 1(ZK = zK)Y

e(z1, X0) · · · e(zK , ZK−1, XK−1)

}
.

Based on Theorem 29.7, construct the Horvitz–Thompson and Hajek es-
timators.

29.8 MSM with a treatment at multiple time points

The number of potential outcomes grows exponentially with K. The formulas
in Problems 29.6 and 29.7 are not directly applicable in finite samples. We
can impose the following structural assumptions on the potential outcomes.

Definition 29.5 (MSM with multiple time points) Assume

E{Y (zK) | X0} = f(zK , X0;β).

Two leading examples of Definition 29.5 are E{Y (zK) | X0} = β0 +

β1
∑K

k=1 zk + βT2X0 and E{Y (zK) | X0} = β0 +
∑K

k=1 βkzk + βTK+1X0.
If we know all the potential outcomes, we can solve β from the following

minimization problem:

β = argmin
b

∑
zK

E{Y (zK)− f(zK , X0;β)}2.

Theorem 29.7 below shows that under Assumption 29.2, we can solve β from
a minimization problem that only involves observables.
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Theorem 29.7 (IPW for MSM with multiple time points) Under As-
sumption 29.2,

β = argmin
b

∑
zK

E

[
1(Z1 = z1) · · · 1(ZK = zK)

e(z1, X0) · · · e(zK , ZK−1, XK−1)
{Y − f(zK , X0;β)}2

]
.

29.9 Structural nested model with a treatment at multiple time points

Inherit the setting from Problem 29.6 and the notation from Problem 29.7.
This problem presents a general structural nested model.

Definition 29.6 (structural nested model with multiple time points)
The conditional effect at time k is

E{Y (zk, 0)− Y (zk−1, 0) | zk, Xk−1} = gk(zk, Xk−1;β)

for all zk and all k = 1, . . . ,K.

In Definition 29.6, a logical restriction is

gk(0, zk−1, Xk−1;β) = 0

for all zk−1 and all k = 1, . . . ,K.
Define

Uk(β) = Y −
k∑

s=1

gs(Zs, Xs−1;β)

for all k = 1, . . . ,K. Theorem 29.8 below extends Theorem 29.4.

Theorem 29.8 Under Assumption 29.2 and Definition 29.6,

E
[
hk(Zk−1, Xk−1){Zk − e(1, Zk−1, Xk−1)}Uk(β)

]
= 0

for all k = 1, . . . ,K.

Remark: Choosing appropriate hk’s, we can estimate β by solving the
empirical version of Theorem 29.8.

29.10 Recommended reading

Robins et al. (2000) reviewed the MSM. Naimi et al. (2017) reviewed the
g-methods.
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A1

Probability and Statistics

A1.1 Probability

A1.1.1 Tower property and variance decomposition

Given random variables or vectors A,B,C, we have

E(A) = E{E(A | B)}

and
E(A | C) = E{E(A | B,C) | C}.

Given a random variable A and random variables or vectors B,C, we have

var(A) = E{var(A | B)}+ var{E(A | B)}

and
var(A | C) = E{var(A | B,C) | C}+ var{E(A | B,C) | C}.

Similarly, we can decompose the covariance as

cov(A1, A2) = E {cov(A1, A2 | B)}+ cov{E(A1 | B), E(A2 | B)}

and

cov(A1, A2 | C) = E {cov(A1, A2 | B,C) | C}+cov{E(A1 | B,C), E(A2 | B,C) | C}.

A1.1.2 Limiting theorems

Definition A1.1 (convergence in probability) A sequence of random
variables (Xn)n≥1 converges to X in probability, if for every ε > 0, we have

pr(|Xn −X| > ε) → 0

as n→ ∞.

Definition A1.2 (convergence in distribution) A sequence of random
variables (Xn)n≥1 converges to X in distribution, if

pr(Xn ≤ x) → pr(X ≤ x)

for all continuity point x of pr(X ≤ x), as n→ ∞.
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Convergence in probability is stronger than convergence in distribution.
Definitions A1.1 and A1.2 are useful for stating the following two fundamental
theorems in probability theory.

Theorem A1.1 (law of large numbers) If X1, . . . , Xn
IID∼ X with E|X| <

∞, then X̄ = n−1
∑n

i=1Xi → E(X) in probability.

The law of large numbers in Theorem A1.1 states that the sample average
is close to the population mean in the limit.

Theorem A1.2 (central limit theorem) If X1, . . . , Xn
IID∼ X with

var(X) <∞, then
X̄ − E(X)√
var(X)/n

→ N(0, 1)

in distribution.

The central limit theorem in Theorem A1.2 states that the standardized
sample average is close to a standard Normal random variable in the limit.

Theorems A1.1 and A1.2 assume IID random variables for convenience.
There are also many law of large numbers and central limit theorems for the
sample mean of independent random variable (e.g., Durrett, 2019).

A1.1.3 Delta method

Delta method is a power tool to derive asymptotic Normality of nonlinear
functions of an asymptotically Normal random vector. I review a special case
of delta method below.

Theorem A1.3 (delta method) Assume
√
n(Xn−µ) → N(0,Σ) in distri-

bution and the function g(x) has non-zero derivative ∇g(µ) at µ. Then
√
n{g(Xn)− g(µ)} → N

(
0, (∇g(µ)TΣ∇g(µ)

)
in distribution.

I will omit the proof of Theorem A1.3. It is intuitive based on the first-order
Taylor expansion:

g(Xn)− g(µ) ∼= (∇g(µ)T(Xn − µ).

A leading example of delta method is to obtain the asymptotic Normality
of ratio.

Example A1.1 (asymptotic normality for ratio) Assume

√
n

(
Yn − µY

Xn − µX

)
→ N

((
0
0

)
,

(
σ2
Y σY X

σY X σ2
X

))
(A1.1)
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in distribution with µX ̸= 0. Apply Theorem A1.3 to obtain that

√
n

(
Yn
Xn

− µY

µX

)
→ N

(
0,
σ2
Y

µ2
X

+
µ2
Y σ

2
X

µ4
X

− 2µY σY X

µ3
X

)
(A1.2)

in distribution. In the special case that Xn and Yn are asymptotically inde-
pendent, the asymptotic variance of Yn/Xn simplifies to σ2

Y /µ
2
X +µ2

Y σ
2
X/µ

4
X .

I leave the details to Problem A1.2.

The asymptotic variance in Example A1.1 is a little cumbersome. An easier
way to memorize it is based on the following approximation:

Yn
Xn

− µY

µX
=
Yn − µY /µX ·Xn

Xn

∼=
Yn − µY /µX ·Xn

µX
, (A1.3)

so the asymptotic variance of the ratio equals the asymptotic variance of

Yn − µY /µX ·Xn

µX
,

which is a linear combination of Yn and Xn. Slutsky’s theorem can make the
approximation in (A1.3) rigorous; it is beyond this book.

Example A1.2 (asymptotic normality for product) Assume (A1.1). Ap-
ply Theorem A1.3 to obtain that

√
n (XnYn − µXµY ) → N

(
0, µ2

Y σ
2
X + µ2

Xσ
2
Y + 2µXµY σXY

)
(A1.4)

in distribution. In the special case that Xn and Yn are asymptotically inde-
pendent, the asymptotic variance of XnYn simplifies to µ2

Y σ
2
X +µ2

Xσ
2
Y . I leave

the details to Problem A1.3.

A1.2 Statistical inference

A1.2.1 Point estimation

Assume that θ is the parameter of interest. Oftentimes, the problem also con-
tain other parameters not of interest, denoted by η. Statisticians call η the
nuisance parameter. Based on data, we can compute an estimator θ̂. Through-
out this book, we take the frequentist’s perspective by assuming that θ is a
fixed number and θ̂ is random due to the randomness of data. Two basic
requirements for an estimator are below.

Definition A1.3 (unbiasedness) The estimator θ̂ is unbiased for θ if

E(θ̂) = θ

for all possible values of θ and η.
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Definition A1.4 (consistency) The estimator θ̂ is consistent for θ if

θ̂ → θ

in probability as the sample size approaches to infinity, for all possible values
of θ and η.

Unbiasedness requires that the mean of the estimator is identical to the
parameter of interest. Consistency requires that the estimator is close to the
true parameter in the limit. Unbiased does not imply consistency, and con-
sistency does not imply unbiasedness either. Unbiasedness can be restrictive
because it is impossible even in some simple statistics problems. Consistency
is often the basic requirement in most statistics problems.

A1.2.2 Confidence interval

A point estimator θ̂ is a random variable which differs from the true parameter.
Statisticians are often interested in finding an interval that covers the true
parameter with certain given probability. This interval is computed based on
the data, and it is random.

Definition A1.5 (confidence interval) A data-dependent interval [θ̂l, θ̂u]
is a confidence interval for θ with coverage probability 1− α if

pr(θ̂l ≤ θ ≤ θ̂u) ≥ 1− α.

Definition A1.6 (asymptotic confidence interval) A data-dependent in-

terval [θ̂l], θ̂u] is an asymptotic confidence interval for θ with coverage proba-
bility 1− α if

pr(θ̂l ≤ θ ≤ θ̂u) → 1− α′

with α′ ≥ α, as n→ ∞.

A standard choice is α = 0.05. In Definitions A1.5 and A1.6, the coverage
probabilities can be larger than the nominal level 1−α. That is, the definitions
allow for over overage but do not allow for under coverage. With over coverage,
we say that the confidence interval is conservative. Of course, we hope the
confidence interval to be as narrow as possible. Otherwise, the definition of
confidence interval can be arbitrary.

A1.2.3 Hypothesis testing

Many applied problems can be formulated as testing a hypothesis:

H0 : θ = 0.

The decision rule ϕ is a binary function of the data: ϕ = 1 if we rejectH0; ϕ = 0
if we fail to reject H0. The type one error rate of the test is the probability of
rejection if the null hypothesis holds. I review the definition below.
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Definition A1.7 When H0 holds, define the type one error rate of the test
ϕ as the maximum possible value of the probability

pr(ϕ = 1).

A standard choice is to make sure that the type one error rate is below
α = 0.05. The type two error rate of the test is the probability of no rejection
if the null hypothesis does not hold. I review the definition below.

Definition A1.8 When H0 does not hold, define the type two error rate of
the test ϕ as the probability

pr(ϕ = 0).

Given the control of the type one error rate under H0, we hope the type
two error rate is as low as possible when H0 does not hold.

A1.2.4 Wald-type confidence interval and test

Many statistics problems have the following structure. The parameter of in-
terest is θ. We first find a consistent estimator θ̂ that converges in probability
to θ, and show that it is asymptotically Normal with mean θ and variance v
which may depends on θ as well as other parameters. We then find a consis-
tent estimator v̂ for v, based on analytic formulas or the bootstrap reviewed
in Chapter A1.5. We finally construct the Wald-type confidence interval for θ
as

θ̂ ± z1−α/2

√
v̂

which covers θ with probability approximately 1 − α. When this interval
excludes a particular c, for example, c = 0, we reject the null hypothesis
H0(c) : θ = c, which is called the Wald test.

A1.2.5 Duality between constructing confidence sets and
testing null hypotheses

Consider the statistical inference problem for a scalar parameter θ. A funda-
mental result in statistics is that constructing confidence sets for θ is equivalent
to testing null hypotheses about θ. This is often called the duality between
constructing confidence sets and testing null hypotheses.

Section A1.2.4 has reviewed the duality based on the Wald-type confidence
interval and test. The duality also holds in general. Assume that Θ̂ is a (1−α)-
level confidence set for θ:

pr(θ ∈ Θ̂) = 1− α.

Then we can reject the null hypothesis H0(c) : θ = c if c is not in the set Θ̂.
This is a valid test because when θ indeed equals c, we have correct type one
error rate pr(θ ̸∈ Θ̂) = α. Conversely, if we test a sequence of null hypotheses
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H0(c) : θ = c, we can obtain the corresponding p-values, p(c), as a function of
c. Then the values of c that we fail to reject at level α form a confidence set
for θ:

Θ̂ = {c : p(c) ≥ α} = {c : fail to reject H0(c) at level α}.

It is a valid confidence set because

pr(θ ∈ Θ̂) = pr{fail to reject H0(θ) at level α} = 1− α.

Here I use “confidence set” instead of “confidence interval” because Θ̂
based on inverting tests may not be an interval. See the use of the duality in
Sections A1.4.2 and 3.6.1.

A1.3 Inference with 2× 2 tables

A1.3.1 Fisher’s exact test

Fisher proposed an exact test for H0 : p1 = p0 under the statistical model:

n11 ∼ Binomial(n1, p1), n01 ∼ Binomial(n0, p0), n11 n01.

The table below summarizes the data.

1 0 row sum

sample 1 n11 n10 n1
sample 0 n01 n00 n0

column sum n·1 n·0 n

He argued that the sum n11 +n01 ≡ n·1 contains little information for the
difference between p1 and p0, and n11 conditioning on the sum has Hypergeo-
metric distribution that does not depend on the unknown parameter p1 = p0
under H0:

pr(n11 = k) =

(
n·1
k

)(
n−n·1
n1−k

)(
n
n1

) .

In R, the function fisher.test implement this test.

A1.3.2 Estimation with 2× 2 tables

Based on the model in Section A1.3.1, we can estimate the parameters p1 and
p0 by sample frequencies:

p̂1 =
n11
n1

, p̂0 =
n01
n0

.
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Therefore, we can estimate the risk difference, log risk ratio, and log odds
ratio

rd = p1 − p0,

logrr = log
p1
p0
,

logor = log
p1/(1− p1)

p0/(1− p0)

by the sample analogues

r̂d = p̂1 − p̂0,

log r̂r = log
p̂1
p̂0
,

log ôr = log
p̂1/(1− p̂1)

p̂0/(1− p̂0)
= log

n11n00
n10n01

.

Based on the asymptotic approximation (see Problem A1.4), the estimated
variance for the above parameters are

p̂1(1− p̂1)

n1
+
p̂0(1− p̂0)

n0
,

1− p̂1
n1p̂1

+
1− p̂0
n0p̂0

,

1

n1p̂1(1− p̂1)
+

1

n0p̂0(1− p̂0)
,

respectively. The log transformation above yields better Normal approxima-
tions because the risk ratio and odds ratio are always positive.

A1.4 Two famous problems in statistics

A1.4.1 Behrens–Fisher problem

Consider the two-sample problem with n1 units under the treatment and n0
units under the control, respectively. Assume the outcomes under the treat-
ment {Yi : Zi = 1} are IID from N(µ1, σ

2
1) and the outcomes under the

control {Yi : Zi = 0} are IID from N(µ0, σ
2
0), respectively. The goal is to test

H0 : µ1 = µ0.

Start with the easier case with σ2
1 = σ2

0 . Coherent with Chapter 3, let ˆ̄Y (1)

and ˆ̄Y (0) denote the sample means of the outcomes under the treatment and
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control, respectively. A standard result is that

tequal =
ˆ̄Y (1)− ˆ̄Y (0)√

n
n1n0(n−2)

[∑
Zi=1{Yi −

ˆ̄Y (1)}2 +
∑

Zi=0{Yi −
ˆ̄Y (0)}2

] ∼ tn−2.

Based on tequal, we can construct a test for H0.
Now consider the more difficult case with possibly different σ2

1 and σ2
0 . The

distribution of tequal is no longer tn−2. Estimating the variances separately,
we can also define

tunequal =
ˆ̄Y (1)− ˆ̄Y (0)√
Ŝ2(1)
n1

+ Ŝ2(0)
n0

,

where

Ŝ2(1) = (n1 − 1)−1
∑
Zi=1

{Yi − ˆ̄Y (1)}2, Ŝ2(0) = (n0 − 1)−1
∑
Zi=0

{Yi − ˆ̄Y (0)}2

are the sample variances of the outcomes under the treatment and control,
respectively. Unfortunately, the exact distribution of tunequal depends on the
known variances. Testing H0 without assuming equal variances is the famous
Behrens–Fisher problem. With large sample sizes n1 and n0, the central limit
theorem ensures that tunequal is approximately N(0, 1). So we can construct
approximate test for H0.

A1.4.2 Fieller–Creasy problem

Consider the two-sample problem with n1 units under the treatment and n0
units under the control, respectively. Assume the outcomes under the treat-
ment {Yi : Zi = 1} are IID from N(µ1, 1) and the outcomes under the control
{Yi : Zi = 0} are IID from N(µ0, 1), respectively. The goal is to estimate

γ = µ1/µ0. We can use γ̂ = ˆ̄Y (1)/ ˆ̄Y (0) to estimate γ. But the point estimator
has a complicated distribution, which does not yield a simple procedure to
construct the confidence interval for γ.

Fieller’s confidence interval can be formulated as inverting tests for a se-
quence of null hypotheses: H0(c) : γ = c. Under H0(c), we have

ˆ̄Y (1)− c ˆ̄Y (0)√
1/n1 + c2/n0

∼ N(0, 1)

which motivates the confidence interval{
c :
∣∣∣ ˆ̄Y (1)− c ˆ̄Y (0)√

1/n1 + c2/n0

∣∣∣ ≤ zα

}

where zα is the upper 1−α/2 quantile of a standard Normal random variable.
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A1.5 Bootstrap

It is often very tedious to derive the variance formulas for complex estimators.
Efron (1979) proposed the bootstrap as a general tool for variance estimation.
There are many versions of the bootstrap (Davison and Hinkley, 1997). In this
book, we only need the most basic one: the nonparametric bootstrap, which
will be simply called the bootstrap.

Consider the generic setting with

Y1, . . . , Yn
IID∼ Y,

where Yi can be a general random element denoting the observed data for
unit i. An estimator θ̂ is a function of the observed data: θ̂ = T (Y1, . . . , Yn).
When T is a complex function, it may not be easy to obtain the variance or
asymptotic variance of θ̂.

The uncertainty of θ̂ is driven by the IID sampling of Y1, . . . , Yn from the
true distribution. Although the true distribution is unknown, it can be well
approximated by its empirical version

F̂n(y) = n−1
n∑

i=1

I(Yi ≤ y),

when the sample size n is large. If we believe this approximation, we can
simulate θ̂ by sampling

(Y ∗
1 , . . . , Y

∗
n )

IID∼ F̂n(y).

Because F̂n(y) is a discrete distribution with mass 1/n on each observed data

point, the simulation of θ̂ reduces to the following procedure:

1. sample (Y ∗
1 , . . . , Y

∗
n ) from {Y1, . . . , Yn} with replacement;

2. compute θ̂∗ = T (Y ∗
1 , . . . , Y

∗
n );

3. repeat the above two steps B times to obtain the bootstrap repli-
cates {θ̂∗1 , . . . , θ̂∗B}.

We can then approximate the (asymptotic) variance of θ̂ by the sample
variance of the bootstrap replicates:

V̂boot = (B − 1)−1
B∑

b=1

(θ̂∗b − θ̄∗)2,

where θ̄∗ = B−1
∑B

b=1 θ̂
∗
b . The bootstrap confidence interval based on the

Normal approximation is then

θ̂ ± z1−α/2

√
V̂boot,

where z1−α/2 is the 1− α/2 upper quantile of N(0, 1).
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A1.6 Homework problems

A1.1 Independent but not IID data

Assume that the Xi’s are independent with mean µi and variances σ2
i for

i = 1, . . . , n. The parameter of interest is µ = n−1
∑n

i=1 µi. Show that µ̂ =
n−1

∑n
i=1Xi is unbiased for µ and find its variance. Show that the usual

variance estimator for IID data

v̂ = {n(n− 1)}−1
n∑

i=1

(Xi − µ̂)2

is a conservative estimator for the variance of µ̂ in the sense that

E(v̂)− var(µ̂) = {n(n− 1)}−1
n∑

i=1

(µi − µ)2 ≥ 0.

Remark: Consider a simpler case with µi = µ and σ2
i = σ2 for all i =

1, . . . , n. The sample mean is unbiased for µ with variance σ2/n. Moreover,
an unbiased estimator for the variance σ2/n is σ̂2/n = v̂, where σ̂2 = (n −
1)−1

∑n
i=1(Xi − µ̂)2.

A1.2 Asymptotic Normality of ratio

Prove (A1.2).

A1.3 Asymptotic Normality of product

Prove (A1.4).

A1.4 Variance estimators in two-by-two tables

Use delta method to show the variance estimators in Section A1.3.2.
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Linear and Logistic Regressions

A2.1 Population ordinary least squares

Assume that (xi, yi)
n
i=1

IID∼ (x, y), where x is a p-dimensional random scalar
or vector and y is a random scalar. Below I will use (x, y) to denote a general
observation, dropping the subscript i for simplicity. Define the population
ordinary least squares (OLS) coefficient as

β = argmin
b
E
{
(y − xTb)2

}
.

The objective function is quadratic in b, so we can show that the minimizer is

β =
{
E
(
xxT

)}−1
E (xy)

if the moments exist and E
(
xxT

)
is invertible.

With β, we can define
ε = y − xTβ (A2.1)

as the population residual. By the definition of β, we can verify that

E(xε) = E
{
x(y − xTβ)

}
= E(xy)− E(xxT)β = 0.

Example A2.1 (population OLS with an intercept) If we include 1 as
a component of x, then

E(ε) = E(y − xTβ) = 0

which further implies that cov(x, ε) = 0. So with an intercept in β, the mean
of the population residual must be zero, and it is uncorrelated with other co-
variates by construction.

Example A2.2 (univariate population OLS with an intercept) An im-
portant special case is that for scalars x and y, we can define

(α, β) = argmin
a,b

E{(y − a− bx)2}

which have explicit formulas

β =
cov(x, y)

var(x)
, α = E(y)− βE(x).
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Example A2.3 (univariate population OLS without an intercept) Without
intercept, we can define

γ = argmin
c
E{(y − cx)2}

which equals

γ =
E(xy)

E(x2)
.

When x has mean zero, β = γ in the above two population OLS.

We can also rewrite (A2.1) as

y = xTβ + ε, (A2.2)

which holds by the definition of the population OLS coefficient and resid-
ual without any modeling assumption. We call (A2.2) the population OLS
decomposition.

A2.2 Sample OLS

Based on data (xi, yi)
n
i=1

IID∼ (x, y), we can easily obtain the moment estimator
for the population OLS coefficient

β̂ =

(
n−1

n∑
i=1

xix
T
i

)−1(
n−1

n∑
i=1

xiyi

)
,

and the residuals ε̂i = yi − xTi β̂. This is called the sample OLS or simply the

OLS. The OLS coefficient β̂ minimizes the residual sum of squares

β̂ = argmin
b
n−1

n∑
i=1

(yi − xTi b)
2,

which satisfies the following Normal equation:

n∑
i=1

xi(yi − xTi β̂) = 0.

The fitted values equal

ŷi = xTi β̂ (i = 1, . . . , n).

Using the matrix notation

X =

x
T
1
...
xTn

 , Y =

y1...
yn

 ,
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we can write the OLS coefficient as

β̂ = (XTX)−1XTY

and the fitted vector as

Ŷ = Xβ̂ = X(XTX)−1XTY.

Define the hat matrix as

H = X(XTX)−1XT.

Then we also have Ŷ = HY , justifying the name “hat matrix.”
Assuming finite fourth moments of (x, y), we can use the law of large

numbers and the central limit theorem to show that

√
n(β̂ − β) → N(0, V = B−1MB−1)

in distribution, where B = E(xxT) and M = E(ε2xxT). So a moment estima-

tor for the asymptotic variance of β̂ is

V̂ehw = n−1

(
n−1

n∑
i=1

xix
T
i

)−1(
n−1

n∑
i=1

ε̂2ixix
T
i

)(
n−1

n∑
i=1

xix
T
i

)−1

,

which is called the Eicker–Huber–White (EHW) robust covariance estimator
(Eicker, 1967; Huber, 1967; White, 1980). We can show that nV̂ehw → V in

probability. Based on β̂ and V̂ehw, we can make inference about the population
OLS coefficient β. In R, the lm function can compute β̂, and the hccm function
in the package car can compute V̂ehw.

There are many variants of the EHW robust covariance estimator (Long
and Ervin, 2000). In particular, the HC1 variant modifies ε̂2i to ε̂2i /(n − p),
the HC2 variant modifies ε̂2i to ε̂2i /(1 − hii), the HC3 variant modifies ε̂2i to

ε̂2i /(1−hii)2, in the definition of V̂ehw, where hii is the (i, i)th diagonal element
of H, also called the leverage scores.

A2.3 Frisch–Waugh–Lovell Theorem

The Frisch–Waugh–Lovell (FWL) theorem has two versions: one at the popu-
lation level and the other at the sample level. It reduces multivariate OLS to
univariate OLS and therefore facilitate the understanding and calculation of
the OLS coefficients. Below I will present special cases of the FWL Theorem
which are enough for this book.
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Theorem A2.1 (population FWL) The coefficient of x1 in the OLS fit of
y on (x1, x2, . . . , xp) equals the coefficient of x̃1 in the OLS fit of y or ỹ on
x̃1, where ỹ is the residual from the OLS fit of y on (x2, . . . , xp) and x̃1 is the
residual from the OLS fit of x1 on (x2, . . . , xp).

In Theorem A2.1, residualizing x1 is crucial but residualizing y is not.

Theorem A2.2 (sample FWL) With data (Y,X1, X2, . . . , Xp) containing

column vectors, the coefficient of X1 equals the coefficient of X̃1 in the OLS
fit of Y or Ỹ on X̃1, where Ỹ is the residual vector from the OLS fit of Y on
(X2, . . . , Xp) and X̃1 is the residual from the OLS fit of X1 on (X2, . . . , Xp).

Again, in Theorem A2.2, residualizing X1 is crucial but residualizing Y is
not.

A2.4 Linear model

Sometimes, we impose a stronger model assumption which requires the con-
ditional mean of y given x is linear:

E(y | x) = xTβ

or, equivalently,
y = xTβ + ε, E(ε | x) = 0,

which is called the restricted mean model. Under this model, the population
OLS coefficient is the true parameter of interest:{

E(xxT)
}−1

E(xy) =
{
E(xxT)

}−1
E {xE(y | x)}

=
{
E(xxT)

}−1
E(xxTβ)

= β.

Moreover, the population OLS coefficient does not depend on the distribution
of x. The asymptotic inference in Section A2.1 applies to this model too.

In the special case with var(ε | x) = σ2, the asymptotic variance of the
OLS coefficient reduces to

V = σ2{E(xxT)}−1

so a simpler moment estimator for the asymptotic variance of β̂ is

V̂ols = σ̂2

(
n∑

i=1

xix
T
i

)−1

where σ̂2 = (n−p)−1
∑n

i=1 ε̂
2
i . This is the standard covariance estimator from

the lm function.



A2.6 Weighted least squares 377

A2.5 Weighted least squares

Assuming that (wi, xi, yi)
IID∼ (w, x, y) with w ̸= 0. At the population level,

we can define weighted least squares (WLS) coefficient as

βw = argmin
b
E{w(y − xTb)2},

which satisfies
E{wx(y − xTβw)} = 0

and thus equals
βw = {E(wxxT)}−1E(wxy)

if E(wxxT) is invertible.
At the sample level, we can define the WLS coefficient as

β̂w = argmin
b

n∑
i=1

wi(yi − xTi b)
2,

which satisfies
n∑

i=1

wixi(yi − xTi β̂w) = 0

and thus equals

β̂w =

(
n−1

n∑
i=1

wixix
T
i

)−1(
n−1

n∑
i=1

wixiyi

)
if
∑n

i=1 wixix
T
i is invertible.

A2.6 Logistic regression

A2.6.1 Model

Technically, we can use apply the OLS procedure even if the outcome y is
binary. However, it is a little awkward to have predicted probabilities outside
the range of [0, 1]. This motivates us to consider the following model:

pr(yi = 1 | xi) = g(xTi β),

where g(·) : R → [0, 1] is a monotone function, and its inverse is often called
the link function. The g(·) function can be any distribution function of a
random variable, but we will focus on the logistic form:

g(z) =
ez

1 + ez
= (1 + e−z)−1.
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We can also write the logistic model as

pr(yi = 1 | xi) ≡ π(xi, β) =
ex

T
iβ

1 + ex
T
iβ
,

or, equivalently,

logit {pr(yi = 1 | xi)} ≡ log
pr(yi = 1 | xi)

1− pr(yi = 1 | xi)
= xTi β.

Assume that xi1 is binary. Under the logistic model, we have

β1 = logit {pr(yi = 1 | xi1 = 1, . . .)} − logit {pr(yi = 1 | xi1 = 0, . . .)}

= log
pr(yi = 1 | xi1 = 1, . . .)/pr(yi = 0 | xi1 = 1, . . .)

pr(yi = 1 | xi1 = 0, . . .)/pr(yi = 0 | xi1 = 0, . . .)
,

where . . . contains all other regressor xi2, . . . , xip. Therefore, the coefficient β1
equals the log odds ratio of xi1 on yi conditional on other regressors.

A2.6.2 Maximum likelihood estimate

To estimate the parameter β, we can maximize the following likelihood func-
tion:

L(β) =

n∏
i=1

{π(xi, β)}yi {1− π(xi, β)}1−yi

=

n∏
i=1

{
π(xi, β)

1− π(xi, β)

}yi

{1− π(xi, β)}

=

n∏
i=1

(
ex

T
iβ
)yi 1

1 + ex
T
iβ

=

n∏
i=1

eyix
T
iβ

1 + ex
T
iβ
.

Let β̂ denote the maximizer, which is called the maximum likelihood estimate
(MLE). Taking the log of L(β) and differentiating it with respect to β, we can
show that the MLE must satisfy the first order condition:

n∑
i=1

xi{yi − π(xi, β̂)} = 0.

So if xi contains an intercept, the MLE must satisfy

n∑
i=1

{yi − π(xi, β̂)} = 0,
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that is, the average of the observed yi’s must be identical to the average of
the fitted probabilities π(xi, β̂)’s.

Using the general theory for the MLE, we can show that it is consistent
for the true parameter β and is asymptotically normal:

√
n(β̂ − β) → N(0, V )

in distribution, where V = E
[
π(xi, β){1− π(xi, β)}xxT

]
. So we can approx-

imate the covariance matrix of β̂ by

n−1
n∑

i=1

π(xi, β̂){1− π(xi, β̂)}xixTi .

In R, the glm function can find the MLE and report the estimated covariance
matrix.

A2.6.3 Extension to the case-control study

In case-control studies, sampling is conditional on the binary outcome, that is,
units with outcomes yi = 1 and yi = 0 are sampled with different probabilities.
Let si be the sampling indicator. In case control studies, we have

pr(si = 1 | xi, yi) = pr(si = 1 | yi)

as a function of yi, and we only observe units with si = 1.
Prentice and Pyke (1979) showed that logistic regression is applicable in

case-control studies although the above discussion assume IID sampling.

A2.6.4 Logistic regression with weights

Sometimes, unit i has weight wi, then we can fit a weighted logistic regression
by solving

n∑
i=1

wixi{yi − π(xi, β̂)} = 0.

A2.7 Homework problems

A2.1 Sample OLS with intercept

Assume the regressor xi contains an intercept. Show that

ȳ = x̄Tβ̂. (A2.3)
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A2.2 Univariate weighed least squares

As a special case of WLS, define

(α̂w, β̂w) = argmin
(a,b)

n∑
i=1

wi(yi − a− bxi)
2

where wi ≥ 0. Show that

β̂w =

∑n
i=1 wi(xi − x̄w)(yi − ȳw)∑n

i=1 wi(xi − x̄w)2
(A2.4)

and

α̂w = ȳw − β̂wx̄w, (A2.5)

where x̄w =
∑n

i=1 wixi/
∑n

i=1 wi and ȳw =
∑n

i=1 wiyi/
∑n

i=1 wi are the
weighted averages of the xi’s and yi’s.

Further assume that the xi’s are binary. Show that

β̂w =

∑n
i=1 wixiyi∑n
i=1 wixi

−
∑n

i=1 wi(1− xi)yi∑n
i=1 wi(1− xi)

.

That is, if the regressor is binary in the univariate WLS, the coefficient of the
regressor equals the difference in the weighted means.

Hint: Think about an appropriate reparametrization of the WLS problem.
Otherwise, the derivation can be tedious.

A2.3 OLS with orthogonal regressors

Consider sample OLS fit of an n-vector Y on an n×pmatrixX, with coefficient
β̂. Partition X into X = (X1, X2), where X1 is an n× k matrix and X2 is an

n× l matrix, with p = k + l. Correspondingly, partition β̂ into

β̂ =

(
β̂1
β̂2

)
.

Assume X1 and X2 are orthogonal, that is, XT
1X2 = 0. Show that β̂1

equals the coefficient from OLS of Y on X1 and β̂2 equals the coefficient from
OLS of Y on X2, respectively.

A2.4 OLS with a non-degenerate transformation of the regressors

Define β̂ as the coefficient from the sample OLS fit of an n-vector Y on an
n×p matrix X. Let Γ be a p×p non-degenerate matrix, and define X ′ = XΓ.
Define β̂′ as the coefficient from the sample OLS fit of Y on X ′.

Show that
β̂ = Γβ̂′.
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Some Useful Lemmas for Simple Random
Sampling

A3.1 Lemmas

Simple random sampling is a basic topic in standard survey sampling text-
books (e.g., Cochran, 1953). Below I review some results for simple random
sampling that are useful for design-based inference in the CRE in Chapters 3
and 4.

A simple random sample of size n1 consists of a subset from a finite popula-
tion of n units indexed by i = 1, . . . , n. Let Z = (Z1, . . . , Zn) be the inclusion
indicators of the n units with Zi = 1 if unit i is sampled and Zi = 0 otherwise.
The vector Z can take

(
n
n1

)
possible permutations of a vector of n1 1’s and

n0 0’s, and each has equal probability. The following lemma summarizes the
first two moments of the inclusion indicators.

Lemma A3.1 Under simple random sampling, we have

E(Zi) =
n1
n
, var(Zi) =

n1n0
n2

, cov(Zi, Zj) = − n1n0
n2(n− 1)

.

In more compact forms, we have

E(Z) =
n1
n
1n, cov(Z) =

n1n0
n(n− 1)

Pn,

where 1n is a n-dimensional vector of 1’s, and Pn = In − n−11n1
⊤
n is the

n× n projection matrix orthogonal to 1n.

Let {c1, . . . , cn} be a finite population with mean c̄ =
∑n

i=1 ci/n and vari-
ance

S2
c = (n− 1)−1

n∑
i=1

(ci − c̄)2;

let {d1, . . . , dn} be another finite population with mean d̄ =
∑n

i=1 di/n and
variance

S2
d = (n− 1)−1

n∑
i=1

(di − d̄)2;

381
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their covariance is

Scd = (n− 1)−1
n∑

i=1

(ci − c̄)(di − d̄).

Based on the simple random sample, the sample means are

ˆ̄c = n−1
1

n∑
i=1

Zici,
ˆ̄d = n−1

1

n∑
i=1

Zidi;

sample variances are

Ŝ2
c = (n1 − 1)−1

n∑
i=1

Zi(ci − ˆ̄c)2, Ŝ2
d = (n1 − 1)−1

n∑
i=1

Zi(di − ˆ̄d)2;

the sample covariance is

Ŝcd = (n1 − 1)−1
n∑

i=1

Zi(ci − ˆ̄c)(di − ˆ̄d).

Lemma A3.2 below gives the moments of the sample means ˆ̄c and ˆ̄d.

Lemma A3.2 The sample means are unbiased for the population means:

E(ˆ̄c) = c̄, E( ˆ̄d) = d̄.

Their variances and covariance are

var
(
ˆ̄c
)
=

n0
nn1

S2
c , var

(
ˆ̄d
)
=

n0
nn1

S2
d , cov

(
ˆ̄c, ˆ̄d
)
=

n0
nn1

Scd.

In the variance formula in Lemma A3.2, the coefficient n0/(nn1) = 1/n1×
(1 − n1/n) in Lemma A3.2 is different from 1/n1 under IID sampling. The
additional factor 1− n1/n = n0/n is called the finite population correction.

Lemma A3.3 below gives the unbiasedness of the sample variances and
covariance for estimating the population analogs.

Lemma A3.3 The sample variances and covariance are unbiased for their
population versions:

E(Ŝ2
c ) = S2

c , E(Ŝ2
d) = S2

d , E(Ŝcd) = Scd.

An important practical question is to make inference about c̄ based on the
simple random sample. This requires a more precise characterization of the
distribution of its unbiased estimator ˆ̄c. The finite-sample exact distribution
of ˆ̄c depends on the whole finite population {c1, . . . , cn}, which is intractable
in general. The following finite population central limit theorem characterizes
the asymptotic distribution of ˆ̄c based on its first two moments.
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Lemma A3.4 (finite population central limit theorem) As n→ ∞, if

max1≤i≤n(ci − c̄)2

min(n1, n0)S2
c

→ 0,

then
ˆ̄c− c̄√
n0

nn1
S2
c

→ N(0, 1)

in distribution, and Ŝ2
c/S

2
c → 1 in probability.

Lemma A3.4 justifies the Wald-type 1− α confidence interval for c̄:

ˆ̄c± z1−α/2

√
n0
nn1

Ŝ2
c

where z1−α/2 is the 1 − α/2 upper quantile of the standard Normal random
variable.

A3.2 Proofs

Proof of Lemma A3.1: By symmetry, the Zi’s have the same mean, so

n1 =

n∑
i=1

Zi = E

(
n∑

i=1

Zi

)
= nE(Zi) =⇒ E(Zi) = n1/n.

Because Zi is a Bernoulli random variable, its variance is

var(Zi) =
n1
n

(
1− n1

n

)
=
n1n0
n2

.

By symmetry again, the Zi’s have the same variance and the pairs (Zi, Zj)’s
have the same covariance, so

0 = var

(
n∑

i=1

Zi

)
= nvar(Zi) + n(n− 1)cov(Zi, Zj)

which implies that

cov(Zi, Zj) = − n1n0
n2(n− 1)

(i ̸= j).

□
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Proof of Lemma A3.1: The unbiasedness of the sample mean follows from
linearity. For example,

E(ˆ̄c) = E

(
1

n1

n∑
i=1

Zici

)
=

1

n1

n∑
i=1

E(Zi)ci = c̄.

The covariance of the sample means is

cov(ˆ̄c, ˆ̄d)

= cov

{
1

n1

n∑
i=1

Zi(ci − c̄),
1

n1

n∑
i=1

Zi(di − d̄)

}

=
1

n21

 n∑
i=1

var(Zi)(ci − c̄)(di − d̄) +
∑
i ̸=j

cov(Zi, Zj)(ci − c̄)(dj − d̄)


=

1

n21

n1n0
n2

n∑
i=1

(ci − c̄)(di − d̄)− n1n0
n2(n− 1)

∑
i ̸=j

(ci − c̄)(dj − d̄)

 .
Because

0 =

n∑
i=1

(ci − c̄)

n∑
i=1

(di − d̄) =

n∑
i=1

(ci − c̄)(di − d̄) +
∑
i ̸=j

(ci − c̄)(dj − d̄),

the covariance of the sample means reduces to

cov(ˆ̄c, ˆ̄d)

=
1

n21

[
n1n0
n2

n∑
i=1

(ci − c̄)(di − d̄) +
n1n0

n2(n− 1)

n∑
i=1

(ci − c̄)(di − c̄)

]
=

n0
nn1

Scd.

The variance formulas are just special cases with ˆ̄c = ˆ̄d. □
Proof of Lemma A3.3: We prove only the sample covariance term, because
the formulas for sample variances are special cases. We have the following
decomposition:

(n1 − 1)Ŝcd =

n∑
i=1

Zi(ci − ˆ̄c)(di − ˆ̄d)

=

n∑
i=1

Zi{(ci − c̄)− (ˆ̄c− c̄)}{(di − d̄)− ( ˆ̄d− d̄)}

=

n∑
i=1

Zi(ci − c̄)(di − d̄)− n1(ˆ̄c− c̄)( ˆ̄d− d̄).
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Taking expectation on both sides, we have

E{(n1 − 1)Ŝcd} =

n∑
i=1

E(Zi)(ci − c̄)(di − d̄)− n1E{(ˆ̄c− c̄)( ˆ̄d− d̄)}

=
n1
n

n∑
i=1

(ci − c̄)(di − d̄)− n1
n0
nn1

Scd

= Scd

{
n1(n− 1)

n
− n0

n

}
= (n1 − 1)Scd,

and the conclusion follows by dividing both sides by n1 − 1. □
Proof of Lemma A3.4: Hájek (1960) gave a proof of the central limit theo-
rem for simple random sampling, and Lehmann (1975) gave a more accessible
version of the proof. Li and Ding (2017) modified the central limit theorem as
presented in Lemma A3.4, and proved the consistency of the sample variance.
Due to the technical complexities, I omit the proof. □

A3.3 Comments on the literature

Survey sampling and experimental design are deeply connected ever since
Neyman (1934, 1935)’s seminal work. Li and Ding (2017) and Mukerjee et al.
(2018) made many theoretical ties between these two areas.

A3.4 Homework Problems

A3.1 Vector form of the results

Assume the ci’s are vectors and modify

S2
c = (n− 1)−1

n∑
i=1

(ci − c̄)(ci − c̄)T, Ŝ2
c = (n1 − 1)−1

n∑
i=1

Zi(ci − ˆ̄c)(ci − ˆ̄c)T.

Show that
E(ˆ̄c) = c̄, cov(ˆ̄c) =

n0
nn1

S2
c , E(Ŝ2

c ) = S2
c .
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