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Nonparametrics on Manifolds or Manifolds in Nonparametrics

“non-Abelian”; Picture says (almost) all:
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Data on Manifolds

Data on manifolds
†

may arise in (at least) two ways:

(1) Manifold is actual physical space where data reside

,! Usually sphere; from geophysics to marine biology

†
contrast to manifolds in data analysis, or manifold-valued data
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Data on Manifolds

Data on manifolds may arise in (at least) two ways:

(2) Multivariate data under non-linear constraints, thus being forced onto manifold

,! e.g. cones for positive-def matrices or Stiefel manifolds for ordered bases

4.2. DT-MR images

Two types of DT-MR images were used in our ex-
periments: spinal cord data to observe the effects of the
PDD map restoration, and brain data to assess the ef-
fects of the eigenvalue regularization. We present results
using those data.

4.2.1. Spinal cord data
Acquisition at the level of the spinal cord is techni-

cally more difficult and more sensitive to motion arte-
facts, for instance induced by breathing, therefore these
data are quite noisy. In particular, the PDD field is more
noisy than with brain data. The images contain a cy-
lindrical region (the cord) inside which anisotropy is
high, due to the presence of fibers, and outside which

anisotropy is low, in the CSF surrounding the cord (see
Fig. 12). Discontinuities are of two types: at the inter-
face between cord and CSF, and inside the cord, at the
entrance of peripheral nerves.

Results of the PDD restoration are shown in Fig. 12
for a subsection of the cord. Fig. 12(a) shows that di-
rections have been clearly realigned along the cord, and
the smoothness has increased. At the borders of the
cord, data have not been disturbed by the CSF.
Fig. 12(b) shows a close-up at a discontinuity of the
direction field within the cord, and we can see that the
discontinuity has been preserved while the data have
been smoothed. As there is no ground truth to compare
results with, an essential issue of the PDD restoration is
its effect on post-processing methods, in particular,
white matter fiber tracking (tractography) for which the

Fig. 10. Eigenvalue regularization. Left column: noisy synthetic torus image. Right column: the corresponding regularized image. Top row: noise
level r2 ¼ 25. Bottom row: noise level r2 ¼ 400. Same colour mapping as in Fig. 2. (This figure is available in colour, see the on-line version.)

O. Coulon et al. / Medical Image Analysis 8 (2004) 47–67 61
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Data on Manifolds

D =

0

@
D11 D12 D13

D21 D22 D23

D31 D32 D33

1

A : v>Dv > 0, v 2 R3

P3: the space of all symmetric positive definite 3 by 3 matrices

P3 ⇢ R6

P3 is convex but not linear in R6 : 3
2D1 �

1
2D2 might not in P3
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A Principal Flow?

What does “curve of maximal variation” mean?

Would like a reasonably smooth curve �(x) whose derivative �̇(x) 2 TxM at any point

x 2 M is ⇡ (parallel to) �1(x)e1(x)

...AND maximizes the work done by the field on a particle traveling along its path
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Illustration
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Illustration
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Illustration
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Illustration
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A Principal Flow
‡

(mod technicalities)
a

Curve with midpoint x̄, maximizing

Z ���
D
�̇(t),W (�(t))

E��� dt

SubM(A, v,M) =
n
� : [0, r]!M, � 2 C2(M), �(s) 6= �(s0) for s 6= s0,

�(0) = A, �̇(0) = v, `(�[0, t]) = t for all 0  t  r  1
o
.

a
(several technical issues will not be discussed)

Answer: yes, reformulate to Euler-Lagrange equations

9 unique solution under mild conditions on manifold+field

Requires geodesics and second fundamental tensor

Numerically Feasible for many “standard” manifolds

Canonical: reduces to ordinary PCA in Euclidean spaces
‡
Panaretos, V. M., Pham, T., & Yao, Z. (2014). Principal flows. JASA.
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Principal Curve
§

and Examples
¶

§
Hastie, T., & Stuetzle, W. (1989). Principal curves. JASA.

¶
Thanks to Trevor Hastie for sharing the examples
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An ideal principal sub-manifold
�

(Ideal principal sub-manifold)
a k-th dimensional principal sub-manifold

arg sup
N2SubM

�
A,✏,k,M

�

Z

B2N

✓
cos(↵B)⇥

kX

j=1

�j(B,M)

◆
dµN ,

where µN is the measure on N

a
(subject to modification)

To measure the degree of variation, we use the angle ↵B between the hyperplane

and tangent plane, Hk(B,M) and Hk(B,N ).

Theoretically, if ↵B = 0 for every B, then Hk(B,M) = Hk(B,N ). For general

cases, one would hope ↵B is as small as possible.

�
Yao, Z., Eltzner, B., & Pham, T. (2016). Principal sub-manifolds. arXiv:1604.04318.
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Principal flow and principal submanifold

B

A

TBN

TBM

M

N

↵B B

A

TBN

TBM

M

N

↵B B

A

VB

TBN

TBM

M

N

↵0
B
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Classification Boundary
∗∗
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∗∗
Yao, Z., & Zhang, Z. (2019). Principal boundary on Riemannian manifolds. JASA.



14/38

Preliminary Manifold Fitting Fitting with CycleGAN scAMF (pipeline)

A statistician’s view on the connection to SYZ conjecture

The concept of finding a sub-manifold of the manifold data (data lying on

manifold, e.g., a torus) is naturally rooted in a seemingly unrelated conjecture,

namely, the SYZ conjecture
††

. Without diving into too many mathematical

statements, the conjecture offers a geometrical way of breaking a complicated

space (manifold) into its constituent parts.

The problem is related to principal sub-manifold, which is an empirical calculation

of such decomposition under some scenarios from the noisy data
‡‡

.

††
Strominger/Yau/Zaslow (1996)

‡‡
Principal Sub-manifolds: New Theory and Methods (2023 manuscript)
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A bit More Ambitious



16/38

Preliminary Manifold Fitting Fitting with CycleGAN scAMF (pipeline)

An scRNA Clustering Project (On-going)

25 scRNA datasets

Recent (10-15y) CNS
D ⇠ 15k-40k
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What is manifold fitting?

Geometric Whitney problem:

Given A ⇢ RD
, d < D, construct

cM ⇢ RD

to approximate A, with dim(cM) = d.

How well can cM estimate A in terms

of distance and smoothness?

Statistics and Data Science:

Let M 2 RD
, X ⇠ µ(M), and

Y = X + ⇠,

construct an estimator cM.

What are the bias/asymptotic

properties of cM?
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Benefit of manifold fitting

(a) Embedding

(b) Denoising

(c) Fitting

Known manifold

Unknown manifold ! Manifold fitting:

Genovese et al (2012 a,b), Fefferman et al (2016),
Mohammed/Narayanan (2017), Yao/Xia (2019),
Fefferman et al (2021), Yao/Su/Li/Yau (2023)a,
Yao/Su/Yau (2024)b, Yao/Li/Lu/Yau (2024)c.

aManifold fitting, arXiv:2304.07680.
bManifold fitting with CycleGAN, PNAS.
cSingle-Cell Analysis via Manifold Fitting: A New Framework for RNA

Clustering and Beyond, revision at PNAS.
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Manifold Distribution Principle

The fundamental principle of data science:

Each natural concept corresponds to a dataset, where each sample is a point in the

dataset. The dataset is distributed near a low-dimensional manifold, which is called the

data manifold M. The data manifold M is embedded in a high-dimensional ambient
space RD

. The dataset can be abstracted as a probability distribution µ on the data

manifold M.

Namely,

yi = xi + ⇠i for i = 1, 2, ..., N

xi 2 M ⇢ RD
: unobserved sample from µ(M)

⇠i 2 RD
, ⇠i ⇠ �(D)

� : ambient space noise

yi 2 RD
, yi ⇠ µ ? �(D)

� : observation
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Yao 2019
∗

improves Fefferman 2018
†

M

Ty⇤M
y⇤

y r

yi
yj

cM = {y 2 RD : d(y,M)  cr,

c < 1, b⇧?
y (y � ey) = 0}

) d(y,M)  Cr2 for any y 2 cM

with probability

1� d exp{�cNrd+2
}.

r = O(
p
�), N � Cr�(d+2)

ey =
P

i
↵i(y)yi: weighted mean of yi

b⇧?
y = ⇧hi(

P
i
↵i(y)b⇧yi): estimator of ⇧?

y⇤

∗
Yao, Z., & Xia, Y. (2019). Manifold fitting under unbounded noise. arXiv:1909.10228.

†
Fefferman, C., et al. (2018). Fitting a putative manifold to noisy data. PMLR.
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Yao 2019 – with more details

For a point y such that d(y,M)  cr, c < 1, let

y � ey =
X

i

↵i(y)(y � yi),

with

↵̃i(y) =

(
(1�

ky�yik22
r2

)k, ky � yik2  r
0, ky � yik2 > r

,

↵i(y) = ↵̃i(y)/
X

↵̃i(y)

and b⇧yi = I � V V >
, where V is the D ⇥ d matrix whose columns are the eigenvectors

corresponding to the largest d eigenvalues of
P

j2Iyi,r0
(yj � yi)(yj � yi)>, r0 � 2r.
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Difference: ⇧x is used to estimate the orthogonal projection onto the normal space of M at x⇤
, the

black dot b is used to estimate a point in Tx⇤M. Then the space {x0 : ⇧x(x
0 � b) = 0}, illustrated as

the black dashed line, approximates Tx⇤M, and the bias from x to the black dashed line is the

estimated bias from x to M, geometrically illustrated as the black arrow.
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Local contraction
‡
: the fancy �2

bound

By setting

r0 = C1�

N = C2Dr�d

0 ��3

r1 = c1�

r2 = C3�
p
log(1/�)

Local contraction in two steps:

(1): estimate contraction direction;

(2): estimate local average.

M

Ty⇤M

Vy

r1

r2

y

ey

µy

‡
Yao, Z., Su, J., Li, B. and Yau, S.T. Manifold Fitting. arXiv:2304.07680.
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For a point y such that d(y,M) = O(�), let

F (y) =
X

↵i(y)yi,

with

↵̃i(y) =

(
(1�

ky�yik22
r
2
0

)k, ky � yik2  r0

0, ky � yik2 > r0
, ↵i(y) =

↵̃i(y)P
↵̃i(y)

with k � 2 being a constant.

Theorem 1

For a point y such that d(y,M) = O(�),

sin{⇥ (F (y)� y, y⇤ � y)}  C�
p
log(1/�),

for some constant C, with probability no less than 1� C1 exp{�C2�c
}.
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For the same point y, let FM(y) =
P

�i(y)yi, with

�̃i(y) =

(
(1�

kuik22
r
2
2

)k(1�
kvik22
r
2
1

)k, yi 2 cVy,

0, yi /2 cVy,

�i(y) = �̃i(y)/
X

�̃i(y),
where

M

Ty⇤M

Vy

y

r1

r2 yivi

ui

y⇤

ui =
(y � F (y))(y � F (y))>

ky � F (y)k22
(y � yi), vi = y � yi � ui.

Theorem 2

For a point y such that d(y,M) = O(�),

kFM(y)� y⇤k2  C�2log(1/�),

for some constant C, with probability no less than 1� C1 exp{�C2�c
}.
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Construct manifold estimators

Theorem 3 (with initialization)

Suppose that fM is a d-dimensional manifold with a positive reach ⌧0 � ⌧ and
dH(fM,M) = O(�). Then, with high probability, cM = FM(fM) is also a
d-dimensional manifold that satisfies

1. For any point y 2 cM, d(y,M)  C�2log(1/�).

2. For any point x 2 M, d(x, cM)  C�2log(1/�).

3. For any two point y1 6= y2 2 cM, ky1 � y2k22/d(y2, Ty1
cM) � cr⌧.

fM = {y : d(y,M)  C�, ⇧⇤(F (y)� y) = 0}.
⇧⇤

: a pre-defined projection matrix with rank D � d.
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CycleGAN/Manifold fitting framework
¶

Z

z

bz

GZ ey

byDZ

Y

FM DY

yGYez

?
Z ⇢ Rd

: feature space

Y ⇢ RD
: ambient space

GZ , GY : generators

DZ , DY : discriminators

FM: manifold fitting sub-module

Main objective
§
: Let Z ⇠ Unif(0, 1)d,

G⇤
Z(Z) := min

GZ2C(GZ)
Div(GZ(Z) ? ��, ⌫),

and estimate the latent manifold with

fM := dG⇤
Z(Z), or cM := FM �dG⇤

Z(Z).

§⌫ is the probability density of Y 2 Y in the ambient space
¶
Yao Z., Su J., and Yau S.T., Manifold fitting with CycleGAN, PNAS, Jan, 2024.
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Forward step

Z

z

bz

GZ ey

byDZ

Y

FM DY

yGYez

?

ey = GZ(z) + ⇠

bz = GY(ey)
⇠ ⇠ N(0,�2ID)

ez = GY(y)

by = GZ(ez)
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Loss functions (2 adversarial loss and 1 cycle loss)
�

Z

z

bz

GZ ey

byDZ

Y

FM DY

yGYez

?

Lcycle(GZ , GY) = av. (kzi � bzik1) + av. (kyi � byik1) ,
LY!Z(GY , DZ) = av.

�
[DZ(zi)� 1]2

�
+ av.

�
[DZ(ezi)� 0]2

�
,

LZ!Y(GZ , DY , FM) = av.
�
[DY(FM(yi))� 1]2

�
+ av.

�
[DY(FM(eyi))� 0]2

�
,

Ltotal = LY!Z(GY , DZ) + LZ!Y(GZ , DY , FM) + �Lcycle(GZ , GY).

�
Given m batched sample zi and n batched sample yi; � is negative parameter
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Role of Generators

Solve (non-sample version):

G⇤
Z , G

⇤
Y = argmax

GZ ,GY

min
FM,DZ ,DY

L(GZ , GY , FM, DZ , DY).

Manifold estimators (sample-based):

fM = dG⇤
Z(Z) or cM = FM(fM) estimates M.

Noise canceling:

dG⇤
Z � cG⇤

Y : yi 7! byi 2 fM.

Nonlinear interpolating:

dG⇤
Z

⇣
tcG⇤

Y(yi) + (1� t)cG⇤
Y(yj)

⌘
nonlinear interpolates between byi and byj .
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Fitting with 1D rotation group

(a) (b)

(c)

(a) Images of a rotating simple shape, with

ambient space noise.

(b) Denoised version of (a) with

CycleGAN/Manifold Fitting model.

(c) Nonlinear interpolation of two examples with

red boxes in (a).
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Fitting in scRNA space – A real example

show transcriptional fluctuation of certain pluripotency factors
such as Nanog (Chambers et al., 2007; Kalmar et al., 2009),
Dppa3 (Hayashi et al., 2008), and Rex1 (Zfp42) (Toyooka et al.,
2008), unlike mESCs maintained in 2i conditions. These fluctua-
tions have been proposed to represent a dynamic equilibrium
between self-renewing and differentiation-poised states and
thus be instrumental in regulating exit from pluripotency (Chang
et al., 2008). However, others speculate that they arise through
the use of fluorescent reporter systems and therefore are of un-
clear biological relevance (Chang et al., 2008; Faddah et al.,
2013; Reynolds et al., 2012). The presence of transcriptionally
heterogeneous subpopulations, prevalent bivalent chromatin
domains, increased methylation content, and reduced RNA po-
lymerase pausing compared to 2i mESCs has led to the notion
that serum-maintained mESCs exist in a metastable pluripotent
state (Marks et al., 2012), implying higher transcriptional cell-to-
cell variation than the 2i state. Recently, a rare population of
mESCs expressing markers of the two-cell stage of embryonic
development was described (Macfarlan et al., 2012). These so-
called 2C-like cells express the MERVL endogenous retrovirus
and chimeric transcripts that arise via retroviral insertion in
different places in the genome, and they are uniquely capable
of differentiating into extraembryonic tissues. Our molecular un-
derstanding of the divergent pluripotent states, however, re-
mains quite limited.

Single cell RNA-sequencing technology is increasingly used
to deconstruct heterogeneous populations, lineage trajectories,
and determinants of cell fate, questions that are central to the
stem cell field (Etzrodt et al., 2014). Recently, Kumar et al.
(2014) reported the single-cell transcriptome of serum/LIF-main-
tained mESCs and global transcriptome changes resulting from
a range of chemical and genetic perturbations. Here, we per-
formed single cell RNA-sequencing of mESCs cultured in
serum/LIF, 2i/LIF, and the alternative ground state, a2i/LIF.
This approach allowed us to compare the subpopulation struc-
tures and provide a deep characterization of cell-to-cell variation
in gene expression levels across these three pluripotent states.

2i alternative 2i (a2i)    lif

Pease et al., 1990
Xu et al., 2001

Ying et al., 2008
Li et al., 2008

Shimizu et al., 2012

chip 1 - 81 cells
chip 2 - 90 cells
chip 3 - 79 cells 

chip 1 - 82 cells
chip 2 - 59 cells
chip 3 - 72 cells
chip 4 - 82 cells

chip 1 - 93 cells
chip 2 - 66 cells

more differentiation permissive
more heterogeneous

N2B27 basal media
inhibitors of:

Mek1/2 (PD0325901)
+ LIF

DMEM
15% fetal bovine serum 
+ leukemia inhibitory factor (LIF)

ground pluripotent state
more homogeneous

not well characterized

N2B27 basal media
inhibitors of:

Src  (CGP77675)
+ LIF

mouse embryonic stem cells

culture condition

components 
of medium

cell characteristics

references

number of cells

Figure 1. Experimental Scheme of Hybrid
mESCs in Three Culture Conditions
Schematic of experimental setup and cell culture

conditions used in our study.

RESULTS

To examine features of gene expression
heterogeneity across pluripotent states,
we cultured an F1 hybrid (C57BL/6Ncr
male x 129S6/SvEvTac female) mESC
cell line (George et al., 2007) in three
different conditions: (1) three replicates
of serum + LIF, (2) four replicates of 2i +
LIF, and (3) two replicates of a2i + LIF,
which we will refer to as serum (serum1,
serum2, and serum3), 2i (2i1, 2i2, 2i3,
and 2i4) and a2i (a2i1 and a2i2) hence-
forth (Figure 1). In total, we collected
704 single-cell transcriptomes across

these three conditions by using the Fluidigm C1 system and
applying the SMARTer Kit to obtain cDNA and the Nextera XT
Kit for Illumina library preparation.
After quality control analysis on each individual cell (Figures

S1A–S1H), 250 serum cells, 295 2i cells, and 159 a2i cells re-
mained. On average, we sequenced over 9 million reads per
cell. Over 80% of reads mapped to the Mus musculus genome
(GRCm38) and over 60% to exons (mapping overview in Figures
S1G and S1H). We also performed standard bulk RNA-
sequencing for each condition. As in previous studies, when
we averaged gene expression levels across the single cells pro-
filed in each condition, we observed that the mean expression
levels recapitulated the bulk gene expression levels with a
Spearman rank correlation coefficient of around 0.9 (Figures
S1D and S1E).

Transcriptome-wide Cell-to-Cell Variation Is Similar
across the Three Culture Conditions
An advantage of the single-cell approach is that we can study the
distribution of expression levels across the population, thereby
capturing cell-to-cell variability in gene expression (Figure 2A).
To compare global levels of gene expression heterogeneity
between the three different culture conditions, we used the coef-
ficient of variation (CV) of normalized read counts (Figure S2).
However, the CV of a gene depends strongly on its mean expres-
sion level and length, making it difficult to interpret differences
between conditions. To account for the confounding factor of
expression level, we therefore developed a measure of cell-to-
cell variation by calculating the distance between the squared
CV of each gene and a running median (Figures S2E and S2F).
This is derived from the scatterplot of the mean normalized
read counts versus the squared CV values, as in (Newman
et al., 2006). We refer to this expression-level normalized mea-
sure of gene expression heterogeneity as distance to themedian
(DM) (refer toSupplemental Experimental Procedures for details).
Given the heterogeneous morphology of mESCs cultured in

serum (Marks et al., 2012; Toyooka et al., 2008), as well as the

472 Cell Stem Cell 17, 471–485, October 1, 2015 ª2015 The Authors

Figure: Mouse embryo stem cells (Kolodziejczyk et al. 2017) contain 704 cells in 3 classes (lif, 2i, a2i).

Focuses:

Utilizing the potential molecular mechanisms governing cell differentiation and maintenance.

Keeping the three classes of Mouse embryo stem cells.

Improving other unsupervised clustering methods with the help of fitting.



33/38

Preliminary Manifold Fitting Fitting with CycleGAN scAMF (pipeline)

Unsupervised clustering with tSNE

-15 -10 -5 0 5 10
T-SNE 1

-15

-10
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SN

E 
2

Mouse Embryonic, Raw Data
Clustering Accuracy = 57%

2i
a2i
lif

-20 -15 -10 -5 0 5 10 15 20
T-SNE 1

-10

-5

0

5

10

15

T-
SN

E 
2

Mouse Embryonic, Manifold Fitting
Clustering Accuracy = 100%

2i
a2i
lif

Both yx19 and ysl23 improve the spatial distribution of the data and the unsupervised clustering score

for this data after fitting (!), significantly higher than the other methods without using fitting ( ).
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Summary (ARI) of 25 scRNA datasets (D ⇠ 15k-40k)

scDHA
a
: A leading scRNA clustering method.

aTran, Duc, et al. (2021). Fast and precise single-cell data analysis using a
hierarchical autoencoder. Nature communications.
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Overview of the scAMF pipeline
∗∗

Raw Data

Cells

G
en

es

Calculating the
Shared Nearest Neighborhood

Transformation

Logarithmic

      Cosine

Value-to-rank Fitting the Points

Manifold Fitting

  Fitted Data
(Logarithmic)

  Fitted Data
     (Cosine)

   Fitted Data
(Value-to-rank)

   Validation ...

  Fitted Data
   (Selected)

      Candidate 
clustering results

Final Clustering
     (Selected)

+

Output

Multi-Model   
  Clustering

Unsupervised Clustering and Validation.

∗∗Yao Z., Li B., Lu Y., and Yau S.T.,Single-Cell Analysis via Manifold Fitting: A New Framework for RNA Clustering and Beyond,
revision at PNAS.
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Preliminary Manifold Fitting Fitting with CycleGAN scAMF (pipeline)

Clustering performance of scAMF and other methods, measured by ARI.
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Preliminary Manifold Fitting Fitting with CycleGAN scAMF (pipeline)

Clustering with or without manifold fitting.
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