Random bounded analytic function by random measure

Yichao Huang (joint with Eero Saksman)

THU-PKU-BNU Probability Webinar

Outline

- 1. Basic facts about Gaussian Multiplicative Chaos measures
- 2. Basic facts about Clark measures
- 3. Basic facts about GMC measures as Clark measures

Warning: Clark measure is also known as spectral measure, Alesandrov measure, or Alesandrov-Clark measure, and also appears in works of Simon-Wolff on Anderson localization.

Basic facts about Gaussian variables

Consider a standard Gaussian variable N and its normalized exponential

$$E(t) = e^{tN - \frac{t^2}{2}}, \quad 1 \ll t.$$

- 1. The probability that E(t) is about 1 is about $e^{-\frac{t^2/8}{2}}$.
 - **▶** It is roughly the probability that $N \simeq t/2 \cdot \text{var}(N)$.
- 2. We have $\mathbb{E}[E(t) \land 1] \simeq e^{-\frac{t^2/8}{4}}$, and $\mathbb{E}[E(t)^{1/2}] = e^{-\frac{t^2/8}{4}}$.
- 3. The expectation of E(t) is 1, although E(t) is usually very small.
 - **▶** The $\{N \simeq t \cdot \text{var}(N)\}$ region contributes to this expectation.

Kahara 85

"e^{8X}" X log-com

Gaussian Multiplicative Chaos

Log-correlated Gaussian fields in 1d

As a formal Gaussian process (in fact, random generalized function):

$$\mathbb{E}\left[X(z)X(z')\right] = \ln\frac{1}{|z-z'|} + O(|z-z'|).$$

Examples:

$$\mathbb{E}\left[X(e^{i\theta})X(e^{i\theta'})\right] = \ln\frac{1}{|e^{i\theta} - e^{i\theta'}|}, \quad \text{"canonical" on the unit circle}$$

$$\mathbb{E}\left[X(z)X(z')\right] = \ln\frac{1}{|z - z'|}, \quad \text{"canonical" on the unit interval}$$

$$\mathbb{E}[X(z)X(z')] = \ln \frac{1}{|z-z'|}$$
, "canonical" on the unit interval

Basic facts about log-correlated Gaussian fields: the Fourier viewpoint

Brownian bridge as a random Fourier series on the unit interval $t \in [0, 1]$:

$$B_t = \sum_{n=1}^{\infty} \frac{\sqrt{2}Z_n}{\pi n} \sin(\pi nt).$$

$$\mathbb{E}[B_sB_t]=s(1-t).$$

Canonical log-correlated Gaussian field on the unit circle $\theta \in [0, 2\pi]$:

$$\underline{X(\theta)} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (\underline{A_n} \cos(n\theta) + \underline{B_n} \sin(n\theta)).$$

$$\mathbb{E}[X(\theta)X(\theta')] = -\ln|e^{i\theta} - e^{i\theta'}|.$$

In other words: Hilbert space structure and Karhunen-Loève expansion!

Basic facts about log-correlated Gaussian fields: the multifractal viewpoint

Brownian bridge on [0, 1]:

$$\mathbb{E}[B_sB_t]=s(1-t),\quad s,t\in[0,1].$$

Brownian bridge on [0, 1/2]:

$$\mathbb{E}[B_{s/2}B_{t/2}] = s/2(1/2 - t/2) = 4\mathbb{E}[B_sB_t].$$

Canonical log-corr field on [0, 1]:

$$\mathbb{E}[X(z)X(z')] = -\ln|z-z'|, \quad z,z' \in [0,1].$$

Exact-scaling log-corr field on [0, 1/2]:

$$\frac{\mathbb{E}[X(z/2)X(z'/2)]}{\mathbb{E}[X(z)X(z')]} = \frac{\mathbb{E}[X(z)X(z')]}{\mathbb{E}[X(z)X(z')]} + \ln 2.$$

Comparing different log-correlated fields: Kahane's convexity inequality!

Artists in Residence: Gaussian Free Field in two dimension

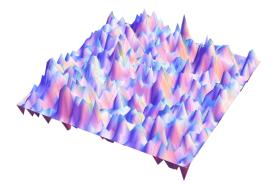


Figure 1: Simulation by Jacopo Borga.

Gaussian multiplicative chaos measure in 1d

Let $\gamma \in (0, \sqrt{2})$. [Kahane 85']: define a random measure $\mu(T) = \int_{T} e^{\gamma X(\theta)} d\theta$, where X is a log-correlated field (in any dimension).

- 1. Regularize the field: $X_{\epsilon}(\theta)$ as "average" of X on $[\theta \epsilon, \theta + \epsilon]$. $\mathbb{E}[X_{\epsilon}(\theta)^2] \simeq -\ln \epsilon$.
- 2. Define random measures $\mu_{\epsilon}(T) = \int_{T} e^{\gamma X_{\epsilon}(\theta) \frac{\gamma^{2}}{2} \mathbb{E}[X_{\epsilon}(\theta)^{2}]} d\theta \simeq \epsilon^{\frac{\gamma^{2}}{2}} \int_{T} e^{\gamma X_{\epsilon}(\theta)} d\theta$. $\stackrel{\text{\tiny ω}}{=} \mathbb{E}[\mu_{\epsilon}(T)] = |T|.$
- 3. Show weak convergence of measures $\mu_{\epsilon} \rightarrow \mu$.
 - = $\mathbb{E}[\mu_{\epsilon}(T)^p]$ uniformly bounded for any $p < \frac{2}{r^2}$ (also negative p).

Intuition for following this talk

Let $\gamma \in (0, \sqrt{2})$. [Kahane 85']: define a random measure $\mu(T) = \int_T e^{\gamma X(\theta)} d\theta$.

Q: What is the behavior of $\mu([0, r])$ compared to $\mu([0, 1])$ for small r?

- 1. Scaling of the field $X: \{X(rz)\}_{z \in [0,1]} = \{\sqrt{-\ln r}N + X(z)\}_{z \in [0,1]}$ in law.
 - $\mathbb{E}[X(rz)X(rz')] = -\ln(r|z-z'|) = -\ln r + \mathbb{E}[X(z)X(z')].$
- 2. Scaling of the measure μ : $\mu([0,r]) = e^{\gamma\sqrt{-\ln r}N \frac{\gamma^2}{2}\ln\frac{1}{r}} \cdot r \cdot \mu([0,1])$ in law. $\mathbb{E}[:e^{\gamma\sqrt{-\ln r}N}:] = 1.$

Q: Geometric interpretation of N?

- Intuition: on the interval $[\theta r, \theta + r]$, $N \simeq X_r(\theta)$.
 - The underlying Gaussian fields are almost independent.

Basic facts about Gaussian Multiplicative Chaos

Use the intuition:
$$\frac{1}{r}\mu([0,r]) = e^{\gamma\sqrt{-\ln r}N - \frac{\gamma^2}{2}\ln\frac{1}{r}}\mu([0,1])$$
; imagine $\mu([0,1]) = O(1)$.

- 1. Large deviation of the measure: $\mathbb{P}[\frac{1}{r}\mu([0,r]) \simeq 1] \simeq r^{\frac{\gamma^2}{8}}$ for small r. $\mathbb{P}[e^{\gamma\sqrt{-\ln r}N-\frac{\gamma^2}{2}\ln\frac{1}{r}} \simeq 1] \simeq \mathbb{P}[N \simeq \frac{\gamma}{2}\sqrt{-\ln r}]$ (so-called $\frac{\gamma}{2}$ -thick point).
- 2. Support of the measure μ : supported on γ -thick points $X_r(\theta) \simeq \gamma \sqrt{-\ln r}$. \square Contribution to $\mu([0,1])$ from α -thick points \square $r = r + \frac{\alpha^2}{2} \cdot r \alpha \gamma + \frac{\gamma^2}{2}$.
- 3. Fractal dimension of $\underline{\alpha}$ -thick points: a.s. $\dim_{\mathcal{H}} \{\theta \text{ is } \alpha\text{-thick}\} = 1 \frac{\alpha^2}{2}$. $\mathbb{P}[X_{1/N}(\theta) \simeq \alpha \sqrt{\ln N}] \simeq N^{-\frac{\alpha^2}{2}}$ for large N (see Hu-Miller-Peres).

The GMC measure is almost surely singular to Lebesgue!

Artists in Residence: GMC with γ = 1.6 in two dimension

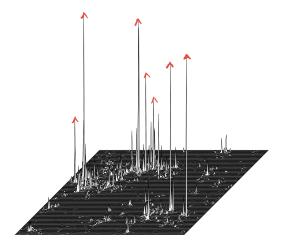


Figure 2: Simulation by Michel Pain.

The extended Seiberg bound in Liouville conformal field theory

Intuition: a multifractal measure integrates more singularity than Lebesque.

Statement: consider the mass of GMC on [-1,1] with log-singularity at 0. Then

$$M_{p,s}([-1,1]) = \mathbb{E}\left[\left(\int_{-1}^{1} |\theta|^{-s} d\mu(\theta)\right)^{p}\right] < \infty$$

for
$$0 if and only if $s < 1 + \frac{\gamma^2}{2}(1 - p)$.

By scaling, $M_{p,s}([-1/2, 1/2]) = 2^{sp-p(1+\gamma^2/2)+p^2\gamma^2/2} \cdot M_{p,s}([-1, 1])$.$$

Use in this talk: control of non-compact regularizations.

Two messages

Remember these for the rest of the talk!

- 1. GFF (and therefore GMC) has a random Fourier representation!
- 2. Average of GMC on small intervals behaves like the exponential of a Gaussian.

Clark measure and analytic function

Basic facts about the harmonic extension of a measure

Take a non-negative measure $d\mu(\theta)$ on the unit circle. We can extend it to a harmonic function x(z) inside the unit disc via the Poisson kernel:

$$x(z) = \int_0^{2\pi} P_z(e^{i\theta}) d\mu(\theta), \quad P_z(e^{i\theta}) = \frac{1 - |z|^2}{|z - e^{i\theta}|^2}.$$

- 1. Poisson kernel is a non-compact regularization. Think $x(z) \simeq X_{1-|z|}(z/|z|)$, i.e. with $\theta = z/|z|$, the average of μ on $[\theta (1-|z|), \theta + (1-|z|)]$.
- 2. Lebesgue's decomposition: write $\mu = \sigma + \mu^a dI$ with σ singular and μ^a the density. As $r \to 1$, $\mu(r\theta) \to \mu^a(\theta)$ for dI-a.e. θ and $\mu(r\theta) \to \infty$ for σ -a.e. θ .

Basic facts about the holomorphic extension of a measure

Consider the harmonic conjugate y(z) of the harmonic extension x(z) with y(0) = 0. Then x + iy is holomorphic in the unit disc, i.e.

$$\underline{x(z)} + i\underline{y(z)} = \int_0^{2\pi} \underbrace{\frac{e^{i\theta} + \overline{z}}{e^{i\theta} - z}} d\underline{\mu(\theta)}.$$

- 1. The function y is the Hilbert transform of the function x on the boundary.
- 2. A theorem of Riesz roughly says that |y(z)| cannot be much arger than x(z).
- 3. Explicitly, y(z) can be written with the kernel $Q_z(e^{i\theta}) = \frac{-2|z|\sin(\theta \arg(z))}{|z e^{i\theta}|^2}$.

Basic facts about Clark measures

Given an analytic self map $\varphi: \mathbb{D} \to \mathbb{D}$ of the unit disc of the complex plane, for each $|\alpha| = 1$, the measure $\nu_{\alpha} = \nu_{\varphi,\alpha}$ is defined via

$$\operatorname{Re}\left(\frac{\alpha+\varphi(z)}{\alpha-\varphi(z)}\right) = \int_0^{2\pi} \frac{1-|z|^2}{|e^{i\theta}-z|^2} \underline{\nu_{\alpha}(d\theta)}, \quad z \in \mathbb{D}.$$

 \Rightarrow The function Re $\left(\frac{\alpha+\varphi(z)}{\alpha-\varphi(z)}\right)$ is harmonic and non-negative.

The measure ν_{α} , or especially its singular part, describes how strongly and where on the boundary the function φ takes the value α .

Examples of Clark measures

- 1. Elementary example: $\varphi(z) = z^n$. Then ν_{α} is *n* point-masses, each of mass 1/n, located at the *n* roots of unity of α .
- 2. Atomic inner function: $\varphi(z) = \exp\left(\frac{z+1}{z-1}\right)$. Then ν_{α} is discrete, supported on $\{\zeta : \varphi(\zeta) = \alpha\}$ and each mass equals $|\zeta 1|^2/2$.

inner function

Fact! The analytic function φ has non-tangential limit $|\varphi(e^{i\theta})| = 1$ a.e. if and only if ν_{α} is singular for some α (or for all α).

Let $\nu_{\varphi,\alpha=1}$ be the GMC measure and study the random inner function φ .

Singalor

Decomposition of inner functions

An inner function is a bounded analytic function on \mathbb{D} with $|f(e^{i\theta})| = 1$ a.e.

- 1. Möbius map: $\alpha_w(z) = \frac{w-z}{1-\overline{w}z}$, $z \in \mathbb{D}$.
- 2. Blaschke product: B product of Möbius maps (and maybe some angle).
 - Determined by its zeroes; can be used to eliminate zeroes.
- 3. Singular factor: $S(z) = \exp\left(-\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} z} d\nu(\theta)\right), \ d\nu \perp d\theta, \ d\nu \geq 0.$
 - Example: $S(z) = \exp\left(\frac{z+1}{z-1}\right)$, no zeroes in \mathbb{D} .

Canonical Factorization Theorem: every inner function *f* is

$$f = e^{ic}B(z)S(z), c \in \mathbb{R}.$$

GMC measures as Clark measures

Frostman's lemma for inner functions

Philosophy: the singular factor is unstable under most conformal maps.

Frostman shift: for any holomorphic self-map φ of $\mathbb D$ and any $w \in \mathbb D$, define

$$\varphi_w = \alpha_w \, \varphi \varphi \quad \alpha_w(z) = \frac{w-z}{1-\overline{w}z}.$$

Frostman's lemma: if φ is inner, then φ_w is a <u>Blaschke product</u> for quasi-every $w \in \mathbb{D}$, i.e. except a set of log-capacity zero.

A question of Hedenmalm and Poltoratski

Question: does the same holds for random Clark measure by GMC?

More precisely, pick a GMC μ on the unit circle and define it as the Clark measure at $\alpha=1$. Use this to define a random holomorphic function φ . The function φ is a.s. inner since μ is a.s. singular w.r.t to Lebesgue. But is it so that φ is a.s. a Blaschke product, i.e. without singular inner factor?

Anguser (H.-Saksman): Yes! The measure μ is characterized by pure-point data.

Ideas of proof: perturbation of Fourier coefficient

1. By simple inequalities, it suffices to show that the imaginary part $\underline{y(z)}$ has uniformly bounded negative moments, i.e. for some 0 ,

$$\sup_{r\in[0,1)}\mathbb{E}\left[\frac{1}{|y(r)|^p}\right]<\infty,\quad y(r)=\int_0^{2\pi}\frac{-2r\sin(\theta)}{|r-e^{i\theta}|^2}d\underline{\mu(\theta)}.$$

- 2. Recall $X_c(\theta) = B_1 \sin(\theta) + \widetilde{X}(\theta)$ so $d\mu(\theta) = \exp\left(\gamma B_1 \sin(\theta) \frac{\gamma^2 \sin^2(\theta)}{2}\right) d\widetilde{\mu}(\theta)$.

 Observe that $-\frac{\partial y(r)}{\partial B_1}$ is of constant sign! Furthermore, lower bound via $\widetilde{\mu}$.
- 3. Conclude with moment bounds of $\widetilde{\mu}$ since it is also a GMC measure.

A probabilistic criteria for Frostman's lemma: the random inner function φ is a.s. Blaschke product if for some $\epsilon > 0$,

$$\sup_{z\in\mathbb{D}}\mathbb{E}\left[\left(-\ln|\varphi(z)|\right)^{1+\epsilon}\right]<\infty.$$

Density of random zeroes

Let $\{z_k\}_{k\geq 1}$ be zeroes of the Blaschke product φ . Then

$$\sum_{k\geq 1} (1-|z_k|)^{1} < \infty.$$

Question: for the GMC problem, which $0 < \alpha < 1$ do we have almost surely

$$\sum_{k\geq 1} (1-|z_k|)^{\alpha} < \infty.$$

Anwser (H.-Saksman): the threshold is $\alpha = 1 - \frac{\gamma^2}{8}$.

Ideas of proof

1. By Green's formula

$$\sum_{k\geq 1} u(z_k) = \frac{1}{2\pi} \int_{\mathbb{D}} u(z) \underline{\Delta \ln |\varphi(z)|} dA(z) = \frac{1}{2\pi} \int_{\mathbb{D}} \ln |\varphi(z)| \underline{\Delta u(z)} dA(z),$$

roughly reduce to proving

$$(1-r)^{\frac{\gamma^2}{8}+\epsilon} \lesssim \int_0^{2\pi} -\ln|\varphi(re^{i\theta})| d\theta \lesssim (1-r)^{\frac{\gamma^2}{8}-\epsilon}, \quad r \to 1^-.$$

- 2. Use $-\ln|\varphi(z)| = \ln\left(1 + \frac{4x(z)}{(x(z)-1)^2 + y(z)^2}\right)$. Notice the singularity at x(z) = 1.
- 3. For the upper bound: show $\mathbb{E}\left[\ln\left(1+\frac{4x(z)}{(\mathbf{x}(z)-1)^2}\right)\right]\lesssim (1-|z|)^{\frac{\gamma^2}{8}-\epsilon}$.
 - ▶ Perturbative method similar to the probabilistic Frostman's lemma.
- 4. For the lower bound: multifractal analysis to the level set $\{x \sim 1\}$ $\{y \geq 1\}$.
 - $\stackrel{\bullet}{=}$ Invent from $e^{\gamma X}$ some random variable supported on $\frac{\gamma}{2}$ -thick points.

Upper bound via the extended Seiberg bound

Recall our goal:
$$\mathbb{E}\left[\ln\left(1+\frac{4x(z)}{(x(z)-1)^2}\right)\right] \lesssim (1-|z|)^{\frac{\gamma^2}{8}-\epsilon}$$
.

- 1. Extend the proof of probabilistic Frostman: use rank-two perturbation to "swipe through" the singularity at x = 1. Left with roughly $\mathbb{E}[x(z) \land 1]$.
- 2. With the Poisson kernel, $x(r) = \int_0^{2\pi} \frac{1-r^2}{|r-e^{i\theta}|^2} d\mu(\theta)$ is roughly the mass of a GMC with singularity at 1. Compare this singularity with the extended Seiberg bound to optimize $\mathbb{E}[x(z)^p]$ for 0 .
- 3. Optimize the parameters (with $p = \frac{1}{2}$) to bound $\mathbb{E}[x(z) \land 1] \le \mathbb{E}[x(z)^p]$.
- **७** The last bound is effective around x(z) ~ 1, which has probability $= (1 |z|)^{\frac{\gamma^2}{8}}$.

Lower bound via multifractal analysis of level sets of GMC

Recall our goal:
$$(1-r)^{\frac{\gamma^2}{8}+\epsilon} \lesssim \int_0^{2\pi} -\ln|\varphi(re^{i\theta})| d\theta = \int_0^{2\pi} \ln\left(1+\frac{4x}{(x-1)^2+y^2}\right) d\theta$$
.

- 1. On the level set $\{x \sim 1, y \leq 1\}$, $-\ln |\varphi(re^{i\theta})|$ is bounded below by positive constant. It suffices to show $|\{x \sim 1, y \leq 1\}| \simeq (1-r)^{\frac{\gamma^2}{8}}$ in $r\mathbb{T}$.
- 2. Probabilistic analogue of Riesz theorem: reduce $|\{x \sim 1, y \leq 1\}|$ to $|\{x \sim 1\}|$.
- 3. Use multifractal analysis: heuristically, $x \sim 1$ is the set of $\frac{\gamma}{2}$ -thick points.
 - Arr Recall that $\mathbb{P}[x(z) \simeq 1] \simeq (1-|z|)^{\frac{\gamma^2}{8}}$.
- 4. Trick: invent a variable defined by $e^{\gamma X}$ that scales like $e^{\frac{\gamma}{2}X}$!

$$M_{p,\epsilon}(I) = \int_I \epsilon^{-(p-p^2)\gamma^2} \left(\underbrace{\frac{1}{2\epsilon} \mu([\theta - \epsilon, \theta + \epsilon])}^{p} d\theta, \quad I \in \mathbb{T}.$$

In some sense, $\lim_{\epsilon \to 0} M_{p,\epsilon}(I)$ behaves like $\lim_{r \to 1^-} (1-r)^{-\frac{\gamma^2}{8}} |\{x \sim 1\}|$.