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Outline

1. Basic facts about Gaussian Multiplicative Chaos measures

2. Basic facts about measures

3. Basic facts about GMC measures as measures
Warning: measure is also known as measure,
measure, or measure, and also appears in works of

on Anderson localization.



Basic facts about Gaussian variables

Consider a standard Gaussian variable N and its

2
E(t)=eN"2, 1«t.

1. The probability that £(t) is about 1 is about e /8,
Itis roughly the probability that N ~ t/2-var(N).
2. We have E[E(t) 1]~ e ©'/8 and E[E(t)Y?] = e £18,
So really the {E(t) ~ 1} region contributes to the first expectation.

3. The expectation of E(t) is 1, although E(t) is usually very small.
The {N ~ t-var(N)} region contributes to this expectation.
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Gaussian Multiplicative Chaos



Log-correlated Gaussian fields in 1d

As a formal Gaussian process (in fact, random generalized function):

1
E[X(2)X(z")] =In P +0(]z-Z)).
—%—
Examples:
. ., 1
E [X(G'Q)X(ele )] =In m, “canonical” on the unit circle
! 1 n" N " . .
E [X(Z)X(Z )] =1In ﬁ canonical” on the unit interval
z-z




Basic facts about log-correlated Gaussian fields: the Fourier viewpoint

Brownian bridge as a

on the unitinterval t € [0, 1]:

Tsin(mwnt).

E[BsB:] = s(1 - t).

on the unit circle 6 € [0, 27]:
X_(Q) = i 7 ncos(nd) + Bpsin(nd)).

E[X(6)X(6")] = —Inle”® — .

In other words: Hilbert space structure and Karhunen-Loéve expansion!



Basic facts about log-correlated Gaussian fields: the multifractal viewpoint

Brownian bridge on [0, 1]: Canonical log-corr field on [0, 1]:
E[BsB:]=s(1-t), s,te[0,1]. E[X(2)X(z")]=-In|z-Z'|, z 2" €[0,1].
Brownian bridge on [0, 1/2]: Exact-scaling log-corr field on [0, 1/2]:

E[ByjBy] = 5/2(1/2 - £/2) = 4E[B.B:]. | E[X(2/2)X(Z'[2)] = E[X(Z)X(Z')]@
0 —
+ M2 N

Comparing different log-correlated fields: Kahane's convexity inequality!




Artists in Residence: Gaussian Free Field in two dimension

Figure 1: Simulation by Jacopo Borga.



Gaussian multiplicative chaos measure in 1d

Lety € (0,V2). [Kahane 85']: define a u(T) = [+ XCqp,
where X is a log-correlated field (in any dimension).

\| u
QBX
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1. Regularize the field: \XG(Q)\as "average” of X on [0 —€,60 +¢€].
E[X:(0)?] =~ ~Ine.

2 2
2. Define random measures p.(T) = [+ e”Xf(e);%E[Xe(e)Q]\dG ~e7 [ X dp.
Elue(T)]=1T1.

GMC
3. Show weak convergence of measures p. — u,.L/

E[ue(T)P] uniformly bounded for any p < % (also negative p).



Intuition for following this talk

Lety € (0,/2). [Kahane 85']: define a random measure u(T) = [+ e"YX(e)ﬁ.

Q: What is the behavior of u([0, r]) compared to u([0, 1]) for small r?
1. Scaling of the field@ {X(rz)}zep011 = {;;—In rNK X(2)} 2e[0.1] in law.
w E[X(r2)X(rz")] ==In(rlz-Z'|) = =Inr + E[X(2)X(2")].

2
2. Scaling of the measure p: ([0, r]) =)e"v-" PN-%Ingl.
wR[:e"VInrN =1, GMC

r-u([0,1]) in law.

1\

Q: Geometric interpretation of N?

e Intuition: on the interval [0 —r, 8+ r], N ~ X,(6).
« The underlying Gaussian fields are almost independent.



Basic facts about Gaussian Multiplicative Chaos

2
Use the intuition: 2u([0, r]) =¥~ ""N-"% 'n%M} imagine u([0,1]) = O(1).

1. Large deviation of the measure: IP’[ ([0, r]) ~1] for small r.

2
Ple —InrN=Tin g 1] = V/~Inr] (so-called 2-thick point).
2. Support of the measure u: supported on\'y thick pomts Xr (9) YV -Inr.

—oc

Contribution to ([0, 1]) from a-thick points ~ r'z -
o2

3. Fractal dimension of a-thick points: a.s. dimy {6 is a-thick} =
o2
( |P[X1/n(6) = aVInN] =~ N~ = for large N (see Hu-Miller-Peres).

The GMC measure is almost surely singular to Lebesgue!



Artists in Residence: GMC with <y = 1.6 in two dimension

Figure 2: Simulation by Michel Pain.



The extended Seiberg bound in Liouville conformal field theory

Intuition: a multifractal measure integrates more singularity than Lebesgue.

Statement: consider the mass of GMC on [-1, 1] with at0. Then

Ms((-1.1) = |( [ o am(@)) | <o0

St

for0O<p<1lifand onIyifs<1+'Y?2 -p).
By scaling, M, s([-1/2,1/2]) =2 My s([-1,1]).

Use in this talk: control of regularizations.




Two messages

Remember these for the rest of the talk!

1. GFF (and therefore GMC) has a !

2. Average of GMC on behaves like the exponential of a
Gaussian.



Clark measure and analytic function



Basic facts about the harmonic extension of a measure

Take a measure du(6) on the unit circle. We can extend itto a
harmonic function x(z) inside the unit disc via the : 4

-]z

‘Z 6’9‘2

x@)= [T RO, Pue) =

1. Poisson kernel is a regularization. Think x(z) = X;_,)(z/|2]),

i.e. with 8 = z/|z|, the average of pon [6 — (1 -|z|),0 + (1 - |z|)].
2. Lebesgue's decomposition: write u = 0 + u?d/ with o singular and u? the
density. As r - 1, u(r@) - u(0) for dl-a.e. 6 and u(rf) - oo for o-a.e. 6.



Basic facts about the holomorphic extension of a measure

Consider the harmonic conjugate y(z) of the harmonic extension x(z) with
y(0) =0. Then x + iy is holomorphic in the unit disc, i.e.

1. The function y is the Hilbert transform of the function x on the boundary.

2. Atheorem of Riesz roughly says that |y(z)| cannot be muchj?rger than x(2).

-2|z|sin(6-arg(z))
[z-e]2 .

3. Explicitly, y(z) can be written with the kernel Q,(e’%) =




Basic facts about Clark measures

Given an analytic self map ¢ : D - D of the unit disc of the complex plane, for
each |a] = 1, the measure vy = 1y o is defined via

2m —17?
Re(L(p(Z))z‘/O\ ﬁl/a(de), zel.

a—-p(z) e’ — 2|2
. O(-Hp(Z) . . ) .
The function Re (—a_(p(z)) is harmonic and non-negative. %\R:k e T

The measure vy, or especially its singular part, describes how strongly and
where on the boundary the function ¢ takes the value a.



Examples of Clark measures

1. Elementary example: ¢(z) = z". Then vy is n point-masses, each of mass

@, located at the n roots of unity of a. LPG\ = ol
2. Atomic inner function: @(z) = exp (%}) Then vy is discrete, supported on
{¢: ©(¢) = a} and each mass equals [¢ - 1]?/2.
T = AY
nngr %umc\\loq

Fact! he analytic function ¢ has non-tangential limit [o(e®)| = 1 a.e. if and only if
Vg is singular for some «a (or for all ).

—— e
pr—

Let vy, -1 be the GMC measure and study the random inner function ¢.

S\ V\3 k\lw‘



Decomposition of inner functions

An inner function is a bounded analytic function on D with |[f(e/?)| = 1 a.e.

=i . _ w-z
1. Mobius map: aw(z) = 155
Only zero at w = z.

2. Blaschke product: B product of Mobius maps (and maybe some angle).

Determined by its zeroes; can be used to eliminate zeroes.
3. Singular factor: S(z) = exp( f027r etz du(@)), dv 1.d6, dv > 0.

ef—z
Example: S(z) = exp (Z”) no zeroes in D.

Canonical Factorization Theorem: every inner function f is

f :!e’C]E(Z)S(Z), ceR.



GMC measures as Clark measures



Frostman’s lemma for inner functions

Philosophy: the singular factor is under most conformal maps.

: for any holomorphic self-map ¢ of D and any w € D, define

w-—-Zz
@=aw@ o) =15

Frostman's lemma: if ¢ is inner, then ¢, is a for quasi-every

w e D, i.e. except a set of log-capacity zero.



A question of Hedenmalm and Poltoratski

Question: does the same holds for random Clark measure by GMC?

More precisely, pick a GMC p on the unit circle and define it as the Clark
measure at a = 1. Use this to define a random holomorphic function ¢. The
function @ is a.s. inner since p is a.s. singular w.r.t to Lebesgue. But is it so that ©
is a.s. a Blaschke product, i.e. without singular inner factor?

Angger (H.-Saksman):



Ideas of proof: perturbation of Fourier coefficient

1. By simple inequalities, it suffices to show that the imaginary part y(2) has
uniformly bounded negative moments, i.e. forsome 0<p<1,

[ 1 2m 2Fsin(§
sup E < 00, yr:f Qdu@.
re[0,1) _|Y(f)|p] (") o |r-é ‘—’—(—)
|

2. Recall X(6) = 1sm(9)l+>’§(9) S0 du(6) =(exp (7B sin(6) - L) @
Observe that!fﬁy(r) 's of constant sign! Furthermore, lower bound via [i.

9B,
3. Conclude with moment bounds of i since it is also a GMC measure.

A probabilistic criteria for Frostman's lemma: the random inner function @ is a.s.

Blaschke product if for some € > 0,

il:ﬂgE[(—ln lo(2))*€] < oo.



Density of random zeroes

Let {zx } k»1 be zeroes of the Blaschke product . Then

d(1- |Zk|)1< 0.

k>1

Question: for the GMC problem, which 0 < a < 1 do we have almost surely

Z(l - |Zk|)a < 00.

k>1

Anwser (H.-Saksman): the threshold is o =1 — %
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1. By Green’s formula Q2_
=1
> u(z) = o [ u(2)Ahle@IdAR) = 5 [ Ilp(@)Au)dAR), ¢

k>1 ——T—'

roughly reduce to proving

(1 r)%2+€<f2
~ Jo

2. Use —In|p(z)|=In (l + ﬁ) Notice the singularity at x(z) = 1.

~Infp(re®)]

2
3. For the upper bound: show E [InT(l + (x?;)(f)lﬁ)] S(1-1|z])5 . W

Perturbative method similar to the probabilistic Frostman'’s lemma.
4. Forthe lower bound: multifractal analysis to the level set\gx ~ 11(y %

Invent fromsome random variable supported on

%-thickrpoints.

’ “QIZ:X 0



Upper bound via the extended Seiberg bound

,’

Recall our goal: E[In (1 + (xé(l;)(fi)ﬁ)} S(1-|z])F"

1. Extend the proof of probabilistic Frostman: use to
“swipe through” the singularity at x = 1. Left with roughly E[x(z) A 1].
2. With the Poisson kernel, x(r) = [2” ‘rl efs‘de,(Q) is roughly the mass of a
GMC with singularity at 1. Compare this singularity with the
to optimize E[x(z)?] for0< p< 1.
3. Optimize the parameters (with p = %) to bound E [x(z) A 1] < E[x(2)"].

2
The last bound is effective around x(z) ~ 1, which has probability ~ (1 - |z|) ¥ .



Lower bound via multifractal analysis of level sets of GMC

Recall our goal: (1-r)F*€ < [T =Injp(re®)|do = [ In (1 + m) do.

1.

On the level set {x ~ 1,y <1}, —In|p(re”®)|is bounded below by positive

constant. It suffices to show [{x ~ 1,y <1}| = (1-r)% in rT.

Probabilistic analogue of Riesz theorem: reduce [{x ~ 1,y < 1}|to [{x ~ 1}|.

Use multifractal analysis: heuristically, x ~ 1is the set of 2-thick points.
Recall that P[x(z) ~ 1] ~ (1 -|z|) %

Trick: invent a variable defined by e'YX that scales like e 1 EE

Mpe(1) = /;e’(P*PQ)’YQ (i#([9—6,9+6]))p dg, [1eT.

2
In some sense, lim M,.¢(/) behaves like lim,1-(1 - r)F [{x ~ 1}
€—



