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1 Interactions with superpolynomial decay
1.1 Gauge-fixing interactions
First, we need to standardize the choice of regions X on which Φ(X) depends
so that the derivation defined by an interaction Φ uniquely determines the
observables Φ(X) ∈ AX . We will refer to this as ”gauge-fixing”, because the
freedom to choose Φ(X) for a fixed derivation is somewhat analogous to the
freedom to choose a vector potential for a given magnetic field.

Definition 1. A brick is a subset of Zd of the form {(x1, . . . , xd) : ni − 1/2 ≤
xi < mi − 1/2, i = 1, . . . , d}, where ni and mi are integers satisfying ni < mi.
The empty brick is the empty subset.

We denote the set of all bricks in Zd together with the empty brick by Bd.
Bd is a poset (partially ordered set) with respect to inclusion. That is, the
relation of inclusion for bricks is reflexive (X ⊆ X), transitive (X ⊆ Y ⊆ Z) and
anti-symmetric (if X ⊆ Y and Y ⊆ X, then X = Y ).

Next, we eliminate the ambiguity in how we assign ”support” to a local
observable. The issue is that 1 is shared by all Aj , so one cannot tell where it is
localized. We eliminate this ambiguity by requiring all Φ(X) to be traceless. We
can do this by subtracting from each Φ(X) a multiple of its trace which does not
affect the derivation. So from now on all Φ(X) are traceless and anti-self-adjoint.
Also, it has a well-defined support (which may be smaller than X) which can be
visualized using a ”Pauli basis” for Aℓ. This is a basis obtained by choosing an
orthonormal self-adjoint basis Ekj , k = 0, . . . , d2

j − 1 for each Aj (with respect to
the usual inner product (a, b) = Tr(a∗b)) so that E0

j is the identity element in
Aj . The resulting basis elements of Aℓ can be labeled by functions ν : Λ → N0
with ν(j) < d2

j which vanish outside of a finite set. The identity element in Aℓ

corresponds to ν being identically zero. If we denote by supp(ν) ∈ Fin(Λ) the
support of ν, then the support of any traceless local observable is the union of
supports of its components in the Pauli basis.

Given any interaction Φ, we can define a physically equivalent interaction
Φ′ by declaring that Φ(X) is nonzero only when X is a brick, and for X ∈ Bd

1



letting

Φ′(X) =
′∑

Y⊆X

Φ(Y ),

where the prime means that Y cannot be a subset of any brick is which is a
proper subset of X. Every finite subset A of Zd is a subset of some brick, so
this new interaction Φ′ gives the same derivation as Φ and thus is physically
equivalent.

Now we can finally define an interaction as a function from Bd to Aℓ which
is uniquely determined by the corresponding derivation. Namely, for any brick
X Φ(X) should be anti-self-adjoint, traceless, localized on the brick X, and not
localized on any brick which is a proper subset of X.

1.2 UAL derivations
To make the derivation well-defined at least on Aℓ, we need to demand that Φ(X)
decay sufficiently rapidly when X is large. One option is to say that Φ(X) = 0
if diam(X) > R, where R > 0 is some number. Such derivations correspond to
finite-range interactions. But what is R? We should probably allow arbitrary
R. But then the space of all such derivations does not form a nice topological
vector space.

Instead, we demand superpolynomial decay:

Definition 2. An interaction Φ : Bd → Aaℓ satisfying the above conditions is a
UAL derivation (uniformly almost local derivation) if

sup
X∈Bd

∥Φ(X)∥(1 + diam(X))α = Cα < ∞

for any non-negative integer α.

The above conditions define a nice topological vector space: a Fréchet space.

1.3 Fréchet spaces
A seminorm on a real or complex vector space V is a map V → R, v 7→ ∥v∥
such that ∥v∥ ≥ 0 for all v ∈ V , ∥v + v′∥ ≤ ∥v∥ + ∥v′∥ for all v, v′ ∈ V , and
∥cv∥ = |c|∥v∥ for all v ∈ V and all scalars c. A seminorm is a norm if ∥v∥ = 0
implies v = 0.

A Fréchet space is a complete Hausdorff topological vector space whose
topology is determined by a countable family of seminorms ∥ · ∥α, α ∈ N0. A
base of neighborhoods of zero for such a topology consists of sets

U(α1,ε1)...(αn,εn) = {v ∈ V : ∥v∥αi < εi, i = 1, . . . , n}, (1)

where n ∈ N, αi ∈ N0, and εi > 0. Any finite-dimensional Euclidean vector
space is a special case where all the seminorms happen to be the same and equal
to the Euclidean norm.
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We will be often dealing with a situation where the seminorms satisfy ∥ · ∥0 ≤
∥ · ∥1 ≤ ∥ · ∥2 ≤ . . .. One calls such Fréchet spaces graded Fréchet spaces. Then
the sets Uα,ε = {v ∈ V : ∥v∥α < ε}, α ∈ N0, also form a base of neighborhoods
of zero. A linear map f : V → V ′ between graded Fréchet spaces is continuous iff
for any α ∈ N0 there is a β ∈ N0 and a constant Cα such that ∥f(v)∥α ≤ Cα∥v∥β .
The Cartesian product of two graded Fréchet spaces V, V ′ is also a graded Fréchet
space, with the seminorms ∥(v, v′)∥α = ∥v∥α + ∥v′∥′

α.
Different families of seminorms on V may define the same topology; in that

case one says that the families are equivalent. A family of seminorms ∥ · ∥′
β ,

β ∈ N0 is equivalent to a family ∥ · ∥α, α ∈ N0, if for any β there is an α and a
constant Cβ such that ∥ · ∥′

β ≤ Cβ∥ · ∥α, and vice versa, for any α there is an β
and a constant C ′

α such that ∥ · ∥α ≤ C ′
α∥ · ∥′

β .
If X is a compact topological space and V is a graded Fréchet space, then the

space C(X,V ) of continuous V -valued functions on X is also a graded Fréchet
space. The corresponding family of seminorms is ∥f∥α = supx∈X ∥f(x)∥α,
α ∈ N0. In the case when X = [a, b] ⊂ R elements of C([a, b], V ) are called
continuous curves in V . Most basic rules of calculus (such as the existence of
integrals of continuous functions, the Fundamental Theorem of Calculus, the
Mean Value Theorem, the continuous dependence of integrals of continuous
functions on parameters, etc.) hold in the setting of continuous functions on
regions in Rn valued in a Fréchet space V .

Going back to our problem, the space of UAL derivations becomes a Fréchet
space if we say that

∥Φ∥α = sup
X∈Bd

∥Φ(X)∥(1 + diam(X))α, α = 0, 1, 2, . . .

In this case all seminorms are actually norms. It is also clear that ∥Φ∥α ≤ ∥Φ∥β
if α < β, so this is a graded Fréchet space.

2 Almost local observables
UAL derivations are defined everywhere on Al:

F : a 7→
∑
X∈Bd

[Φ(X), a], a ∈ AY .

The sum over X is rapidly convergent because∑
diam(X)=R,X∩Y ̸=0

∥[Φ(X), a]∥ ≤ 2∥a∥|Y | sup
j

∑
diam(X)=R,X∋j

∥Φ(X)∥

≤ 2∥a∥|Y |Cα
N(R)

(1 +R)α , (2)

where N(R) is the number of bricks of diameter R containing site j (which grows
as some power of R) and α is an arbitrary integer. Thus the remainder in the
sum over bricks of diameter R ≥ r is O(r−∞).

3



Moreover, it is fairly clear that F(a) is itself well localized, i.e. it can be
approximated by a local observable supported on a ball of size r with an O(r−∞)
error. We will call such observables almost local. Here is a precise definition.

First, recall that we gave a tracial state on A . Instead of tracing over all
sites, we can trace over sites outside any region Y . This gives a ”conditional
expectation value” (conditional on whatever happens in Y ) which is a positive
map A → AY . We will only use it for finite Y , so that AY is a matrix algebra.
Let a|Y ∈ AY denote the conditional expectation value of a. The same arguments
as for states show that such maps cannot increase the norm, ∥a|Y ∥ ≤ ∥a∥.

Definition 3. An observable a ∈ A is called almost local if for some j ∈ Zd
and all α ∈ N

∥a∥cevj,α := sup
r

(1 + r)α∥a− a|Bj(r)∥ < ∞. (3)

Here Bj(r) is a ball of radius r centered at j.

Any such observable can be written as a sum over local observables localized
on Bj(r), r = 1, 2, . . . whose norm is O(r−∞). This is exactly the result of
application of F to a local observable.

Let us denote by Aaℓ the space of almost local observables. It is itself a
Fréchet space. There are many other equivalent ways to define the same topology
using ”equivalent” norms. For example, all choices of j give equivalent norms. Or
instead of using a|j one can use the best approximation of a by a local observable
on Bj(r), i.e. define

∥a∥j,α := sup
r

(1 + r)α inf
b∈ABj (r)

∥a− b∥.

It is clear that ∥a∥j,α ≤ ∥a∥cevj,α . One can also show that

∥a∥cevj,α ≤ C ′
α∥a∥j,α+2d+1

for some constants C ′
α.

Now it is straightforward to see that for any a ∈ Aaℓ F(a) is also almost local.
This is left as an exercise.

3 Density of a UAL derivation
A finite-range interaction Φ has a ”density”:

Φj =
∑
X∋j

1
|X|

Φ(X).

This is a local observable localized on some region near j. More precisely, if Φ
has range R, then Φj ∈ Bj(R). Then the corresponding derivation is written in
a more ”physics-friendly” form:

δΦ(a) =
∑
j

[Φj , a].
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We can do the same thing with UAL derivations. The only difference is that the
density of F at site j will now be an infinite sum, so the resulting observable Fj
will be only almost local. I will omit a detailed proof, since this is rather clear.
So, a UAL derivation can be thought of as a formal infinite sum∑

j∈Zd

Φj

where each Φj is an almost local traceless anti-self-adjoint observable.
Turns out there is a converse result: every such formal sum (where every Fj

is an almost local observable ”confined” at j to the same accuracy for all j) is a
UAL derivation. The proof is somewhat nontrivial. First one decomposes every
almost local observable into a sum over local observables localized on bricks:

a =
∑
X∈Bd

aX .

Since a is almost local, one can show that aX decays superpolynomially with
diam(j ∪X) (this is the nontrivial bit). One can do it for every Fj . Then one
sums the contribution from every j:

FY =
∑
j

FYj , Y ∈ Bd.

This sum is rapidly convergent and it is easy to see that it decays superpolyno-
mially with diamY .

One disadvantage of thinking about a UAL derivation in terms of densities
is that the map from densities to UAL derivations is many-to-one: if one picks
two sites k, k′ and adds an almost local observable to Fk and subtracts the same
observable from Fk′ , the sum and the derivation are unchanged.

4 Densities and currents
In our approach, generators of symmetries are UAL derivations. They can be
thought of as formal sums

F =
∑
j

Fj

where Fj ∈ Aaℓ is an almost local observable approximately localized at site
j ∈ Zd. The corresponding derivation is

F(a) =
∑
j

[Fj , a]

In our conventions, we require Fj to be anti-self-adjoint, F∗
j = −Fj . Also, since

adding multiples of identity to Fj does not affect the derivation F, it s convenient
to normalize Fj so that it is traceless.
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We will refer to the collection of observables Fj , j ∈ Zd, as a density of a
UAL derivation F. There is an obvious ambiguity in the density: if we replace

Fj 7→ F′
j = Fj +

∑
i

Gij

then the corresponding derivation is unchanged, F = F′. Here Gij ∈ Aaℓ is a
collection of observables such that

• Gij = −Gji

• Gij is anti-self-adjoint and traceless

• Gij is approximately localized on both i and j

The latter condition implies that ∥Gij∥ = O(|i − j|−∞), so the sum
∑
i Gij is

rapidly convergent. Later we will see that these are the only ambiguities in Fj .
Quantities like Gij also appear when one considers currents of conserved

quantities on a lattice. If Q is a generator of a symmetry (for example, it is
could be the electric charge), we expect local conservation:

dQj

dt
:= [H,Qj ] = −

∑
i

Jij ,

where Jij represents the flow of charge from site j to site i. Physical considerations
demand Jij = −Jij as well as other requirements listed above. Thus objects like
Gij are lattice versions of currents.

The above local conservation equation is a lattice analog of

∂ρ

∂t
= −∇ · j.

where ρ is the density of charge Q, Q =
∫
ρ ddx. The ambiguity in Fj has a

continuum counterpart: one can redefine the density ρ as ρ 7→ ρ+ ∇ · g while
only changing Q by surface terms.

In the continuum, there are also separate ambiguities in the current j: one
can redefine j 7→ j+∇×m without changing ∇·j and therefore without affecting
the validity of the conservation equation. This has a lattice counterpart too: we
can always redefine

Jij 7→ Jij +
∑
k

Mkij

where Mijk ∈ Aaℓ is completely anti-symmetric in all indices, anti-self-adjoint,
traceless, and approximately localized on i, j, and k. We will call such objects
”magnetizations”. Obviously, one can go on, but to define the Hall conductance
we will only need the above three types of objects.

Let’s give some examples of currents. If F = H, the Hamiltonian, then we get
the energy current JEij . An obvious solution to the conservation equation is

JEij = −[Hi,Hj ].
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Of course, this solution is not unique, there are ambiguities as described above.
Now consider the electric charge Q with a density Qj . In this case the

conservation equation is solved by

Jelij = −[Hi,Qj ] + [Hj ,Qi].

Here we assumed that each Hj is separately U(1)-invariant, and thus [Hj ,Q] = 0.

5 The Noether chain complex
It is convenient to use index-free notation and denote the spaces of densities,
currents and magnetizations by C1, C2, C3, respectively. We also rename the
space of UAL derivations to C0. We also define maps ∂n : Cn → Cn−1 by

(∂nF)j1...jn−1 =
∑
j0

Fj0j1...jn−1 .

Obviously we have ∂n ◦ ∂n−1 = 0. This expresses the fact that ∂nG is a possible
ambiguity in F ∈ Cn−1 with a fixed H = ∂n−1F ∈ Cn−2.

From the mathematical viewpoint, this means that the sequence of spaces
Cn and the maps ∂n forms a complex (of Frechet spaces). We will call it the
Noether complex, since it encodes charges, their densities, and currents.

As mentioned above, the spaces Cq are Fréchet spaces. The seminorms
defining the topology are

∥a∥α := sup
a∈{0,1,...,q}

sup
j0,...,jq∈Λ

∥aj0...jq
∥ja,α, α ∈ N0 (4)

The differential ∂ is continous in this topology.
This raises a question: what is the homology of the Noether complex? That

is, what is ker∂n−1/im∂n? Turns out the homology is trivial. Physically, this
means that we already described the most general ambiguities in currents and
densities.

Theorem 1. The homology of the Noether complex is trivial.

Proof. As usual, to prove the vanishing of homology we need to exibit a contract-
ing homotopy. That is, a linear map h of degree +1 which satisfies h◦∂+∂◦h = 1.
We claim that the following map works:

h0(A)j :=
∑
Y ∈Bd

χj(Y )
|Y ∩ Λ|

AY , (5)

while for q > 0 we let

hq(a)j0...jq+1 =
∑
Y ∈Bd

q+1∑
k=0

(−1)k χY (jk)
|Y ∩ Λ|

aY
j0...̂jk...jq+1

. (6)

It is not hard to show that the infinite sums over bricks are convergent and the
map h is well-defined.
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6 The algebraic structure of the Noether com-
plex

Definition 4. A differential graded Lie algebra is a chain complex of vector
spaces (C•, ∂) equipped with a bilinear operation (bracket) of degree 0 which
satisfies three properties

• Graded skew-symmetry: [v, w] = −(−1)|v|·|w|[w, v];

• Graded Jacobi identity:

(−1)|u|·|w|[u, [v, w]] + (−1)|w|·|v|[w, [u, v]] + (−1)|u|·|v|[v, [w, u]] = 0;

• Graded Leibniz identity: ∂[v, w] = [∂v, w] + (−1)|v|[v, ∂w].

I claim that the Noether complex has a bracket if we shift the degree by +1,
so that the complex starts in degree 0 rather than degree −1. To indicate this, I
will define C ′

p = Cp−1.
The bracket is defined as follows.

[A,B]j1...jn+m
=

∑
σ

(−1)|σ|

n!m! [Aσ(j1)...σ(jn),Bσ(jn+1...σ(jn+m)].

Here the sum is over all permutations of the indices.
For example, if the energy density is h ∈ C ′

1, the energy current is now simply
1
2 [h, h] ∈ C ′

2. The electric current corresponding to a charge density q ∈ C ′
1 is

[h, q] ∈ C ′
2.

7 Locally-Generated Automorphisms
As I already mentioned, every F ∈ Dal can be exponentiated to a well-defined
strongly continuous one-parameter group of automorphism αF(t). By definition,
αF(t) satisfies

dαF(t)(a)
dt

= αF(t)(F(a)),

where a ∈ Aaℓ is arbitrary.

Lemma 1. For any X ⊂ Zd, let ΠX : A → A be partial trace over all degrees
of freedom on X. This is a projection map from A to its sub-algebra AXc . Then
for any a ∈ A we have an estimate

∥a− ΠX(a)∥ ≤ sup
b∈AX

∥[a, b]∥
∥b∥

Proposition 1. For all t and all a ∈ Aaℓ, we have αF(t)(a) ∈ Aaℓ
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Sketch of a proof: we want to show that for any almost local observable a
the quasi-local observable αF(t)(a) can be approximated by a local observable
on a ball of radius r with an error which decays faster than any negative power
of r. We will say that quantities like this are negligible. Take a large r > 0.
If we replace a with its best approximation on a ball of radius r/2, this will
change αF(t)(a) only by a negligible quantity. So we might as well take a to
be a local observable on a ball of radius r/2. The Lieb-Robinson bound tells
us that the commutator of αF(t)(a) with any b ∈ Aℓ whose support is outside
the ball of radius r is a negligible quantity. Then the above lemma implies that
the difference between αF(t)(a) and its partial trace over all degrees of freedom
outside the ball is also negligible.

Somewhat more generally, we may consider continuous maps F : [0, 1] → Dal

and exponentiate them to a one-parameter family of automorphisms of Aaℓ

satisfying
dαF(t)(a)

dt
= αF(t)(F(t)(a))

In the physics terminology, this is a path-ordered exponential of the time-
dependent family of Hamiltonians F(t).

Definition 5. A Locally-Generated Automorphism is an automorphism of Aaℓ

of the form αF(t) for some path F : [0, 1] → Dal.

One can show that LGAs form a group. One can think of it as an infinite-
dimensional Lie group whose Lie algebra is Dal.

Definition 6. Let G be a Lie group. A smooth action of G on a lattice system
is a smooth homomorphism from G to the group of LGAs.

Given such an action, we also get an action on states of a lattice system: if
ω is one state, then an LGA maps it to a new state ω′ = ω ◦ α. That is, by
definition, we have

ω′(a) = ω(α(a)).

Clearly, since α is a ∗-automorphism, ω′ is also a state.

8 Derivations which do not excite a state
Let ψ be any state.

Definition 7. A derivation F ∈ Dal does not excite ψ if for any a ∈ Aaℓ one
has ψ(F(a)) = 0.

To understand what this means, let’s ask what happens to the state ψ when
we act on it with a one-parameter group of LGAs generated by F. For any
a ∈ Aaℓ we have

d

dt
ψ(αF(t)(a)) = ψ(αF(t)(F(a))) = ψ(F(αF(t)(a))) = 0.

9



Thus αF(t) preserves ψ and can be implemented in the GNS representation of
ψ by a one-parameter group of unitaries U(t) which preserve the GNS vacuum
vector Ω. In other words, we have

πψ(αF(t)(a)) = U(t)πψ(a)U(t)−1,

as well as U(t)Ω = Ω. Differentiating with respect to t and using Stone’s theorem,
we see that FΩ = 0. where F̂ is an unbounded operator (the generator of the
family U(t)). This unbounded operator represents the derivation F in the GNS
representation. The fact that F̂ annihilates the vacuum vector Ω means that F
is an ”unbroken symmetry” of ω.

It is easy to check that derivations which do not excite some particular state
ψ form a Lie algebra (sub-algebra of Dal). Let’s denote it Dψ

al.
Similarly, we can define a p-chain f which does not excite the state ψ by

ψ([fj0...jp , a]) = 0

for all a ∈ Aaℓ. It is easy to see that together they form a DGLA Cψ• . It is a
sub-DGLA of the DGLA C•.

What is the homology of this DGLA? In general, hard to tell. But we will
now show that the homology is trivial for gapped states.

9 Gapped states
A gapped state is a state ψ such that there exists H ∈ Dal and a ∆ > 0 such
that

−iψ(a∗H(a)) ≥ ∆(ψ(a∗a) − |ψ(a)|2).

In particular, any gapped state is a ground state for H and thus is invariant
under the 1-parameter group of automorphisms generated by H. Therefore we
can rewrite the above equation as a condition on the Hamiltonian Ĥ in the GNS
representation of ψ:

−i⟨Ω, πψ(a)†[Ĥ, πψ(a)]Ω⟩ ≥ ∆
(
⟨Ω, πψ(a)†πψ(a)Ω⟩ − |⟨Ω, πψ(a)Ω⟩|2

)
.

Since vectors of the form πψ(a)Ω are dense in the GNS Hilbert space, this
inquality implies that in the orthogonal complement of Ω the unbounded operator
Ĥ satisfies −iĤ ≥ ∆. (We have a factor −i because in our normalization
Hamiltonians are anti-self-adjoint rather than self-adjoint.) So all states in the
GNS Hilbert space orthogonal to Ω have energy at least ∆.

Theorem 2. If ψ is a gapped state, then the homology of the complex Dψ
al is

trivial.

It is this property which makes possible the definition of topological invariants.
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