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Plan of the course (10 lectures)

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel, 2015)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman, 2020+)

5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation
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Plan of this lecture

0 Coupled KPZ equation (Brief recall of Lecture No 4)
(pathwise theory, strong solution)

3 Microscopic Model: n-species zero-range processes
(=Interacting Random Walks of n types’ particles)

4 Hydrodynamic limit (LLN), Linear fluctuation (CLT)

5 Nonlinear fluctuation leading to coupled KPZ equation
▶ (2nd order) Boltzmann-Gibbs principle
▶ martingale problem approach (called energy solution)
▶ trilinear condition
▶ We derive KPZ-Burgers equation (equation for Y :=∂uh)

for particle density. In particular, renormalization is
unnecessary (heuristically, ∂u(δu(u)) = 0).
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0. Multi-component coupled KPZ equation

▶ Rn-valued KPZ equation for h(t, u) = (hi(t, u))ni=1 on
T = [0, 1) (or R):

∂th
i = 1

2
∂2
uh

i + 1
2
Γijk∂uh

j∂uh
k + Ẇ i , 1 ≤ i ≤ n.

▶ We write i , j , k instead of α, β, γ in Lecture No 4 and
macroscopic spatial variable u.

▶ We use Einstein’s convention for sum.
▶ Ẇ (t, u) = (Ẇ i(t, u))ni=1 is an Rn-valued space-time

Gaussian white noise with covariance structure

E [Ẇ i(t, u)Ẇ j(s, v)] = δijδ(u − v)δ(t − s).

▶ Coupling constants Γijk
bilinear condition: Γijk = Γikj for all i , j , k ,

trilinear condition (T): Γijk = Γikj = Γjik for all i , j , k .
▶ We also consider the coupled KPZ eq with constant drifts:

∂th
i = 1

2
∂2
uh

i + 1
2
Γijk∂uh

j∂uh
k + c i∂uh

i + Ẇ i , 1 ≤ i ≤ n.
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Recall: Results on coupled KPZ eq (Lecture No 4, on T)
▶ We may assume c i = 0 by considering

h̃i(t, u) := hi(t, u − c i t).

▶ Local well-posedness by applying paracontrolled calculus
due to Gubinelli-Imkeller-Perkowski 2015.

▶ Under the trilinear condition (T),
▶ (unique) invariant measure = Wiener measure
▶ Global well-posedness (existence, uniqueness for all initial

values in Besov space Cα = (Bα
∞,∞(T))n, α ∈ (0, 12))

▶ Strong Feller property (Hairer-Mattingly 2016)
▶ cancellation in log-renormalization (for 4th order terms)
▶ two types of approximations, difference of two limits

(cf. F-Quastel 2015 when n = 1)

▶ (Conjecture) “Inv meas=Wiener meas” ⇔ Condition (T)
This holds, for example, in discrete setting.
We have a heuristic proof, F 2019 (Proc IHP)
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Motivation to study coupled KPZ equation:
▶ Nonlinear fluctuating hydrodynamics (Spohn), KPZ

universality
▶ Component-wise different drifts c i∂uh

i play a role.

Our goal: Derivation of coupled KPZ equation from
microscopic systems.

n = 1 (single component scalar-valued case)
▶ Bertini-Giacomin (WASEP, microscopic Cole-Hopf transf)
▶ Gonçalves-Jara (WAEP with speed change, gradient type)
▶ Gonçalves-Jara-Sethuraman (WA zero-range process,

gradient type → Lecture No 5A)
▶ Gonçalves-Perkowski-Simon (WASEP+Dirichlet bdy cond)
▶ K. Yang (WASEP with boundary condition → ∂uh = c at

boundary 2020; non-stationary energy solution 2020)

n = 2
▶ Chen-de Gier-Hiki-Sasamoto (Two-species EP, 2018)
▶ Ahmed-Bernardin-Gonçalves-Simon (Hamilton systems

with conservative noises) 6 / 46



3. n-species zero-range processes on TN

▶ To derive n-component system in the limit, we need to
consider a system with n-conserved quantities at
microscopic level.

▶ TN = {1, 2, . . . ,N} with periodic boundary condition.
This is a microscopic space corresponding to macroscopic
T = [0, 1).

▶ Our model: Particles of n types, which perform Random
Walks on TN and interact only at the same sites.

▶ Configuration space of particles: α = (αi)ni=1 ∈ X n
N ,

XN = ZTN
+ .

▶ αi = (αi(x))x∈TN
; αi(x) ∈ Z+ = {0, 1, 2, . . .}, x ∈ TN ,

1 ≤ i ≤ n: number of ith species particles at x .

▶ Instead of ηx , ηx(t) in Lecture No 5-A, we write
α(x), αt(x).
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▶ Weak asymmetry: Once jump happens, the probabilities
of jump of ith particles to right/left are
pi(±1) = 1

2
± c i ,N with small c i ,N .

▶ c i ,N = c i

N
i.e., O( 1

N
) for HD limit and linear fluctuation.

▶ c i ,N = c√
N
+ c i

N
, i.e., O( 1√

N
) for KPZ fluctuation.

Note that the constant c in leading order is common in i .

▶ We introduce a diffusive time change t 7→ N2t for the
microscopic process.

▶ The process is denoted by αN
t = (αN,i

t (x)).
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▶ The generator of αN
t is given, for functions f on X n

N , by

LN f (α) = N2
∑

x∈TN ,1≤i≤n,e=±1

pi(e)gi(α(x))
{
f (αx ,x+e;i)− f (α)

}
.

▶ αx ,y ;i = the configuration α after one ith particle jumps
from x to y (which is possible only when αi(x) ≥ 1).

▶ Zero-range property: Jump rate gi of ith particles is a
function on Zn

+ (=configuration space at a single site):
gi = gi(k) for k = (k1, . . . , kn) ∈ Zn

+.
In particular, interaction occurs only at the same sites.

9 / 46



Conditions on jump rates {gi(k)}1≤i≤n,k∈Zn
+
(Grosskinsky-Spohn)

(1) (Non-degeneracy) For every 1 ≤ i ≤ n,
gi(k) = 0 ⇔ ki = 0 and infk:ki>0 gi(k) > 0 hold.

(2) (Linear growth)
max1≤i ,j≤n supk∈Zn

+
|gi(kj , kj + 1)− gi(k)| < ∞.

(3) (Detailed balance w.r.t. product measures)
gi (k)

gi (kj ,kj−1)
=

gj (k)

gj (ki ,ki−1)
, for all i ̸= j and

k = (k1, . . . , kn) ∈ Zn
+ with ki , kj ≥ 1, where

(kj , kj − 1) = (k1, . . . , kj−1, kj − 1, kj+1, . . . , kn).

(4) (Non-triviality of DomZ := {φ ∈ (0,∞)n;Zφ < ∞} to
contain a neighborhood of (0, . . . , 0))

φ∗ := lim inf |k|→∞ g!(k)
1
|k| > 0. (g!(k) → next page)

Example. n-color zero-range process: Jump rate of color-blind
particles g : Z+ → (0,∞), g(0) = 0, is given and

gi(α(x)) = g(η(x))α
i (x)
η(x)

, where η(x) :=
∑n

i=1 α
i(x) is number

of color-blind particles at x .
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Invariant measures (Equilibrium states)

▶ Product measures {ν̄φ := p⊗TN
φ } with one site marginal

pφ(k) =
1

Zφ

φk

g!(k)

▶ Here φ = (φ1, . . . , φn) are non-negative parameters
called fugacity, φk := φk1

1 · · ·φkn
n ,

g!(k) :=

|k|∏
ℓ=1

gi(ℓ)(kℓ),

with |k| = k1 + · · ·+ kn, is a product along an increasing
path k0 = 0 → · · · → kℓ → · · · → k|k| = k connecting 0
and k in Zn

+ such that |kℓ| = ℓ, 0 ≤ ℓ ≤ |k|, and

Zφ :=
∑
k∈Zn

+

φk

g!(k)
.

▶ Note that, by the condition (3), g!(k) does not depend on
the choice of the increasing path {kℓ}, so is well-defined.
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Change of the parameter φ 7→ a = (a1, . . . , an): density

▶ ν̄φ is well-defined for φ ∈ (0,∞)n s.t. Zφ < ∞.

▶ Change the parametrization in terms of density:
For a, choose φ so that the mean is given by a, i.e.,

ai ≡ ai(φ) := E ν̄φ[αi(0)], i = 1, . . . , n (1)

holds and denote νa := ν̄φ.

▶ Denote the map R : φ → a, taking fugacity to its
associated density, defined on

DomR := {φ ∈ (0,∞)n;Zφ < ∞, ai(φ) < ∞, i = 1, . . . , n}.

▶ The correspondence φ ↔ a is 1 : 1.
Denote, by Φ : a → φ, the inverse map of R .

▶ We accordingly have a family of invariant measures {νa}a
parametrized by densities a = (a1, . . . , an) ∈ [0,∞)n.
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4. Hydrodynamic limit (LLN) and Linear fluctuation (CLT)

4.1 Hydrodynamic limit

▶ Weak asymmetry is O( 1
N
), i.e., pi(±1) = 1

2
± c i

N
and

c i may be different for different species.

▶ Similarly to single species case (Lecture No 5-A), we
consider an Rn-valued macroscopically scaled empirical
measure XN

t = (XN,i
t )ni=1 on T defined by

XN,i
t (du) :=

1

N

∑
x

αN,i
t (x)δ x

N
(du), u ∈ T.

▶ Recall αN
t = (αN,i

t (x))x∈TN
is the n-species zero-range

process generated by N2LN .

▶ As a straightforward extension of Theorem 4 (HDL) of
Lecture No 5-A for the single species case, we can show
the following.
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▶ HD limit for n-species system: XN
t converges to a(t, u)du

= (ai(t, u)du)ni=1 and the limit density ai(t, u) is the
solution of the system of nonlinear PDEs:

∂ta
i = 1

2
∂2
uφi(a)− 2c i∂uφi(a), 1 ≤ i ≤ n.

where

φi(a) ≡ ⟨gi⟩(a) := E νa[gi(α(0))].

▶ Indeed, φi(a) = ⟨gi⟩(a) is shown as

⟨gi ⟩(a) =
1

Zφ

∑
k

gi (k)
φk

g!(k)
=

1

Zφ

∑
k

φk

g!(k− ei )

=
1

Zφ

∑
k

φiφ
k−ei

g!(k− ei )
= φi .

▶ The diffusion matrix is given by (∂φi

∂aj
) =

(
φi(cov νa)

−1
ij

)
(cf. [BFS, Lemma 2.1]) and parabolic in the sense∑

ij
∂φi

∂aj
ξiξj ≥ 0 for any ξ = (ξi) ∈ Rn.
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Heuristic derivation of HD equation

▶ Take a test function G ∈ C∞(T). Then, exactly in the
same way as Lecture No 5-A, in Dynkin’s formula, we
have

LNX
N,i(G ) =

1

2N

∑
x

gi(α(x))N
2∆G ( x

N
)

+
c i

N

∑
x

gi(α(x))
{
N∇G ( x

N
) + N∇G ( x−1

N
)
}
,

where ∇G ( x
N
) := G ( x+1

N
)− G ( x

N
) and ∆ is the discrete

Laplacian.

▶ For martingale terms, lim
N→∞

E [MN,i
t (G )2] = 0 hold.

▶ Local ergodicity (local equilibrium): One can replace
gi(α(x)) by its local average ⟨gi⟩(a(t, x

N
)) and obtain the

Hydrodynamic equation for ai(t, u) in the limit.
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4.2 Linear fluctuation

▶ Keep weak asymmetry O( 1
N
), i.e., pi(±1) = 1

2
± c i

N
.

▶ We discuss equilibrium fluctuation (CLT),

i.e. assume αN
0

law
= νa0 for any fixed a0 ∈ (0,∞)n.

▶ Consider the fluctuation field: Y N
t = (Y N,i

t )ni=1

Y N,i
t (du) =

1√
N

∑
x∈Z

(
αN,i
t (x)− ai0

)
δ x

N
(du), u ∈ T.

▶ Y N
t = (Y N,i

t )ni=1 converges to Ornstein-Uhlenbeck process
Yt in law (→ next page).

▶ This class of models having OU scaling limit is sometimes
called Edwards-Wilkinson university class.
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▶ The limit Yt = (Y i
t )

n
i=1 is the solution (unique in law) of

linear SPDE:

∂tY = 1
2
Q(a0)∂

2
uY − 2CQ(a0)∂uY + q(a0)∂uẆ ,

where Ẇ = (Ẇ i)ni=1 is Rn-valued space-time Gaussian
white noise, and C, Q(a) and q(a) are d × d matrices
such that

C = diag(c i)1≤i≤n,

Q(a) =
(
Qij(a)

)
1≤i ,j≤n

= (∂ajφi(a)))1≤i ,j≤n ,

q(a) = diag
(
qi(a)

)
1≤i≤n

= diag
(√

φi(a)
)
1≤i≤n

.

▶ The matrix Q(a0) arises as a linearization of φi(a) in the
HD equation around a0:

φi(a) = φi(a0) +
n∑

j=1

∂ajφi(a0)(aj − a0,j) + · · ·
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Reason to have the limit noise
(√

φi(a)∂uẆ i
)
i
:

▶ Compute quadratic and cross variations of the martingale
term MN,i

t (G ) of Y N,i
t (G ).

▶ Indeed, similar to Lecture No 5-A, we have
d

dt
⟨MN,i (G )⟩t = N

(
LN⟨αN,i

t ,G ⟩2 − 2⟨αN,i
t ,G ⟩LN⟨αN,i

t ,G ⟩
)

=
1

N

∑
x

gi (α
N
t (x))

(
N∇G ( x

N )
)2

+ O( 1
N )

−→
N→∞

φi (a0)

∫
T
(G ′(u))2du,

since αN
t

law
= νa0 for all t ≥ 0.

▶ For i ̸= j , we have

d

dt
⟨MN,i (G1),M

N,j(G2)⟩t

=N
(
LN(⟨αN,i

t ,G1⟩⟨αN,j
t ,G2⟩)− ⟨αN,i

t ,G1⟩LN⟨αN,j
t ,G2⟩

− ⟨αN,j
t ,G2⟩LN⟨αN,i

t ,G1⟩
)

= 0.
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Heuristic reason to have the drift term in the limit

▶ Make Taylor expansion in the HD equation:

ai (= ai (t, u)) = ai0 +
1√
N
Y i + · · ·

φi (a) = φi (a0) +
1√
N

n∑
j=1

∂ajφi (a0) · Y j + · · · .

▶ Insert these into the HD equation with noise error term:

∂ta
i = 1

2∂
2
uφi (a)− 2c i∂uφi (a) +

1√
N
(noise)

▶ For example, since a0 is a constant,

∂ta
i =

1√
N
∂tY

i + · · · .

▶ Multiplying the both sides by
√
N , we obtain the limit

SPDE.
▶ For the proof, 1st order Boltzmann-Gibbs principle is

needed.
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5. Nonlinear fluctuation leading to coupled KPZ equation

▶ Now weak asymmetry is O( 1√
N
), i.e.,

pi(±1) = 1
2
± c√

N
± c i

N
,

which is larger than HD limit and linear fluctuation.

▶ Note that the leading constant c is common, to have the
common moving frame (→ see below).

▶ In other words, c i are replaced by c
√
N + c i so that the

HD equation for ith particles would look like

∂ta
i = 1

2
∂2
uφi(a)− 2(c

√
N + c i)∂uφi(a) +

1√
N
(noise)

▶ We consider the fluctuation field under equilibrium,

i.e. αN
0

law
= νa0 for some a0, this time chosen properly.
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▶ To cancel the diverging factor 2c
√
N , we introduce the

moving frame with speed 2cλ
√
N at macroscopic level

with suitably chosen λ = λ(a0).

Y N,i
t (du) :=

1√
N

∑
x

(
αN,i
t (x)− ai0

)
δ x

N
−2cλ

√
Nt(du)

▶ The frame should have common speed for all i .
→ This gives a restriction to the choice of a0.

▶ We choose a0 and λ(a0) properly.

▶ Especially we need to assume the Frame Condition:
Q(a0) = −λI for a0 and λ (→ see below).
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Main result (coupled KPZ limit = nonlinear fluctuation)

Theorem 1
Assume the frame condition. Then, Y N

t = (Y N,i
t )ni=1 converges

to Yt = (Y i
t )

n
i=1 in law in the space D([0,T ],S ′(T)n).

The limit Yt is the (unique) stationary martingale solution of
coupled KPZ-Burgers equation:

∂tY
i =1

2
Q i(a0)∂

2
uY

i + Γijk(a0)∂u(Y
jY k)

−2c iQ i(a0)∂uY
i + qi(a0)∂uẆ

i , u ∈ T.

▶ (Ẇ i)ni=1 is Rn-valued space-time Gaussian white noise.
▶ Q i(a0), Γijk(a0) and qi(a0) are given by

Q i (a0) = ∂aiφi (a0),

Γijk(a0) = −c∂aj∂akφi (a0),

qi (a0) =
√
φi (a0).

▶ The reason to have the limit noise qi(a0)∂uẆ i is the
same as the linear fluctuation. 22 / 46



Heuristic reason to have the nonlinear drift term in the limit

▶ Combine averaging due to ergodicity and Taylor
expansion, now up to the second order terms:

ai = ai0 +
1√
N
Y i + · · ·

∂ta
i =

1√
N
∂tY

i + 2cλ
√
N∂ua

i + · · ·

=
1√
N
∂tY

i + 2cλ∂uY
i + · · ·

φi(a) = φi(a0) +
1√
N

n∑
j=1

∂ajφi(a0) · Y j

+
1

2N

n∑
j ,k=1

∂aj∂akφi(a0) · Y jY k + · · · .
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▶ Noting ∂uφi(a0) = 0, putting these expansions to the HD
equation and multiplying both sides by

√
N , we obtain:

∂tY
i =1

2

n∑
j=1

∂ajφi(a0) · ∂2
uY

j

− 2(c
√
N + c i)

n∑
j=1

∂ajφi(a0) · ∂uY j − 2cλ
√
N∂uY

i

− c
n∑

j ,k=1

∂aj∂akφi(a0) · ∂u(Y jY k) + qi(a0)∂uẆ
i + o(1).

▶ Note that the noise term qi(a0)∂uẆ i has the same
distribution under the shift by moving frame.

▶ The second line (except c i) is a diverging term.
(If c = 0, the above eq is same as linear fluctuation.)
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▶ This line vanishes, if one can choose a0 (and λ) such that

[Frame Condition] λ = −∂aiφi(a0), ∂ajφi(a0) = 0 if i ̸= j .

▶ This condition is equivalent to “Vij = 0 (i ̸= j) and φi/Vii

is constant in i”, where V ≡
(
Vij(a0)

)
:=cov(νa0)

(→ Prop 3.3 of [BFS]).

▶ Thus, we obtain the KPZ-Burgers equation in the limit:

∂tY
i =1

2
∂aiφi(a0) ∂

2
uY

i − c
n∑

j ,k=1

∂aj∂akφi(a0) ∂u(Y
jY k)

− 2c i∂aiφi(a0) ∂uY
i + qi(a0)∂uẆ

i .

(End of heuristic argument)
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Proof of Theorem 1

▶ For the proof, we need to establish the Boltzmann-Gibbs
principle, i.e., replacement under space-time average of
nonlinear function f of α s.t. ⟨f ⟩(a0) = ∂ai ⟨f ⟩(a0) = 0
(∀i) by quadratic function of αi − ai , in equilibrium νa0 .

▶ For identification of the limit, we use the uniqueness of
stationary coupled martingale solutions due to
Gubinelli-Perkowski, PTRF 2020.

▶ In the limit SPDE, drift term with c i can be killed by the
spatial shift:

Ỹ i
t (u) := Y i

t (u + 2c iQ i(a0)t).

▶ So we assume c i = 0 below for simplicity.

▶ We also show the tightness of {Y N
t }N in the uniform

topology in D([0,T ],S ′(T)n).
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Boltzmann-Gibbs principle

▶ For ζ = (ζ(x)), the average of ζ around x in size ℓ ≥ 1 is
defined by ζ(ℓ)(x) := 1

2ℓ+1

∑
|y |≤ℓ ζ(x + y).

Theorem 2
Let f = f (α) ∈ L5(νa0) be a local function supported on sites
|y | ≤ ℓ0 s.t. ⟨f ⟩(a0) = 0 and ∇⟨f ⟩(a0) = 0. Then,
∃C = C (ℓ0) > 0 s.t. for T > 0, ℓ ≥ ℓ0 and ϕ : TN → R,

Eνa0

[
sup

0≤t≤T

(∫ t

0

ds
∑
x∈TN

ϕ(x − [cs])

(
f (τxα

N
s )−

1

2

n∑
j,k=1

∂aj∂ak ⟨f ⟩(a0)

×
{((

αj,N
s

)(ℓ)
(x)− aj0

)((
αk,N
s

)(ℓ)
(x)− ak0

)
− Vjk(a0)

2ℓ+ 1

}))2]

≤ C∥f ∥2L5(νa0 )

(
T ℓ

N
∥ϕ∥2L2(TN )

+
T 2N2

ℓ3
∥ϕ∥L1(TN )

)2

,

where (Vjk(a0)) = cov (νa0), ∥ϕ∥
p
Lp(TN)

:= 1
N

∑
x∈TN

|ϕ(x)|p.
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Proof of BG principle (Theorem 2)

▶ Itô-Tanaka trick to reduce dynamic problem to static one
(bound by H−1-norm, cf. Lecture No 3):

E νa0

[
sup

0≤t≤T

(∫ t

0

F (αs)ds
)2]

≤
roughly

C ⟨F , (−Lsym)−1F ⟩νa0 .

▶ To estimate H−1-norm by L2-norm, we apply the spectral
gap of the operator −Lsym, but this works on bounded
region and depends on the size of region.

▶ Lsymk,ℓ : Symmetrized generator on Λℓ = {x ; |x | ≤ ℓ}
with ♯particles= k on Λℓ,

W (k, ℓ) := (spectral gap of −Lsymk,ℓ )
−1.

=⇒ E νa[W (k, ℓ)2] ≤ Cℓ4 holds.
We need some assumption on (gi)

n
i=1 to show this.

▶ So, we need to confine ourselves in a bounded region of
size ℓ by conditioning (→ canonical ensemble).
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▶ Static estimates: Decay estimate for canonical average as
ℓ → ∞ to grandcanonical average (equivalence of
ensembles) and Taylor expansion.

▶ To give some feeling, for y ∈ Rn,

Eνa0 [f (α)|α(ℓ) = y ] =
Eνa0 [f (α) · 1{α(ℓ)=y}]

νa0(α
(ℓ) = y)

∼
(∗)

Eνy [f (α)]

∼
Taylor expansion

⟨f ⟩(a0) +∇⟨f ⟩(a0) · (y − a0) +
1
2

(
y − a0,D

2⟨f ⟩(a0)(y − a0)
)
+ · · ·

▶ (*) is usually called the equivalence of ensembles and
shown by applying local CLT:

νa0(α
(ℓ) = y) ∼ Cℓe

−cℓ(y−a0,V−1(y−a0)).

▶ We use (by taking y = α(ℓ))

E νa0 [f (α)] = E νa0

[
E νa0 [f (α)|α(ℓ)]

]
,

and this leads to (the static version of) Theorem 2.
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Tightness of {Y N
t } in uniform topology in D([0,T ],S ′(T)n)

▶ (Mitoma’s theorem) It is enough to show the tightness of
{Y N,i

t (G )} in D([0,T ],R) for each test function
G ∈ C∞(T).

▶ Martingale term {MN,i
t (G )} has quadratic variation

bounded in L4(Ω), so that it is tight.

▶ BG principle gives a bound for drift term in Dynkin’s
formula.
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Martingale problem approach (Gubinelli-Perkowski, 2020)

▶ Coupled KPZ-Burgers equation (canonical form) for
Y i = ∂uh

i

∂tY
i = 1

2
∂2
uY

i + 1
2
Γijk∂u(Y

jY k) + ∂uẆ
i .

▶ Formal generator (Lectures No 3, 4): L = L0 +A, where

L0Φ(Y ) = 1
2

∑
i

(∫
T
∂2
uD

2
Y i (u)Φ du +

∫
T
∂2
uY

i(u) · DY i (u)Φ du

)
,

AΦ(Y ) = 1
2

∑
i ,j ,k

Γijk

∫
T
∂u(Y

j(u)Y k(u))DY i (u)Φ du

for Φ = Φ(Y ). D,D2 are Fréchet derivatives.
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▶ Precise definition of (L,D(L)):
Let ν be the probability distribution on S ′(T)n of white
noise in space. Let

L2(ν) ∼= ΓL2 :=
∞⊕

m=0

L2(Tm)n (Fock space)

be the Wiener-Itô chaos decomposition.
▶ D(L) := {φ;φ♯ ∈

(−L0)
−1ΓL2 ∩ (1 +N )−9/2(−L0)

−1/2ΓL2},
where φ, called controlled function, is a solution of

φ− (−L0)
−1A≻φ = φ♯,

in controlled sense (i.e., first define singular products
based on Gaussian structure by hand, and then others are
usual calculus), A≻ is a certain cut-off of A and N is a
number operator.

▶ If A instead of A≻, this is resolvent equation with λ = 0:
(L0 +A)φ = L0φ

♯.
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▶ [GP] showed that, for φ♯ of this class, the solution φ
exists, D(L): dense in ΓL2 and L : D(L) → (−L0)

1/2ΓL2

is well-defined.

▶ [GP] also showed Kolmogorov backward equation
∂tφ = Lφ is solvable in controlled sense in
φ = φ(t,Y ) ∈ D(L) for wide class of initial values
φ(0) = φ0 (by Galerkin method + a priori estimates).

▶ Exponential L2-ergodicity is also shown,
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▶ (L,D(L))-martingale problem is well-posed.

∵) Uniqueness is shown as follows:

Φ(t,Yt)− Φ(0,Y0)−
∫ t

0

(∂sΦ+ LΦ)(s,Ys)ds

is a martingale for Φ(t, ·) ∈ D(L). Take Φ(t,Y ) = φ(T − t,Y )
with the solution φ of Kolmogorov equation. Then,
φ(T − t,Yt)− φ(T ,Y0) is martingale. Take t = T and we have
EY0 [φ0(YT )] = φ(T ,Y0). This shows the uniqueness.

▶ Stationary solution of cylinder function martingale problem i.e.,
martingale property holds for tame functions

Φ(Y ) = f (⟨Y , ψ1⟩, . . . , ⟨Y , ψn⟩)

instead of Φ ∈ D(L) satisfying Itô-Tanaka trick (or Kipnis-Varadhan
type estimate), is a solution of (L,D(L))-martingale problem.

∵) Indeed, for φ ∈ D(L), let φM be the projection of φ to⊕M
m=0 L

2(Tm)n. Then, φM is a tame function. By several a priori
bounds, one can take the limit M → ∞.
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▶ We again use Itô-Tanaka trick (bound by H−1-norm):

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

φ(Ys)ds
∣∣∣p] ≤ CT

∫ T

0

∥cNp (−L0)
−1/2φ∥p,

where cp =
√
p − 1.

▶ Interpretation of nonlinear term Γijk∂u(Y
jY k):

For Y ∈ C ([0,T ],S ′(T)n) and test function H ,

Ai,ε
t (H) :=

∑
j,k

Γijk

∫ t

0

ds

∫
T
∂uH(u)⟨Y j

s ,Gε(· − u)⟩⟨Y k
s ,Gε(· − u)⟩du,

where Gε → δ0. Then, by Itô-Tanaka trick,

At(H) = ∃ lim
ε↓0

Ai ,ε
t (H) in L2(Ω,C ([0,T ],R)).

▶ The proof of Theorem 1 is completed by combining all
these arguments.
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Trilinear condition

▶ Our Γijk(a0) satisfies the trilinear condition (T) after
rewriting it in a canonical form by change of time and
magnitude.

▶ The scaling limit under Product measure νa0 is “white
noise” (at Burgers’ level), so that this is consistent.

▶ As we noted, we have a heuristic proof of
(T) ⇔ “invariant measure = spatial white noise”.

(This is true at least in a discrete setting.)

Multi-color case

▶ gi(k) = g(|k|) ki
|k| , k = (k1, . . . , kn)

▶ Frame condition holds at ρ0 satisfying φ′(ρ0) =
φ(ρ0)
ρ0

,

where φ(ρ) := ⟨g⟩(ρ) (defined in color-blind ensembles).
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▶ In multi-color case, one can decouple our coupled KPZ
equation as follows.

▶ H :=
∑n

i=1 h
i (color-blind system) satisfies the

scalar-KPZ equation:

∂tHt = c1∂
2
uHt + c2

(
n∑

i=1

ai0

)
(∂uHt)

2 + c3Ẇ , Ẇ :=
n∑

i=1

√
ai0Ẇ

i ,

with some constants c1, c2, c3.
▶ On the other hand, H ij

t := aj0h
i − ai0h

j are OU processes:

∂tH
ij
t = c1∂

2
uH

ij
t + c3Ẇ

ij , Ẇ ij :=
√
ai0a

j
0Ẇ

i −
√

aj0a
i
0Ẇ

j

▶ One can show that Ẇ and {Ẇ ij} are independent, since
the covariances vanish.

▶ In this case, the uniqueness of stationary energy solution
of the coupled KPZ equation follows from the uniqueness
for scalar-valued KPZ equation and OU processes, and
independence of these processes.
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Summary of this lecture

We discussed the derivation of coupled KPZ equation from
multi-species zero-range processes:

▶ n-species zero-range processes

▶ Hydrodynamic limit, Linear fluctuation

▶ Nonlinear fluctuation leading to coupled KPZ equation

▶ Boltzmann-Gibbs principle

▶ Martingale problem

▶ Trilinear condition
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Thank you very much for your attention!
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