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Plan of the course (10 lectures)

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel, 2015)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman, 2020+)
5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation



Plan of this lecture

0 Coupled KPZ equation (Brief recall of Lecture No 4)
(pathwise theory, strong solution)

3 Microscopic Model: n-species zero-range processes
(=Interacting Random Walks of n types’ particles)
4 Hydrodynamic limit (LLN), Linear fluctuation (CLT)
5 Nonlinear fluctuation leading to coupled KPZ equation
» (2nd order) Boltzmann-Gibbs principle
» martingale problem approach (called energy solution)
» trilinear condition
» We derive KPZ-Burgers equation (equation for Y:=0,h)
for particle density. In particular, renormalization is
unnecessary (heuristically, 9,(0,(u)) = 0).



0. Multi-component coupled KPZ equation

» R"-valued KPZ equation for h(t,u) = (h'(t,u))"_, on
T =10,1) (or R):
Oh = 1020 + L o,Wo,h + W, 1<i<n.
» We write /,J, k instead of «, 3,7 in Lecture No 4 and
macroscopic spatial variable v.
> We use Einstein’s convention for sum.
> W(t,u) = (Wi(t,u))"_ is an R"-valued space-time
Gaussian white noise with covariance structure
E[W!(t, u)Wi(s,v)] = 676(u — v)d(t — s).
> Coupling constants I,
bilinear condition: T}, =T}, for all i, j, k,
trilinear condition (T): I, =}, =, forall i,j, k.
» We also consider the coupled KPZ eq with constant drifts:
Och' = 1020 + LT 0, WO, hF + o, + W, 1< i<n.



Recall: Results on coupled KPZ eq (Lecture No 4, on T)
> We may assume ¢’ = 0 by considering
h'(t,u) = h'(t,u— c't).
» Local well-posedness by applying paracontrolled calculus
due to Gubinelli-Imkeller-Perkowski 2015.
» Under the trilinear condition (T),
» (unique) invariant measure = Wiener measure
» Global well-posedness (existence, uniqueness for all initial
values in Besov space C = (B, (T))", a € (0, )
» Strong Feller property (Hairer-Mattingly 2016)
» cancellation in log-renormalization (for 4th order terms)

P> two types of approximations, difference of two limits
(cf. F-Quastel 2015 when n = 1)

» (Conjecture) “Inv meas=Wiener meas” <> Condition (T)
This holds, for example, in discrete setting.
We have a heuristic proof, F 2019 (Proc IHP)



Motivation to study coupled KPZ equation:
» Nonlinear fluctuating hydrodynamics (Spohn), KPZ
universality
» Component-wise different drifts c'd,h’ play a role.

Our goal: Derivation of coupled KPZ equation from
microscopic systems.
n =1 (single component scalar-valued case)
» Bertini-Giacomin (WASEP, microscopic Cole-Hopf transf)
» Gongalves-Jara (WAEP with speed change, gradient type)
» Gongalves-Jara-Sethuraman (WA zero-range process,
gradient type — Lecture No 5A)
» Gongalves-Perkowski-Simon (WASEP+Dirichlet bdy cond)
» K. Yang (WASEP with boundary condition — d,h = ¢ at
boundary 2020; non-stationary energy solution 2020)
n=>2
» Chen-de Gier-Hiki-Sasamoto (Two-species EP, 2018)
» Ahmed-Bernardin-Gongalves-Simon (Hamilton systems
with conservative noises)



3. n-species zero-range processes on Ty

» To derive n-component system in the limit, we need to
consider a system with n-conserved quantities at
microscopic level.

» Ty =1{1,2,..., N} with periodic boundary condition.
This is a microscopic space corresponding to macroscopic
T =[0,1).

» Our model: Particles of n types, which perform Random
Walks on Ty and interact only at the same sites.

» Configuration space of particles: a = (a/)"_; € A},

Xy =2,

> o = (a'(x))xery; @'(x) € ZL ={0,1,2,...}, x € Ty,
1 < i < n: number of jth species particles at x.

» Instead of 7),,7x(t) in Lecture No 5-A, we write
a(x), as(x).



Weak asymmetry: Once jump happens, the probabilities
of jump of ith particles to right/left are
pi(£1) = 3 £ "N with small ¢"V.

N =< e, O(i) for HD limit and linear fluctuation.

=%+ 5 ¢, ie., O(W) for KPZ fluctuation.
Note that the constant c¢ in leading order is common in i.

We introduce a diffusive time change t — N2t for the
MICroscopic process.

The process is denoted by a¥ = (al’(x)).




» The generator of a! is given, for functions f on X}, by

Luf(a) =N > pile)gi(a(x)) {F(a ") — f(a)} .

x€Tn,1<i<n,e=+1

» oY = the configuration a after one ith particle jumps
from x to y (which is possible only when a/(x) > 1).
» Zero-range property: Jump rate g; of ith particles is a
function on Z' (=configuration space at a single site):
8 — g,(k) for k = (k]_, ceey kn) S Zf:_
In particular, interaction occurs only at the same sites.



Conditions on jump rates {g,‘(k)}lg,‘gmkezz_ (Grosskinsky-Spohn)
(1) (Non-degeneracy) For every 1 < i < n,
gi(k)=0< ki=0 and infek-o0gi(k) >0 hold.
(2) (Linear growth)
maxy<ij<n SUPkezy |8i(K, kj + 1) — gi(k)| < oo.
(3) (Detailed balance w.r.t. product measures)
g,-(si,(;)—l) = gj(g’(;)_l), for all i # j and
k = (ki,..., ky) € Z7 with k;, kj > 1, where
(K, ok —1) = (ki k1, ki — 1, ki, ... ko).
(4) (Non-triviality of Domz := {¢ € (0,00)"; Z, < oo} to
contain a neighborhood of (0,...,0))
0. = liminfi o gl (k)X > 0. (g!(k) — next page)

Example. n-color zero-range process: Jump rate of color-blind
particles g : Z, — (0,00), g(0) =0, is given and

gi(a(x)) = g(1(x)) 5. where 1(x) = 327y a(x) is number
of color-blind particles at x.




Invariant measures (Equilibrium states)

> Product measures {7, := pS"™"} with one site marginal
1 ok
poll) = 5
’ Z, g!(k)
» Here ¢ = (¢1,...,%n) are non-negative parameters

called fugacity, ¥ := k... ko
g!(k) := Hgi(e)(kz),
=1

with |k| = k; + -+ - + k,, is a product along an increasing
path kg =0 — --- — k; — --- — ky = k connecting 0
and k in Z" such that |k, =¢, 0 < ¢ < |k|, and

£
Z, =y ———.
2 80

» Note that, by the condition (3), g!(k) does not depend on
the choice of the increasing path {k,}, so is well-defined.



Change of the parameter ¢ +— a = (a',...,a"): density

>
4

v, is well-defined for ¢ € (0,00)" s.t. Z, < 0.
Change the parametrization in terms of density:
For a, choose ¢ so that the mean is given by a, i.e.,

a =a'(p) = E™[a;(0)], i=1,...,n (1)

holds and denote v, := 7.

Denote the map R : ¢ — a, taking fugacity to its
associated density, defined on

Domg := {p € (0,00)"; Z, < o0,a'(¢p) < 00, i =1,...,n}.

The correspondence ¢ <> ais 1: 1.
Denote, by ® : a — ¢, the inverse map of R.

We accordingly have a family of invariant measures {1, },
parametrized by densities a = (a!,...,a") € [0, 00)".



4. Hydrodynamic limit (LLN) and Linear fluctuation (CLT)
4.1 Hydrodynamic limit

| 2

>

i

Weak asymmetry is O(+), i.e., pi(£1) = & and

¢’ may be different for different species.

1
5+
Similarly to single species case (Lecture No 5-A), we

consider an R"-valued macroscopically scaled empirical
measure X = (X}')_; on T defined by

X d) - NZ i yeT.

N, . .
Recall o = (a"'(x))yer, is the n-species zero-range

process generated by N2Ly.

As a straightforward extension of Theorem 4 (HDL) of
Lecture No 5-A for the single species case, we can show
the following.



» HD limit for n-species system: XV converges to a(t, u)du
= (a'(t, u)du)"_, and the limit density a’(t, u) is the
solution of the system of nonlinear PDEs:

O:a = 192pi(a) —2c'0,pi(a), 1<i<n
where
pi(a) = (gi)(a) := E™[gi((0))]
» Indeed, p;(a) = <g,->(a) is shown as

Z k _iz on
gk gl ) Zp 4 gl(k—e)

—€

1 0"

= = @ij.
Z, 2 gl(k— )

» The diffusion matrix is given by (a“") (¢i(cov Va)El)
(cf. [BFS, Lemma 2.1]) and parabolic in the sense
> Z—Z&é’j > 0 for any £ = (§;) € R".



Heuristic derivation of HD equation

» Take a test function G € C>°(T). Then, exactly in the
same way as Lecture No 5-A, in Dynkin's formula, we
have

LuX"Ni(G = 5x Zg, X))N2AG(%)

where VG(%) := G(*5*) — G(%) and A is the discrete
Laplacian.

» For martingale terms, IJim EIMY'(G)?] = 0 hold.
—00
» Local ergodicity (local equilibrium): One can replace

gi(a(x)) by its local average (gi)(a(t, 7)) and obtain the
Hydrodynamic equation for a'(t, u) in the limit.



4.2 Linear fluctuation

> Keep weak asymmetry O(5), i.e., pi(£1) =1+ %.
» We discuss equilibrium fluctuation (CLT),

i.e. assume ) law Va, for any fixed ag € (0, 00)".
> Consider the fluctuation field: YN = (Y7,

YV (du) > (o"(x) — ah)dx(du), ueT.
\/_ XEL "
> YN = (Y/")7_, converges to Ornstein-Uhlenbeck process

Y; in law (— next page).
» This class of models having OU scaling limit is sometimes
called Edwards-Wilkinson university class.



» The limit Y; = (Y/)7_, is the solution (unique in law) of
linear SPDE:

Y = 1Q(a0)d2Y — 2€Q(a0)d, Y + q(a0)d, W,

where W = (W)7_, is R™valued space-time Gaussian
white noise, and C, Q(a) and g(a) are d x d matrices
such that

= diag(c')1<i<n,
( ) (Q4(a) 1<; i< = (Foii(@)))1<ijn
— diag(q'(a)) ., = diag (V/i(a))

» The matrix Q(ao) arises as a linearization of ¢;(a) in the
HD equation around ag:

1<i<n

pi(a) = pi(ao +Z@ajg&, ao)(a; — a0,) + - -

j=1



Reason to have the limit noise (\/i;(a)0,W') :

» Compute quadratic and cross variations of the martingale
term M'(G) of YV'(G).
» Indeed, similar to Lecture No 5-A, we have
d

S MM(G))e =N (LN<a?"’, G 20", 6)Lufai", 6))

Nzg’ CVt NVG(%)) JrO(%)

= iao) / (6'(u))Pd

T
: |
since o = v, forall t > 0.
» For i # j, we have

d
dt

=N (Lu((ad", G){al, G2)) = (o, Gi)Lulat, o)

(ol G)Lnfal, 61))

—(MN7(Gy), MM (Gy)).

=0.



Heuristic reason to have the drift term in the limit
» Make Taylor expansion in the HD equation:

. ) ) 1 .
(= (tu) =g+ Y

VN
vi(a) = pi(ag) + ﬁ ;33[@;@0) Y

» Insert these into the HD equation with noise error term:

. . 1
dea' = 30%pi(a) — 2¢'0,pi(a) + —=(noise)

VN

» For example, since ag is a constant,

) 1 .
Oal = =0 Y 4.
‘ N

» Multiplying the both sides by v/N, we obtain the limit
SPDE.

» For the proof, 1st order Boltzmann-Gibbs principle is
needed.



5. Nonlinear fluctuation leading to coupled KPZ equation

> Now weak asymmetry is O( - ) ie.,

pi(El) =1+ & +5,

which is larger than HD limit and linear fluctuation.

» Note that the leading constant ¢ is common, to have the
common moving frame (— see below).

» In other words, ¢’ are replaced by cv/N + ¢’ so that the
HD equation for ith particles would look like

Dea = 1020,(a) — 2cV/N + ¢)d,pi(a) + %(noise)

» We consider the fluctuation field under equilibrium,

. law . .
i.e. a) = v, for some ag, this time chosen properly.



v

To cancel the diverging factor 2cv/N, we introduce the
moving frame with speed 2cAv/N at macroscopic level
with suitably chosen A\ = A(ap).

YV (du) = \/_Z 5x Crenyme(du)

The frame should have common speed for all i.
— This gives a restriction to the choice of ag.

We choose ag and A(ag) properly.

Especially we need to assume the Frame Condition:
QR(ag) = — I for ag and A (— see below).



Main result (coupled KPZ limit = nonlinear fluctuation)

Theorem 1

Assume the frame condition. Then, YN = (YtN "), converges
to Yy = (Y, in law in the space D([0, T],S'(T)").

The limit Y; is the (unique) stationary martingale solution of
coupled KPZ-Burgers equation:

9:Y' =3Q'(a0)02Y" + [y (a0)du( Y/ Y¥)
—2¢'Q(a0)d, Y + ¢'(a0)d, W', weT.

> (WHr, is R -valued space-time Gaussian white noise.
> Q'(ag), Jk(ao) and g'(ag) are given by
Q'(a0) = dy¢pi(a0),
I'J’:k(ao) = —c0,0xpi(ao),
q'(a0) = v/wi(ao).
> The reason to have the limit noise g'(ag)d, W' is the
same as the linear fluctuation.



Heuristic reason to have the nonlinear drift term in the limit

» Combine averaging due to ergodicity and Taylor
expansion, now up to the second order terms:

i i 1 i

a :ao—i—ﬁy 4+ ...

i1
VN

1 , ,
—0,Y' +2cA9, Y + -
N t

wi(a) = vi(ao) + ﬁ J_Zl d,pi(ag) - Y!

O:a 0.Y' +2cAVNo,a + - - -

1 O .
+ W Z 83;83kg0,-(a0) . YJYk + e,

J?k:]-



» Noting 0,pi(ag) = 0, putting these expansions to the HD
equation and multiplying both sides by v/N, we obtain:

0,y =1 Zaau'@i(ao) L0y

Jj=1

—2(cV'N + &) Z dypi(ag) - 8, Y — 2cAV N, Y'
j=1

— ¢ > 0y0xpi(a0) - 0u(YIY*) + ¢'(a0)0u W' + o(1).

jik=1

» Note that the noise term g'(ag)d, W' has the same
distribution under the shift by moving frame.

» The second line (except c') is a diverging term.
(If ¢ =0, the above eq is same as linear fluctuation.)



» This line vanishes, if one can choose ag (and A) such that
[Frame Condition] A\ = —0,ipi(ag), 0sipi(ag) =0 if i # j.

» This condition is equivalent to “Vj; = 0 (i # j) and ¢;/V;
is constant in /", where V = (V;(ao)) :=cov(Va,)
(— Prop 3.3 of [BFS]).

» Thus, we obtain the KPZ-Burgers equation in the limit:

atyi :%aai@i(aO) 8121 Yi —¢ Z aafaakgpi(aO) au(Yj Yk)
jk=1

—2¢'8,0i(a0) 8, Y + ¢'(ag)d,W'.

(End of heuristic argument) [



Proof of Theorem 1

>

v

For the proof, we need to establish the Boltzmann-Gibbs
principle, i.e., replacement under space-time average of
nonlinear function f of a s.t. (f)(ap) = 0. (f)(ap) =0
(i) by quadratic function of o' — a', in equilibrium v,,.
For identification of the limit, we use the uniqueness of
stationary coupled martingale solutions due to
Gubinelli-Perkowski, PTRF 2020.

In the limit SPDE, drift term with ¢’ can be killed by the
spatial shift:

Y/ (u) == Yi(u+2c'Q'(ag)t).
So we assume ¢’ = 0 below for simplicity.

We also show the tightness of { YV} in the uniform
topology in D([0, T],S'(T)").



Boltzmann-Gibbs principle

» For ( = ({(x)), the average of ¢ around x in size ¢/ > 1 is
defined by  ((x) = 545 >0, <, C(x+ ).

Theorem 2

Let f = f(a) € L*(va,) be a local function supported on sites
ly| < 4o s.t. (f)(ao —OandV<f)( 0) = 0. Then,
iC = C(€0)>Os.t. for T>0,0>/lyand ¢:Ty— R,

Evo [ sup /Ot ds 3" o - [CS])(f(TX Z 0,05 (F)(a0)

0<t<T CTy 255

{000 ) (100 - ) - 2} )
T23N2||¢||LI<TN>)2,

= Lery |07

T/
< €l B 7 Wl +

where (ij(ao)) = COoV (l/ao)r




Proof of BG principle (Theorem 2)

» [t6-Tanaka trick to reduce dynamic problem to static one
(bound by H™*-norm, cf. Lecture No 3):

EVao[ sup (/OtF(as)ds)z] < C(F(~L™)TF),, .

0<t<T roughly

» To estimate H~!-norm by L?-norm, we apply the spectral
gap of the operator —L¥™, but this works on bounded
region and depends on the size of region.

> L)' Symmetrized generator on A, = {x; |x| < (}

with fparticles= k on Ay,
W(k, () := (spectral gap of —LY;")~"
= E"[W(k,()?] < C¢* holds.
We need some assumption on (g;)"_; to show this.

» So, we need to confine ourselves in a bounded region of

size ¢ by conditioning (— canonical ensemble).



Static estimates: Decay estimate for canonical average as
¢ — oo to grandcanonical average (equivalence of
ensembles) and Taylor expansion.

To give some feeling, for y € R”,

EYo[f(a) - 1{a(z):y}]

Evo[f(a)la®) = y] =
0[ (Oé)la Y] Vag(a(é) _ y)

o EIF(o)]

~ (f)(a0) + V(f)(a0) - (v — a0) + 3 (¥ — a0, D*(f)(a0)(y — a0)) + -

Taylor expansion

(*) is usually called the equivalence of ensembles and
shown by applying local CLT:

Vao(a(é) = y) ~ CgefCe(yfao,V‘l(yfao))‘
We use (by taking y = a(9)
E*o[f(a)] = E" |E*[f(a)|a"]],

and this leads to (the static version of) Theorem 2.
(End of proof of Theorem 2) [



Tightness of { YV} in uniform topology in D([0, T],S'(T)")

» (Mitoma's theorem) It is enough to show the tightness of
{Y(G)} in D([0, T],R) for each test function
G € C>(T).

> Martingale term {M;"(G)} has quadratic variation
bounded in L*(f2), so that it is tight.

» BG principle gives a bound for drift term in Dynkin's
formula.



Martingale problem approach (Gubinelli-Perkowski, 2020)

» Coupled KPZ-Burgers equation (canonical form) for
Y =0,h

00! = LY+ L0V )+ 0
» Formal generator (Lectures No 3, 4): L = Lo + A, where
Lod(Y) =1y < /T 02D, ) du + /T G2Y(u) - Dyigy)® du)
AD(Y) = %Zr;k/au(yf(u)vk(u))oy,»(u)q> du
ij.k T

for ® = ®(Y). D, D? are Fréchet derivatives.



» Precise definition of (£, D(L)):
Let v be the probability distribution on S'(T)” of white
noise in space. Let

LP(v) =TL? = @ [*(T™)" (Fock space)

be the Wiener-Ito chaos decomp05|t|on.

> D(L) = {p;¢* €
(—Lo) L2 N (1 + N)92(=Lo) V2T L%},
where ¢, called controlled function, is a solution of

— (—Lo) TATp = ¢,

in controlled sense (i.e., first define singular products
based on Gaussian structure by hand, and then others are
usual calculus), A~ is a certain cut-off of A and NV is a
number operator.

» If A instead of A™, this is resolvent equation with A = 0:
(ﬁo + .A)(,O = ﬁogoﬁ.



» [GP] showed that, for ©* of this class, the solution ¢
exists, D(L): dense in L2 and £ : D(L) — (—Lo)Y/?TL?
is well-defined.

» [GP] also showed Kolmogorov backward equation
0:p = L is solvable in controlled sense in
v =¢(t,Y) € D(L) for wide class of initial values
©(0) = ¢o (by Galerkin method + a priori estimates).

» Exponential [2-ergodicity is also shown,



» (L£,D(L))-martingale problem is well-posed.

"'} Uniqueness is shown as follows:
t
(£, Ye) — D(0, Vo) — / (0.0 + LO)(s, Y.)ds
0

is a martingale for ®(t,-) € D(L). Take ®(t,Y) = (T —t,Y)
with the solution ¢ of Kolmogorov equation. Then,

o(T —t,Y:) — (T, Yo) is martingale. Take t = T and we have
Ev,[0o(YT)] = (T, Yo). This shows the uniqueness.

» Stationary solution of cylinder function martingale problem i.e.,
martingale property holds for tame functions

(b(Y) = f(<Ya¢l>7’<Y7wn>)

instead of ® € D(L) satisfying [t6-Tanaka trick (or Kipnis-Varadhan
type estimate), is a solution of (£, D(L))-martingale problem.

*.) Indeed, for ¢ € D(L), let o be the projection of ¢ to
@2:’20 L2(T™)". Then, o is a tame function. By several a priori
bounds, one can take the limit M — oo.



» We again use |t6-Tanaka trick (bound by H~-norm):

.
sup ‘/ ds < CT/O Iy (=Lo)2e0]l”,

t€[0 T]

where ¢, = /p — 1.
> Interpretation of nonlinear term I, 9, (Y7 Y*):
For Y € C([0, T],S8(T)") and test function H,

Al (H) ::Zr}k/o ds/TauH(uXYsj,GE(- — ) (YK, Gl — u))du,

where G, — dg. Then, by It6-Tanaka trick,

A(H) = Hleifg A (H) in L2(Q, C([0, T], R)).

» The proof of Theorem 1 is completed by combining all
these arguments. O



Trilinear condition

> Our I (ap) satisfies the trilinear condition (T) after
rewriting it in a canonical form by change of time and
magnitude.

» The scaling limit under Product measure v,, is “white
noise” (at Burgers' level), so that this is consistent.

» As we noted, we have a heuristic proof of

(T) < “invariant measure = spatial white noise”.

(This is true at least in a discrete setting.)

Multi-color case
> gi(k) = g(lk i k= (ki kn)
©(po)

> Frame condition holds at pqg satisfying ¢'(po) = =2,

where ¢(p) := (g)(p) (defined in color-blind ensembles).




In multi-color case, one can decouple our coupled KPZ
equation as follows.

H := 3", h' (color-blind system) satisfies the
scalar-KPZ equation:

n n
O:Hy = c10?He + o (Z aé)> (0uH:)? + oW, W.= Z \/a{)V'V",

i=1 i=1
with some constants ¢y, ¢, c3.
On the other hand, H{ := a)h’ — alh are OU processes:

0T = lO2HT + W, W =\ [ Wi — \[aha

One can show that W and {W#} are independent, since
the covariances vanish.

In this case, the uniqueness of stationary energy solution
of the coupled KPZ equation follows from the uniqueness
for scalar-valued KPZ equation and OU processes, and
independence of these processes.



Summary of this lecture

We discussed the derivation of coupled KPZ equation from
multi-species zero-range processes:

| 4
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n-species zero-range processes

Hydrodynamic limit, Linear fluctuation

Nonlinear fluctuation leading to coupled KPZ equation
Boltzmann-Gibbs principle

Martingale problem

Trilinear condition
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