Cohomology and sheaves

We'll come back to this in more detail later. For non, we just explain enough to continue our discussion of moror symmetry Def (partial) a sheaf of abelian groups F on a topological Space M is given by () for each open MCM, on abelian group F(N) and 2) for opens NCV a morphism F(V) -> F(N) satisfying certain compatibilities

 $E_X (D)$ For a vector bundle E on M, get a sheaf where F(M) is sections of $E|_{M}$, and morphisms are restrictions.

(2) For an abelian group G, get a sheaf G on M where $F(\mathcal{M})$ is locally constant functions $\mathcal{M} \to G$.

Complexes of sheaves

We can also consider morphisms between sheaves, and kernels and images of such. Then for sheaves $\longrightarrow \mathcal{F}^{i} \longrightarrow \mathcal{F}^{i+1} \longrightarrow \mathcal{F}^{i+2} \longrightarrow \mathcal{F}^{i+1}$ Say have complex if dit's di = 0, and exact complex if furthermore have equality in ker (dir") 5 im (di). Failure of exactness is measured by Hi(5) = ker(di)/im(di), cohomology sheaf Ex A sheaf of abelian groups on M=pt is determined by a single abelian group $F = \mathcal{F}(pt)$. Morphism between such sheaves correspond to morphisms between abelian groups, and thence cohomology sheaves to cohomology groups.

Cohomology theories

Let's briefly review, for more details see [H, Appendix B] Def a resolution F of a sheaf G is a sequence $f^{\circ} \rightarrow f' \rightarrow$ such that $0 \rightarrow G \rightarrow F^{2} \rightarrow F' \rightarrow is exact complex of sheaves$ Cech cohomology groups Take $M = \bigcup_{i=1-n}^{N} M_i$ open cover. Then have Čech complex C'(F) of abelian groups $C^{j}(\mathcal{F}) = \bigoplus_{i < - < i} \mathcal{F}(\mathcal{N}_{in} - \mathcal{N}_{ij})$ with differentials d' CI-> CI+' defined using restriction morphisms. For instance,

 $d^{\circ} \oplus F(\mathcal{M}_{i}) \to \bigoplus_{a \in b} F(\mathcal{M}_{a}, \mathcal{M}_{b})$ with components ves if i = aand res if i = b

so that kerd^o = F(M). Then Def Cech cohomology group $H^{J}(\mathcal{F}) = H^{J}(C^{\bullet}(\mathcal{F}))$ $E_X H^o(F) = F(M)$ "global sections of F''FU(F) for j>0 gives obstructions to existence of global sections dekhan cohomologn groups Write D' for the sheaf of j-forms on a smooth manifold M, with coefficients in R. In particular, R is sheaf of (smooth) functions Consider sequence $F(M) : O \rightarrow \mathcal{N}(M) \xrightarrow{d} \mathcal{K}(M) \xrightarrow{d}$ Def dekham cohomology group $Hik(M, R) = H^{j}(F'(M))$ Ex H^o_{dR}(M, R) = {locally constant R-valued Functions on M} (solutions of equation df = 0) Prop $H_{dR}^{i}(M, IR) = \tilde{H}^{i}(R)$ locally constant sheaf on M when {M3 is good, ie all Min-Mi, are contractible or empty

Proof Uses that F 0-> N -> is a resolution of R

Sheaf cohomology For a sheaf F on M we make: Def (preliminary) $H^{1}(F) = H^{1}(F)$ for a good cover Rem Later, we'l see that sheaf cohomology can be defined more elegantly in terms of a resolution of F.

We may similarly use C-valued functions to define $H_{JR}^{i}(X, \mathbb{C})$ on complex manifold X. Now a r-form with C-coefficients may be written locally as a sum of (p,q)-forms $fd_{z_{i}}\Lambda - \Lambda dz_{p}\Lambda dw, \Lambda - \Lambda dwa, p+q=r,$

for fa function and zi, w; holomorphic functions (informally a decomposition its holomorphic and arti-holomorphic parts)

For a compact Kähler manifold, this has the

following consequence on the level of cohomology

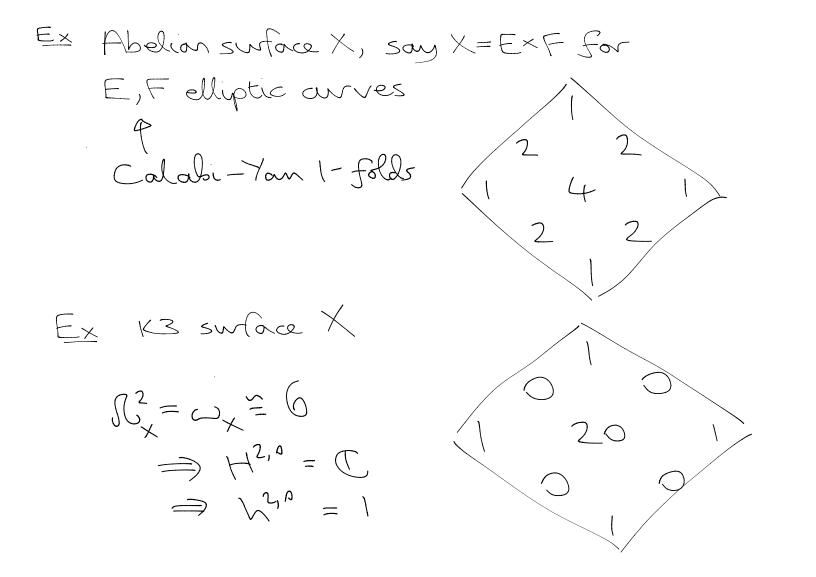
 $H_{dR}^{r}(X, \mathbb{C}) = \bigoplus H^{p, 2}(X) \text{ where } H^{p, 2}(X) = H^{2}(\mathbb{C})$

Ren This follows from "Hodge theon" [H, §3.2] We call HP, 2(X) the Hodge groups, and refer to Hodge numbers W, P, Q(X) = dun HP, Q(X)

Symmetries of Hodge groups

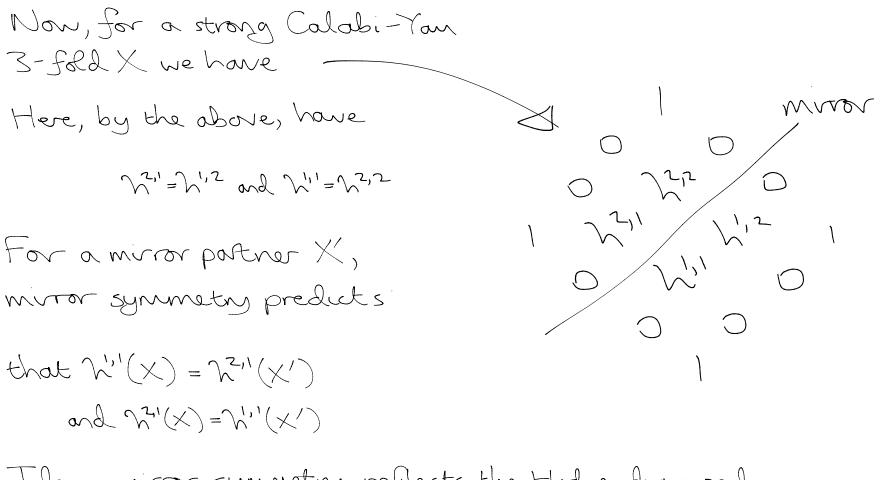
We have $H^{RQ}(X) \cong H^{QP}(X)$ via complex conjugation

Also Serre Quality [14, §4 1] gives an isomorphism $H^{p,q}(X) \cong H^{n-p,n-q}(X)^{\vee}$ where $n = \dim X$ It follows that $\gamma P' = \gamma P'$ and $\gamma P' = \gamma P' - q$ Hodge diamond It is convenient to arrange the Hodge numbers $\lambda_{n,0}$ $\lambda_{n,0}$ $\lambda_{n,n}$ as follows: Ex Smooth complex curve X, genus g $H''^{\circ}(X) = H^{\circ}(\mathcal{U}) = \mathcal{U}(X) = \mathbb{C}\mathcal{J}$ $H^{0,0}(X) = G(X) = \mathbb{C}$



To exclude the case of abelian surfaces it is common to take Def A (strong) Calabi-Yam X is Calabi-Yam as above with furthermore H^{P,°} timial for 0<p< n

Rem K3 surfaces are Calabi-You in this sense



Idea: mirror symmetry reflects the Hodge dramond in the line shown.

Rem This is origin of term "mirror symmetry" We outline how this comes from physics.