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今日唐诗

山居秋暝

王维

空山新雨后，天气晚来秋。

明月松间照，清泉石上流。

竹喧归浣女，莲动下渔舟。

随意春芳歇，王孙自可留。
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Virtual links I
A virtual knot represents a natural combinatorial generalisation of a
classical knot: We introduce a new type of a crossing and extend new
moves to the list of the Reidemeister moves. The new crossing type
(which is called virtual and depicted by a small circle) should be
treated neither as a passage of one branch over the other one nor as a
passage of one branch under the other. It should be treated as a
diagrammatic picture of two parts of a knot (a link) on the plane
which are far from each other, and the intersection of these parts is an
artifact of such a drawing, see Fig. 1.

Figure 1: A virtual crossing
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In that sense the following list of generalised Reidemeister moves is
natural: All classical Reidemeister moves related to classical crossings
and a detour move. The latter represents the following: A branch of a
knot diagram containing several consecutive virtual crossings but not
containing classical crossings can be transformed into any other
branch with the same endpoints; new intersections and
selfintersections are marked as virtual crossings, see Fig. 2.

Figure 2: The detour moves
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Definition 1.1
A virtual diagram (or a diagram of a virtual link) is the image of an
immersion of a framed 4-valent graph in R2 with a finite number of
intersections of edges. Moreover, each intersection is a transverse
double point which we call a virtual crossing and mark by a small
circle, and each vertex of the graph is endowed with the classical
crossing structure (with a choice for underpass and overpass
specified). The vertices of the graph are called classical crossings or
just crossings.

A virtual diagram is called connected if the corresponding framed 4-
valent graph is connected.
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Definition 1.2
A virtual link is an equivalence class of virtual diagrams modulo the
generalised Reidemeister moves. The latter consist of the usual
Reidemeister moves referring to classical crossings and the detour
move.

Thereby, in order to define a virtual knot, we need only to know the
position of classical crossings and their connections with each other.
Moreover, positions of paths connecting classical crossings, their
intersections and self-intersections, are not important for us.
We also allow circles without vertices as separate connected
components.
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Virtual links II
Like a classical link a virtual link has the number of components. A
virtual knot is a virtual link with one (unicursal) component. The
components of a virtual link can be described combinatorially by
using virtual diagrams.

Definition 1.3
By a unicursal component of a virtual diagram K we mean the
following. Consider K as a one-dimensional cell-complex on the plane.
Some of the connected components of this complex are circles. We
call each of these components a unicursal component of K. The
remaining part of the cell-complex represents a framed 4-valent graph
with vertices which are classical or virtual crossings. Unicursal
components of K are (besides circles) equivalence classes on the set of
edges of the graph: Two edges e, e′ are equivalent if there exists a
collection of edges e = e1, . . . , ek = e′ and a collection of vertices
v1, . . . vk−1 (some of them may coincide) of the graph such that edges
ei, ei+1 are opposite to each other at the vertex vi.
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It is easy to see that the number of components of a virtual diagram
is invariant under the generalised Reidemeister moves. Therefore, we
can define unicursal components of a link as unicursal components of
a diagram of the link. In the classical case, this definition coincides
with the definition given above.

Definition 1.4
The writhe, w(K), of a virtual diagram K is the number equal to the

number of positive crossings minus the number of negative

crossings .
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Definition 1.5
By the Gauss diagram corresponding to a planar diagram of a
(virtual) knot we mean a diagram consisting of an oriented circle
(with a fixed point, not a preimage of a crossing) on which the
preimages of the overcrossing and the undercrossing (for each classical
crossing) are connected by an arrow directed from the preimage of the
undercrossing to the preimage of the overcrossing. Each arrow is
endowed with a sign coinciding with the sign of a crossing, i.e. it

equals 1 if we have and −1 for .

The Gauss diagram can be viewed as a chord diagram with an
additional structure [9].

Definition 1.6
A chord is odd (even) if it intersects an odd (even) number of other
chords.
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Formally, parity is a way of associating 0 and 1 to crossings which
satisfies certain axioms. We have already seen Gaussian parity. There
are many other parities, which we’ll see in the next lectures.

Remark 1.7
Parity is a powerful tool to generate new invariants.
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The Gauss diagram of the right-handed trefoil is shown in Fig. 3.

Figure 3: The Gauss diagram of the right-handed trefoil
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Gauss diagrams (with some information lost; we forget about the
orientation of chords and signs) can be encoded by double occurrence
words, i.e. each letter in a word occurs precisely twice, and, moreover,
it does not matter which letters are used, but it is important whether
two letters are the same or not.

Let us attribute a letter to each classical crossing (different crossings
have different letters). To each classical crossing, an arrow of the
Gauss diagram is assigned. Let us place each letter corresponding to a
crossing near the head and the tail of the arrow corresponding to the
crossing. By traveling along the circle of the Gauss diagram from the
fixed point and writing down consequently the letters met by us, we
get the double occurrence word.

Let us call this word the Gauss code of a knot diagram. For instance,
let us attribute the letters a, b, c to the crossings of the classical
trefoil. Then the Gauss code is abcabc.
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Arbitrary Gauss diagrams, generally speaking, can be non-realisable
by an embedding of a framed 4-valent graph in the plane, but they
can be realised by means of a generic immersion in the plane by
making points having more than one preimage (in a generic case they
have exactly two preimages) virtual crossings, see Fig. 4.

Figure 4: The Gauss diagram of a virtual knot
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This naturally leads us to the following definition of a virtual knot
(not links): One has to consider all formal Gauss diagrams and
describe formal Reidemeister moves on them (as it was done in the
case of classical knots). They will represent combinatorial scheme of
transformations of Gauss diagrams. In that case, equivalence classes
of Gauss diagrams over formal Reidemeister moves are virtual knots.
Note that we do not need the detour move as a Gauss diagram
“knows”nothing about position of virtual crossings on the plane, and

it “knows”only position of classical crossings and their connections
with each other. It means that Gauss diagrams “feel”only classical
Reidemeister moves and do not “feel”the detour move.
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In order to define a link, one can consider the generalisation of a
Gauss diagram with several core circles. See Fig. 5
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Figure 5: Reidemeister moves for Gauss diagrams of a virtual knot
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Virtual knots (here by a knot we mean also a link) can be defined as
knots in thickened oriented surfaces S × I, where S is a
two-dimensional oriented closed surface and I = [0, 1] is the segment
with a fixed orientation; moreover, thickened surfaces should be
considered up to stabilisations, i.e. up to additions and removals of
handles to S in such a way that additional thickened handles do not
touch our knot. Branches of a virtual knot having a virtual
intersection for a virtual diagram and related to two parts of the
virtual knot located far away from each other, can move freely on the
surface independently from each other.
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From now on, we suppose that the structure of direct product is fixed
on a thickened surface S × I and it is pointed toward which side is up,
say the side S × {1}, and which one is down, say the side S × {0}. In
the case of links, one can consider a disjoint union of manifolds,
S = S1 ⊔ · · · ⊔ Sk.
Links in S × I can be described by diagrams on S with the under/
overcrossing structure specified. In that sense, virtual diagrams are
obtained by means of regular generic projections of diagrams from S
to the plane: Crossings pass to classical crossings and new
intersections (artifacts) are marked by virtual crossings; moreover, it
is required that under regular generic projections neighborhoods of
classical crossings are mapped into the oriented plane with the
orientation preserved. The Reidemeister moves for diagrams on S (the
same as in the case of classical diagrams) correspond to the classical
Reidemeister moves for virtual diagrams; there are also
transformations which do not change the combinatorial structure of
diagrams on S, but do change the combinatorial structure of the
projection to the plane. The detour move corresponds to these
transformations.
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A realisation of the detour move by moves on thickened surfaces and
their projections is shown in Fig. 6.

Figure 6: Generalised Reidemeister moves and thickened surfaces
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This leads us to local versions of the detour move which consist of:
(1) virtual Reidemeister moves Ω′

1,Ω′
2,Ω′

3: which are obtained from
the classical Reidemeister moves by swapping all classical crossings
participating in moves for virtual crossings, see Fig. 7.

Figure 7: Moves Ω′
1,Ω′

2,Ω′
3
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(2) semivirtual version Ω′′
3 of the third Reidemeister move. Under this

move the branch containing two virtual crossings can be carried
through a classical crossing, see Fig. 8.

Figure 8: The semivirtual move Ω′′
3
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We call a Reidemeister move increasing (respectively, decreasing) if
this move increases (respectively, decreases) the number of crossings
(the number of classical crossings in the classical case and the number
of virtual ones in the virtual case).

Proposition 1.8
Two virtual diagrams K and K′ are obtained from each other by a
finite sequence of detour moves if and only if they are obtained from
each other by a finite sequence of the moves Ω′

1, Ω′
2, Ω′

3, Ω′′
3 and their

inverses.
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The reconstruction of a knot diagram in a thickened
surface

The reconstruction of a knot diagram in a thickened surface by a
virtual diagram on the plane is as follows.
Let K be a virtual diagram on the sphere S2 (we compactify the plane
R2 by adding one point). Each virtual crossing of this diagram
corresponds to an intersection of two arcs. Let us choose one of them
and construct a handle for its “lifting”, see Fig. 9.

Figure 9: Lifting of a virtual crossing to a handle
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As a result, we get a diagram (with over/undercrossings and virtual
crossings) on the torus, the number of virtual crossings of which is
less by one than the number of virtual crossings in the initial diagram.
Note that the choice for a position of a handle, up or down, is
immaterial since thickened surfaces are considered on their own
account without any embedding into R3.
It is also easy to check that it does not matter which arc we choose
for lifting it to a new handle. Two diagrams K1 and K2 corresponding
to two such lifts to surfaces M1 and M2 with handles, i.e. K1 ⊂ M1

and K2 ⊂ M2, will be combinatorially equivalent (i.e. there exists a
homeomorphism f : M1 → M2 of one lifting to the other one and f
transforms one virtual diagram to the other one, f(K1) = K2).

Diagrams on a sphere without virtual crossings give the same as
diagrams of the plane (diagrams of classical knots). So, knots of genus
0 are just classical knots.
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Continuing this process we can get rid of all the virtual crossings and
obtain a diagram on Sg(= Sg × { 1

2} ⊂ Sg × [0, 1]), where g is the
number of handles. Here it is convenient to use detour moves. Each of
these moves is a merging of subsequently situated handles to one
handle and a partition of this handle into new handles situated in
other places, see Fig. 10.

Figure 10: Detour move and stabilisation
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In Fig. 10 (lower part) merging (respectively, partition) consists of
elementary moves which are the destabilisation (respectively, the
stabilisation). Meanwhile classical Reidemeister moves are performed
locally on some part of the surface Sg obtained from the sphere by
adding handles.
It is natural that the surface Sg is automatically oriented. The
orientation for Sg arises from the orientation of the sphere Sg to which
we attach handles.
Note that on the surface Sg there is no fixed system of longitudes and
meridians. Actually, under the first virtual Reidemeister move this
surface goes through Dehn twist, see Fig. 11.

Figure 11: Dehn twist and the move Ω′
1
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Theorem 1.9 ([6])
Every stable equivalence class of links in thickened surfaces has a
unique irreducible representative.

Here, “irreducible” means “minimal genus”.

Remark 1.10
Recall that a surface with 0 genus is a sphere.
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Odd writhe

Definition 1.11
Let K be a diagram of an oriented virtual knot. Call a classical
crossing v of K odd, if in the Gauss code of K the number of letters
between two occurrences of the crossing v is odd.

Set:
J(K) = w(K)|Odd(K),

where Odd(K) denotes the collection of odd crossings of K, and the
restriction of the writhe w(K) to Odd(K), denoted by w(K)|Odd(K),
means the summation the signs of the odd crossings in K.
Then it is not hard to see that J(K) is an invariant of the virtual knot
(link) K. We call J(K) the self-linking number of the virtual diagram
K. This invariant is simple, but remarkably powerful.
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If K is classical, then J(K) = 0, since there are no odd crossings at a
classical diagram.

Theorem 1.12
Let K be a virtual knot diagram and let K∗ denote the mirror image
of K (obtained by switching all the crossings of the diagram K). Then

J(K∗) = −J(K).

Hence, if J(K) ̸= 0, then K is inequivalent to its mirror image. If K is
a virtual knot and J(K) is non-zero, then K is not equivalent to any
classical knot.
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Example 1.13
In the case of the virtual trefoil K two crossings are odd and, hence,
we have J(K) = 2. This proves that K is non-trivial, non-classical and
inequivalent to its mirror image. Similarly, for the virtual knot E the
crossings a and b are odd. We have J(E) = 2 and, hence, the knot E
is also non-trivial, non-classical and inequivalent to its mirror image.
Note that for the knot E the invariant is independent of the type of
the crossing c.

Figure 12: Virtual trefoil K and virtual figure eight E
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Fundamental groups
In previous section we have seen the phenomenon of parity which
appears in virtual knot theory. There will be a lecture about free
knots where we shall see that knot theories with parity (e.g., virtual
knot theory) allows one to construct invariants of an absolutely new
sort: picture-valued invariants. These invariants are valued not in
groups or polynomials but in linear combinations of knot diagrams
[8, 10].

Though virtual knots are not embeddings in R3, one can easily
construct a generalisation of the knot complement fundamental group
(or, simply, the knot group) for virtual knots. Namely, one can
modify the Wirtinger presentation for virtual diagrams. Consider a
diagram L of a virtual link L. Instead of arcs we shall consider long
arcs of L, which pass from an underpass to the next underpass. We
take these arcs as generators of the group to be constructed. After
this, we shall write down the relations at classical crossings just as in
the classical case: if two long arcs a and c are divided by a long arc b,
whence a lies on the right hand with respect to the orientation of b,
then we write down the relation c = bab−1.
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Fundamental groups
The invariance of this group under classical Reidemeister moves can
be checked straightforwardly: the combinatorial proof of this fact
works both for virtual and classical knots. For the semivirtual move
and purely virtual moves there is nothing to prove: we shall get the
same presentation.

However, this invariance results from a stronger result: invariance of
the virtual knot quandle, which will be discussed later.

Definition 2.1
The group defined as above is called the group of the link L.
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Strange properties of virtual knots
Some virtual links may have properties that do not occur in the
classical case. For instance, both in the classical and the virtual case
one can define “upper” and “lower” presentations of the knot group
(the first is as above, the second is just the same for the knot (or link)
where all classical types are switched). In the classical case, these two
presentations give the same group (for geometric reasons). In the
virtual case it is however not so. The example first given in [1] is as
follows.

ac

d

b

Figure 13: A virtual knot with different upper and lower groups
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Strange properties of virtual knots
In fact, taking the arcs a, b, c, d shown in Fig. 13 as generators, we
obtain the following relations:

b = dad−1, a = bdb−1, d = bcb−1, c = dbd−1.

Thus, a and c can be expressed in the terms of b and d. So, we obtain
the presentation ⟨b, d|bdb = dbd⟩. So, this group is isomorphic to the
trefoil group.
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Strange properties of virtual knots

Definition 2.2
By a mirror image of the virtual link diagram we mean the diagram
obtained from the initial one by switching all types of classical
crossings (all virtual crossings stay on the same positions).

Exercise 2.3
Show that the group of the mirror virtual knot in Fig. 13 is
isomorphic to Z.

This example shows us that the knot shown above is not a classical
knot. Moreover, it is a good example of the existence of a non-trivial
virtual knot with group Z (the same as that for the unknot). The
latter cannot happen in the classical case.
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Strange properties of virtual knots
The simplest example of the virtual knot with group Z is the virtual
trefoil; see Fig. 14.

Figure 14: The virtual trefoil
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Strange properties of virtual knots
The fact that the virtual trefoil is not the unknot will be proved later.
Besides this example, one encounters the following strange example
(Kishino knot): the connected sum of two (virtual) unknots is not
trivial; see Fig. 15. We shall discuss this problem later, while speaking
about long virtual knots [7].

Figure 15: Non-trivial connected sum of two unknots
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Strange properties of virtual knots
It is known that in the classical case long knot equivalence classes are
the same as (compact) knot equivalence classes. In virtual knot
theory different long knots can close up to the same knot, non-trivial
long knots can close up to the unknot, and long knots almost never
commute (unlike the classical case).
It is well known that the complement of each classical knot is an
Eilenberg–McLane space K(π, 1), for which all cohomology groups
starting from the second group, are trivial. However, this is not the
case for virtual knots: if we calculate the second cohomology the
K(π, 1) space where π is some virtual knot group, we might have some
torsion. In [5] one can find a detailed description of such torsions.
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The virtual knot group G(K)

Denote all arcs of the diagram K by ai, i = 1, . . . , n. The virtual knot
group G(K) is the group generated by a1, . . . , an, q with relations
described in Fig 16.

a

b
c

G(K) = 〈a, b, c, d, q|b = c−1ac, d = b−1cb, a = qdq−1, b = qcq−1〉

x y

z
z = y−1xy

d

x

yz

w

z = qxq−1 w = qyq−1

Figure 16: The virtual knot group of the virtual trefoil knot

S. Kim, V.O. Manturov and Huyue Yan Lecture 13. Virtual knots



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Virtual knots The virtual knot group G(K) Virtual knot quandle The Jones–Kauffman polynomial Exercises Unsolved problems ReferencesOne way of definition Strange properties of virtual knots Another way of definition

Let us call the quotient group of a virtual group over the relation q =
1 a classical group.

Theorem 2.4
The pair (the group G(K), the element q ∈ G(K)) is an invariant of a
virtual link. In other words, if diagrams K and K′ give equivalent
virtual links, then there exists an isomorphism h : G(K) → G(K′)
such that h(qK) = qK′ .

It is evident that for the unknot the group is ⟨a, q⟩; this is the free
group with two generators.
In the case of a classical diagram, we get the Wirtinger presentation
with one generator q (which does not take part in the relations); thus,
the group described above will be the free product of the knot group
with the infinite cyclic group generated by q.
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Some virtual links (and their invariants) can possess properties which
do not exist in the classical case. For example, in both the classical
and virtual cases we can define upper and lower groups (in the
classical case we have the fundamental group of the complement); the
lower group for a virtual knot is defined as the group of the mirror
image of the virtual knot. For classical knots these groups are
isomorphic under geometric reasons. In the virtual case the upper and
lower representations can give non-isomorphic classical groups. In the
examples given in the next page we give a group without an
additional generator q.
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Let us consider a virtual knot diagram shown in Fig. 17.

Figure 17: A virtual knot with the non-isomorphic upper and lower groups

Its four long arcs a, b, c, d shown in Fig. 17 can be chosen as
generators of the group. Here a long arc goes from one undercrossing
to the next undercrossing, and forms overcrossings and virtual
crossings during the way.
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We shall get the following relations:

b = dad−1, a = bdb−1, d = bcb−1, c = dbd−1.

Thus, the generators a and c can be expressed from the generators b
and d. Therefore, we get the presentation ⟨b, d|bdb = dbd⟩, which
represents the group isomorphic to the group of the trefoil. It is not
difficult to note that the group of the mirror image of the given knot
is isomorphic to the group Z, the group of the unknot.
From the theorem of Dehn–Papakyriakopoulos [11], it follows that
among non-trivial classical knots there does not exist a knot having
the fundamental group of the complement isomorphic to Z, therefore,
our knot is not classical.
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Virtual knot quandle
We have defined the virtual knot group and even its generalised
version (with a new generator q). Quite similarly, one defines the
virtual knot quandle Q(K) which coincides with the usual quandle for
the case of classical knot. From the existence of a quandle, we get the
following

Theorem 3.1
If two classical links K1,K2 are equivalent as virtual links then they
are equivalent as classical links.

Proof.
If K1 and K2 are virtually equivalent then Q(K1) is isomorphic to
Q(K2). Since Q is a complete invariant of classical linksa we have that
K1 is equivalent to K2.

aActually, up to some minor equivalence, but it can be handled
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The above theorem can be proved in many ways. We mention just
two of them.

1 Any virtual link has a unique representative of minimal surface
genus (up to isotopy) [6]. If a knot is classical then this genus is 0
and this unique representative gives rise to a links in S2 × I. It is
known that classification of links in S2 × I is the same as that in
R3.

2 There is a well-defined projection from virtual knot Gauss
diagrams to classical knot Gauss diagrams which is identical on
classical diagrams. This projection agrees with Reidemeister
moves. It is realised by deleting some chords of the Gauss
diagram [8].

Hence, if two classical knot (Gauss) diagrams are related by a
sequence of Reidemeister moves which contains virutal knot
diagrams, then we can get a sequence of classical knot diagrams.
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The Jones–Kauffman polynomial
The Kauffman construction for the Jones polynomial for virtual knots
[2] works just as well as in the case of classical knots. Namely, we first
consider an oriented link L and the corresponding unoriented link |L|.
After this, we smooth all classical crossings of |L| just as before
(obtaining states of the diagram). In this way, we obtain a diagram
without classical crossings, which is an unlink diagram. The number
of components of this diagram (for a state s) is denoted by γ(s). Then
we define the Kauffman bracket by the same formula

X(L) =
∑

s
(−a)3w(L)aα(s)−β(s)(−a2 − a−2)γ(s)−1,

where w(L) is the writhe number taken over all classical crossings of
L, and α(s), β(s) are defined as in the classical case.
The invariance proof for this polynomial under classical Reidemeister
moves is just the same as in the classical case; under purely virtual
and semivirtual moves it is clearly invariant term–by–term.
However, this invariant has a disadvantage [2]: invariance under a
move that might not be an equivalence.
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Fact: Degrees of terms in the Kauffman bracket are no longer
congruent mod 4. They are just congruent mod 2.

Corollary 4.1
If for a virtual link K the Kauffman bracket has terms whose
exponents are not congruent mod 4, then this link is not classical.
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Virtualisation
Virtualisation is the transformation which replaces a classical rossing
with a classical and two virtual crossings as shown in Fig. 18 [9].

Figure 18: Two variants of virtualisation.

Theorem 4.2 ([3])
The virtualisation does not change the value of the Jones–Kauffman
polynomial.
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Example
There are many generalisations of the Jones polynomial for virtual
knots (including the parity bracket and picture-valued invariants).
The Khovanov homology for virtual knots will be constructed in the
next lecture.
Let us consider the virtual knot diagram shown in Fig. 19. This knot
was first considered by Kauffman.

Figure 19: A virtual knot reduced to the unknot by the virtualisation and
the generalised Reidemeister moves.

This knot can be reduced to the unknot with virtualisations and
generalised Reidemeister moves; see Fig. 20 in the next page.
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Example
Ω

2

3

Ω

B’

Ω 3

B’

B’

Detour move

Changing the 

infinity in

Detour move

Detour move

Detour move

2Ω
Changing the 

infinity in

Figure 20: Reducing to the unknot by virtualisations and generalised
Reidemeister moves.
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Example

Ω2

B’

’Virtuali ations Move

Figure 21: The move B′ is expressed in terms of the virtualisation.

In Fig. 20 by the transformation B′ we mean a move applied to one
classical and one virtual crossing; it represents a composition of the
virtualisation and the second Reidemeister move; see Fig. 21. For
each of the transformations shown in Fig. 20, we pick out a domain
which this transformation is applied to.
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Thus, the Jones–Kauffman polynomial of the knot depicted in Fig. 19
coincides with the polynomial of the unknot. One can show though
(e.g. using the techniques of virtual quandles) that this virtual knot is
not trivial.

Other than virtual moves and Jones polynomial for virtual knots,
there exist virtual braids, virtual Markov and Alexander theorem!
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Exercises
1 Prove that all crossings of a realisable classical Gauss diagrams

are even.
2 If a Gauss diagram of a virtual knots has only even chords then

exponents of all terms in the Kauffman bracket of this knot are
congruent modulo 4.

3 Let L be a virtual link two-component diagram. Assume the
number of virtual mixed crossings (i.e., virtual crossings formed
by two different components) is odd. Prove that the link L is not
classical.

4 By looking at the Kauffman bracket of the virtual trefoil knot,
show that it is not classical.
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Unsolved problems
1 Construct a (formally) complete invariant of virtual knots.
2 It is known that virtual knots and links are algorithmically

recognisable [9].
Is there a constructive algorithm for virtual knot recognition?

3 There is a projection map from classical knots to virtual [?]. Are
there (non-obvious) maps from classical knots to virtual knots?
If there were some, one could construct absolutely new (say,
picture-valued) invariants of classical knots.

4 To which extent can the methods of constructing invariants of
virtual knots be generalised for knots with arbitrary manifolds?
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