2020-10-18 KäLles geometry

Leama $\quad v \in S_{y m}\left(\tau_{J}^{\prime} M \otimes \tau_{j}^{\prime} M\right)$
symmetui part.
Proof A symplectic forn a on $\tau_{\jmath M}^{\prime M}$ defines a syuplectic form ω^{-1} on $T_{J}^{*^{\prime}} M$
If $\alpha, \beta \in T_{0}^{c^{\prime}} M$, then by J-ivaviace of w^{-1}

$$
\begin{gathered}
w^{-1}(\alpha, \beta)=\omega^{-1}(J \alpha, J \beta)=\omega^{-1}(i \alpha, i \beta) \\
=-w^{-1}(\alpha, \beta) \\
\therefore \omega^{-1}(\alpha, \beta)=0 .
\end{gathered}
$$

similarly

$$
w^{-1}(v \alpha, v \beta)=0 .
$$

Since ω^{-1} is also J^{\prime}-mavariont

$$
w^{-1}(\alpha+v(\alpha), \beta+v(\beta))=0 .
$$

Thas

$$
\begin{aligned}
\omega^{-1}(\alpha, v(\beta)) & =-\omega^{-1}(v(\alpha), \beta) \\
& =\omega^{-1}\left(\beta, v(\alpha,) v^{j i}\right. \\
v^{i j} g^{j \bar{h}} \alpha ; v^{i} \bar{h} \beta_{i} & =g^{i \bar{h}} \beta_{i} v^{j} \tilde{h} \alpha_{j}
\end{aligned}
$$

$$
\begin{aligned}
& v^{i j}=v^{j i} \\
& S_{0}, T_{J} Z \in C^{\infty}\left(\operatorname{Sym}\left(T_{J}^{r} M \otimes T_{J}^{\prime} M\right)\right)
\end{aligned}
$$

$$
\left.\begin{array}{c}
L^{2} \text {-cines product. } \\
i \quad \operatorname{complex} \text { oTr. }
\end{array}\right] \Rightarrow \begin{gathered}
Z: K_{4} u k \\
\text { sTr. }
\end{gathered}
$$

$K=$ the gronp of all Hamiltonian syuplect omonphisms of (M, ω)

$$
k=C_{0}^{\infty}(M)=\left\{u \in C^{\infty}(M) \mid \int_{M} u w^{m}=0\right\}
$$

$$
i(x) w=-d u_{x}
$$

"noumalized Hamiltonian furctiond" K acts on 2 as holomorphic isometries.

$$
{ }^{+} \quad f:\left(\mu, \omega . T^{2}\right) \mapsto(\mu, \omega, \pi)
$$

Thesem (Donaldsan-Fujiki) \quad S (unce) u_{i}

$$
\begin{aligned}
& \mu: 2 \longrightarrow c^{\infty}(M) / \mathbb{R}=k^{*} \\
& u \\
& J \longrightarrow\left(S(T), \cdot \nu_{L^{2}} \quad L^{2}\right. \text { dual of }
\end{aligned}
$$ s calar curvature $S(W, J)=S(J)$.

is an equiv variaret moment map.
proof omitted.

$$
\mu^{-1}(0)=\{J \mid(\mu, w, J) \text { has a constant }\}
$$

If we apply Keupt-Ness naively in-chis infinite dimensimal setting, the pollen can he regarded as a $\in \tau T$ problem.
Remark K^{c} does not exist in this infinite dimensional setting.
But $k^{c}=\left\{u+i v \mid u, v \in C_{0}^{\infty}(M)\right\}$. exists. This defines a foliation of 2 . Each leaf plays the vole of K^{C}-orbit Γ and P / K is diffeomorphic to de space of Känker forums in a fixed Käher class. (f home work: hint

$$
\begin{aligned}
& L_{J x} w=i \partial j v_{x} \\
& x \text { Haniltomia } \rightarrow v_{x}
\end{aligned}
$$

Work of Xiaowei Wang:
Moment mape, Fu taki mvaviant. and stability of projective mani foeds, Comm. Anal. Gear. 12 (2604), 187-196. Lichnerowicz- Matsudima, Futalei can be both interpreted ao. obstructions to stability a terns of finite dimensimal moment map pictone. (\exists fiwite dimensiand analoques.)
t.ndim
$\Lambda \rightarrow N$ auple line Luadle.
$\left(\mathcal{L} \rightarrow Z^{\downarrow} \quad\right.$ if inite di Tian (1999)

$$
\wedge_{\alpha}^{i_{i i}} \operatorname{lar} p_{p} \otimes\left(\begin{array}{ll}
\operatorname{din} & \operatorname{Tn} p
\end{array}\right)^{*}
$$

${ }^{7 L} \rightarrow$ space of Eä wuer froms as the determinout linelbdle of sue family of elliphi operators such chat

$$
\log (\underbrace{\text { Quillen metri }})=\begin{align*}
& \text { Mabachi } \tag{5}\\
& \\
& k \text { - energy }
\end{align*}
$$

"analytic Torsion"
w. MüHer - K. Wendland

CM- line buadle"
Question: Propaness of K-energy. Tian: The behawion f Kaeneray at infinity is approxiwated by
"Futaki in raiat".
Heed to te degheration of M.
noumal varictos Ring-Tian defined generalized Futaki in vaiat $=$ special degeneration" (1999)
Alg gemeters thaght "normality conditim" is a drawback tecause degeneration of aly vaiely is not normal in genend. 2002. Dmaldson otefined "test configuration" "Draldson-Futaki inv" without "noadit".
$L i\left(h_{i}\right)-X_{u}$ (Chemgang)
starting without nolwality, we can reduce de test configuration with nominal central fiber (degeneration). Hrivg Mining model program.
As a result; Tian 's definition was Ok for Fano mai fold.
We go back to finite dim moment mop geometry.
Question: How can we check properness

$$
\text { of } H=\log |\gamma|^{2} \quad r \in P_{C \in-a b i t}^{C} \Lambda^{-1} \text {. }
$$

The ansuln (Mumford) is Hilbent-Mumhd aiterion.

$$
\begin{aligned}
& \Lambda^{-1} \rightarrow N \text { with } \mathbb{E}^{*} \text {-action } \\
& \sigma: \mathbb{C}^{*} \rightarrow K^{c} \\
& \psi \rightarrow \psi \\
& t \longmapsto \sigma(t)
\end{aligned}
$$

If $\lim _{t \rightarrow 0}(\sigma(t) p)=P_{0}$
der

$$
\begin{gathered}
\sigma(t) P_{0}=P \text { for }{ }^{\theta} t \\
\sigma(t) \Lambda_{P_{0}}^{-1}=\Lambda_{P_{0}}^{-1} \\
T_{1-\operatorname{dim}}
\end{gathered}
$$

$$
\begin{aligned}
& \sigma(t): \Lambda_{\psi}^{-1} \rightarrow \Lambda_{p_{0}}^{-1} \\
& \Lambda_{p}^{-1} z \longmapsto t^{-\alpha} z \\
& \left\{\sigma(t) \stackrel{\rightharpoonup}{x} \mid t \in \mathbb{C}^{*}\right\} \text { is oCrsed } \\
& \Leftrightarrow \quad H=\ln |r|^{2} \text { s proven. } \\
& \Leftrightarrow t^{-\alpha} z \rightarrow \infty \text { as }+\rightarrow 0 \\
& \Leftrightarrow \alpha>0 \text {. }
\end{aligned}
$$

Def α is called Mum fond weight.

Hilbent-Man ford citeion

$$
\mathbb{C}^{*} \text {-akit is stable } \Leftrightarrow \text { Munford weight }>0 \text {. }
$$

Space l kïnuen fors (Calabi style)
$\underset{\text { morer }}{\longrightarrow}$ space 1 almost ampler stas.
\longrightarrow "test configuratim" "DF iv" Hilbn-Manfud aséterion

Det A pain of (H, C) of compact conplex mamifld M and an auple line bdle L on M is called a polarized manifold.
cinher fram

$$
c_{1}(L)>0 \quad \Omega=\left\{\omega^{\prime}\left[[\omega] \in c_{L}(L)\right\}\right.
$$

sqace of tähler foums.

- Kodaira en bedding

$$
\begin{aligned}
& \text { enbedding } \\
& 2: H \longleftrightarrow \mathbb{P}^{\alpha}(\mathbb{C}) \\
& L=T^{*} \theta(1) .
\end{aligned}
$$

Kodaira bamishing
If $L>0$ then $\exists n_{0}$ s.t. tr $\forall x \geq n_{0}, H^{i}\left(M, L^{n}\right)=0$
fr $\dot{\alpha}_{i}>0$.
(So only $H^{0}\left(M, L^{n}\right)$ revain)

$$
\begin{aligned}
\text { Riman-Roch } & \rightarrow \text { dii } H^{0}\left(M, L^{k}\right) \\
\text { polynomial } & =\frac{c_{1}\left(L^{k}\right)^{m}}{m!}+\cdots
\end{aligned}
$$

w k of
degree m.

