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MONTE CARLO SIMULATION
Consider X ~ £()\) and a prior A~ G(«a, 3)

How can we compute the prior predictive density at a value =?

Le. f(z) = [ F(z|A)m(N)dA?

_ [T e B et a8y B
ﬁf(a:)—/o e I_(oz))\ e d)\_a(5+a:)o‘+1

But what about choosing a Weibull prior A ~ W(«a, 8)?

B (A" ;
Weibull density: 7(A|o, 8) = = (—) e(=M" o B> 0
(@ (@

In this case we are unable to compute (at least easily) the integral so that we need
to resort to a Monte Carlo simulation method

Here | will not discuss about the (rate of) convergence and errors committed in eval-
uating the integral



MONTE CARLO SIMULATION

How to approximate the prior predictive density for z > 07
Choose a grid of (equally spaced or not) points z;, j = 1,..., M

Draw a ("large”) sample A1, Ao, ..., Ay from the Weibull prior
OO o F )
For each z; compute f(x;) = / Flai )T (N)dA = ) # = f(z;)
0 i=1

= Approximation of f(x), based on f(x1),..., f(x), using splines, etc.
Many sources of uncertainty: N, M, grid, fitted function

We omit a discussion about those uncertainties
MC for posterior expectations /h(A)w(My)d)\, e.g. posterior mean for h(\) = A
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IMPORTANCE SAMPLING

Bayes Theorem: w(Aly) = Ii ;Ez:g\)):((;\))de

f(y|x) and w(X) are known (at least in our course) but f(y) = [ f(y|0)7(0)db
might not be

The inability of computing the normalising constant f(y) has been a huge problem
before the MCMC era started (still it is a problem!)

= We know only q(A\|ly) = f(y|A\)w(\) and we are neither able to compute the
posterior in closed form nor to draw a sample from it

We are interested in computing E [h()\)|y] = /h(A)w(My)dA

Choose an "adequate” proposal density g(\)

fylM)m(N)

(An optimal, but not always possible, choice for g(\) could be such that N
g

is roughly constant)



IMPORTANCE SAMPLING

We are interested in
B = [h()r(dx
_ JRO)F )T dA
J FyIN)T(N)dA
J RN g(A|y)dA
J a(A\|y)da
_ S r)a(Aly) /g(A) - g(A)dA
Ja(xy)/g(X) - g(A)dA

We draw a sample A1,..., Ay from g())

LS ROWwN)
% vazl w(Ai)

= E[h(M)|y] =

N a(Xily).
() = g(xi)

importance weights



IMPORTANCE SAMPLING

In general, it is suggested to use the same random draws for both numerator and
denominator

Importance sampling is not a useful method if the importance weights vary substan-
tially

The worst possible scenario occurs when the importance weights are small with high
probability but with a low probability are huge, which happens, e.g., if ¢ has wide tails
compared to g, as a function of A

In general, without some form of mathematical analysis of the exact and approximate
densities, there is always the realistic possibility of missing some extremely large but
rare importance weights



MARKQOV CHAIN MONTE CARLO

A Markov chain is a sequence of r.v's {X,} such that the distribution of any X,
depends on the past only through X,,_1

P(Xn|Xn-1, Xn_2,...,X1) = P(X,|Xn_1), Vn

MCMC used to draw samples “converging” towards posterior 7 (0| .X)

Name MCMC due to simulations based on transition distributions p(6?|0?~1)

Many works dealt with the theory justifying MCMC, ensuring theoretical convergence
to the posterior distribution: we will not discuss them except for mentioning that the

posterior distribution is the stationary distribution of an appropriate Markov chain

Many works addressed the issue of empirically guaranteeing the practical conver-
gence: we will discuss them briefly

Many MCMC methods: here only Gibbs sampling and Metropolis-Hastings algorithm

No mention of other simulation methods, like Variational Bayes and Approximate
Bayesian Computation



MARKQOV CHAIN MONTE CARLO

Sample X and parameter 0 = (61,...,6,)

Notation 6_; = (01,...,0;-1,0;41,...,0n),fori =1,...,n

Gibbs sampling is used when 7 (6|X) is not available but all 7(6;|0—;, X), 1

1l,...,n,are

Example seen earlier: X1, ..., X, ~ N (u,0?) with u € R and ¢2 > 0 unknown

Prior w(u, 02) = w(ulo?)w(0?)
plo® ~ N (po, 7%0)
02 ~ ZG(a, B) Inverse gamma

2 N Z?:l Xi =+ IUO/T2 o?
ulo®, X N( n—+1/72 ‘n+1/712

02|, X ~IG(a+ (n+1)/2,8+ Y (Xi — 1)?/2+ (b — p0)?/(272))

=1



MARKQOV CHAIN MONTE CARLO

e In words, Gibbs sampling consists of a "sufficient” number of steps in which each
parameter 6; is sequentially drawn from its full conditional distribution = (6;|60_;, X),

where 6_; contains the values of 01, . . ., ;1 generated at the current step and those
of 6,41, ...,0, generated at the previous step
e Algorithm

1,
2. Setj =441
3
4.
5

. =00 j=1,... N, used to get a sample from the posterior distribution

Set 0 = (69, ... 65y and j = 0

. Fori=1,...,n,draw 6% from x(6;/6%",...,69, 097V, ... 097V, X)

If j < N (set a priori) then go back to (2)

e Some #U)’s might be discarded, e.g. initial ones (more later)



MARKQOV CHAIN MONTE CARLO *

e Consider a single observation (y1,y>) from a bivariate Gaussian with unknown

mean 6 = (61, 62) and known covariance matrix ( ; i’ )

e Uniform prioron 8: w(0) occ, ¢ > 0

. , 01 N Y1 1 p
:>Poster|or(02>|y N(( yz)’<p 1))

e Although it is simple to draw directly from the joint posterior distribution of (61, 6>),
for the purpose of exposition we demonstrate the Gibbs sampler here

e Simulate (alternating) from known full conditional distributions
= 01102,y ~ N (y1 + p(62 — y2),1 — p?)
- (92‘91,’3; ~ N('!JQ + ,0(91 — y1)> 1-— /02)

*Example from Gelman et al., Bayesian Data Analysis, Third Edition, freely available at
http://www.stat.columbia.edu/~gelman/book/BDA3.pdf
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MARKQOV CHAIN MONTE CARLO

Take p = 0.8 and (y1,y2) = (0,0)

' 0, 0 1 0.8
= Posterior ( o > |yNN<( 0 >’( 0.8 1 >)

Four independent sequences starting at (+2.5,4+2.5) to remove dependence on
initial point

Sequences run until convergence to the posterior is achieved (more later on check-
ing for convergence)

By convergence we mean that the drawn samples are from an approximating distri-
bution close to the posterior one (our target)

Use of just part of the data, removing the initial ones since they might not be in the
approximating distribution (this operation is called burn-in)

Sometimes one searches to reduce correlation between samples so that just 1 every
m is kept

11



MARKQOV CHAIN MONTE CARLO

< 4 < <

O o o
|
<t <Ir7 <t
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Left: First 10 iterations for four independent sequences starting at (+2.5, +2.5)
Center: After 500 iterations, the sequences have reached approximate convergence

Right: The points from the second halves of the sequences, discarding the first 250
samples values of each sequence (burn-in)

Often just one sequence is drawn but for longer time

Note how the samples are around (0, 0) and showing a strong positive correlation,
as expected knowing the exact joint posterior
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MARKOV CHAIN MONTE CARLO

In Gibbs sampling we assumed that it was always possible to get the full conditional
w(0;]0—;, X) for all i’s but is not always the case

Sometimes we know only 7 (6;|60_;, X) x q(0;|6_;, X) where ¢(-) is not a density
function

It is a similar case to what seen before when we considered q(\|y) = f(y|A)7(\)
known, unlike its integral w.r.t. XA which is the normalising constant in Bayes Theorem

In this case we will use Metropolis-Hastings steps within Gibbs

The Metropolis-Hastings algorithm allows to draw a value 6} from a proposal density
p(6;) and accept either it or ng_l) as 9§]) with probabilities depending on both p and
q

The proposal density for 87 could be chosen, e.g., either as the same for each itera-
tion or as dependent on the previous 02.(9_1)

13



MARKQOV CHAIN MONTE CARLO

For simplicity of notation, let us remove the index ¢ and the conditioning on the other
parameters and consider just 6

Suppose that «(0|y) is known just up to a constant, i.e. w(0|y) o q(8ly), or

_ q(0ly)
O = a0

We start with an initial value 8(® s.t. 7(6(%|y) > 0

For each iteration j = 1,..., N, generate a proposal 6* from a proposal density
p;(016U~1)

q(0*|y)/p(6*|0U~1)

Compute the ratio r = : .
P " T 4(0GD]y) /p(9G-D|g")

: 0* with probability min(r, 1)
() — ‘ p y )
Set o { 0G-1)  otherwise

14



MARKQOV CHAIN MONTE CARLO

We already saw that running more than one simulation at the time and removing the
initial values should reduce the dependence on the initial values

The proposal distributions are often chosen depending on the value at the previous
iteration, e.g. a Gaussian distribution centered at it, or independently from it, possibly
the same at all iterations, e.g. Gaussians with the same mean

Many tools developed to check convergence of the sequence to the true distribution

The simplest, graphical, tool to assess convergence is to check if the plot of the
sample mean stabilises as the iterations grow (if not, then no convergence)

Given a sample 9¢5+1) . 9V with a burn-in of size S, then estimators of E(h(6)|y)
. ST R(E9)
are given by ==——, like

A0

2o
- E(0|y) ~ f]\_[:g
#H{0VEAY (.,

- PO € Aly) =~ T
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MARKQOV CHAIN MONTE CARLO*

Chaln 1- an serlal ::nrrelatlnn Hn apparent prnhlems

WWW W i M'%M V‘J'\WWMWWWW WM

] 1000 2000 3000 4000 5000 G000 TOO0 BOC0 G000 10000

e Trace plots are heuristic tools, widely used to check convergence of the MCMC
e They plot the values of each parameter for all the iterations

e They are "good” when the plot keeps jumping within a set which denotes where the
posterior density is concentrated

e The trace plot in the figure is a good one, unlike the next ones

*Plots from www.statlect.com
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MARKQOV CHAIN MONTE CARLO

Simulaton

O 200 400 SO0 S00 1000
lIteration

e Here two sequences have been running and both of them are converging but to two
different values

e In general, a plot like this is not desirable since it does not give a clear indication
about where the posterior density is, unless the density is bimodal

e In the latter case one would expect the chain to jump from one mode to another

17



MARKQOV CHAIN MONTE CARLO

Chain 2 - Long bum-in - Problem 1

{

1 i i i 1 i i 1 i
o 1000 2000 SO <0 SO00 SO00 OO 8000 SO0 AOHo0

e The first part of the sample looks very different from the remaining part.

e Most likely, the initial distribution and the distributions of the subsequent terms of

the

chain were very different from the target distribution, but then the chain slowly

converged to the target distribution

e The problem can be solved by removing the initial values (burn-in)

Chaimn 2 - Bum -dn discarded - Problerm 1 solwec

S

(= A O =20 S OO A
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MARKQOV CHAIN MONTE CARLO

Chain 3 - High serial correlation - Problem 2
1 T T T T T

sl w’" | . .
P !h“““/f Mﬁwmﬁwwf ”*’W%ﬂuﬁw

=1.5

1 1 1 ] 1
o A 00 2000 FO0er 0D 5000 GO0 OO B000 2000 plaienle)

A lot of autocorrelation between the draws (=- lack of independence)
Chain very slow in exploring the sample space, explored only few times

The problem could be due to a small number of iterations =- run longer and, possibly,
take one draw out of m to avoid large sample size and remove autocorrrelation

Chaim 3 - Sample size increased - Problem 2 solwed
= v T T T T v v

1.5




MARKQOV CHAIN MONTE CARLO

e

e We can also show how estimators, like posterior mean, are evolving as the number
of iterations increases nd if they are stabiling around a value

e In this case the plot denotes the evolution of the sample mean, estimator of the
parameter, as the iterations increase

20



MARKOV CHAIN MONTE CARLO (MCMC)

Nonthly Walmart Returns Feb 1978-Dec 1987

Walmart Retuns
02 01 00 01 02 03

I ! ! ! ! I
1978 1980 1982 1984 1986 1988

Time

e Return: (current month value - past month value)/past month value

e File cina24-walmart.ixt
— Monthly Walmart Returns February 1978 - December 1987
— Monthly S&P500 Returns February 1978 - December 1987

e | leave it to you to consider the S&P500 data

21



MARKOV CHAIN MONTE CARLO (MCMC)

e Visual inspection suggests no serial correlation (confirmed by tests)

e Seems to be given by a constant mean with some uncorrelated error

# Read a file, from working directory, with labels in the first line
setwd ("D:") # Careful: OK if file in drive D: (e.g. USB)

setwd ("C:/Users/fabru/Desktop/cina24") # for me
all=read.table("cinaZ24-walmart.txt", header=TRUE)

attach(all) # Call WMART a column of data instead of all$SWMART $
head(all) # Shows the first lines in the file

# Define data in WMART as time series object, starting at 2/1978

# frequency of 12 as number of observations per unit of time (year)
wmart=ts (data=WMART, start=c(1978,2), frequency=12)

ts.plot (wmart,col="blue", lwd="2", ylab="Walmart Returns",
main="Monthly Walmart Returns Feb 1978-Dec 1987")

mean (wmart); sd(wmart); 1/ (sd(wmart)) "2

e For S&P500 replace WMART/wmart with SP500/sp500

22



MARKOV CHAIN MONTE CARLO (MCMC)*

a=2;b=5;N=10000 # Try others, e.g. a=
muN=rep (0,N+1) # R starts from 1; mulN
tauN=rep (0, N+1)

tauN[1]=100 # First element cannot be O

meanW=mean (WMART) ; lenW=length (WMART)

library (LaplacesDemon) # Needed for rnormp (Gaussian with precision)
for (1 in 1:N) {muN[i+l]=rnormp (1l,meanW, lenWxtauN[1i])
tauN[i+l]=rgamma (1, a+lenW/2, b+sum((WMART-muN[i+1])"2)/2)}

mean (muN) ; mean (WMART) ; mean (taulN) ; 1/var (WMART)

par (mfrow=c(2,1))

hist (muN);hist (taul)

plot (density (muN) ) ;plot (density (taulN))
meanM=rep (0, N+1) ;meanT=rep (0, N+1)

for (i in 1:(N+1l)) {meanM[i]=mean(muN[l:1]); meanT[i]=mean(tauN[1l:1])}
plot (meanM[ (N/2) : (N+1)],type=’'1");plot (meanT[ (N/2) : (N+1)],type="1")

0;b=0
[1] initial value

*Most R codes from Albert’s book
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HIERARCHICAL MODELS

Consider the number of car accidents over 30 years by a driver (M) in Milano and
one (R) in Roma

We can consider two persons, randomly selected or not, or the average of (a subset
of) the population in the two cities but then we round up to an integer

The event is rare and takes only integer values = Poisson distribution

)\.T
X~PAN) =-P(X=2)= —Ie_’\
x

x €7

How should we model our data and prior for M and R?

We should think if the behaviour of the two drivers is the same, completely different
or there are similarities

How do we transform those situations into a statistical model?

24



HIERARCHICAL MODELS

ny and ng number of accidents for M and R
Ay and Ar parameters for Poisson distribution for nj; and ng

Equal: If the two drivers are behaving in the same way, we model the data indepen-
dently but with a common )\, with gamma prior G(«, 8)

— = w(Mna, ng) oc A™e A \tremA L \aTlgA

- = Mna,nr ~ G(a+ny + ng, 8+ 2)
Completely different: If the two drivers are behaving in a completely different way,

we model the data not only independently but also with different \’s, and independent
gamma priors

— ny ~ P(Aw) and Ay ~ G(anr, Bar) = Anar ~ G(or + nar, By + 1)
— nr ~ P(Ar) and Ag ~ G(ar, Br) = Alng ~ G(agr + nr,Br+ 1)

25



HIERARCHICAL MODELS

Similar: If the two drivers are behaving in a similar way, we model the data indepen-
dently, with different \’s, but drawn from the same exponential (for simplicity) prior,
dependent on a parameter 6

— = 7(Aum, Ar|nar, ng, 0) oc Niye M Nire =M. Ge Y . e b

- = Aunm,ngr, 0 ~ G(ny + 1,0 4+ 1) and Ag|ny,ng, 0 ~ G(ng + 1,0 + 1)
Two independent gamma posteriors for known 6 but what about if unknown?
We could consider a gamma prior 6 ~ G(a, b)
= w(Au, AR, O|nar, nr) x Xﬁ’e_w : )\%Re_AR e Ml . ge Ml . ga—le—00

Gibbs sampling:
— M| AR, 0,npr,nr ~ GO +ny+ 1,04 1)
— Ag|Aum, 0,na,nr ~ GO +np+ 1,0+ 1)
— 0|2, Ary v, nr ~ Gla+ 2,04+ Ay + Ar)

26



HIERARCHICAL MODELS

e We have to integrate out 6 if we are just interested in the full conditionals of each A
given the other

7T()\M7)\R‘nManR) /W()\M,)\R,9|7’LM,TLR)d9

0% )\?\}IG_AM)\%RG_AR/9a+16_(b+>\M+>\R)0d9

)\%”e_’\”f)\%Re_”\R
(b+ A+ Ap)ot?

e = We can use Gibbs sampling with Metropolis steps within
e Au

(b4 Ay + Ar)at?
A=A

(b + Ay + Ar)ot?

- 7T()\]\i|)\R) np, TLR) X

— 7w(Ar|AM, nar,MR) X

e As proposal distributions we could use G(ny;+1,1) and G(ng+1, 1), respectively

27



HIERARCHICAL MODELS

Empirical Bayes is a practical, although not properly Bayesian, alternative to the
choice of a prior on 6

The idea is to find the value of & maximising the probability of the data and plug it
into the formulas

The critical aspect, from a strict Bayesian viewpoint, is that data are used twice, first
to find a value of 8 and then computing the posterior distribution: priors should be
independent from the data!

We have to look for § = arg maxg f(ns, nr|0)

With the same computations as before for 6 known, we plug in 0 R
= >\M|nM7nR79 ~ g(nM + 170 + 1) and >\R|nM7nR70 ~ g(nR + 179 —I_ 1)

28



f(na,ngld)

, 21ogh(nu,nr,0)
o0

dlog h(nys, ng,0)
o
BT

HIERARCHICAL MODELS

/f(nM, nr| A, AR)T (A, AR|0)dAydAR
o / Are= M \ie™ . ge= M0 geMOd N rd A g

x 6 / Npyem (B DXngy / Nprem O+ DAg g

g2l +1) T(ng+1)

X U0 1)t (4 1)natt
92
x (0 _|_ 1)nM+nR+2
— h’(nManRae)
_ 2 ny+ngp+?2
0 0+ 1
~ 2
=0f)= —F—
na + R
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HIERARCHICAL MODELS

Is § = —2— surprising? Not much!

ny+ng

We are considering an event described by a Poisson distribution with parameter A
For X ~ P(\) we know that E(X) = A

For A ~ £(0) we know that E(\) = 1/6

Since we use § = —2—, we can think of X somehow approximated (with some

ny+neg
mathematical imprecision) by ”MTJ“”R which is very reasonable under our assump-
tions
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HIERARCHICAL MODELS

In ltaly every year students in some grades are taking tests on their knowledge about
ltalian language and Mathematics. The results of the tests could be affected by the
school attended by the students so that it is reasonable to assume that the outcome
for students of the same school are modelled by the same distribution while there
should be a difference between schools.

The same model could be used for batches of the same item but produced in different
factories or survival times of patients in different hospitals

We suppose that we observe data from n different groups, with n;, ¢ = 1,...,n,
elements in each of them

Therefore the dataare Y;;,: =1,...,nand j; = 1,...,n,, although we will use Y;;
for simplicity

Notation: Y; = {Yi1,...,Yin}, ¢ = 1,...,n data for i-th group

Hierarchical models related to the notion of exchangeability, i.e. P(X1,...,X,) in-
variant w.r.t. permutations (but we will not discuss it)

31



HIERARCHICAL MODELS

Each group has its own distribution with a common parameter, i.e., the density of Y;;
IS f(yij|)\i),z' =1,....n,7=1,...,n;

This assumption implies a common behaviour within the group

We assume that the functional form of f is not changing between groups (but it
could)

All the parameters \;’s are supposed different (although sometimes some groups
might have the same parameter)

This assumption implies that the behaviour changes between groups

All \;’s come from the same distribution, i.e. ¢(\;|0), where 0 is a parameter in
common

This assumption implies that the behaviour of the groups, although different, is actu-
ally similar

As before, a prior could be chosen for 6 or a value could be plugged in, using, e.g.,
Empirical Bayes
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HIERARCHICAL MODELS

LEVELL Ygyly-Ha 42\4/?7@_ SN W,
LEVEL D )\ \ﬁl/

N\N)! -7

| EVEL 3 7
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HIERARCHICAL MODELS

{yu, “ e >y2m|>‘l} ~/ Ild f(y|>\z);'5 — ]., N 1
Within group sampling variability

{1,y At ~idd. g(A|6)
Between groups sampling variability

0 ~ w(0|w)
Prior distribution with hyperparameter w

Sometimes both f(y|A;) and g(\|@) are called sampling distributions

A popular model to describe heterogeneity of means across several populations is a
hierarchical Normal model where both sampling distributions are Gaussian

34



HIERARCHICAL MODELS

Observations in group j,5 = 1,...,m: Y;; ~ N (6;,02) (Within group variability)
Mean of group j,5 = 1,...,m: 8; ~ N (u, 72) (Between groups variability)

Independent priors on (u, 72, 02) : ()7 (1?)7(c?)
— o~ N(po,73)
- 7%~ ZIG(10/2, 1075 /2)
- 0?2 ~IG(v/2,v0%/2)

Note that we assume the same variance for all the observations, while the mean is
the same within a group but it changes between groups

As seen graphically in the next slide, (i, 72) provide information on Y’s but, once 6
is known, the distributions of Y’'s do not depend on (p, 72)

35



HIERARCHICAL MODELS®

/ \
\/

*From Hoff (2009), A First Course in Bayesian Statistical Methods, Springer
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HIERARCHICAL MODELS
Notation: ¥; = (Yj1,..., YY), 5 =1,...,m
Y:(Yl,...,ym) and 0 = (91,...,9m)

Joint posterior distribution
w(0, 1, 7%, 0°Y) o< w(p,7%,0%)g(0lu, 7%, 0°) (Y0, u, 72, 0°)

o m(p)m(r?)m(o?) { 11 9sle, 72)} { 11 H £ (y;il6;, 02)}

j=1 j=1i=1
Full conditionals for p and 72: w(u, 72|10, 02,Y) oc w(p)7(72) [T~ 9(0;|u, 72)
(0, 72,02, Y) o (1) [0y 9611, 72)

m(7210, 1,02, Y) oc w(m2) [}, 9(05]p, 72)

37



HIERARCHICAL MODELS

The two full conditionals look very familiar!

— Sample (0. ..

,Om) from N (p, 72)

— p~N(po,73)
— 72 ~ZG(no/2,m078/2)

m0/72 + p10/75

:U‘|077—27Y NN(

2|0, 1, Y ~IG (

2 211
m/72 + 1/73 L/ 1/ )

no + m no7g + 2?21(@ — ,U)Q)
2 2

Here 6 =) 6;/m

=1
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HIERARCHICAL MODELS

Regarding 6, we can compute the full conditional for each 6;, as dependent on
u,7%,02,Y; since it is independent from the other 6,’s and the data from other
groups

9(0jlp, 72,02, Y;) o< g(05lp, 72) [[i21 f(y;il05,0%), 5 = 1,...,m

We have the product of Gaussian densities (already done, although in a simpler
case)

njgj/(;2—|— 1/’7‘2
n;/o? 4+ 1/712 ’

:>0j|u,72,02,§/}wj\/( [nj/O'Q—I—l/TQ]_l)

n;
Here gj = Z yji/nj
=1
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HIERARCHICAL MODELS

e Full conditional of 52

(0210,Y) o 702 4 [[ 9l Y 4 TTT] £Cwsilts 02

N G B C N R DL R DD DLt lC

() :>0'2|Q,YNIQ (Vo—|—an)/2,(VOO'8+ZZ(yij_Qj)Q)/Q

e We use the Gibbs algorithm to get a sample from the posterior distribution since all
the conditional distributions are properly specified
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HIERARCHICAL MODELS®

e We are interested in learning about the mortality rates due to heart transplant surgery
for 94 hospitals

e The number of deaths within 30 days of heart transplant surgery is recorded for each
hospital

e It is the same problem, but addressed differently, we considered when checking if
there was discrepancy between observed values and predictive distribution based
on the select pair sampling model/prior

e Each hospital has a true mortality rate \;, and so one wishes to simultaneously
estimate the 94 rates A1, ..., Aoa

e ltis reasonable to believe a priori that the true rates are similar in size, which implies
a dependence structure between the parameters

e |f one is told some information about a particular hospital’s true rate, that information
would likely affect one’s belief about the location of a second hospital’s rate

*Example from Albert’'s book
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HIERARCHICAL MODELS

In addition, we record for each hospital an expected number of deaths called the
exposure, denoted by e

We let y; and e; denote the respective observed number of deaths and exposure for
the ¢-th hospital

A standard model assumes that the number of deaths y; follows a Poisson distri-
bution with mean e;\; and the objective is to estimate the mortality rate per unit
exposure \;

The fraction y;/e; is the number of deaths per unit exposure and can be viewed as
an estimate of the death rate for the i-th hospital

Suppose we are interested in simultaneously estimating the true mortality rates {\;}
for all hospitals

One option is simply to estimate the true rates by using the individual death rates:
yi/e1,...,Yoa/e9a
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HIERARCHICAL MODELS

Unfortunately, the individual rates y;/e;’s can be poor estimates, especially for the
hospitals with small exposures

Some of those hospitals did not experience any deaths and the individual death rate
yi/e; = 0 would likely underestimate the hospital’s true mortality rate

Since the individual death rates can be poor, it seems desirable to combine the
individual estimates in some way to obtain improved estimates

Suppose we can assume that the true mortality rates are equal across hospitals, i.e.
A1 = ... = dog

Under this "equal-means” Poisson model, the estimate of the mortality rate for the

94
Zi:l y]

94

i=1 €J

t-th hospital would be the pooled estimate

The pooled estimate is based on the strong assumption that the true mortality rate
is the same across hospitals but this is questionable since one would expect some
variation in the true rates
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We have discussed two possible estimates for the mortality rate of the ¢-th hospital:

294 .
i=1Yj
94

i=1€J

94
Zz 1Y)

Zzlj

One could consider equal mortality rate so that y; ~ P(e;\)

the individual estimate y;/e; and the pooled estimate

A third possibility is the compromise estimate (1 — s)— + =2

The gamma prior for X is conjugate w.r.t. the model, as already seen earlier in similar
situations

We leave the computations as an exercise: Albert considered a non informative prior
m(A) o< 1/ but a proper gamma prior can be used
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Y; NP(GZ)\@), = 1,...,94

A, ..., doa ~ G(a, a/p), with mean p and variance p?/a
(a/u)a)\a—le—a/\/u
Ao, p) =
g(M (e, p) (o)

Consider the hyperparameters p and o as independent
1w~ ZG(a,b) and w(a) for «

If we consider a Dirac prior at ag for o and just the first two hospitals, we get
(A1Az)e?

(ag(A1 4 A2) 4 b)2x0ta

g(A1, A2|ag) o

With . ~ ZG(10,10) its meanis 1 and (A1, A2) will be around (1,1)

We consider different values of aqg
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ALPHA = 5 ALPHA = 20
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e Contour graphs of the exchangeable prior on (A1, A2)

*From Albert’s book
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We now provide just a sketch of the analysis performed by Albert in his book: more
details and R codes can be found in it

<0

(o + 20)°

Consider g(u) o< 1/p and g(a) =

Conditional on ¢ and «, the \;’s have independent posterior distributions:
Ailo pyyi ~ G(ys + a6 + a/p)

= EQulas i) = -

The posterior on « and p is given, for a constant K, by

p(o, pldata) = K

Y

LT |le/m oty |z 1
9% () 24 | (a/p 4 e) @ty | (a+ 20)? p
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Having the posterior conditionals on the \;’s in closed form (i.e. a Gamma distri-
bution) and knowing the posterior conditional for (a, 1) apart from a constant, it is
possible to use a Gibbs sampling algorithm with Metropolis-Hastings steps within

At this point we can compare hospitals

If we look for the "best hospital” then we should look for the one with the lowest
estimated posterior mean of \;’s

If we want to compare two hospitals, i and j, then we can estimate P(\; < A;) by
simply counting the frequency of the samples AZ(S) < >\§8)

We say that hospital i is better than hospital j if P(\; < A;) > 0.5
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