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MONTE CARLO SIMULATION

• Consider X ∼ E(λ) and a prior λ∼ G(α, β)

• How can we compute the prior predictive density at a value x?

i.e. f(x) =
∫∞
0 f(x|λ)π(λ)dλ?

• ⇒ f(x) =

∫ ∞

0
λe−λx ·

βα

Γ(α)
λα−1e−λβdλ = α

βα

(β + x)α+1

• But what about choosing a Weibull prior λ ∼ W(α, β)?

• Weibull density: π(λ|α, β) =
β

α

(
λ

α

)β−1

e(−λ/α)β, α, β > 0

• In this case we are unable to compute (at least easily) the integral so that we need
to resort to a Monte Carlo simulation method

• Here I will not discuss about the (rate of) convergence and errors committed in eval-
uating the integral
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MONTE CARLO SIMULATION

• How to approximate the prior predictive density for x > 0?

• Choose a grid of (equally spaced or not) points xj, j = 1, . . . ,M

• Draw a (”large”) sample λ1, λ2, . . . , λN from the Weibull prior

• For each xj compute f(xj) =

∫ ∞

0
f(xj|λ)π(λ)dλ ≈

N∑

i=1

f(xj|λi)

N
= f̃(xj)

• ⇒ Approximation of f(x), based on f̃(x1), . . . , f̃(xM), using splines, etc.

• Many sources of uncertainty: N , M , grid, fitted function

• We omit a discussion about those uncertainties

• MC for posterior expectations
∫

h(λ)π(λ|y)dλ, e.g. posterior mean for h(λ) = λ
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IMPORTANCE SAMPLING

• Bayes Theorem: π(λ|y) =
f(y|λ)π(λ)∫
f(y|θ)π(θ)dθ

• f(y|λ) and π(λ) are known (at least in our course) but f(y) =
∫
f(y|θ)π(θ)dθ

might not be

• The inability of computing the normalising constant f(y) has been a huge problem
before the MCMC era started (still it is a problem!)

• ⇒ We know only q(λ|y) = f(y|λ)π(λ) and we are neither able to compute the
posterior in closed form nor to draw a sample from it

• We are interested in computing E [h(λ)|y] =
∫

h(λ)π(λ|y)dλ

• Choose an ”adequate” proposal density g(λ)

(An optimal, but not always possible, choice for g(λ) could be such that
f(y|λ)π(λ)

g(λ)
is roughly constant)
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IMPORTANCE SAMPLING
• We are interested in

E [h(λ)|y] =

∫
h(λ)π(λ|y)dλ

=

∫
h(λ)f(y|λ)π(λ)dλ∫

f(y|λ)π(λ)dλ

=

∫
h(λ)q(λ|y)dλ∫

q(λ|y)dλ

=

∫
h(λ)q(λ|y)/g(λ) · g(λ)dλ∫

q(λ|y)/g(λ) · g(λ)dλ

• We draw a sample λ1, . . . , λN from g(λ)

• ⇒ E [h(λ)|y] ≈
1
N

∑N
i=1 h(λi)w(λi)

1
N

∑N
i=1w(λi)

• w(λi) =
q(λi|y)
g(λi)

: importance weights
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IMPORTANCE SAMPLING

• In general, it is suggested to use the same random draws for both numerator and
denominator

• Importance sampling is not a useful method if the importance weights vary substan-
tially

• The worst possible scenario occurs when the importance weights are small with high
probability but with a low probability are huge, which happens, e.g., if q has wide tails
compared to g, as a function of λ

• In general, without some form of mathematical analysis of the exact and approximate
densities, there is always the realistic possibility of missing some extremely large but
rare importance weights
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MARKOV CHAIN MONTE CARLO
• A Markov chain is a sequence of r.v.’s {Xn} such that the distribution of any Xn

depends on the past only through Xn−1

• P(Xn|Xn−1, Xn−2, . . . , X1) = P(Xn|Xn−1), ∀n

• MCMC used to draw samples ”converging” towards posterior π(θ|X)

• Name MCMC due to simulations based on transition distributions p(θi|θi−1)

• Many works dealt with the theory justifying MCMC, ensuring theoretical convergence
to the posterior distribution: we will not discuss them except for mentioning that the
posterior distribution is the stationary distribution of an appropriate Markov chain

• Many works addressed the issue of empirically guaranteeing the practical conver-
gence: we will discuss them briefly

• Many MCMC methods: here only Gibbs sampling and Metropolis-Hastings algorithm

• No mention of other simulation methods, like Variational Bayes and Approximate
Bayesian Computation
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MARKOV CHAIN MONTE CARLO

• Sample X and parameter θ = (θ1, . . . , θn)

• Notation θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn), for i = 1, . . . , n

• Gibbs sampling is used when π(θ|X) is not available but all π(θi|θ−i, X), i =
1, . . . , n, are

• Example seen earlier: X1, . . . , Xn ∼ N (µ, σ2) with µ ∈ ℜ and σ2 > 0 unknown

– Prior π(µ, σ2) = π(µ|σ2)π(σ2)

– µ|σ2 ∼ N (µ0, τ2σ2)

– σ2 ∼ IG(α, β) Inverse gamma

– µ|σ2, X ∼ N
(∑n

i=1Xi + µ0/τ2

n+1/τ2
,

σ2

n+1/τ2

)

– σ2|µ,X ∼ IG(α+ (n+1)/2, β +
n∑

i=1

(Xi − µ)2/2+ (µ− µ0)
2/(2τ2))
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MARKOV CHAIN MONTE CARLO

• In words, Gibbs sampling consists of a ”sufficient” number of steps in which each
parameter θi is sequentially drawn from its full conditional distribution π(θi|θ−i, X),
where θ−i contains the values of θ1, . . . , θi−1 generated at the current step and those
of θi+1, . . . , θn generated at the previous step

• Algorithm

1. Set θ(0) = (θ(0)1 , . . . , θ(0)n ) and j = 0

2. Set j = j +1

3. For i = 1, . . . , n, draw θ(j)i from π(θi|θ(j)1 , . . . , θ(j)i−1, θ
(j−1)
i+1 , . . . , θ(j−1)

n , X)

4. If j < N (set a priori) then go back to (2)

5. ⇒ θ(j), j = 1, . . . , N , used to get a sample from the posterior distribution

• Some θ(j)’s might be discarded, e.g. initial ones (more later)
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MARKOV CHAIN MONTE CARLO *

• Consider a single observation (y1, y2) from a bivariate Gaussian with unknown

mean θ = (θ1, θ2) and known covariance matrix
(

1 ρ
ρ 1

)

• Uniform prior on θ: π(θ) ∝ c, c > 0

• ⇒ Posterior
(

θ1
θ2

)
|y ∼ N

((
y1
y2

)
,

(
1 ρ
ρ 1

))

• Although it is simple to draw directly from the joint posterior distribution of (θ1, θ2),
for the purpose of exposition we demonstrate the Gibbs sampler here

• Simulate (alternating) from known full conditional distributions

– θ1|θ2, y ∼ N (y1 + ρ(θ2 − y2),1− ρ2)

– θ2|θ1, y ∼ N (y2 + ρ(θ1 − y1),1− ρ2)

*Example from Gelman et al., Bayesian Data Analysis, Third Edition, freely available at
http://www.stat.columbia.edu/∼gelman/book/BDA3.pdf
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MARKOV CHAIN MONTE CARLO

• Take ρ = 0.8 and (y1, y2) = (0,0)

• ⇒ Posterior
(

θ1
θ2

)
|y ∼ N

((
0
0

)
,

(
1 0.8
0.8 1

))

• Four independent sequences starting at (±2.5,±2.5) to remove dependence on
initial point

• Sequences run until convergence to the posterior is achieved (more later on check-
ing for convergence)

• By convergence we mean that the drawn samples are from an approximating distri-
bution close to the posterior one (our target)

• Use of just part of the data, removing the initial ones since they might not be in the
approximating distribution (this operation is called burn-in)

• Sometimes one searches to reduce correlation between samples so that just 1 every
m is kept
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MARKOV CHAIN MONTE CARLO

This electronic edition is for non-commercial purposes only.

11.1. GIBBS SAMPLER 277

Figure 11.2 Four independent sequences of the Gibbs sampler for a bivariate normal distribution
with correlation ρ = 0.8, with overdispersed starting points indicated by solid squares. (a) First 10
iterations, showing the componentwise updating of the Gibbs iterations. (b) After 500 iterations,
the sequences have reached approximate convergence. Figure (c) shows the points from the second
halves of the sequences, representing a set of correlated draws from the target distribution.

other components of θ:
p(θj |θt−1

−j , y),

where θt−1
−j represents all the components of θ, except for θj , at their current values:

θt−1
−j = (θt

1, . . . , θ
t
j−1, θ

t−1
j+1, . . . , θ

t−1
d ).

Thus, each subvector θj is updated conditional on the latest values of the other components
of θ, which are the iteration t values for the components already updated and the iteration
t− 1 values for the others.

For many problems involving standard statistical models, it is possible to sample di-
rectly from most or all of the conditional posterior distributions of the parameters. We
typically construct models using a sequence of conditional probability distributions, as in
the hierarchical models of Chapter 5. It is often the case that the conditional distributions
in such models are conjugate distributions that provide for easy simulation. We present an
example for the hierarchical normal model at the end of this chapter and another detailed
example for a normal-mixture model in Section 22.2. Here, we illustrate the workings of
the Gibbs sampler with a simple example.

Example. Bivariate normal distribution
Consider a single observation (y1, y2) from a bivariate normally distributed population
with unknown mean θ = (θ1, θ2) and known covariance matrix

(
1 ρ
ρ 1

)
. With a uniform

prior distribution on θ, the posterior distribution is

(
θ1
θ2

)∣∣∣∣ y ∼ N

((
y1

y2

)
,

(
1 ρ

ρ 1

))
.

Although it is simple to draw directly from the joint posterior distribution of (θ1, θ2),
for the purpose of exposition we demonstrate the Gibbs sampler here. We need the
conditional posterior distributions, which, from the properties of the multivariate nor-
mal distribution (either equation (A.1) or (A.2) on page 582), are

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2)

θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2).

The Gibbs sampler proceeds by alternately sampling from these two normal distribu-
tions. In general, we would say that a natural way to start the iterations would be
with random draws from a normal approximation to the posterior distribution; such

• Left: First 10 iterations for four independent sequences starting at (±2.5,±2.5)

• Center: After 500 iterations, the sequences have reached approximate convergence

• Right: The points from the second halves of the sequences, discarding the first 250
samples values of each sequence (burn-in)

• Often just one sequence is drawn but for longer time

• Note how the samples are around (0,0) and showing a strong positive correlation,
as expected knowing the exact joint posterior
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MARKOV CHAIN MONTE CARLO

• In Gibbs sampling we assumed that it was always possible to get the full conditional
π(θi|θ−i, X) for all i’s but is not always the case

• Sometimes we know only π(θi|θ−i, X) ∝ q(θi|θ−i, X) where q(·) is not a density
function

• It is a similar case to what seen before when we considered q(λ|y) = f(y|λ)π(λ)
known, unlike its integral w.r.t. λ which is the normalising constant in Bayes Theorem

• In this case we will use Metropolis-Hastings steps within Gibbs

• The Metropolis-Hastings algorithm allows to draw a value θ∗i from a proposal density
p(θi) and accept either it or θ(j−1)

i as θ(j)i with probabilities depending on both p and
q

• The proposal density for θ∗i could be chosen, e.g., either as the same for each itera-
tion or as dependent on the previous θ(j−1)

i
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MARKOV CHAIN MONTE CARLO

• For simplicity of notation, let us remove the index i and the conditioning on the other
parameters and consider just θ

• Suppose that π(θ|y) is known just up to a constant, i.e. π(θ|y) ∝ q(θ|y), or

π(θ|y) =
q(θ|y)∫
q(θ|y)dθ

• We start with an initial value θ(0) s.t. π(θ(0)|y) > 0

• For each iteration j = 1, . . . , N , generate a proposal θ∗ from a proposal density
pj(θ|θ(j−1))

• Compute the ratio r =
q(θ∗|y)/p(θ∗|θ(j−1))

q(θ(j−1)|y)/p(θ(j−1)|θ∗)

• Set θ(j) =
{

θ∗ with probabilitymin(r,1)
θ(j−1) otherwise
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MARKOV CHAIN MONTE CARLO
• We already saw that running more than one simulation at the time and removing the

initial values should reduce the dependence on the initial values

• The proposal distributions are often chosen depending on the value at the previous
iteration, e.g. a Gaussian distribution centered at it, or independently from it, possibly
the same at all iterations, e.g. Gaussians with the same mean

• Many tools developed to check convergence of the sequence to the true distribution

• The simplest, graphical, tool to assess convergence is to check if the plot of the
sample mean stabilises as the iterations grow (if not, then no convergence)

• Given a sample θ(S+1), . . . , θ(N), with a burn-in of size S, then estimators of E(h(θ)|y)

are given by
∑N

j=S+1
h(θ(j))

N−S
, like

– E(θ|y) ≈
∑N

j=S+1
θ(j)

N−S

– P(θ ∈ A|y) ≈ #{θ(j)∈A}N
j=S+1

N−S
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MARKOV CHAIN MONTE CARLO*

In the first trace plot (Chain 1), there are no apparent anomalies. There seems to

be a mild serial correlation between successive draws and the chain seems to

explore the sample space many times.

In the second plot (Chain 2), the first part of the sample (until around )

looks very different from the remaining part. Most likely, the initial distribution and

the distributions of the subsequent terms of the chain were very different from the

target distribution, but then the chain slowly converged to the target distribution

(around ). We have Problem 1: a large chunk of the sample is drawn from

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

7 di 14 09/10/2024, 12:39

• Trace plots are heuristic tools, widely used to check convergence of the MCMC

• They plot the values of each parameter for all the iterations

• They are ”good” when the plot keeps jumping within a set which denotes where the
posterior density is concentrated

• The trace plot in the figure is a good one, unlike the next ones

*Plots from www.statlect.com
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11.4. INFERENCE AND ASSESSING CONVERGENCE 283

Figure 11.3 Examples of two challenges in assessing convergence of iterative simulations. (a) In
the left plot, either sequence alone looks stable, but the juxtaposition makes it clear that they have
not converged to a common distribution. (b) In the right plot, the two sequences happen to cover a
common distribution but neither sequence appears stationary. These graphs demonstrate the need
to use between-sequence and also within-sequence information when assessing convergence.

and discarding the rest. In our applications, we have found it useful to skip iterations in
problems with large numbers of parameters where computer storage is a problem, perhaps
setting k so that the total number of iterations saved is no more than 1000.

Whether or not the sequences are thinned, if the sequences have reached approximate
convergence, they can be directly used for inferences about the parameters θ and any other
quantities of interest.

Multiple sequences with overdispersed starting points

Our recommended approach to assessing convergence of iterative simulation is based on
comparing different simulated sequences, as illustrated in Figure 11.1 on page 276, which
shows five parallel simulations before and after approximate convergence. In Figure 11.1a,
the multiple sequences clearly have not converged; the variance within each sequence is
much less than the variance between sequences. Later, in Figure 11.1b, the sequences have
mixed, and the two variance components are essentially equal.

To see such disparities, we clearly need more than one independent sequence. Thus our
plan is to simulate independently at least two sequences, with starting points drawn from
an overdispersed distribution (either from a crude estimate such as discussed in Section 10.2
or a more elaborate approximation as discussed in the next chapter).

Monitoring scalar estimands

We monitor each scalar estimand or other scalar quantities of interest separately. Estimands
include all the parameters of interest in the model and any other quantities of interest (for
example, the ratio of two parameters or the value of a predicted future observation). It is
often useful also to monitor the value of the logarithm of the posterior density, which has
probably already been computed if we are using a version of the Metropolis algorithm.

Challenges of monitoring convergence: mixing and stationarity

Figure 11.3 illustrates two of the challenges of monitoring convergence of iterative simu-
lations. The first graph shows two sequences, each of which looks fine on its own (and,

• Here two sequences have been running and both of them are converging but to two
different values

• In general, a plot like this is not desirable since it does not give a clear indication
about where the posterior density is, unless the density is bimodal

• In the latter case one would expect the chain to jump from one mode to another
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MARKOV CHAIN MONTE CARLO

In the first trace plot (Chain 1), there are no apparent anomalies. There seems to

be a mild serial correlation between successive draws and the chain seems to

explore the sample space many times.

In the second plot (Chain 2), the first part of the sample (until around )

looks very different from the remaining part. Most likely, the initial distribution and

the distributions of the subsequent terms of the chain were very different from the

target distribution, but then the chain slowly converged to the target distribution

(around ). We have Problem 1: a large chunk of the sample is drawn from

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

7 di 14 09/10/2024, 12:39

• The first part of the sample looks very different from the remaining part.

• Most likely, the initial distribution and the distributions of the subsequent terms of
the chain were very different from the target distribution, but then the chain slowly
converged to the target distribution

• The problem can be solved by removing the initial values (burn-in)

distributions that are significantly different from the target distribution.

In the third plot (Chain 3), there is a lot of serial correlation between successive

draws. The chain is very slow in exploring the sample space. The sample space

has been explored only few times. In other words, there seems to be few

independent observations in our sample. Quite likely, we have Problem 2: the

effective size of our sample is too small.

The next two trace plots show how Problem 1 and 2 can be solved.

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

8 di 14 09/10/2024, 12:39
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MARKOV CHAIN MONTE CARLO

In the first trace plot (Chain 1), there are no apparent anomalies. There seems to

be a mild serial correlation between successive draws and the chain seems to

explore the sample space many times.

In the second plot (Chain 2), the first part of the sample (until around )

looks very different from the remaining part. Most likely, the initial distribution and

the distributions of the subsequent terms of the chain were very different from the

target distribution, but then the chain slowly converged to the target distribution

(around ). We have Problem 1: a large chunk of the sample is drawn from

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

7 di 14 09/10/2024, 12:39

• A lot of autocorrelation between the draws (⇒ lack of independence)

• Chain very slow in exploring the sample space, explored only few times

• The problem could be due to a small number of iterations ⇒ run longer and, possibly,
take one draw out of m to avoid large sample size and remove autocorrrelation

distributions that are significantly different from the target distribution.

In the third plot (Chain 3), there is a lot of serial correlation between successive

draws. The chain is very slow in exploring the sample space. The sample space

has been explored only few times. In other words, there seems to be few

independent observations in our sample. Quite likely, we have Problem 2: the

effective size of our sample is too small.

The next two trace plots show how Problem 1 and 2 can be solved.

Markov Chain Monte Carlo (MCMC) diagnostics https://www.statlect.com/fundamentals-of-statistics/Markov-Chain-M...

8 di 14 09/10/2024, 12:39
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MARKOV CHAIN MONTE CARLO

0 200 400 600 800 1000

−60
−40

−20
0

20

Iteration

Me
an

• We can also show how estimators, like posterior mean, are evolving as the number
of iterations increases nd if they are stabiling around a value

• In this case the plot denotes the evolution of the sample mean, estimator of the
parameter, as the iterations increase
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MARKOV CHAIN MONTE CARLO (MCMC)
Monthly Walmart Returns Feb 1978-Dec 1987

Time

W
alm

ar
t R

etu
rn

s

1978 1980 1982 1984 1986 1988

-0
.2

-0
.1

0.0
0.1

0.2
0.3

• Return: (current month value - past month value)/past month value

• File cina24-walmart.txt

– Monthly Walmart Returns February 1978 - December 1987

– Monthly S&P500 Returns February 1978 - December 1987

• I leave it to you to consider the S&P500 data
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MARKOV CHAIN MONTE CARLO (MCMC)

• Visual inspection suggests no serial correlation (confirmed by tests)

• Seems to be given by a constant mean with some uncorrelated error

# Read a file, from working directory, with labels in the first line
setwd("D:") # Careful: OK if file in drive D: (e.g. USB)
setwd("C:/Users/fabru/Desktop/cina24") # for me
all=read.table("cina24-walmart.txt", header=TRUE)
attach(all) # Call WMART a column of data instead of all$WMART $
head(all) # Shows the first lines in the file
# Define data in WMART as time series object, starting at 2/1978
# frequency of 12 as number of observations per unit of time (year)
wmart=ts(data=WMART, start=c(1978,2),frequency=12)
ts.plot(wmart,col="blue",lwd="2",ylab="Walmart Returns",
main="Monthly Walmart Returns Feb 1978-Dec 1987")
mean(wmart); sd(wmart); 1/(sd(wmart))ˆ2

• For S&P500 replace WMART/wmart with SP500/sp500
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MARKOV CHAIN MONTE CARLO (MCMC)*
a=2;b=5;N=10000 # Try others, e.g. a=0;b=0
muN=rep(0,N+1) # R starts from 1; muN[1] initial value
tauN=rep(0,N+1)
tauN[1]=100 # First element cannot be 0
meanW=mean(WMART); lenW=length(WMART)
library(LaplacesDemon) # Needed for rnormp (Gaussian with precision)
for (i in 1:N) {muN[i+1]=rnormp(1,meanW,lenW*tauN[i]);
tauN[i+1]=rgamma(1,a+lenW/2, b+sum((WMART-muN[i+1])ˆ2)/2)}
mean(muN);mean(WMART);mean(tauN);1/var(WMART)
par(mfrow=c(2,1))
hist(muN);hist(tauN)
plot(density(muN));plot(density(tauN))
meanM=rep(0,N+1);meanT=rep(0,N+1)
for (i in 1:(N+1)) {meanM[i]=mean(muN[1:i]); meanT[i]=mean(tauN[1:i])}
plot(meanM[(N/2):(N+1)],type=’l’);plot(meanT[(N/2):(N+1)],type=’l’)

*Most R codes from Albert’s book

23



HIERARCHICAL MODELS

• Consider the number of car accidents over 30 years by a driver (M) in Milano and
one (R) in Roma

• We can consider two persons, randomly selected or not, or the average of (a subset
of) the population in the two cities but then we round up to an integer

• The event is rare and takes only integer values ⇒ Poisson distribution

• X ∼ P(λ) → P(X = x) =
λx

x!
e−λ; x ∈ Z

• How should we model our data and prior for M and R?

• We should think if the behaviour of the two drivers is the same, completely different
or there are similarities

• How do we transform those situations into a statistical model?

24



HIERARCHICAL MODELS

• nM and nR number of accidents for M and R

• λM and λR parameters for Poisson distribution for nM and nR

• Equal: If the two drivers are behaving in the same way, we model the data indepen-
dently but with a common λ, with gamma prior G(α, β)

– ⇒ π(λ|nM , nR) ∝ λnMe−λ · λnRe−λ · λα−1e−λβ

– ⇒ λ|nM , nR ∼ G(α+ nM + nR, β +2)

• Completely different: If the two drivers are behaving in a completely different way,
we model the data not only independently but also with different λ’s, and independent
gamma priors

– nM ∼ P(λM) and λM ∼ G(αM , βM) ⇒ λ|nM ∼ G(αM + nM , βM +1)

– nR ∼ P(λR) and λR ∼ G(αR, βR) ⇒ λ|nR ∼ G(αR + nR, βR +1)

25



HIERARCHICAL MODELS

• Similar: If the two drivers are behaving in a similar way, we model the data indepen-
dently, with different λ’s, but drawn from the same exponential (for simplicity) prior,
dependent on a parameter θ

– ⇒ π(λM , λR|nM , nR, θ) ∝ λnM

M e−λM · λnR

R e−λR · θe−λMθ · θe−λRθ

– ⇒ λM |nM , nR, θ ∼ G(nM +1, θ +1) and λR|nM , nR, θ ∼ G(nR +1, θ +1)

• Two independent gamma posteriors for known θ but what about if unknown?

• We could consider a gamma prior θ ∼ G(a, b)

• ⇒ π(λM , λR, θ|nM , nR) ∝ λnM

M e−λM · λnR

R e−λR · θe−λMθ · θe−λRθ · θa−1e−bθ

• Gibbs sampling:

– λM |λR, θ, nM , nR ∼ G(θ + nM +1, θ +1)

– λR|λM , θ, nM , nR ∼ G(θ + nR +1, θ +1)

– θ|λM , λR, nM , nR ∼ G(a+2, b+ λM + λR)
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HIERARCHICAL MODELS

• We have to integrate out θ if we are just interested in the full conditionals of each λ
given the other

π(λM , λR|nM , nR) =

∫
π(λM , λR, θ|nM , nR)dθ

∝ λnM

M e−λMλnR

R e−λR

∫
θa+1e−(b+λM+λR)θdθ

∝
λnM

M e−λMλnR

R e−λR

(b+ λM + λR)a+2

• ⇒ We can use Gibbs sampling with Metropolis steps within

– π(λM |λR, nM , nR) ∝
λnM

M e−λM

(b+ λM + λR)a+2

– π(λR|λM , nM , nR) ∝
λnR

R e−λR

(b+ λM + λR)a+2

• As proposal distributions we could use G(nM +1,1) and G(nR+1,1), respectively
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• Empirical Bayes is a practical, although not properly Bayesian, alternative to the
choice of a prior on θ

• The idea is to find the value of θ maximising the probability of the data and plug it
into the formulas

• The critical aspect, from a strict Bayesian viewpoint, is that data are used twice, first
to find a value of θ and then computing the posterior distribution: priors should be
independent from the data!

• We have to look for θ̂ = argmaxθ f(nM , nR|θ)

• With the same computations as before for θ known, we plug in θ̂
⇒ λM |nM , nR, θ̂ ∼ G(nM +1, θ̂ +1) and λR|nM , nR, θ̂ ∼ G(nR +1, θ̂ +1)
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f(nM , nR|θ) =

∫
f(nM , nR|λM , λR)π(λM , λR|θ)dλMdλR

∝
∫

λnM

M e−λM · λnR

R e−λR · θe−λMθ · θe−λRθdλMdλR

∝ θ2
∫

λnM

M e−(θ+1)λMdλM

∫
λnR

R e−(θ+1)λRdλR

∝ θ2
Γ(nM +1)

(θ +1)nM+1

Γ(nR +1)

(θ +1)nR+1

∝
θ2

(θ +1)nM+nR+2

= h(nM , nR, θ)

•
∂ logh(nM , nR, θ)

∂θ
=

2

θ
−

nM + nR +2

θ +1

•
∂ logh(nM , nR, θ)

∂θ
= 0 ⇔ θ̂ =

2

nM + nR
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• Is θ̂ = 2
nM+nR

surprising? Not much!

• We are considering an event described by a Poisson distribution with parameter λ

• For X ∼ P(λ) we know that E(X) = λ

• For λ ∼ E(θ) we know that E(λ) = 1/θ

• Since we use θ̂ = 2
nM+nR

, we can think of X somehow approximated (with some
mathematical imprecision) by nM+nR

2
, which is very reasonable under our assump-

tions
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• In Italy every year students in some grades are taking tests on their knowledge about
Italian language and Mathematics. The results of the tests could be affected by the
school attended by the students so that it is reasonable to assume that the outcome
for students of the same school are modelled by the same distribution while there
should be a difference between schools.

• The same model could be used for batches of the same item but produced in different
factories or survival times of patients in different hospitals

• We suppose that we observe data from n different groups, with ni, i = 1, . . . , n,
elements in each of them

• Therefore the data are Yiji, i = 1, . . . , n and ji = 1, . . . , ni, although we will use Yij

for simplicity

• Notation: Y i = {Yi1, . . . , Yi,ni
}, i = 1, . . . , n data for i-th group

• Hierarchical models related to the notion of exchangeability, i.e. P(X1, . . . , Xn) in-
variant w.r.t. permutations (but we will not discuss it)
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• Each group has its own distribution with a common parameter, i.e., the density of Yij

is f(yij|λi), i = 1, . . . , n, j = 1, . . . , ni

• This assumption implies a common behaviour within the group

• We assume that the functional form of f is not changing between groups (but it
could)

• All the parameters λi’s are supposed different (although sometimes some groups
might have the same parameter)

• This assumption implies that the behaviour changes between groups

• All λi’s come from the same distribution, i.e. g(λi|θ), where θ is a parameter in
common

• This assumption implies that the behaviour of the groups, although different, is actu-
ally similar

• As before, a prior could be chosen for θ or a value could be plugged in, using, e.g.,
Empirical Bayes
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• {yi1, . . . , yini
|λi} ∼ i.i.d. f(y|λi), i = 1, . . . , n

Within group sampling variability

• {λ1, . . . , λn} ∼ i.i.d. g(λ|θ)
Between groups sampling variability

• θ ∼ π(θ|ω)
Prior distribution with hyperparameter ω

• Sometimes both f(y|λi) and g(λ|θ) are called sampling distributions

• A popular model to describe heterogeneity of means across several populations is a
hierarchical Normal model where both sampling distributions are Gaussian
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• Observations in group j, j = 1, . . . ,m: Yji ∼ N (θj, σ2) (Within group variability)

• Mean of group j, j = 1, . . . ,m: θj ∼ N (µ, τ2) (Between groups variability)

• Independent priors on (µ, τ2, σ2) : π(µ)π(τ2)π(σ2)

– µ ∼ N (µ0, γ2
0)

– τ2 ∼ IG(η0/2, η0τ2
0/2)

– σ2 ∼ IG(ν/2, νσ2
0/2)

• Note that we assume the same variance for all the observations, while the mean is
the same within a group but it changes between groups

• As seen graphically in the next slide, (µ, τ2) provide information on Y ’s but, once θ
is known, the distributions of Y ’s do not depend on (µ, τ2)
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8.3 The hierarchical normal model 133

µ, τ2

σ2

Y 1 Y 2 · · · Y m−1 Y m

θ1 θ2 · · · θm−1 θm

Fig. 8.3. A graphical representation of the basic hierarchical normal model.

8.3.1 Posterior inference

The unknown quantities in our system include the group-specific means
{θ1, . . . , θm}, the within-group sampling variability σ2 and the mean and vari-
ance (µ, τ2) of the population of group-specific means. Joint posterior infer-
ence for these parameters can be made by constructing a Gibbs sampler which
approximates the posterior distribution p(θ1, . . . , θm, µ, τ

2, σ2|y1, . . . ,ym).
The Gibbs sampler proceeds by iteratively sampling each parameter from

its full conditional distribution. Deriving the full conditional distributions in
this highly parameterized system may seem like a daunting task, but it turns
out that all of the necessary technical details have been covered in Chapters
5 and 6. All that is required of us at this point is that we recognize certain
analogies between the current model and the univariate normal model. Useful
for this will be the following factorization:

p(θ1, . . . , θm, µ, τ
2, σ2|y1, . . . ,ym)

∝ p(µ, τ2, σ2)× p(θ1, . . . , θm|µ, τ2, σ2)× p(y1, . . . ,ym|θ1, . . . , θm, µ, τ2, σ2)

= p(µ)p(τ2)p(σ2)





m∏

j=1

p(θj |µ, τ2)









m∏

j=1

nj∏

i=1

p(yi,j |θj , σ2)



 . (8.3)

The term in the second pair of brackets is the result of an important condi-
tional independence feature of our model. Conditionally on {θ1, . . ., θm, µ, τ2,
σ2}, the random variables Y1,j , . . . , Ynj ,j are independent with a distribution
that depends only on θj and σ

2 and not on µ or τ2. It is helpful to think about
this fact in terms of the diagram in Figure 8.3: The existence of a path from
(µ, τ2) to each Y j indicates that while (µ, τ

2) provides information about Y j ,
it only does so indirectly through θj , which separates the two quantities in
the graph.

Full conditional distributions of µ and τ2

As a function of µ and τ2, the term in Equation 8.3 is proportional to

p(µ)p(τ2)

m∏

j=1

p(θj |µ, τ),

*From Hoff (2009), A First Course in Bayesian Statistical Methods, Springer
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• Notation: Yi = (Yj1, . . . , Yjnj
), j = 1, . . . ,m

• Y = (Y1, . . . , Ym) and θ = (θ1, . . . , θm)

• Joint posterior distribution

π(θ, µ, τ2, σ2|Y ) ∝ π(µ, τ2, σ2)g(θ|µ, τ2, σ2)f(Y |θ, µ, τ2, σ2)

∝ π(µ)π(τ2)π(σ2)





m∏

j=1

g(θj|µ, τ2)









m∏

j=1

nj∏

i=1

f(yji|θj, σ2)





• Full conditionals for µ and τ2: π(µ, τ2|θ, σ2, Y ) ∝ π(µ)π(τ2)
∏m

j=1 g(θj|µ, τ2)

• π(µ|θ, τ2, σ2, Y ) ∝ π(µ)
∏m

j=1 g(θj|µ, τ2)

• π(τ2|θ, µ, σ2, Y ) ∝ π(τ2)
∏m

j=1 g(θj|µ, τ2)
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• The two full conditionals look very familiar!

– Sample (θ, . . . , θm) from N (µ, τ2)

– µ ∼ N (µ0, γ2
0)

– τ2 ∼ IG(η0/2, η0τ2
0/2)

• µ|θ, τ2, Y ∼ N
(
mθ/τ2 + µ0/γ2

0

m/τ2 +1/γ2
0

,
[
m/τ2 +1/γ2

0

]−1
)

• τ2|θ, µ, Y ∼ IG

(
η0 +m

2
,
η0τ2

0 +
∑m

j=1(θj − µ)2

2

)

• Here θ =
m∑

j=1

θj/m
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• Regarding θ, we can compute the full conditional for each θj, as dependent on
µ, τ2, σ2, Yj since it is independent from the other θk’s and the data from other
groups

• g(θj|µ, τ2, σ2, Yj) ∝ g(θj|µ, τ2)
∏nj

i=1 f(yji|θj, σ2), j = 1, . . . ,m

• We have the product of Gaussian densities (already done, although in a simpler
case)

• ⇒ θj|µ, τ2, σ2, Yj ∼ N
(
njyj/σ

2 +1/τ2

nj/σ2 +1/τ2
,
[
nj/σ

2 +1/τ2
]−1
)

• Here yj =

nj∑

i=1

yji/nj
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• Full conditional of σ2

π(σ2|θ, Y ) ∝ π(σ2)





m∏

j=1

g(θj|µ, τ2)









m∏

j=1

nj∏

i=1

f(yji|θj, σ2)





∝ (σ2)−ν0/2+1e−ν0σ2
0/(2σ

2) · (σ2)
−
∑m

j=1
nj/2e

−
∑m

j=1

∑
i=1nj(yij−θ2

j )/(2σ
2)

• ⇒ σ2|θ, Y ∼ IG


(ν0 +

m∑

j=1

nj)/2, (ν0σ
2
0 +

m∑

j=1

nj∑

i=1

(yij − θj)
2)/2




• We use the Gibbs algorithm to get a sample from the posterior distribution since all
the conditional distributions are properly specified

40



HIERARCHICAL MODELS*

• We are interested in learning about the mortality rates due to heart transplant surgery
for 94 hospitals

• The number of deaths within 30 days of heart transplant surgery is recorded for each
hospital

• It is the same problem, but addressed differently, we considered when checking if
there was discrepancy between observed values and predictive distribution based
on the select pair sampling model/prior

• Each hospital has a true mortality rate λi, and so one wishes to simultaneously
estimate the 94 rates λ1, . . . , λ94

• It is reasonable to believe a priori that the true rates are similar in size, which implies
a dependence structure between the parameters

• If one is told some information about a particular hospital’s true rate, that information
would likely affect one’s belief about the location of a second hospital’s rate

*Example from Albert’s book
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• In addition, we record for each hospital an expected number of deaths called the
exposure, denoted by e

• We let yi and ei denote the respective observed number of deaths and exposure for
the i-th hospital

• A standard model assumes that the number of deaths yi follows a Poisson distri-
bution with mean eiλi and the objective is to estimate the mortality rate per unit
exposure λi

• The fraction yi/ei is the number of deaths per unit exposure and can be viewed as
an estimate of the death rate for the i-th hospital

• Suppose we are interested in simultaneously estimating the true mortality rates {λi}
for all hospitals

• One option is simply to estimate the true rates by using the individual death rates:
y1/e1, . . . , y94/e94
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• Unfortunately, the individual rates yi/ei’s can be poor estimates, especially for the
hospitals with small exposures

• Some of those hospitals did not experience any deaths and the individual death rate
yi/ei = 0 would likely underestimate the hospital’s true mortality rate

• Since the individual death rates can be poor, it seems desirable to combine the
individual estimates in some way to obtain improved estimates

• Suppose we can assume that the true mortality rates are equal across hospitals, i.e.
λ1 = . . . = λ94

• Under this ”equal-means” Poisson model, the estimate of the mortality rate for the

i-th hospital would be the pooled estimate
∑94

i=1 yj∑94
i=1 ej

• The pooled estimate is based on the strong assumption that the true mortality rate
is the same across hospitals but this is questionable since one would expect some
variation in the true rates
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• We have discussed two possible estimates for the mortality rate of the i-th hospital:

the individual estimate yi/ei and the pooled estimate
∑94

i=1 yj∑94
i=1 ej

• A third possibility is the compromise estimate (1− ε)
yi

ei
+ ε

∑94
i=1 yj∑94
i=1 ej

• One could consider equal mortality rate so that yi ∼ P(eiλ)

• The gamma prior for λ is conjugate w.r.t. the model, as already seen earlier in similar
situations

• We leave the computations as an exercise: Albert considered a non informative prior
π(λ) ∝ 1/λ but a proper gamma prior can be used
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• yi ∼ P(eiλi), i = 1, . . . ,94

• λ1, . . . , λ94 ∼ G(α, α/µ), with mean µ and variance µ2/α

g(λ(α, µ) =
(α/µ)αλα−1e−αλ/µ

Γ(α)

• Consider the hyperparameters µ and α as independent

• µ ∼ IG(a, b) and π(α) for α

• If we consider a Dirac prior at α0 for α and just the first two hospitals, we get

g(λ1, λ2|α0) ∝
(λ1λ2)α0−1

(α0(λ1 + λ2) + b)2α0+a

• With µ ∼ IG(10,10) its mean is 1 and (λ1, λ2) will be around (1,1)

• We consider different values of α0
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162 7 Hierarchical Modeling

Since μ is assigned an inverse gamma(10, 10) distribution, both the true rates
λ1 and λ2 are centered about the value 1. The hyperparameter α is a precision
parameter that controls the correlation between the parameters. For the fixed
value α = 400, note that λ1 and λ2 are concentrated along the line λ1 = λ2. As
the precision parameter α approaches infinity, the exchangeable prior places
all of its mass along the space where λ1 = ... = λ94.

ALPHA =  5

LAMBDA 1

LAM
BD

A 2

 −6.9 

 −4.6 

 −2.3 

0 1 2 3 4 5

0
1

2
3

4
5

ALPHA =  20

LAMBDA 1

LAM
BD

A 2  −6.9 

 −4.6 

 −2.3 

0 1 2 3 4 5

0
1

2
3

4
5

ALPHA =  80

LAMBDA 1

LAM
BD

A 2  −6.9 

 −4.6 

 −2.3 

0 1 2 3 4 5

0
1

2
3

4
5

ALPHA =  400

LAMBDA 1

LAM
BD

A 2

 −6.9 

 −4.6 

 −2.3 

0 1 2 3 4 5

0
1

2
3

4
5

Fig. 7.5. Contour graphs of the exchangeable prior on (λ1, λ2) when μ has an inverse
gamma(10, 10) distribution and for values of the precision parameter α = 5, 20, 80,
and 400.

Although we used subjective priors to illustrate the behavior of the prior
distribution, in practice vague distributions can be chosen for the hyperpa-
rameters μ and α. In this example, we assign the mean parameter the typical
vague prior of the form

g(μ) ∝ 1

μ
, μ > 0.

The precision parameter α assigned the proper, but relatively flat, prior den-
sity of the form

g(α) =
z0

(α + z0)2
, α > 0.

• Contour graphs of the exchangeable prior on (λ1, λ2)

*From Albert’s book
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• We now provide just a sketch of the analysis performed by Albert in his book: more
details and R codes can be found in it

• Consider g(µ) ∝ 1/µ and g(α) =
z0

(α+ z0)2

• Conditional on µ and α, the λi’s have independent posterior distributions:
λi|α, µ, yi ∼ G(yi + α, ei + α/µ)

• ⇒ E(λi|α, µ, yi) =
yi + α

ei + α/µ

• The posterior on α and µ is given, for a constant K, by

7.7 Simulating from the Posterior 163

The user will specify a value of the parameter z0 that is the median of α. In
this example, we let z0 = 0.53.

7.6 Posterior Distribution

Owing to the conditionally independent structure of the hierarchical model
and the choice of a conjugate prior form at stage 2, there is a relatively simple
posterior analysis. Conditional on values of the hyperparameters μ and α, the
rates λ1, ..., λ94 have independent posterior distributions. The posterior distri-
bution of λi is gamma(yi +α, ei +α/μ). The posterior mean of λi, conditional
on α and μ, can be written as

E(λi|y, α, μ) =
yi + α

ei + α/μ
= (1 − Bi)

yi

ei
+ Biμ,

where
Bi =

α

α + eiμ
.

The posterior mean of the true rate λi can be viewed as a shrinkage estimator,
where Bi is the shrinkage fraction of the posterior mean away from the usual
estimate yi/ei toward the prior mean μ.

Also, since a conjugate model structure was used, the rates λi can be
integrated out of the joint posterior density, resulting in the marginal posterior
density of (α, μ),

p(α, μ|data) = K
1

Γ 94(α)

94∏

j=1

[
(α/μ)αΓ (α + yi)

(α/μ + ei)(α+yi)

]
z0

(α + z0)2
1

μ
,

where K is a proportionality constant.

7.7 Simulating from the Posterior

In the previous section, the posterior density of all parameters was expressed
as

g(hyperparameters|data) g(true rates|hyperparameters,data),

where the hyperparameters are (μ, α) and the true rates are (λ1, ..., λ94). By
using the composition method, we can simulate a random draw from the joint
posterior by

• simulating (μ, α) from the marginal posterior distribution
• simulating λ1, ..., λ94 from their distribution conditional on the values of

the simulated μ and α
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• Having the posterior conditionals on the λi’s in closed form (i.e. a Gamma distri-
bution) and knowing the posterior conditional for (α, µ) apart from a constant, it is
possible to use a Gibbs sampling algorithm with Metropolis-Hastings steps within

• At this point we can compare hospitals

• If we look for the ”best hospital” then we should look for the one with the lowest
estimated posterior mean of λi’s

• If we want to compare two hospitals, i and j, then we can estimate P(λi < λj) by
simply counting the frequency of the samples λ(s)

i < λ(s)
j

• We say that hospital i is better than hospital j if P(λi < λj) > 0.5
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