
Lecture No 23 May 27, 2022 (Fri)

§26 Stochastic PDE approach to random interfaces

Finally, we discuss a specific problem motivated by physics.

▶ We consider stochastic Allen-Cahn equation
(=TDGL equation, Dynamic P(ϕ)-model)
for u = uε(t, x , ω):

∂tu = ∆u +
1

ε2
f (u) + Ẇ ε(t, x),

▶ Here Ẇ ε(t, x) is a space-time noise depending on a small
parameter ε > 0. (Space-time Gaussian white noise only in 1D)

▶ Reaction term f : R → R is bistable and balanced:∫ 1

−1

f (u)du = 0 or equivalently V (1) = V (−1).

V : f = −V ′ potential

−1 1
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▶ One can expect that an interface Γt appears such that

uε(t, x) −→
ε↓0

χΓt (x) :=

{
+1, outside of Γt ,

−1, inside of Γt ,

▶ Problem: Determine the time evolution of Γt .
(Sharp interface limit → Part C)

−1
+1

Γt

▶ Γt would move randomly and the evolution would be
governed by some SPDE. Study such SPDEs. (→ Part B)
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Part A: Background and Preliminary

1. Introduction

1.1. Drumhead model
1.2. TDGL equation (Stochastic Allen-Cahn equation,

Dynamic P(ϕ)-model)

2. Semilinear stochastic PDEs of parabolic type

2.1. Concepts of Solutions
2.2. Regularity of Solutions
2.3. Invariant measures, reversible measures

(infinite-dimensional case)
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Part B: Stochastic motion by mean curvature

3.1. Background

3.1.1. Motion by mean curvature (MMC without noise)
3.1.2. Its derivation under sharp interface limit (SIL)
3.1.3. Stochastic MMC (SMMC)

3.2. A quick survey of known results

3.2.1. Motion by mean curvature
3.2.2. Stochastic MMC

3.3. Some further progress

3.3.1. SMMC with a direction-dependent smooth noise (DFY)
3.3.2. Volume preserving MMC with noise (FY)
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Part C: Sharp interface limit

4.1. Sharp interface limit (SIL) without noise

4.2. Sharp interface limit with noise

4.2.1. d = 1
4.2.2. d ≥ 2
4.2.3. Stochastic mass-conserving Allen-Cahn equation
4.2.4. The case with boundary condition (Lee)
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Part A: Background and Preliminary

1. Introduction
1.1. Drumhead model

▶ Kawasaki (2001 Boltzmann medalist)

(from web of Duke Univ)

▶ Hamiltonian called Ginzburg-Landau-Wilson free energy
of the field u : Rd → R:

H(u) =

∫
Rd

{
1

2
|∇u(x)|2 + V (u(x))

}
dx ,
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▶ V : R → R: self-potential of double well type with two
bottoms ±1 of the same level: V (1) = V (−1).

−1 1

▶ As the depth of the potential V becomes steep, we
expect u(x) ∼ ±1 for each x ∈ Rd .

▶ A surface (hypersurface) called an interface S appears in
Rn and separates two different phases {±1}.
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▶ Assume S is described as a graph:

S = {x = (r , xn); xn = h(r)}, r = (x1, . . . , xn−1),

with a height function h = h(r).

▶ From H(u), by reduction in the normal direction to S ,
one can derive the effective Hamiltonian for S :

FDH(h) =
σ2

2

∫
Rn−1

√
1 + |∇rh|2 dr

(
= surface area of S×σ2

2

)
,

where σ2 =
∫
R m

′(z)2dz is called the surface tension.
▶ m = m(z), z ∈ R is the minimizer of H(u) considered

with d = 1: δH
δu(z)

(m) = 0 such that m(±∞) = ±1. It is
called the standing wave and will be explained later. 8 / 39



Reduction from H to FDH :

▶ For the derivation of FDH(h), it is essential to observe
that the transition of u(x) across S (i.e., to the normal

direction
⇀
n to S) behaves as m = m(z), z ∈ R.

▶ The normal vector
⇀
n to the surface S at the point (r , xn)

is given by

⇀
n=

1√
1 + |∇rh(r)|2

(
−∇rh(r)

1

)

∵) ⇀
n⊥

(
ei

∂xih(r)

)
(=tangent vectors to S) and | ⇀

n | = 1.
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▶ The change of the interface to the direction
⇀
n is

equivalent to the change of the height function h to the

vertical direction
⇀
m, where

⇀
m=

(
0√

1 + |∇rh(r)|2

)
.

∵) Check (
⇀
m − ⇀

n) ⊥⇀
n .

▶ Thus, one can expect

u(x) = u(r , xn) ∼ m

(
xn − h(r)

a(r)

)
,

with a(r) =
√

1 + |∇rh|2 which describes the width of

the layer viewed to the direction
⇀
m instead of

⇀
n .

▶ Insert this into H(u) and we obtain FDH(h).
(→ see next page)

▶ This is rigorously shown in Γ-convergence.
10 / 39



[Computation leading to FDH(h) from H(u)]

Regarding

∇xim

(
xn − h(r)

a(r)

)
∼ m′

(
xn − h(r)

a(r)

)
∇xih

a(r)

(by not differentiating a(r) in xi ), and

∇xnm

(
xn − h(r)

a(r)

)
∼ 1

a(r)
m′
(
xn − h(r)

a(r)

)
,

we have

H(u) ∼
∫
Rd−1

dr

∫
R

{
1

2
m′
(

xn
a(r)

)2
1 + |∇rh|2

a(r)2
+ V

(
m

(
xn
a(r)

))}
dxn

by shifting xn by h(r). Now by the definition of a(r), we have∫
R

{
1

2
m′

( xn

a

)2
+ V

(
m

( xn

a

))}
dxn = a

∫
R

{
1

2
m′ (z)2 + V (m (z))

}
dxn =

a

2
σ2,

where σ2 =
∫
R m′(z)2dz is called the surface tension; note that∫

R V (m(z))dz = 0 at least if V is symmetric, which we assume.
Therefore, one can derive the effective Hamiltonian for the surface S :

FDH(h) =
σ2

2

∫
Rn−1

√
1 + |∇rh|2 dr .
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Relation of FDH(h) to mean curvature

▶ Note that

δFDH

δh(r)
(h) =

(1)
−σ2

2
divr

(
∇rh√

1 + |∇rh|2

)
≡ −σ2

2
κ(r),

where κ(r) denotes the mean curvature of S at (r , xn)
times (d − 1) (→ see below)

[∵ for (1)] Take any test function φ and compute

d

dε

∫
Rn−1

√
1 + |∇r (h + εφ)|2 dr

∣∣∣∣
ε=0

=

∫
Rn−1

∇rh · ∇rφ√
1 + |∇rh|2

dr

= −
∫
Rn−1

div

(
∇rh√

1 + |∇rh|2

)
· φ dr .

▶ Kawasaki and Ohta discussed the corresponding dynamic
theory.
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Mean curvature κ:

▶ For B ⊂ Rd , define the distance function from x ∈ Rd by

dist(x ,B) = inf
y∈B

|x − y |.

▶ For (d − 1)-dimensional hypersurface S given as S = ∂B,
signed distance function is defined by

d(x ,S) = dist(x ,B)− dist(x ,Bc), x ∈ Rd .

▶ Note: d(x) and d (dimension) should be distinguished.

▶ It is known that, if S is smooth and d is also smooth in a
neighborhood U of S , then the eikonal equation

|∇d(x)| = 1

holds for x ∈ U. In particular, ∇d(x) is a unit normal vector at
x ∈ S pointing toward the outside of B.

B
x
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▶ For (d − 1)-dimensional hypersurface S , the mean
curvature at x ∈ S is defined as the average of the
principal curvatures:

κ(x) =
1

d − 1

d−1∑
i=1

κi(x), x ∈ S .

▶ It is known that {κi(x)}d−1
i=1 and 0 are eigenvalues of the

Hesse matrix of d :

D2d(x) ≡ Hess d(x) =

(
∂2d

∂xi∂xj

)
1≤i ,j≤d

.

▶ Note that, differentiating |∇d(x)|2 = 1 in x , we have
(D2d)∇d = 0 so that ∇d is the 0-eigenvector of D2d .

▶ In particular, we see that

∆d(x) ≡ TrD2d(x) = (d − 1)κ(x).
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Another ways to express κ:

▶ If the hypersurface S is represented as a zero set of a C∞-function
u on Rd , that is S = {x ; u(x) = 0}, then we have

∇d(x) =
∇u

|∇u|
(x) on S .

▶ Therefore, the mean curvature (times d − 1) is represented as

∆d(x) = div ∇d(x) = div

(
∇u

|∇u|

)
.

▶ If S is represented as a graph S = {(r , xn); xn = h(r)}, one can take
u(x) = h(r)− xn so that ∇u = (∇rh,−1) and we obtain the
formula we stated above:

∆d(x) = divx

(
(∇rh,−1)√
1 + |∇rh|2

)

= divr

(
∇rh√

1 + |∇rh|2

)
.
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1.2. TDGL equation

▶ Time-dependent Ginzburg-Landau (TDGL) equation
(cf. Hohenberg-Halperin, Kawasaki-Ohta, ∞-dim Langevin eq)

∂tu = −1

2
(−∆)α

δH

δu(x)
(u) + (−∆)α/2Ẇ (t, x , ω), x ∈ Rd ,

Ẇ (t, x , ω) = space-time Gaussian white noise with mean 0

and covariance structure formally given by

E [Ẇ (t, x)Ẇ (s, y)] = δ(t − s)δ(x − y), (1)

H(u) =

∫
Rd

{
1

2
|∇u(x)|2 + V (u(x))

}
dx .

▶ α = 0: Model A (non-conservative system),
α = 1: Model B (conservative system).
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▶ Heuristically, Gibbs measure 1
Z
e−Hdu is invariant

(reversible) under these dynamics, where du =
∏

x∈Rd du(x)

is the Feynman measure.
▶ Recall fluctuation-dissipation theorem, distorted Brownian

motion discussed in Lect-19 in a finite-dimensional
setting.

▶ The functional derivative of H(u) is given by

δH

δu(x)
(u) = −∆u + V ′(u(x)).

In fact, for every test function φ ∈ C∞
0 (R), we have

d

dε
H(u + εφ)

∣∣∣
ε=0

=

∫
Rd

d

dε

{
1

2
|∇u(x) + ε∇φ(x)|2 + V (u(x) + εφ(x))

} ∣∣∣∣
ε=0

dx

=

∫
Rd

{
∇u(x) · ∇φ(x) + V ′(u(x))φ(x)

}
dx

=

∫
Rd

{
−∆u(x) + V ′(u(x))

}
φ(x)dx .
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▶ Therefore, TDGL eq of non-conservative type has the
form:

∂tu =
1

2
∆u − 1

2
V ′(u) + Ẇ (t, x), (2)

while TDGL eq of conservative type has the form:

∂tu = −1

2
∆2u +

1

2
∆{V ′(u)}+

√
−∆Ẇ (t, x). (3)

▶ The noise
√
−∆Ẇ can be interpreted as the time

derivative of a Q-cylindrical Brownian motion on
L2(Rd , dx) with a covariance operator Q = −∆.
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▶ Or dropping 1
2
and writing f for −V ′, we have

▶ TDGL eq of non-conservative type (stochastic
reaction-diffusion equation, stochastic Allen-Cahn
equation, dynamic P(ϕ)-model) has the form:

∂tu = ∆u + f (u) + Ẇ (t, x), (4)

▶ TDGL eq of conservative type (stochastic Cahn-Hilliard
equation) has the form:

∂tu = −∆2u −∆{f (u)}+∇ · Ẇ, (5)

where Ẇ = (Ẇ i(t, x))di=1 is Rd -valued space-time
Gaussian white noise.

▶ Note that the covariance structure of ∇ ·W is the same
as that of

√
−∆W :

E [⟨∇ ·W, φ⟩2] = E
[ d∑

i=1

⟨W i , ∂xiφ⟩2
]
= t|∇φ|2 = t(−∆φ,φ)

= t(Qφ,φ) = t(
√
−∆φ,

√
−∆φ) = E [⟨

√
−∆W , φ⟩2].
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Stochastic PDEs used in physics are sometimes ill-posed.

For example for (2),

▶ Noise is very irregular: Ẇ ∈ C− d+1
2

− := ∩δ>0C
− d+1

2
−δ a.s.

(Or Ẇ ∈ H
− d+1

2
−

loc := ∩δ>0H
− d+1

2
−δ

loc a.s.)

▶ Linear case (without V ′(u), Schauder estimate):

u(t, x) ∈ C
2−d
4

−, 2−d
2

− a.s.

▶ Well-posed only when d = 1.

Similar for (3):

▶ Linear case: u(t, x) ∈ C
2−d
8

−, 2−d
2

− a.s.

▶ Well-posed only when d = 1.

See Section 2 for details. (On Td , we discussed before.)
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Theory for ill-posed SPDEs:

▶ Hairer: Regularity structures, systematic renormalization

▶ TDGL equation with V (u) = 1
4
u4:

=Stochastic quantization (Dynamic P(ϕ)d -model):

∂tϕ = ∆ϕ− ϕ3 + Ẇ (t, x), x ∈ Rd

▶ For d = 2 or 3, replace Ẇ by a smeared noise Ẇ ε and
introduce a renormalization factor −Cεϕ. Then, the limit
of ϕ = ϕε as ε ↓ 0 exists (locally in time). Real eq is:

∂tϕ = ∆ϕ− ϕ3 −∞ · ϕ+ Ẇ (t, x)

▶ The solution is continuous in ξ (in place of Ẇ ε) and ξ’s
(finitely many) polynomials. (cf. Rough path theory).

▶ Global well-posedness: Weber-Mourrat, Hoshino
(C-valued case), method of energy inequality

▶ Another approach by Gubinelli, Imkeller and Perkowski:
▷ Paracontrolled calculus (harmonic analytic method)
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One way to have better regularity: Non-nearest neighbor
interactions

▶ Replace the Hamiltonian by

H(u) =

∫
Rd

{
1

2
Au(x) · u(x) + V (u(x))

}
dx ,

where A is a higher order elliptic differential operator:

Au(x) =
∑

|α|,|β|≤m

(−1)|α|Dα{aαβDβu}(x),

and aαβ = aβα, positive definite. Originally A = −∆, but
we take A = −(−∆)m for example. We have

δH

δu(x)
= Au + V ′(u(x)),

▶ Corresponding TDGL equation has a solution with better
regularity, see Section 2. (On Td , we discussed before.)
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Relation to Allen-Cahn/Cahn-Hilliard equations

▶ When Ẇ = 0 (i.e., no noise) and V= double-well type,
non-conservative TDGL eq (2) is known as
Allen-Cahn equation or reaction-diffusion equation of
bistable type, whereas conservative TDGL eq (3) is
known as Cahn-Hilliard equation.

▶ We will discuss sharp interface limit for Allen-Cahn
equation with noise (Stochastic Allen-Cahn equation).
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▶ Dynamic phase transition, Sharp interface limit as ε ↓ 0
for TDGL equation (=stochastic Allen-Cahn equation):

∂tu = ∆u +
1

ε2
f (u) + Ẇ (t, x), x ∈ Rd (6)

f = −V ′, Potential V is of double-well type:

e.g., f = u − u3 if V = 1
4
u4 − 1

2
u2

Ẇ (t, x) should also be properly scaled.
−1 1
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▶ The limit is expected to satisfy:

u(t, x) −→
ε↓0

{
+1

−1

+1

−1

Γt

▶ A random phase separating hyperplane Γt appears and
the goal is to determine its dynamics under proper time
scaling.

▶ In the limit, we expect to have something like

V = κ+ Ẇ ,

where V is (inward) normal velocity of Γt . κ is mean
curvature (×(d − 1)) and Ẇ is certain noise.
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S. Brassesco and P. Buttà, Interface fluctuations for the D = 1 stochastic
Ginzburg-Landau equation with nonsymmetric reaction term, J. Stat. Phys., 93
(1998), 1111–1142.

S. Brassesco, A. De Masi and E. Presutti, Brownian fluctuations of the
instanton in the d=1 Ginzburg-Landau equation with noise, Ann. Inst. H.
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