2020-9-14 Käwer geometry

$$
\begin{array}{ll}
\begin{array}{ll}
y=A x
\end{array}, & \left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \\
\underset{\text { 清荣園 }}{ } & \text { r } \\
=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \\
\text { western } \\
\text { c校门 } & \text { came vector } \\
\text { culture }
\end{array}
$$

$\stackrel{\text { 周亭涪 eastern culture }}{\longleftrightarrow}$

$$
\neq A=y, \quad\left(x_{1}-x_{n}\right) A=\left(y_{1}-y_{n}\right)
$$

row vector
We employ the western in（tare，and ore expels vector，as column vectors． （Bock are possible．）

Let V be a vector space over $R_{0} c$ ， $\operatorname{dim}=n$ ．
$e_{1} \ldots e_{n}$
Let e_{1}, \ldots. e_{n} be a basis.
Then

$$
x=x^{\prime} \cdot e_{1}+\cdots+x^{n} e_{n}
$$

But we want to express a rec $\overline{=}$ as a culamn vector

Note that we used upper under for coefficients, and lower index for basis.
This is a staudund notation in differential geometry and physics.
Einstein contention

$$
x=x^{i} e_{i}=e_{i} x^{i}
$$

omitting $\sum_{i=1}^{n}$ Understand that the sum os
taken of upper and lover index appear at the same time.
Take the dual basis e^{l}, \ldots, e^{r} of V^{*} w.r.t. e_{1}, \ldots, e_{n}.

$$
\left\langle e^{i}, e_{j}\right\rangle=\delta^{i} j \quad \text { Kronecker delta }
$$

Take $\alpha \in V^{*}$ is expressed as

$$
\alpha=\alpha_{i} e^{i}\left(=\sum_{i=1}^{n} \alpha_{i} e^{i}\right)
$$

$$
x=x^{2} \cdot e_{u}
$$

$$
\mathbb{A}_{1} \quad \cdots \mathbb{A}_{n}
$$

Let t_{1}, \ldots, t_{n} be another basis Then $\exists P$ non-singulor matrix st.

$$
\begin{aligned}
& \left(t_{1}-f_{n}\right)=\left(e_{1}-e_{n}\right) p \\
& f_{j}=e_{i} p_{j}^{i}=p_{j}^{i}, e_{i}\left(=\Sigma p_{j} e_{i}\right)
\end{aligned}
$$

$$
\begin{gathered}
P \in \operatorname{End}(V)=V \otimes V^{*} \\
\star \quad P_{j}^{i} e_{i} \otimes e^{j}
\end{gathered}
$$

Let $\tau: V \rightarrow V$ be a line ar map

$$
\begin{aligned}
T\left(e_{j}\right) & =\sum_{i=1}^{n} a^{i} ; e_{i} \\
& =e_{i} a^{i} ; p^{n i}\{ \}_{-j} \\
T\left(e_{1} \ldots e_{w}\right) & =\left(\tau\left(e_{1}\right), \ldots, T\left(e_{w}\right)\right) \\
& =\left(e_{1} \ldots e_{n}\right) A
\end{aligned}
$$

$$
=\left(\left.p^{i}\right|_{j}\right)
$$

tex notation
A is called the matrix expression of the linear map T.w.r.t. e_{1}, \ldots, e_{n}.

$$
\begin{aligned}
T\left(f_{1} \cdots f_{n}\right) & =\left(T\left(f_{1}\right) \cdots T\left(f_{n}\right)\right) \\
& =\left(t_{1} \cdots t_{n}\right) A^{\prime}
\end{aligned}
$$

Whet is the relatim of A and A^{\prime} ?

Answer $\quad A^{\prime}=P^{-1} A P$.
©

$$
\begin{aligned}
& T\left(f_{1} \cdots f_{n}\right)=\underline{\left(f_{1} \cdots f_{n}\right)} A^{\prime} \\
&=\underline{\left(e_{1} \cdots e_{n}\right) P \cdot A^{\prime}} \\
& T\left(\left(e_{1} \cdots e_{n}\right) P\right)=\left(T\left(e_{1}\right) \cdots T\left(e_{n}\right) P\right. \\
&=\left(e_{1} \cdots e_{n}\right) A P \\
& P A^{\prime}=A P \quad \therefore P=A^{-1} P A^{\prime} .
\end{aligned}
$$

Following backwards chis arguments, we see that if $A^{\prime}=P^{-1} A P$ then A and A^{\prime} are expressims of a same linen map T wish respect to differat capes.

Vector bundles.
Let M be a smooth manifold of dim n.
Definition
$\pi: E \rightarrow M$ between gmo th manifld E and M is raid to be a veal or couples vector bundle of rank r if
(i) $\operatorname{dim} E=n+r$. (on $n+2 r$)
(ii) π is a smooth map and che rank of $d \pi$ is n every cohere (conaximal rank)
(iii) There is an open covering $\left\{U_{\lambda}\right\}_{\lambda \in 1}$

I of M with difflo

$$
\varphi_{\lambda}: \pi^{-1}\left(U_{\lambda}\right) \rightarrow U_{\lambda} \times \mathbb{R}^{r}\left(\pi U_{\lambda} \times \mathbb{C}^{r}\right)
$$

such that
(iiia) for the projection $p_{\lambda}: U_{\lambda} \times \mathbb{R}^{n} \rightarrow U_{\lambda}$

$$
\pi=P_{\lambda} \cdot \varphi_{\lambda} \quad \text { i.e. } \quad \text { load trivichity }
$$

$$
\begin{gathered}
\underset{\pi^{-1}\left(U_{\lambda}\right)}{ } V^{E} \xrightarrow{\longrightarrow} U_{\lambda} \times R^{n} \\
\pi \sum^{n} \\
p_{\lambda} \\
\varphi_{\lambda}\left(\pi_{\lambda}^{-1}(p)\right)=l_{\lambda}^{-1}(p)<M
\end{gathered}
$$

(iiib) When $v_{\lambda} \cap U_{\mu} \not \not \notin$

$$
\varphi_{x}=\varphi_{\mu}^{-1}:\left(u_{\lambda} \cap u_{\mu}\right) \times \mathbb{R}^{\nu} \rightarrow\left(u_{\lambda} \cap u_{\mu}\right) \times \mathbb{R}^{r}
$$

in expressed as

$$
\begin{aligned}
& \frac{\varphi_{\lambda} \cdot \varphi_{\mu}^{-1}(p, x)=\left(p, \varphi_{\lambda \mu}(p) x\right)}{\varphi_{\lambda \mu}: U_{\lambda} \cap u_{\mu} \rightarrow G L(r, R)}
\end{aligned}
$$

\mathbb{C}

Remark

1. $\left\{\varphi_{\lambda \mu}\right\}_{\lambda, \mu \in \Lambda}$ are called the transition functions.
2. $\pi^{-1}(p)$ is called a fiber, and has a structure of vector space because

$$
\left(\left.\varphi_{\lambda}\right|_{\pi^{-1}(p)}\right)^{-1}: \underset{p}{=} \rightarrow \pi^{r}(p)
$$

and the recto space structure $p \times \mathbb{R}^{n}$ is independent of $\lambda \in \Lambda$. by (iii).
3. Repla ing \mathbb{R} by \mathbb{C} and assuming
(a) M is a complexmanipld.
(b) E is also a complex manifold
(c) all maps are holounghic we say E is a Lolomorphei vector bundle.
4. Typical examples of vector bundles ore tangent rundles and cotangent bundles.
and then tensor prouscts.
5. When $r=1, E$ is called a line bundle. often denoted by L.
6. $\pi: E \rightarrow N$ vectr Ladle over N, ad $f: M \rightarrow N$ smooth, then we have the pull-lack bundle

$$
f^{*} E=\left\{(x, v) \in M \times E \mid v \in \pi^{-1}(f(x))\right\}
$$

7. E is called a trivial bundle if it is a pull-back lundle of the product

$$
M \times \mathbb{R}^{r} \quad \sigma M_{x} \mathbb{c}^{r}
$$

Kähler geometry
$E \xrightarrow{\pi} M \quad c^{\infty}$ complex vectar Landle.

$$
c^{\infty}(E)=\left\{s: M \xrightarrow{c^{\infty}} E \mid \pi+s=i d_{M}\right\}
$$

(M is a smooth mfld.)
$C_{\mathbb{C}}^{\infty}(M)=\{\mathbb{C}$-valued smooth functims on M\}

$$
f \in c_{C}^{\infty}(M), s \in C^{\infty}(E) \Longrightarrow f s \in c^{\infty}(E) .
$$

Det $\nabla: C^{\infty}(T M \otimes \mathbb{C}) \times c^{\infty}(E) \rightarrow C^{\infty}(E)$

$$
(x, s) \longmapsto \nabla_{x}^{\psi} s
$$

is Called a (linear) connection if
(i) $\quad \nabla_{f x} s=f \nabla_{x} s \quad f \in c_{c}^{\infty}$ (M)
(ii) $\nabla_{x}(f s)=(x f) s+f \nabla_{x} s$

Deft $\nabla_{x} s$ is called the covariant derivative of s in the direction of x.

Excencise Show using (i) that if $x_{p}=Y_{p}$ then $\nabla_{x} s=\nabla_{Y} s$ at p.

Ret $e_{1}, \ldots, e_{r} \in c^{\infty}\left(E \mid U_{U}^{\pi^{-1}}\right)$
U is an open set, is called a local frame field of $e_{1}(p), \ldots, e_{r}(p)$ form a basis of E_{p} for $\alpha_{p}+U$.

$$
E V_{U} \cong \stackrel{C^{r}}{\mathbb{C}^{2}} \underset{e_{i}(p)=(p, c)}{=}
$$

Deft Given such a frame, de tine 1 -toms θ^{i}; by

$$
\begin{align*}
& \nabla_{j}=\theta^{i} ; e_{i} \quad\left(=\sum e_{i} \theta_{j}^{j}\right) \tag{i}\\
& s_{0} \quad \nabla_{x} e_{i}=\sum_{i=1}^{r} \theta_{j}^{i}(x) e_{i}
\end{align*}
$$

Def $\theta=\left(\theta^{i} ;\right)$ is called the
connection form of ∇ w．r．T．e_{1}, \ldots, e_{r} ． connection matrix．

Send your
name，shod，年納，専攻，mail adregs
by email \bar{t}_{0}
futaki＠tsinghua．edu．cn

