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Motivating example: Permutation.

Let Sn be the group of permutations of the set {1, 2, . . . , n}.

A permutation σ ∈ Sn can be understood by its decomposition into
cycles.

For example, for

σ =

(
1 2 3 4 5 6
5 6 2 4 1 3

)
we have

σ = (15)(263)(4).

We can visualize σ as a labeled graph Xσ that is a union of cycles.

2

4

6 51 3



What does a typical permutation look like?

Question

What is the order of a typical element under a typical permutation
σ ∈ Sn as n → ∞?

We equip Sn with a uniform probability measure. Then

En(# k–cylces) =
1

n!

∑
σ∈Sn

(# k–cycles in σ)

=
1

n!
#
{
(σ, c)

∣∣∣ σ ∈ Sn, c is a cycle in σ
}

=
1

n!

∑
cycle c

(# permutations where c is a cycle)

=

(n
k

)
(k − 1)!(n − k)!

n!
=

1

k



Benjamini-Schramm limit of a random permutation

For every fixed k > 0,

En(# elements of order at most k) ≤

≤
k∑

j=1

j · En(# j–cylces) =
k∑

j=1

j · 1
j
= k .

Hence, for a random σ ∈ Sn, a random x ∈ {1, . . . , n} and r > 0,

Pn

(
orderσ(x) ≥ r

)
→ 1. as n → ∞.

In other words,

Pn

(
Br (x) is a cycle

)
−→ 0 as n → ∞.

From the point of view of x , Xσ looks like a bi-infinite path



Hausdorff distance

Let (Z , dZ ) be a metric space. For ϵ > 0 and A ⊂ Z , define

Aϵ = {z ∈ Z : inf
a∈A

dZ (a, z) < ϵ}.

For Borel sets A,B ⊂ Z define

dH
Z (A,B) = inf{ϵ > 0 : A ⊂ Bϵ and B ⊂ Aϵ}.

The Hausdorff distance between compact pointed metric spaces
(X1, o1) and (X2, o2) is

dc
H(X1,X2) = inf

Φ1,Φ2,Z

(
dZ

(
Φ1(o1),Φ2(o2)

)
+ dH

Z

(
Φ1(X1),Φ2(X2)

))
where the infimum is over all Polish metric spaces (Z , dZ ) and
isometric embeddings Φi : Xi → Z , i = 1, 2.



Hausdorff Convergence: Regular Polygons to a Circle

Consider in R2 the unit circle

S1 = {(x , y) ∈ R2
∣∣∣ x2 + y2 = 1}.

For each integer n ≥ 3, let Pn be the regular n-gon inscribed in S1.
Endow both Pn and S1 with the metric induced from R2.

Then
dH
R2(Pn, S

1) → 0 as n → ∞.
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Hausdorff Convergence: A Torus Collapsing to a Circle

In R3, consider the torus of revolution

Tr = {(x , y , z)
∣∣∣ (√x2 + y2 − 1)2 + z2 = r2}

for a small parameter r > 0. This is a tube of radius r around the
unit circle

C = {(x , y , 0)
∣∣∣ x2 + y2 = 1}.

As r → 0, the sets Tr converge in Hausdorff distance to C . Every
point of Tr is within distance r of C , and every point of C is within
distance r of Tr .

Topologically, each Tr is a torus, while the limit C is just a circle.
The Hausdorff limit forgets the small transverse directions.



Hausdorff Convergence: Lattice Approximations to a
Domain

Let K = [0, 1]2 ⊂ R2. For each integer n ≥ 1, consider the finite set

Kn =
1

n
Z2 ∩ [0, 1]2,

that is, the (n+ 1)× (n+ 1) grid of lattice points in the unit square.
Every point of K is within distance at most

√
2/n of some point of

Kn, and every point of Kn lies in K . Hence

dH
R2(Kn,K ) → 0 as n → ∞.
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The space of pointed metric spaces

Assuming the ball X r
i = BXi

(oi , r) is compact, define

dH(X1,X2) =

∫ ∞

0
e−r (1 ∧ dc

H(X1(r),X2(r))) dr .

Let M∗ be the space of pointed-isometry-classes of pointed metric
spaces (locally compact length spaces).

Then dH provides a distance on M∗.

The space (M∗, dH) is a Polish metric space.

Polish space: separable completely metrizable topological space.

Length metric space: the distance between two points equals the
infimum of the lengths of all paths from one to the other.



Benjamini-Schramm convergence

Let Xn be a sequence of random metric spaces.

Xn
choose a random point−−−−−−−−−−−−−→ (Xn, on)

Let Pn be the probability measure on M∗ associated to choosing a
random point on in Xn.

Let P be another probability measure in M∗. We say Xn

Benjamini-Schramm converges to P if

Pn
weakly−−−−→ P

When P is the δ–measure on (X , o) we say

Xi Benjamini-Schramm converges to (X , o).



Benjamini-Schramm convergence: Examples

Let SR be the sphere of radius R in R3. Then

SR Benjamini-Schramm converges to R2.

Let Γn be random d-regular graph with 2n vertices. Then

Γn Benjamini-Schramm converges to the d–regular tree.

Let Xg be random hyperbolic surface of genus g . Then

Xg Benjamini-Schramm converges to H2.



Random Planar Triangulations

A (rooted) planar triangulation is a finite connected graph
embedded in the sphere S2 such that every face is a triangle,
together with a distinguished oriented edge, called the root (up to
homeomorphism).

Let Tn be the set of rooted planar triangulations with n vertices.

We consider a random triangulation Tn chosen uniformly from Tn.

For each integer R ≥ 1, denote by

BR(Tn, en)

the ball of radius R around the root en.

We ask: as n → ∞, does the law of BR(Tn, en) stabilize, for each
fixed radius R?



The Uniform Infinite Planar Triangulation (UIPT)

Theorem (Angel–Schramm)

There exists a random rooted infinite planar triangulation (T∞, o∞)
such that

(Tn, on) =⇒ (T∞, o∞)

in distribution for the Benjamini-Schramm topology as n → ∞.
The limit (T∞, o∞) is called the Uniform Infinite Planar
Triangulation (UIPT).



The Uniform Infinite Planar Triangulation (UIPT)



The Space of Translation Surfaces

Let H(m1, . . . ,mk) be the space of translation surfaces of genus g
with k singular points σ1, . . . , σk , where the total angle at σi is
2π(mi + 1). We have

2g − 2 =
k∑

i=1

mi

For example, the golden L is in H(2):

6π

Hg = H(1, . . . , 1): the principal stratum

H1(m1, . . . ,mk): unit area translations surfaces



Masur-Veech Volume

Let (X , ω) be a point in H(m1, . . . ,mk) and Σ be the set of singular
points. Let γ1, . . . , γℓ be basis for the relative homology. Then

(X , ω) →
(∫

γ1

ω, . . . ,

∫
γℓ

ω
)

gives a local coordinate in Cℓ for a neighborhood of X .

For a set U ⊂ H1(m1, . . . ,mk),

µMV (U) = d · µLeb

(
Cone(U))

where µLeb is the Lebesgue measure, d is the dimension and

Cone(U) = [0, 1] · U ⊂ H(m1, . . . ,mk).

The measure µMV is SL(2,R) invariant and has finite total measure.



Volume of the Space of Translation Surfaces

V(m1, . . . ,mk) = µMV

(
H1(m1, . . . ,mk)

)
Theorem (Eskin-Okounkov, Eskin-Zorich, Aggrawal,
Chen-Möller-Sauvaget-Zagier)

V(m1, . . . ,mk) =
4∏k

i=1(mi + 1)
·
(
1± O (1/g)

)

We are interested in the principal stratum H1
g (1, . . . , 1). In this case,

V(1, . . . , 1) ∼ 4

22g−2
=

1

22g−4



Key tool: star surgery

Equivalent to Schiffer variations, surgeries of Eskin-Masur-Zorich, or
the rel flow, star surgery provides geometric perspective on how to
moves a singular point around in a translation surface.



Key tool: star surgery

Equivalent to Schiffer variations, surgeries of Eskin-Masur-Zorich, or
the rel flow.
Provides geometric perspective so as to keep track of geometry as
deformation occurs.



Collapsing Zeros, Eskin-Masur-Zorich

Let Hg (σ, τ, r) be the set of translation surfaces (X , ω) ∈ Hg

where σ and τ are connected by a saddle connection of of length at
most r . We have a 2-to-1 volume preserving map

Hg (σ, τ, r) → Hg (2, 1, . . . , 1)× Dr

where Dr ⊂ R2 is a disk of radius r .

Therefore,

PµMV

(
Hg (σ, τ, r)

)
=

V(2, 1, . . . , 1) · (2πr2)
V(1, . . . , 1)

≍ r2.

PµMV

(
some saddle connection has a length at most r

)
≍ g2 · r2.



Central philosophy

Find series of star surgeries to deform to the surface to a more
geometrically simple situation

Produce measure-preserving maps between “decorated” strata of
translation surfaces

Conclusion:

▶ No accumulations — iterated collapsing of a shortest path
between two singularities

▶ Description of law of limit — collapsing all singularities near
the base point to the base point (constellation collapse)



Straightening Surgery

All simple closed geodesics which pass through a singularity are
either closed saddle connections, a pair of homologous saddle
connections, or a chain of pair-wise non-homologous saddle
connections.

Siegel-Veech theory can handle the first two cases.

Cannot naively collapse the singularities in a chain of saddle
connections: you may introduce new saddle connections in the
geodesic!

If not careful, your deformation can perpetually increase the length
of the simple closed geodesic, or cause it to self-intersect!

Straightening surgery first makes all saddle connections parallel
before collapsing all but one or two of them. Tangential
self-intersections still occur but can be dealt with.



Steps needed to analyze the limit

We prove the theorem in three conceptual steps.

▶ The number of zeros in a fixed-radius ball around a generic
point is uniformly controlled and does not go to infinity as the
genus grows (tightness): the laws of the rooted surfaces form a
precompact family for the Benjamini–Schramm topology, so
subsequences always admit limiting distributions.

▶ Ball of radius r is generically a topological disk (Planarity).

▶ Any two subsequential limits are in fact the same (Ergodicity).

First two steps: existence of subsequential Benjamini–Schramm
limits with good local control.

Ergodicity upgrades subsequential convergence to convergence of
the whole sequence to a canonical limit.



Benjamini-Schramm Limit of Translation Surfaces

Let µX be the measure on (X , ω) associated to the Euclidean
metric. Define µ∗

g by

dµ∗
g
= dµMV

· dµX
.

We now scale a random pointed translation surface chosen
according to µ∗

g by a factor of
√
2g − 2.

Let Pµ∗
g
denote the associated measure on M∗ normalized to be a

probability measure,

Theorem (Bowen-R-Vallejos)

Every sub-sequential limit of {Pµ∗
g
}∞g=2 is the distribution of the

Poisson translation plane, with intensity 4.

Pµ∗
g
→ PPTP .



Poisson Point Process

A Poisson point process is a process selecting random point in R2

with the essential feature that the points occur independently of one
another.
The rate or intensity λ, is the average density of the points in the
Poisson process located in some region of space.

Let RA be a region of area A.
N(RA): number of point in R.

P
(
N(RA) = n

)
=

(λA)n

n!
e−λA

o

p

A



Poisson Translation Plane

Start with a pointed Euclidean plane (R2, o).
Attach a copy of R2 at points given by a Poisson point process with
intensity 4.

o p

p

+ −
− +

We denote the resulting probability measure in M∗ by PPTP .
The change of base-point is a groupoid that acts ergodically on M∗
with respect to PPTP .



Collapsing the Visible Zeros

Denote the set of indices of singular points in (X , ω) visible from σ0
and distance at most r by

Zr = Zr (X , ω) ⊂ {1, . . . , n}

For any T ⊂ [n] = {1, . . . , n}, with |T | = i we have

P(T ⊂ Z ) ∼ 2i ·
(
2πr2

)i
.

To see this, consider the surgery map (which is (i + 2)-to-1):.

H1
g (1, . . . , 1) → H1

g (i + 1, 1, . . . , 1)× D i
r

and note that

V(i + 1, 1, . . . , 1)

V(1, . . . , 1)
∼ 4

(i + 2)2n−i
/

4

2n+1
∼ 2i (i + 2).



Where Does the Poisson Distribution Come From?
Note that, for any T ⊂ [n],

P(T ⊆ Zr ) =
∑
Y⊇T

P(Y = Zr ).

Therefore, using inclusion exclusion principal, we have

P(Zr = T ) =
∑
Y⊇T

(−1)#Y−TP(Y ⊂ Z ).

Hence

P
(
|Zr | = m

)
=

∑
|T |=m

P(Zr = T )

=

(
n

m

) n∑
i=m

(
n −m

i −m

)
(−1)(i−m) · 2i ·

(
2πr2

)i
.



Where Does the Poisson Distribution Come From?

P
(
|Zr | = m

)
=

(
n

m

) n∑
i=m

(
n −m

i −m

)
(−1)(i−m) · 2i ·

(
2πr2

)i
∼ nm

m!
·

n∑
i=m

n(i−m)

(i −m)!
(−1)(i−m) · 2i ·

(
2πr2

)i
Factor out (4πr2)m

=

(
4nπr2

)m
m!

·
n∑

i=m

(−1)(i−m) 1

(i −m)!
·
(
4nπr2

)(i−m)

=

(
4nπr2

)m
m!

e−4nπr2 .

This is the Poisson distribution with λ = 4nπr2

Scaling by
√
n is the same as setting r = R√

n
.



Uniformization of translation surfaces

One can wonder what does a translation surface look like from the
point of view of hyperbolic geometry.

For

Mg : moduli space ML : space of measured laminations

there is map

H1(1, 1, . . . , 1) → Mg ×MLg , (X , ω) → (X , λ)

The measured lamination λ gives an ideal quadrangulation of X .

Question

What is Benjamini-Schramm limit (X , λ)?



Curien–Werner: Unique Ideal Triangulation of H2

A random triangulation T of H2 is assumed to be

▶ Möbius-invariant if its law is invariant under all hyperbolic
isometries of H2.

▶ Markovian (“spatial Markov”) if, conditionally on the triangle
T (0) that contains the origin, the restrictions of T to the three
complementary components of D∖T (0) are independent, and
the part beyond any side, say (bc), does not depend on the
position of the opposite vertex a.

Theorem (Curien–Werner, 2012). There exists a unique in law
random complete ideal triangulation T of D that is
Möbius-invariant and Markovian in the above sense.

Moreover, they explain how the same construction extends a
Möbius-invariant Markovian tiling of H2 by ideal squares.



Thank You!


