Random hyperbolic and flat surfaces (Riemann surfaces seen without glasses)

Lecture 5. Benjamini-Schramm Limit

minicourse by Kasra Rafi and Anton Zorich YCMS, Tsinghua University

November 25, 2025

Motivating example: Permutation.

Let S_n be the group of permutations of the set $\{1, 2, ..., n\}$.

A permutation $\sigma \in S_n$ can be understood by its decomposition into cycles.

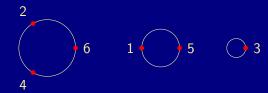
For example, for

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 2 & 4 & 1 & 3 \end{pmatrix}$$

we have

$$\sigma = (15)(263)(4)$$
.

We can visualize σ as a labeled graph X_{σ} that is a union of cycles.



What does a typical permutation look like?

Question

What is the order of a typical element under a typical permutation $\sigma \in S_n$ as $n \to \infty$?

We equip S_n with a uniform probability measure. Then

$$\mathbb{E}_n(\# k\text{-cylces}) = \frac{1}{n!} \sum_{\sigma \in S_n} (\# k\text{-cycles in } \sigma)$$

$$= \frac{1}{n!} \# \Big\{ (\sigma, c) \, \Big| \, \sigma \in S_n, \quad c \text{ is a cycle in } \sigma \Big\}$$

$$= \frac{1}{n!} \sum_{\text{cycle c}} (\# \text{ permutations where } c \text{ is a cycle})$$

$$= \frac{\binom{n}{k} (k-1)! (n-k)!}{n!} = \frac{1}{k}$$

Benjamini-Schramm limit of a random permutation

For every fixed k > 0,

 $\mathbb{E}_n(\# ext{ elements of order at most } k) \leq$

$$\leq \sum_{j=1}^{k} j \cdot \mathbb{E}_n(\# j ext{-cylces}) = \sum_{j=1}^{k} j \cdot \frac{1}{j} = k.$$

Hence, for a random $\sigma \in S_n$, a random $x \in \{1, ..., n\}$ and r > 0,

$$\mathbb{P}_n\Big(\mathsf{order}_\sigma(x)\geq r\Big) o 1.$$
 as $n o\infty.$

In other words,

$$\mathbb{P}_n\Big(B_r(x) \text{ is a cycle}\Big) \longrightarrow 0 \quad \text{as } n \to \infty.$$

From the point of view of x, X_{σ} looks like a bi-infinite path

Hausdorff distance

Let (Z, d_Z) be a metric space. For $\epsilon > 0$ and $A \subset Z$, define

$$A^{\epsilon} = \{ z \in Z : \inf_{a \in A} d_{Z}(a, z) < \epsilon \}.$$

For Borel sets $A, B \subset Z$ define

$$d_Z^H(A,B) = \inf\{\epsilon > 0 : A \subset B^{\epsilon} \text{ and } B \subset A^{\epsilon}\}.$$

The **Hausdorff distance** between compact pointed metric spaces (X_1, o_1) and (X_2, o_2) is

$$d_{H}^{c}(X_{1}, X_{2}) = \inf_{\Phi_{1}, \Phi_{2}, Z} \left(d_{Z}(\Phi_{1}(o_{1}), \Phi_{2}(o_{2})) + d_{Z}^{H}(\Phi_{1}(X_{1}), \Phi_{2}(X_{2})) \right)$$

where the infimum is over all Polish metric spaces (Z, d_Z) and isometric embeddings Φ_i : $X_i \to Z$, i = 1, 2.

Hausdorff Convergence: Regular Polygons to a Circle

Consider in \mathbb{R}^2 the unit circle

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

For each integer $n \ge 3$, let P_n be the regular n-gon inscribed in S^1 . Endow both P_n and S^1 with the metric induced from \mathbb{R}^2 .

Then

$$d_{\mathbb{R}^2}^H(P_n,S^1) \to 0$$
 as $n \to \infty$.

Hausdorff Convergence: Regular Polygons to a Circle

Consider in \mathbb{R}^2 the unit circle

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

For each integer $n \ge 3$, let P_n be the regular n-gon inscribed in S^1 . Endow both P_n and S^1 with the metric induced from \mathbb{R}^2 .

Then

$$d_{\mathbb{R}^2}^H(P_n,S^1) \to 0$$
 as $n \to \infty$.

Hausdorff Convergence: Regular Polygons to a Circle

Consider in \mathbb{R}^2 the unit circle

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

For each integer $n \ge 3$, let P_n be the regular n-gon inscribed in S^1 . Endow both P_n and S^1 with the metric induced from \mathbb{R}^2 .

Then

$$d^H_{\mathbb{R}^2}(P_n,S^1) o 0$$
 as $n o \infty.$

Hausdorff Convergence: A Torus Collapsing to a Circle

In \mathbb{R}^3 , consider the torus of revolution

$$T_r = \{(x, y, z) \mid (\sqrt{x^2 + y^2} - 1)^2 + z^2 = r^2\}$$

for a small parameter r > 0. This is a tube of radius r around the unit circle

$$C = \{(x, y, 0) \mid x^2 + y^2 = 1\}.$$

As $r \to 0$, the sets T_r converge in Hausdorff distance to C. Every point of T_r is within distance r of C, and every point of C is within distance r of T_r .

Topologically, each T_r is a torus, while the limit C is just a circle. The Hausdorff limit forgets the small transverse directions.

Hausdorff Convergence: Lattice Approximations to a Domain

Let $K = [0,1]^2 \subset \mathbb{R}^2$. For each integer $n \geq 1$, consider the finite set

$$K_n = \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2,$$

that is, the $(n+1) \times (n+1)$ grid of lattice points in the unit square. Every point of K is within distance at most $\sqrt{2}/n$ of some point of K_n , and every point of K_n lies in K. Hence

$$d^H_{\mathbb{R}^2}(K_n,K) o 0$$
 as $n o \infty.$

Hausdorff Convergence: Lattice Approximations to a Domain

Let $K = [0,1]^2 \subset \mathbb{R}^2$. For each integer $n \geq 1$, consider the finite set

$$K_n = \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2,$$

that is, the $(n+1) \times (n+1)$ grid of lattice points in the unit square. Every point of K is within distance at most $\sqrt{2}/n$ of some point of K_n , and every point of K_n lies in K. Hence

$$d^H_{\mathbb{R}^2}(K_n,K) o 0$$
 as $n o \infty$.

Hausdorff Convergence: Lattice Approximations to a Domain

Let $K = [0,1]^2 \subset \mathbb{R}^2$. For each integer $n \geq 1$, consider the finite set

$$K_n = \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2,$$

that is, the $(n+1) \times (n+1)$ grid of lattice points in the unit square. Every point of K is within distance at most $\sqrt{2}/n$ of some point of K_n , and every point of K_n lies in K. Hence

$$d_{\mathbb{R}^2}^H(K_n,K) o 0$$
 as $n o \infty$.

The space of pointed metric spaces

Assuming the ball $X_i^r = B_{X_i}(o_i, r)$ is compact, define

$$d_H(X_1, X_2) = \int_0^\infty e^{-r} \left(1 \wedge d_H^c(X_1(r), X_2(r))\right) dr.$$

Let \mathcal{M}_* be the space of pointed-isometry-classes of pointed metric spaces (locally compact length spaces).

Then d_H provides a distance on \mathcal{M}_* .

The space (\mathcal{M}_*, d_H) is a Polish metric space.

Polish space: separable completely metrizable topological space.

Length metric space: the distance between two points equals the infimum of the lengths of all paths from one to the other.

Benjamini-Schramm convergence

Let X_n be a sequence of random metric spaces.

$$X_n \xrightarrow{\text{choose a random point}} (X_n, o_n)$$

Let \mathbb{P}_n be the probability measure on \mathcal{M}_* associated to choosing a random point o_n in X_n .

Let $\mathbb P$ be another probability measure in $\mathcal M_*$. We say X_n Benjamini-Schramm converges to $\mathbb P$ if

$$\mathbb{P}_n \xrightarrow{weakly} \mathbb{P}$$

When \mathbb{P} is the δ -measure on (X, o) we say

 X_i Benjamini-Schramm converges to (X, o).

Benjamini-Schramm convergence: Examples

Let S_R be the sphere of radius R in \mathbb{R}^3 . Then S_R Benjamini-Schramm converges to \mathbb{R}^2 .

Let Γ_n be random d-regular graph with 2n vertices. Then Γ_n Benjamini-Schramm converges to the d-regular tree.

Let X_g be random hyperbolic surface of genus g. Then X_g Benjamini-Schramm converges to \mathbb{H}^2 .

Random Planar Triangulations

A (rooted) planar triangulation is a finite connected graph embedded in the sphere S^2 such that every face is a triangle, together with a distinguished oriented edge, called the root (up to homeomorphism).

Let \mathcal{T}_n be the set of rooted planar triangulations with n vertices.

We consider a random triangulation \mathcal{T}_n chosen uniformly from \mathcal{T}_n .

For each integer $R \geq 1$, denote by

$$B_R(T_n,e_n)$$

the ball of radius R around the root e_n .

We ask: as $n \to \infty$, does the law of $B_R(T_n, e_n)$ stabilize, for each fixed radius R?

The Uniform Infinite Planar Triangulation (UIPT)

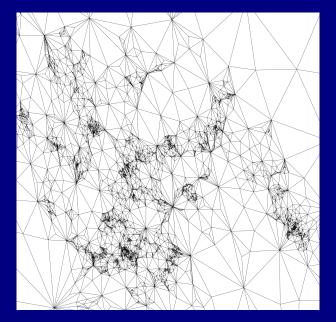
Theorem (Angel-Schramm)

There exists a random rooted infinite planar triangulation (T_{∞}, o_{∞}) such that

$$(T_n,o_n) \implies (T_\infty,o_\infty)$$

in distribution for the Benjamini-Schramm topology as $n \to \infty$. The limit (T_{∞}, o_{∞}) is called the Uniform Infinite Planar Triangulation (UIPT).

The Uniform Infinite Planar Triangulation (UIPT)



The Space of Translation Surfaces

Let $\mathcal{H}(m_1,\ldots,m_k)$ be the space of translation surfaces of genus g with k singular points σ_1,\ldots,σ_k , where the total angle at σ_i is $2\pi(m_i+1)$. We have

$$2g-2=\sum_{i=1}^k m_i$$

For example, the golden L is in $\mathcal{H}(2)$:

$$\mathcal{H}_g = \mathcal{H}(1,\ldots,1)$$
: the principal stratum

 $\mathcal{H}^1(m_1,\ldots,m_k)$: unit area translations surfaces

Masur-Veech Volume

Let (X, ω) be a point in $\mathcal{H}(m_1, \ldots, m_k)$ and Σ be the set of singular points. Let $\gamma_1, \ldots, \gamma_\ell$ be basis for the relative homology. Then

$$(X,\omega) o \Big(\int_{\gamma_1} \omega, \ldots, \int_{\gamma_\ell} \omega\Big)$$

gives a local coordinate in \mathbb{C}^{ℓ} for a neighborhood of X.

For a set $U \subset \mathcal{H}^1(m_1,\ldots,m_k)$,

$$\mu_{MV}(U) = d \cdot \mu_{\mathsf{Leb}}(\mathsf{Cone}(U))$$

where μ_{Leb} is the Lebesgue measure, d is the dimension and

$$\mathsf{Cone}(U) = [0,1] \cdot U \subset \mathcal{H}(m_1,\ldots,m_k).$$

The measure μ_{MV} is $SL(2,\mathbb{R})$ invariant and has finite total measure.

Volume of the Space of Translation Surfaces

$$\mathcal{V}(m_1,\ldots,m_k) = \mu_{MV}\Big(\mathcal{H}^1(m_1,\ldots,m_k)\Big)$$

Theorem (Eskin-Okounkov, Eskin-Zorich, Aggrawal, Chen-Möller-Sauvaget-Zagier)

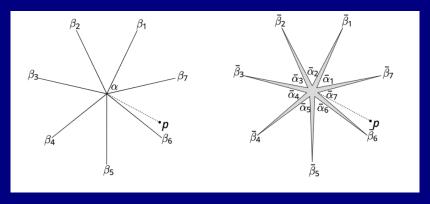
$$\mathcal{V}(m_1,\ldots,m_k) = \frac{4}{\prod_{i=1}^k (m_i+1)} \cdot \left(1 \pm O\left(1/g\right)\right)$$

We are interested in the principal stratum $H_g^1(1,\ldots,1)$. In this case,

$$\mathcal{V}(1,\ldots,1) \sim rac{4}{2^{2g-2}} = rac{1}{2^{2g-4}}$$

Key tool: star surgery

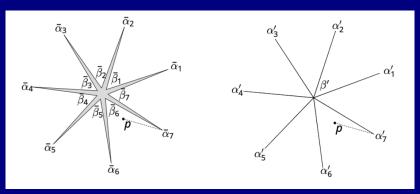
Equivalent to Schiffer variations, surgeries of Eskin-Masur-Zorich, or the rel flow, star surgery provides geometric perspective on how to moves a singular point around in a translation surface.



Key tool: star surgery

Equivalent to Schiffer variations, surgeries of Eskin-Masur-Zorich, or the rel flow.

Provides geometric perspective so as to keep track of geometry as deformation occurs.



Collapsing Zeros, Eskin-Masur-Zorich

Let $\mathcal{H}_g(\sigma,\tau,r)$ be the set of translation surfaces $(X,\omega)\in\mathcal{H}_g$ where σ and τ are connected by a saddle connection of of length at most r. We have a 2-to-1 volume preserving map

$$\mathcal{H}_{g}(\sigma,\tau,r) \to \mathcal{H}_{g}(2,1,\ldots,1) \times D_{r}$$

where $D_r \subset \mathbb{R}^2$ is a disk of radius r.

Therefore,

$$\mathbb{P}_{\mu_{\mathsf{MV}}}ig(\mathcal{H}_{\mathsf{g}}(\sigma, au,r)ig) = rac{\mathcal{V}(2,1,\ldots,1)\cdot(2\pi r^2)}{\mathcal{V}(1,\ldots,1)}symp r^2.$$

 $\mathbb{P}_{\mu_{MV}}$ (some saddle connection has a length at most r) $\approx g^2 \cdot r^2$.

Central philosophy

Find series of star surgeries to deform to the surface to a more geometrically simple situation

Produce measure-preserving maps between "decorated" strata of translation surfaces

Conclusion:

- ► No accumulations iterated collapsing of a shortest path between two singularities
- ▶ Description of law of limit collapsing all singularities near the base point to the base point (constellation collapse)

Straightening Surgery

All simple closed geodesics which pass through a singularity are either closed saddle connections, a pair of homologous saddle connections, or a chain of pair-wise non-homologous saddle connections.

Siegel-Veech theory can handle the first two cases.

Cannot naively collapse the singularities in a chain of saddle connections: you may introduce new saddle connections in the geodesic!

If not careful, your deformation can perpetually increase the length of the simple closed geodesic, or cause it to self-intersect!

Straightening surgery first makes all saddle connections parallel before collapsing all but one or two of them. Tangential self-intersections still occur but can be dealt with.

Steps needed to analyze the limit

We prove the theorem in three conceptual steps.

- ► The number of zeros in a fixed-radius ball around a generic point is uniformly controlled and does not go to infinity as the genus grows (tightness): the laws of the rooted surfaces form a precompact family for the Benjamini–Schramm topology, so subsequences always admit limiting distributions.
- ightharpoonup Ball of radius r is generically a topological disk (Planarity).
- ► Any two subsequential limits are in fact the same (Ergodicity).

First two steps: existence of subsequential Benjamini–Schramm limits with good local control.

Ergodicity upgrades subsequential convergence to convergence of the whole sequence to a canonical limit.

Benjamini-Schramm Limit of Translation Surfaces

Let μ_X be the measure on (X,ω) associated to the Euclidean metric. Define μ_g^* by

$$d_{\mu_{\mathsf{g}}^*} = d_{\mu_{\mathsf{MV}}} \cdot d_{\mu_{\mathsf{X}}}.$$

We now scale a random pointed translation surface chosen according to μ_g^* by a factor of $\sqrt{2g-2}$.

Let $\mathbb{P}_{\mu_g^*}$ denote the associated measure on \mathcal{M}_* normalized to be a probability measure,

Theorem (Bowen-R-Vallejos)

Every sub-sequential limit of $\{\mathbb{P}_{\mu_g^*}\}_{g=2}^{\infty}$ is the distribution of the Poisson translation plane, with intensity 4.

$$\mathbb{P}_{\mu_{\mathsf{g}}^*} \to \mathbb{P}_{\mathsf{PTP}}.$$

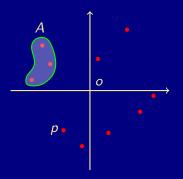
Poisson Point Process

A Poisson point process is a process selecting random point in \mathbb{R}^2 with the essential feature that the points occur independently of one another.

The rate or **intensity** λ , is the average density of the points in the Poisson process located in some region of space.

Let R_A be a region of area A. $N(R_A)$: number of point in R.

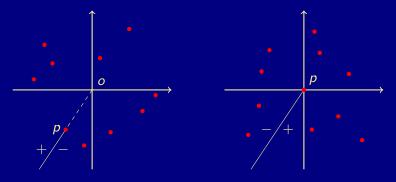
$$\mathbb{P}\Big(N(R_A)=n\Big)=\frac{(\lambda A)^n}{n!}e^{-\lambda A}$$



Poisson Translation Plane

Start with a pointed Euclidean plane (\mathbb{R}^2, o) .

Attach a copy of $\ensuremath{\mathbb{R}}^2$ at points given by a Poisson point process with intensity 4.



We denote the resulting probability measure in \mathcal{M}_* by \mathbb{P}_{PTP} . The change of base-point is a groupoid that acts ergodically on \mathcal{M}_* with respect to \mathbb{P}_{PTP} .

Collapsing the Visible Zeros

Denote the set of indices of singular points in (X, ω) visible from σ_0 and distance at most r by

$$Z_r = Z_r(X,\omega) \subset \{1,\ldots,n\}$$

For any $T \subset [n] = \{1, ..., n\}$, with |T| = i we have

$$\mathbb{P}(T\subset Z)\sim 2^i\cdot \left(2\pi r^2\right)^i.$$

To see this, consider the surgery map (which is (i + 2)-to-1):.

$$\mathcal{H}^1_{\mathbf{g}}(1,\ldots,1) o \mathcal{H}^1_{\mathbf{g}}(i+1,1,\ldots,1) imes D^i_{\mathbf{r}}$$

and note that

$$\frac{\mathcal{V}(i+1,1,\ldots,1)}{\mathcal{V}(1,\ldots,1)} \sim \frac{4}{(i+2)2^{n-i}}/\frac{4}{2^{n+1}} \sim 2^{i}(i+2).$$

Where Does the Poisson Distribution Come From?

Note that, for any $T \subset [n]$,

$$\mathbb{P}(T\subseteq Z_r)=\sum_{Y\supset T}\mathbb{P}(Y=Z_r).$$

Therefore, using inclusion exclusion principal, we have

$$\mathbb{P}(Z_r = T) = \sum_{Y \supset T} (-1)^{\#Y - T} \mathbb{P}(Y \subset Z).$$

Hence

$$\mathbb{P}(|Z_r| = m) = \sum_{|T|=m} \mathbb{P}(Z_r = T)$$

$$= \binom{n}{m} \sum_{i=1}^{n} \binom{n-m}{i-m} (-1)^{(i-m)} \cdot 2^i \cdot (2\pi r^2)^i.$$

Where Does the Poisson Distribution Come From?

$$\mathbb{P}(|Z_r| = m) = \binom{n}{m} \sum_{i=m}^{n} \binom{n-m}{i-m} (-1)^{(i-m)} \cdot 2^i \cdot (2\pi r^2)^i$$
$$\sim \frac{n^m}{m!} \cdot \sum_{i=m}^{n} \frac{n^{(i-m)}}{(i-m)!} (-1)^{(i-m)} \cdot 2^i \cdot (2\pi r^2)^i$$

Factor out $(4\pi r^2)^m$

$$= \frac{\left(4n\pi r^2\right)^m}{m!} \cdot \sum_{i=m}^n (-1)^{(i-m)} \frac{1}{(i-m)!} \cdot \left(4n\pi r^2\right)^{(i-m)}$$
$$= \frac{\left(4n\pi r^2\right)^m}{m!} e^{-4n\pi r^2}.$$

This is the Poisson distribution with $\lambda = 4n\pi r^2$ Scaling by \sqrt{n} is the same as setting $r = \frac{R}{\sqrt{n}}$.

Uniformization of translation surfaces

One can wonder what does a translation surface look like from the point of view of hyperbolic geometry.

For

 \mathcal{M}_g : moduli space \mathcal{ML} : space of measured laminations

there is map

$$\mathcal{H}_1(1,1,\ldots,1) o \mathcal{M}_g imes \mathcal{ML}_g, \qquad (X,\omega) o (X,\lambda)$$

The measured lamination λ gives an ideal quadrangulation of X.

Question

What is Benjamini-Schramm limit (X, λ) ?

Curien–Werner: Unique Ideal Triangulation of \mathbb{H}^2

A random triangulation T of \mathbb{H}^2 is assumed to be

- ightharpoonup M"obius-invariant if its law is invariant under all hyperbolic isometries of \mathbb{H}^2 .
- Markovian ("spatial Markov") if, conditionally on the triangle T(0) that contains the origin, the restrictions of T to the three complementary components of $D \setminus T(0)$ are independent, and the part beyond any side, say (bc), does not depend on the position of the opposite vertex a.

Theorem (Curien–Werner, 2012). There exists a unique in law random complete ideal triangulation T of D that is Möbius-invariant and Markovian in the above sense.

Moreover, they explain how the same construction extends a Möbius-invariant Markovian tiling of \mathbb{H}^2 by ideal squares.

