Conformal Invariance in 2D Lattice Models Part 2: Random Cluster Model

Hao Wu (THU)

Part 1: Bernoulli Percolation Part 2: Random Cluster Model Part 3: Ising Model

Hao Wu (THU)

・聞き ・ヨキ ・ヨキ

Bernoulli percolationFK percolationIndependent percolationFK percolation• FKG inequality• True for $q \ge 1$ • Phase transition• True for $q \ge 1$ • Critical value : $p_c = p_{sd}$ • True for $q \ge 1$ • Subcritical : exp. decay• True for $q \ge 1$.

• Continuity of PT

• True for $1 \le q \le 4$.

< ロ > < 同 > < 回 > < 回 >

• False for q > 4

FK-percolation—definition

Fortuin and Kasteleyn

FK-percolation : also called random-cluster model. It is a generalization of Bernoulli percolation where there is dependence between edges.

- G = (V, E) is a finite graph
- configuration $\omega \in \{0, 1\}^E$, $o(\omega)$, $c(\omega)$, $k(\omega)$
- edge-parameter $p \in [0, 1]$, cluster-parameter q > 0

FK-percolation on G is the probability measure defined by

$$\phi_{p,q,G}[\omega] \propto p^{o(\omega)} (1-p)^{c(\omega)} q^{k(\omega)}.$$

A (10) F (10)

FK-percolation—boundary conditions

Fix a partition ξ of ∂G , and identify the vertices in ∂G that belong to the same component of ξ . FK-percolation on *G* with parameters (*p*, *q*) and boundary conditions ξ is the probability measure :

$$\phi_{p,q,G}^{\xi}[\omega] \propto p^{o(\omega)} (1-p)^{c(\omega)} q^{k(\omega,\xi)}.$$

FK-percolation—boundary conditions

Fix a partition ξ of ∂G , and identify the vertices in ∂G that belong to the same component of ξ . FK-percolation on *G* with parameters (*p*, *q*) and boundary conditions ξ is the probability measure :

$$\phi_{\boldsymbol{p},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\omega] \propto \boldsymbol{p}^{\boldsymbol{o}(\omega)}(1-\boldsymbol{p})^{\boldsymbol{c}(\omega)}\boldsymbol{q}^{k(\omega,\xi)}.$$

- wired-b.c. : $\phi_{p,q,G}^1$
- free-b.c. : $\phi_{p,q,G}^0$
- Dobrushin-b.c.
- induced by a config. outside G

FK-percolation—boundary conditions

Fix a partition ξ of ∂G , and identify the vertices in ∂G that belong to the same component of ξ . FK-percolation on *G* with parameters (*p*, *q*) and boundary conditions ξ is the probability measure :

$$\phi_{\boldsymbol{
ho},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\omega] \propto \boldsymbol{
ho}^{o(\omega)} (1-\boldsymbol{
ho})^{c(\omega)} \boldsymbol{q}^{k(\omega,\xi)}.$$

- wired-b.c. : $\phi_{p,q,G}^1$
- free-b.c. : $\phi_{p,q,G}^0$
- Dobrushin-b.c.
- induced by a config. outside G

Domain Markov Property

Suppose $G' \subset G$, for any $\psi \in \{0, 1\}^{E(G) \setminus E(G')}$,

 $\phi_{p,q,G}^{\xi}[X \,|\, \omega_{\boldsymbol{e}} = \psi_{\boldsymbol{e}}, \forall \boldsymbol{e} \in \boldsymbol{E}(\boldsymbol{G}) \setminus \boldsymbol{E}(\boldsymbol{G}')] = \phi_{p,q,G'}^{\psi^{\xi}}[X].$

Theorem (FKG Inequality)

Fix $p \in [0, 1]$, $q \ge 1$, a finite graph G and some boundary conditions ξ . For any two increasing events A and B, we have

$$\phi_{\boldsymbol{\rho},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\boldsymbol{A}\cap\boldsymbol{B}] \geq \phi_{\boldsymbol{\rho},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\boldsymbol{A}]\phi_{\boldsymbol{\rho},\boldsymbol{q},\boldsymbol{G}}^{\xi}[\boldsymbol{B}].$$

< ロ > < 同 > < 回 > < 回 >

Theorem (FKG Inequality)

Fix $p \in [0, 1]$, $q \ge 1$, a finite graph G and some boundary conditions ξ . For any two increasing events A and B, we have

$$\phi_{p,q,G}^{\xi}[\boldsymbol{A} \cap \boldsymbol{B}] \geq \phi_{p,q,G}^{\xi}[\boldsymbol{A}]\phi_{p,q,G}^{\xi}[\boldsymbol{B}].$$

- Given two proba. measures μ₁, μ₂, we write μ₁ ≤_{st} μ₂, if μ₁[A] ≤ μ₂[A] for all increasing event A.
- A proba. measure μ strictly positive if $\mu[\omega] > 0$ for all ω .

Theorem (Holley inequality)

Let μ_1, μ_2 be strictly positive probability measures on the finite state space such that

$$\mu_{\mathbf{2}}[\boldsymbol{\omega}^{\boldsymbol{e}}]\mu_{\mathbf{1}}[\eta_{\boldsymbol{e}}] \geq \mu_{\mathbf{2}}[\boldsymbol{\omega}_{\boldsymbol{e}}]\mu_{\mathbf{1}}[\eta^{\boldsymbol{e}}], \quad \forall \boldsymbol{e} \in \boldsymbol{E}, \forall \eta \leq \boldsymbol{\omega}.$$

Then $\mu_1 \leq_{st} \mu_2$.

FKG Inequality : consequences

Corollary (Monotonicity)

Fix $p \le p'$ and $q \ge 1$, a finite graph G and some b.c. ξ . We have $\phi_{p,q,G}^{\xi} \le_{st} \phi_{p',q,G}^{\xi}$.

Corollary (Comparison between boundary conditions)

Fix $p \in [0, 1]$ and $q \ge 1$, a finite graph G. For any b.c. $\xi \le \psi$, we have $\phi_{p,q,G}^{\xi} \le_{st} \phi_{p,q,G}^{\psi}$. In particular, for any b.c. ξ , we have $\phi_{p,q,G}^{0} \le_{st} \phi_{p,q,G}^{\xi} \le_{st} \phi_{p,q,G}^{1}$.

Corollary (Finite-energy property)

Fix $p \in [0, 1]$ and $q \ge 1$, a finite graph G, and some b.c. ξ , we have

$$\frac{\rho}{\rho+(1-\rho)q} \leq \phi_{\rho,q,G}^{\xi} \left[\omega(f) = 1 \, | \, \omega(e) = \psi(e) \, \forall e \in E(G) \setminus \{f\} \right] \leq \rho.$$

Bernoulli percolation FK percolation Independent percolation dependent percolation FKG inequality • True for $q \ge 1$ Phase transition • True for q > 1• Critical value : $p_c = p_{sd}$ • True for $q \ge 1$. • True for q > 1.

- Subcritical : exp. decay
- Continuity of PT

• True for $1 \le q \le 4$.

< ロ > < 同 > < 回 > < 回 >

• False for q > 4

Let ξ_n be a sequence of b.c. The sequence $\phi_{p,q,\Lambda_n}^{\xi_n}$ is said to converge to the infinite-volume measure $\phi_{p,q}$ if

$$\lim_{n} \phi_{p,q,\Lambda_n}^{\xi_n}[\mathbf{A}] = \phi_{p,q}[\mathbf{A}],$$

for any event A depending only on the status of finitely many edges.

Proposition

Fix $p \in [0, 1]$ and $q \ge 1$. There exist two (possibly equal) infinite-volume random-cluster measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ such that for any event *A* depending on a finite number of edges,

$$\lim_{n\to\infty}\phi^1_{\rho,q,\Lambda_n}[A]=\phi^1_{\rho,q}[A],\quad \lim_{n\to\infty}\phi^0_{\rho,q,\Lambda_n}[A]=\phi^0_{\rho,q}[A].$$

A (10) A (10) A (10)

Lemma

Fix $q \ge 1$. The infinite-volume measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are translation invariant and are ergodic.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Fix $q \ge 1$. The infinite-volume measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are translation invariant and are ergodic.

Lemma

Fix $q \ge 1$. For ϕ^0 or ϕ^1 , either there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

< 回 > < 三 > < 三 >

Lemma

Fix $q \ge 1$. The infinite-volume measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are translation invariant and are ergodic.

Lemma

Fix $q \ge 1$. For ϕ^0 or ϕ^1 , either there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

The measures ϕ^0 and ϕ^1 are extremal :

$$\phi^{\mathsf{0}} \leq_{st} \phi \leq_{st} \phi^{\mathsf{1}}.$$

伺下 イヨト イヨ

Lemma

Fix $q \ge 1$. The infinite-volume measures $\phi_{p,q}^0$ and $\phi_{p,q}^1$ are translation invariant and are ergodic.

Lemma

Fix $q \ge 1$. For ϕ^0 or ϕ^1 , either there is no infinite cluster almost surely, or there exists a unique infinite cluster almost surely.

The measures ϕ^0 and ϕ^1 are extremal :

$$\phi^{\mathsf{0}} \leq_{st} \phi \leq_{st} \phi^{\mathsf{1}}.$$

Question

Do we have $\phi^0 = \phi^1$?

Bernoulli percolationFK percolationIndependent percolationdependent percolation• FKG inequality• True for $q \ge 1$ • Phase transition• $q \ge 1 : \infty$ -volume measure • Critical value : $p_c = p_{sd}$ • True for $q \ge 1$.• Subcritical : exp. decay• True for $q \ge 1$.

- True for $1 \le q \le 4$.
 - False for q > 4

Continuity of PT

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Fix $q \ge 1$. There exists a critical point $p_c = p_c(q) \in [0, 1]$ such that

- For p > p_c, any infinite-volume measure has an infinite cluster almost surely.
- For p < p_c, any infinite-volume measure has no infinite cluster almost surely.

Lemma

Fix $q \ge 1$. we have $\phi_{p,q}^0 = \phi_{p,q}^1$ for all but countably many values of p.

Bernoulli percolation FK percolation Independent percolation dependent percolation FKG inequality • True for $q > 1 \checkmark$ Phase transition • Critical value : $p_c = p_{sd}$ • True for q > 1. Subcritical : exp. decay • True for q > 1.

Continuity of PT

• q > 1 : ∞ -volume measure \checkmark

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $q \ge 1$: Phase transition \checkmark
- True for $1 \le q \le 4$.
- False for q > 4

Critical Value : self-dual point

Theorem

Consider the random-cluster model on \mathbb{Z}^2 with cluster-weight $q \ge 1$. The critical value p_c is given by

$$\mathcal{D}_c(q) = rac{\sqrt{q}}{1+\sqrt{q}}.$$

Proposition

The dual configuration of the random-cluster model on *G* with parameters (p, q) and b.c. ξ is the random-cluster model with parameters (p^*, q) on *G*^{*} with b.c. ξ^* where $p^* = p^*(p, q)$ satisfying

$$\frac{pp^*}{(1-p)(1-p^*)}=q.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Critical Value

Lemma

Fix $q \ge 1$, we have

$$\phi^{\mathsf{0}}_{p_{sd}(q),q}[\mathsf{0}\leftrightarrow\infty]=\mathsf{0}.$$

Theorem

Consider the random-cluster model on \mathbb{Z}^2 with cluster-weight $q \ge 1$.

- If $p < p_c$, then there exists c = c(p) > 0 such that for every $n \ge 1$, $\phi_{p,q,\Lambda_n}^1[0 \longleftrightarrow \partial \Lambda_n] \le e^{-cn}$.
- If $p > p_c$, then there exists C > 0 such that $\phi_{p,q}^1[0 \longleftrightarrow \infty] \ge C(p p_c)$.

ヘロア 人間 アイヨア・

Bernoulli percolation FK percolation Independent percolation FKG inequality Phase transition • Critical value : $p_c = p_{sd}$

- Subcritical : exp. decay
- Continuity of PT

dependent percolation

- True for $q > 1 \checkmark$
- q > 1 : ∞ -volume measure \checkmark

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- $q \ge 1$: Phase transition \checkmark
- True for q > 1.
- True for q > 1.
- True for $1 \le q \le 4$.
- False for q > 4

Continuity of the phase transition

Theorem

• Fix $1 \le q \le 4$, we have

$$\phi^{1}_{p_{c},q}[0\longleftrightarrow\infty]=0.$$

• Fix q > 4, we have

$$\phi^1_{\rho_c,q}[0\longleftrightarrow\infty]>0,\quad \phi^0_{\rho_c,q}[0\longleftrightarrow\infty]=0$$

Consequence

- When $1 \le q \le 4$, we have $\phi^1 = \phi^0$, and continuous PT.
- When q > 4, we have $\phi_{p_c,q}^1 \neq \phi_{p_c,q}^0$, and discontinuous PT for $\phi_{p_c,q}^1$.

э

Bernoulli percolation	FK percolation
FKG inequality	• True for $q \ge 1$
Phase transition	• $q \ge 1 : \infty$ -volume measure
	• $q \ge 1$: Phase transition
• Critical value : $p_c = p_{sd}$	• True for $q \ge 1$.
Subcritical : exp. decay	• True for $q \ge 1$.

Continuity of PT

• True for $1 \le q \le 4$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

• False for q > 4