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Plan of the course (10 lectures)

1 Introduction

2 Supplementary materials
Brownian motion, Space-time Gaussian white noise,
(Additive) linear SPDEs, (Finite-dimensional) SDEs,
Martingale problem, Invariant/reversible measures for
SDEs, Martingales

3 Invariant measures of KPZ equation (F-Quastel, 2015)

4 Coupled KPZ equation by paracontrolled calculus
(F-Hoshino, 2017)

5 Coupled KPZ equation from interacting particle systems
(Bernardin-F-Sethuraman, 2020+)

5.1 Independent particle systems
5.2 Single species zero-range process
5.3 n-species zero-range process
5.4 Hydrodynamic limit, Linear fluctuation
5.5 KPZ limit=Nonlinear fluctuation
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Plan of this lecture

5. Coupled KPZ equation from interacting particle systems

5.1 Independent particle systems on TN

1. Weakly asymmetric independent random walks on TN

2. Hydrodynamic limit

3. Invariant measures

4. Linear fluctuation

5. KPZ fluctuation

5.2 Single species zero-range process on TN

1. Model

2. Invariant measures

3. Hydrodynamic limit

4. Linear fluctuation, KPZ fluctuation
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5.1 Independent particle systems on TN

▶ As a warm-up, we start with the system of particles
moving independently with each other.

▶ Basic reference is: Kipnis-Landim, Scaling Limits of
Interacting Particle Systems, Springer, 1999.

▶ In this book, Hydrodynamic limit (HDL=LLN) and
(Equilibrium) Linear fluctuation (CLT) are discussed for
interacting particle systems, mostly that called zero-range
process on a d-dimensional square lattice
Td

N := (Z/NZ)d of large (microscopic) size N .

▶ In this lecture, we consider only the case d = 1, since this
is relevant to discuss the KPZ equation.

▶ It is very interesting to study the systems with boundary
effects. However, this requires additional efforts and we
avoid it in this lecture.
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Before starting, let’s recall some of previous discussions.

Particle systems (Lecture No 1)

▶ We considered WASEP on Z.
▶ configuration space X = {±1}Z ∋ σ = (σ(x))x∈Z
▶ transition σ 7→ σz,z+1 (exchange of configurations at z

and z + 1, i.e. jump of a particle at z to z + 1 and vice
versa).

▶ transition rate cz,z+1(σ)
(→ determines how fast the transition occurs)

▶ → generator Lf (σ) =
∑

z∈Z cz,z+1(σ){f (σz,z+1)− f (σ)}.
▶ → construction of particle systems σt : Markov proc. on X

▶ [distributional] based on semigroup etL on C (X )
▶ [pathwise] based on “bell

law
= exp(λ)” of each particle

and jump probability {p}.
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From Lecture No 2
▶ Under some condition, “µ: invariant measure” ←→

“infinitesimal invariance
∫
Lf dµ = 0 for a wide class of

functions f ”.
▶ Dynkin’s formula: If Xt is a Markov process with

generator L, Mt(f ) := f (Xt)−
∫ t

0
Lf (Xs)ds is a

martingale.
▶ Cross-variation of Mt(f ):

⟨M(f ),M(g)⟩t =
∫ t

0

{L(fg)− f Lg − g Lf }(Xs)ds

i.e., Mt(f )Mt(g)− ⟨M(f ),M(g)⟩t is a martingale.
▶ In particular, quadratic variation is given by

⟨M(f )⟩t =
∫ t

0

{Lf 2 − 2f Lf }(Xs)ds

i.e., Mt(f )
2 − ⟨M(f )⟩t is a martingale.
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KPZ equation, Coupled KPZ equation (Lectures No 3 and 4)

▶ The solution we constructed was strong solution (in the
sense of the SDEs). It is a function of driving terms H,
which are directly constructed from the noise Ẇ (t, x).

▶ In the theory of SDEs, another notion of the solution is a
weak solution, that is, a solution in distribution’s sense
(or law’s sense). The solution is characterized by
martingale problem (→ recall Lecture No 2).

▶ To show the limit theorem, it is more convenient to use
the setting of martingale problem.

▶ Corresponding notion in KPZ equation is the energy
solution.
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1. Weakly asymmetric independent random walks on TN

▶ Let TN := Z/NZ = {1, 2, . . . ,N} be the 1-dimensional
integer lattice of size N with periodic boundary condition.

▶ We consider independent random walks on TN with rate
p(1) of jumps to the right and p(−1) to the left.

▶ No exclusion rule (different from WASEP).

▶ The configuration space is XN = {0, 1, 2, . . .}TN ≡ ZTN
+ .

▶ Its element is denoted by η = {ηx}x∈TN
, where ηx

represents the number of particles at site x .

TN
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▶ Transition: ηx ,x+e ∈ XN for x ∈ TN , e = ±1, is defined
from η such that ηx ≥ 1 by

(ηx ,x+e)z =


ηx − 1 when z = x

ηx+e + 1 when z = x + e
ηz otherwise,

for z ∈ TN . η
x ,x±1 describes the configuration after one

particle at x jumps to x + 1 or x − 1.
▶ Generator of weakly asymmetric independent RWs:

Lf (η) =
∑
x∈TN

∑
e=±1

p(e)g(ηx){f (ηx ,x+e)− f (η)}

for functions f on XN .
▶ Indep RW case: g(ηx) = ηx ; one-particle jump rate is

proportional to the particle number, i.e., each particle
move independently with the same jump rate 1.

▶ Jump probability, weak asymmetry:
p(±1) ≡ pN(±1) = 1

2
± c

N
(HDL, linear fluctuation), or

= 1
2
± c√

N
(KPZ) gives the probability of where to jump.
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Microscopic time evolution

▶ L generates the Markov process η(t) = {ηx(t)}x∈TN
on

XN . This describes the microscopic time evolution of
weakly asymmetric independent random walks on TN .

▶ As we recall, each particle (in η(t)) has a bell, which
rings according to the exponential holding time exp(1)
with (inverse) mean λ = 1. Once a bell of a certain
particle rings, this particle makes a jump to the right or
left according to the probability pN(±1). Then, the
system refreshes and repeats the same procedure.

10 / 51



Scaling from micro to macro
▶ [Scaling: time N2] Consider ηN(t) = {ηNx (t)}x∈TN

, the
Markov process on XN generated by LN = N2L.

▶ N2 means the time change from micro to macro.
Microscopically, RWs spend long time (as N →∞)

▶ [Scaling: mass 1
N
, space 1

N
] The macroscopically scaled

empirical measure on macroscopic space T(= [0, 1) with
periodic boundary) associated with η ∈ XN is defined by

αN(dv ; η) = 1
N

∑
x∈TN

ηxδ x
N
(dv), v ∈ T

▶ x/v denote the microscopic/macroscopic spatial variables.
▶ We denote (recall scaling in time N2 so that space-time

diffusive scaling)

αN(t, dv) = αN(dv ; ηN(t)), t ≥ 0.

▶ Define ⟨α, ϕ⟩ =
∫
T ϕdα for test functions ϕ and measures

α on T.
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2. Hydrodynamic limit

▶ Here, we take pN(±1) = 1
2
± c

N
, c ∈ R for jump

probability.

▶ In particular, the order of weak asymmetry is O( 1
N
).

Theorem 1 (Hydrodynamic limit, LLN)
The macroscopic empirical measure of ηN(t)

αN(t, dv) −→
N→∞

ρ(t, v)dv in probability

(by multiplying any smooth test function ϕ ∈ C∞(T)), if this
holds at t = 0. The limit density ρ(t, v) is a unique weak
solution of the linear heat equation with drift −2c:

∂tρ = 1
2
∆ρ− 2c∇ρ, v ∈ T,

with an initial value ρ0(x) = ρ(0, x), where ∆ = ∂2
v ,∇ = ∂v .
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[Proof] Though g(ηx) = ηx , we keep g in the computation.
By Dynkin’s formula,

⟨αN(t), ϕ⟩ = ⟨αN(0), ϕ⟩+
∫ t

0

N2L{⟨α, ϕ⟩}(ηN(s))ds+MN
t (ϕ),

where MN
t (ϕ) is a martingale with quadratic variation given by

⟨MN(ϕ)⟩t =
∫ t

0

(
N2L{⟨α, ϕ⟩2}−2N2⟨α, ϕ⟩L{⟨α, ϕ⟩}

)
(ηN(s))ds

and, noting ⟨α, ϕ⟩ = 1
N

∑
x ηxϕ(

x
N
),

N2L⟨α, ϕ⟩ = N
∑
x

Lηx ϕ(
x
N
),

N2L⟨α, ϕ⟩2 =
∑
x ,y

L(ηxηy )ϕ(
x
N
)ϕ( y

N
).

Let’s first compute Lηx and L(ηxηy ).
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We have the following formulas:

(1) Lηx = pN(−1)g(ηx+1) + pN(1)g(ηx−1)− (pN(−1) + pN(1))g(ηx)

(2) Lη2x = pN(−1)g(ηx+1) + pN(1)g(ηx−1) + (pN(−1) + pN(1))g(ηx)
+2ηxLηx

(3) L(ηxηx+1) = −
(
pN(−1)g(ηx+1) + pN(1)g(ηx)

)
+ηx+1Lηx + ηxLηx+1

(4) L(ηxηy ) = ηyLηx + ηxLηy if |x − y | ≥ 2

[Proof] The proof is elementary, but it is useful to see it for the first time.
For (1), recall Lηx =

∑
z,e=±1 pN(e)g(ηz){(ηx)z,z+e − ηx} and observe

(ηx)
z,z+e − ηx =

{
−1 if z = x ,

1 if z + e = x .

For (2), observe

(η2x)
z,z+e − η2x =

{
(ηx − 1)2 − η2x = −2ηx+1 if z = x ,

(ηx + 1)2 − η2x = 2ηx+1 if z + e = x ,

±2ηx is absorbed in 2ηxLηx and the effect of “+1” survives as an extra

term.
14 / 51



For (3), observe

(ηxηx+1)
z,z+1 − ηxηx+1 (the case e = 1)

=


(ηx + 1)ηx+1 − ηxηx+1 = ηx+1 if z = x − 1,

(ηx − 1)(ηx+1 + 1)− ηxηx+1 = ηx − ηx+1−1 if z = x ,

ηx(ηx+1 − 1)− ηxηx+1 = −ηx if z = x + 1,

(ηxηx+1)
z,z−1 − ηxηx+1 (the case e = −1)

=


(ηx − 1)ηx+1 − ηxηx+1 = −ηx+1 if z = x ,

(ηx + 1)(ηx+1 − 1)− ηxηx+1 = −ηx + ηx+1−1 if z = x + 1,

ηx(ηx+1 + 1)− ηxηx+1 = ηx if z = x + 2,

We pick up only the effect of “−1” as an extra term and others are

absorbed in ηx+1Lηx + ηxLηx+1. The proof of (4) is immediate.
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We now come back to Dynkin’s formula. By (1) and then
shifting variables x 7→ x ± 1 and recalling pN(±1) = 1

2
± c

N
,

N2L⟨α, ϕ⟩ = N
∑
x

(
pN(−1)g(ηx+1) + pN(1)g(ηx−1)

− (pN(−1) + pN(1))g(ηx)
)
ϕ( x

N )

= N
∑
x

g(ηx)
(
pN(−1)ϕ( x−1

N ) + pN(1)ϕ(
x+1
N )− ϕ( x

N )
)

= N
∑
x

g(ηx)
(

1
2

{
ϕ( x−1

N ) + ϕ( x+1
N )− 2ϕ( x

N )
}

+ c
N

{
ϕ( x+1

N )− ϕ( x−1
N )

})
.

Later, we will show E [Mt(ϕ)
2]→ 0 as N →∞.
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In particular, in case that g(ηx) = ηx , this is exactly written in
α again (i.e. asymptotically closed in α) as

N2L⟨α, ϕ⟩ = 1
N

∑
x

ηx

(
N2

2

{
ϕ( x−1

N
) + ϕ( x+1

N
)− 2ϕ( x

N
)
}

+ cN
{
ϕ( x+1

N
)− ϕ( x−1

N
)
})

= ⟨α, 1
2
∆ϕ+ 2c∇ϕ⟩+ O( 1

N
),

by Taylor expansion for ϕ. At least, we need ϕ ∈ C 3(T). In
the limit, we get weak form of the linear heat equation with
drift −2c .

Finally let’s show that MN
t (ϕ) vanishes in the limit.
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To show this, by (2), (3), (4), we see

N2L⟨α, ϕ⟩2 − 2N2⟨α, ϕ⟩L⟨α, ϕ⟩

=
∑
x

(
pN(−1)g(ηx+1) + pN(1)g(ηx−1) + (pN(−1) + pN(1))g(ηx)

)
ϕ( x

N )
2

−
∑
x

(
pN(−1)g(ηx+1) + pN(1)g(ηx)

)
ϕ( x

N )ϕ(
x+1
N )

−
∑
x

(
pN(−1)g(ηx) + pN(1)g(ηx−1)

)
ϕ( x−1

N )ϕ( x
N )

=
(∗)

∑
x

(
pN(−1)g(ηx+1) + pN(1)g(ηx)

)(
ϕ( x

N )
2 + ϕ( x+1

N )2
)

− 2
∑
x

(
pN(−1)g(ηx+1) + pN(1)g(ηx)

)
ϕ( x

N )ϕ(
x+1
N )

=
∑
x

(
pN(−1)g(ηx+1) + pN(1)g(ηx)

)(
ϕ( x

N )− ϕ( x+1
N )

)2

= O(N · 1
N2 )→ 0,

at least if g(ηx) behaves bounded under expectation. (*) follows by
noting (1) the 3rd sum = the 2nd sum (by shifting x 7→ x + 1) and

(2) for the 1st sum, we shift the 2nd and 3rd terms as x 7→ x + 1. This

shows that the quadratic variation of MN
t (ϕ) vanishes as N →∞.
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▶ Note that, in independent case, to show HDL, we don’t
use any information on the invariant measures of the
system.

▶ As we saw in the proof, we have obtained asymptotically
closed equation in αN(t).
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3. Invariant measures

▶ Poisson distribution on Z+ := {0, 1, 2, . . .} with
parameter α ≥ 0 is a probability measure

p ≡ pα = {pk = pα,k ; k ∈ Z+}
on Z+ given by

pk = e−αα
k

k!
, k ∈ Z+.

▶ Note the average E pα[k] :=
∑

k kpα,k = α.

▶ We define νN
α := p⊗TN

α as a product of Poisson measure
pα on the configuration space XN .

Proposition 2 (Kipnis-Landim, Proposition 1.1, p.9)
For every α ≥ 0, νN

α is invariant under the time evolution of
the weakly asymmetric independent random walks, that is,

η(0)
law
= νN

α =⇒ η(t)
law
= νN

α for every t ≥ 0.
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▶ This can be checked by showing the infinitesimal
invariance

∫
XN

Lf dνN
α = 0 for every (bounded) function f

on XN .

▶ In particular, invariant measure is not unique, but one
parameter family of measures parametrized by average
density α of particles.

▶ In symmetric case (i.e. p(±1) = 1
2
), να

N are reversible:∫
XN

f Lg dνN
α =

∫
XN

g Lf dνN
α holds.
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4. Linear fluctuation

▶ Assume ηN(0)
law
= νN

α for some α > 0, i.e., the system is
in equilibrium.

▶ We consider the equilibrium fluctuation of independent
random walks around its mean α taking pN(±1) = 1

2
± c

N

(same scaling as HDL):

Y N(t, dv) := 1√
N

∑
x

(ηNx (t)− α)δ x
N
(dv)

≒
√
N
(
αN(t, dv)− α dv

)
(regarding 1

N

∑
x δ x

N
(dv) ≒ dv).

▶ Note αN(t, dv)→ αdv in HDL (Theorem 1) when

ηN(0)
law
= νN

α .

In fact, we can easily analyze non-equilibrium fluctuation for independent
RWs.
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Theorem 3 (Equilibrium linear fluctuation, CLT)
Y N(t) −→

N→∞
Y (t) and the limit Y (t) = Y (t, v) is a solution of

the linear SPDE:

∂tY = 1
2
∆Y − 2c∇Y +

√
α∇Ẇ (t, v), v ∈ T,

where Ẇ (t, v) is the space-time Gaussian white noise with
mean 0 and covariance structure

E [Ẇ (t, v)Ẇ (s, u)] = δ(t − s)δ(v − u).
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[Proof] Note that ⟨Y N(t), ϕ⟩ =
√
N
(
⟨αN(t), ϕ⟩ − α⟨1, ϕ⟩

)
.

Thus, recalling that Dynkin’s formula showed

⟨αN(t), ϕ⟩ = ⟨αN(0), ϕ⟩+
∫ t

0

N2L{⟨α, ϕ⟩}(ηN(s))ds +MN
t (ϕ),

we have

⟨Y N(t), ϕ⟩ = ⟨Y N(0), ϕ⟩+
∫ t

0

√
NN2L{⟨α, ϕ⟩}(ηN(s))ds +

√
NMN

t (ϕ).

However, by the computation we made above,

√
NN2L⟨α, ϕ⟩ =

√
N⟨α, 1

2
∆ϕ+ 2c∇ϕ⟩+ O(

√
N
N
)

= ⟨Y N , 1
2
∆ϕ+ 2c∇ϕ⟩+ O( 1√

N
),

since ⟨1, 1
2
∆ϕ+ 2c∇ϕ⟩ = 0. This leads to the drift term of

the limit SPDE.
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To obtain
√
αẆ (t, v) in the limit, we compute the limit of the

quadratic variation of
√
NMN

t (ϕ). Indeed, by the above
computation and recalling p(±1) = 1

2
± c

N
, it is given by

(
√
N)2

∫ t

0

∑
x

(
pN(−1)g(ηNx+1(s)) + pN(1)g(η

N
x (s))

)(
ϕ( x

N )− ϕ( x+1
N )

)2

ds

=

∫ t

0

1
2N

∑
x

(
g(ηNx (s)) + g(ηNx+1(s))

){
N
(
ϕ( x+1

N )− ϕ( x
N )

)}2

ds + O( 1
N ).

However, g(ηx) = ηx and recall ηN(s)
law
= νN

α under
equilibrium. Since νN

α is a product measure, LLN (for i.i.d.
sequence) holds under this measure and we see, for every
x0 ∈ TN ,

1
2
· 1
2ℓ+1

∑
x :|x−x0|≤ℓ

(
ηNx (s) + ηNx+1(s)

)
−→
ℓ→∞

α a.s.

This is local ergodicity around x0.

In non-equilibrium setting, this behaves as
∼= ⟨αN(s, ·), 1|v− x0

N |≤ℓ⟩ · N
2ℓ+1

∼= ρ(s, x0
N ), which is the limit of the HDL.

25 / 51



In the above sum for ⟨
√
NMN(ϕ)⟩t ,

{
N
(
ϕ( x+1

N
)− ϕ( x

N
)
)}2

≃
{
∇ϕ( x

N
)
}2
, but it is not a constant but changes in x .

However, ϕ is smooth so that it changes slowly in x . In other
words, by taking 1≪ ℓ≪ N such that N

2ℓ+1
∈ N, one can

rearrange the sum in x as

1
N

∑
x∈TN

= 2ℓ+1
N

∑
x0∈T N

2ℓ+1

× 1
2ℓ+1

∑
x :|x−x0|≤ℓ

Then, for x : |x − x0| ≤ ℓ, ∇ϕ( x
N
)2 can be replaced by

∇ϕ( x0
N
)2 with an error of O( ℓ

N
), which tends to 0. Thus, the

local ergodicity shows that

⟨
√
NMN(ϕ)⟩t → αt

∫
T
(∇ϕ)2dv .
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Accordingly, we have
√
NMN

t →
√
α∇W (t, v), where W is a

time integral of Ẇ . Indeed, by the covariance structure of W ,

E [⟨
√
α∇W (t, ·), ϕ⟩2] = αE [⟨W (t, ·),∇ϕ⟩2]

= αt

∫
T2

∇ϕ(x)∇ϕ(y)δ(x − y)dxdy

= αt∥∇ϕ∥2L2(T).

▶ Note that the coefficient
√
α of the noise appears by the

averaging effect (ergodic property=LLN) under the
equilibrium measure να.

▶ Invariant measure of the limit SPDE: Since the variance
of Poisson distribution pα is also α, by CLT, ⟨Y N(0), ϕ⟩
converges to Gaussian distribution N(0, α∥ϕ∥2L2(T)) in law.

In other words, Y N(0) converges in law to Y , which is√
α·(spatial white noise on T).
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5. KPZ fluctuation

▶ In the independent particles case, KPZ limit yields only
linear fluctuation.

▶ Similarly to the WASEP, let us consider larger weak
asymmetry than HDL/Linear fluctuation:

pN(±1) = 1
2
± c√

N
.

▶ Then, in the SPDE obtained in Theorem 3, we have
diverging drift −2c

√
N∇Y (with error 1

2
2c

√
N

N
⟨Y N , ϕ′′⟩ by

Taylor expansion of ϕ( x+1
N

)− ϕ( x−1
N

)).

▶ To cancel this, we need to introduce moving frame (with
macroscopic speed 2c

√
N) and define

Y N(t, dv) := 1√
N

∑
x

(ηNx (t)− α)δ x
N
−2c

√
Nt(dv)

▶ We assume ηN(0)
law
= νN

α also here.
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▶ Then, the moving frame gives the effect 2c
√
N∇Y and

this exactly cancels out the diverging drift. (One can see
this through multiplying the test function ϕ.)

▶ There is no nonlinear effect and we can show that
Y N(t) −→

N→∞
Y (t) and the limit Y (t) = Y (t, v) is a

solution of the linear SPDE:

∂tY = 1
2
∆Y +

√
α∇Ẇ (t, v).
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5.2 Single species zero-range process on TN

1. Model

▶ We consider particle system on TN . Particles interact
with each other among those staying at the same site.

▶ Therefore, it is called zero-range process.
▶ In Lecture No 5-B, we will discuss several types of

particles to derive coupled KPZ equation. Here, we
consider one type of particles.

▶ The configuration space XN = {0, 1, 2, . . .}TN is the same
as before.

▶ Generator of weakly asymmetric zero-range process has
the same form as that of independent random walks:

Lf (η) =
∑
x∈TN

∑
e=±1

p(e)g(ηx){f (ηx ,x+e)− f (η)}.

▶ ηx ,x+e (= configuration after one particle at x jumps to
x + e), p(e) (=1

2
± c

N
or 1

2
± c√

N
) are the same as before.
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▶ Jump rate g(ηx) was linear function (i.e. g(k) = k) for
independent RWs, but here we consider nonlinear
function. This gives the interaction among particles at
the same site.

▶ In general, g satisfies g(k) > 0 for k ≥ 1 and g(0) = 0.

▶ The one-particle jump rate among k particles is g(k)
k
. If

g(k) = k , it is 1 so that particles move independently.

▶ Under some assumptions on g , one can construct the
processes η(t) and ηN(t) generated by L and N2L,
respectively.

▶ The proof of HDL was straightforward (i.e. we got
automatically a closed PDE in the limit) for independent
case. But, in the interacting case, we need to clarify the
structure of all invariant (or reversible) measures.
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2. Invariant measures

▶ Let pφ = {pφ(k)}k∈Z+ , φ ≥ 0 be the generalized Poisson
distribution on Z+ defined by

pφ(k) :=
1

Zφ

φk

g(k)!
, Zφ =

∞∑
k=0

φk

g(k)!
.

Here, g(k)! = g(1) · · · g(k) for k ≥ 1 and g(0)! = 1.
▶ Recall that, for g(k) = k , pφ is the Poisson distribution

with mean φ.
▶ (cf. Kipnis-Landim, Prop 3.2, p.29) Under some

assumptions on g , product measures ν̄φ ≡ ν̄N
φ := p⊗TN

φ on
XN for φ ∈ [0, φ∗) are invariant measures of zero-range
process η(t), where φ∗ := lim inf

k→∞
g(k).

▶ For this, show the infinitesimal invariance
∫
XN

Lf d ν̄φ = 0
for functions f on XN .

▶ Conversely, any invariant measure being translation-
invariant is characterized as a convex combination of
{ν̄φ}, cf. [KL, p.40] on X =ZZ

+ (i.e. on infinite region Z).
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Change of the parameter φ 7→ ρ (density)

▶ We denote, for ρ ≥ 0, that

νρ ≡ νN
ρ := ν̄φ(ρ)

(
≡ ν̄N

φ(ρ)

)
by changing the parameter so that the mean of the
marginal pφ is ρ.

▶ In fact, φ = φ(ρ) is determined by the relation

ρ = φ(logZφ)
′
(
=

1

Zφ

∞∑
k=0

k
φk

g(k)!
=: ⟨k⟩pφ

)
.

▶ Also, note that

φ = ⟨g(k)⟩pφ
(
:=

1

Zφ

∞∑
k=1

φk

g(k − 1)!

)
.

▶ Moreover, differentiating ρ = φ(log Zφ)
′ in φ, we see that

φ′(ρ) =
φ(ρ)

Eνρ [(η0 − ρ)2]
> 0.

▶ In particular, φ = φ(ρ) is a strictly increasing function.
▶ Recall φ(ρ) = ρ in the independent case.
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3. Hydrodynamic limit

▶ As before, we consider the macroscopically scaled
empirical measure on T = [0, 1) associated with η ∈ XN

defined by

αN(dv ; η) = 1
N

∑
x∈TN

ηxδ x
N
(dv), v ∈ T.

▶ We also denote

αN(t, dv) = αN(dv ; ηN(t)), t ≥ 0.

▶ For the microscopic system, we have introduced the
scalings N2 in time, 1

N
in space and 1

N
in mass.

cf. F, Hydrodynamic limit for exclusion processes, Comm. Math. Stat.,
2018. Based on a course at 北京交通大学
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▶ We take pN(±1) = 1
2
± c

N
.

Theorem 4 (Hydrodynamic limit)
The macroscopic empirical measure of ηN(t)

αN(t, dv) −→
N→∞

ρ(t, v)dv in probability,

if this holds at t = 0. The limit density ρ(t, v) is a unique
weak solution of the nonlinear heat (diffusion) equation:

∂tρ = 1
2
∆φ(ρ)− 2c∇φ(ρ), v ∈ T,

with an initial value ρ0(x) = ρ(0, x).

▶ Here, from the above observation, the function φ = φ(ρ)
is defined by the ensemble average of g :

φ(ρ) ≡ ⟨g⟩(ρ) = E νρ[g(η0)],

where E νρ is the expectation with respect to νρ.
▶ Recall φ′(ρ) > 0 and it is known that φ ∈ C∞(R+).
▶ Nonlinearity arises from the interaction. 35 / 51



For the proof of Theorem 4:

▶ Dynkin’s formula and other computations hold as in the
independent case: For each test function ϕ ∈ C∞(T),

⟨αN(t), ϕ⟩ = ⟨αN(0), ϕ⟩+
∫ t

0

N2L{⟨α, ϕ⟩}(ηN(s))ds +MN
t (ϕ),

N2L⟨α, ϕ⟩ = 1
N

∑
x

g(ηx)
(

N2

2

{
ϕ( x−1

N
) + ϕ( x+1

N
)− 2ϕ( x

N
)
}

+ cN
{
ϕ( x+1

N
)− ϕ( x−1

N
)
})

,

▶ limN→∞ E [MN
t (ϕ)

2] = 0 holds.

▶ In independent case, g(ηx) = ηx so that this was able to
be written in αN(s) again.

▶ However, in interacting case, this is not possible.
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Heuristic derivation of the limit nonlinear PDE

▶ Local Equilibrium Ansatz: For each macroscopic time t
and position v ∈ T, the microscopic system ηN(t) around
(t, v) reaches one of the equilibrium states νρ(t,v) with
some ρ(t, v) ≥ 0, i.e.,

{ηNx (t); |x − Nv | ≤ ℓ}
law∼= νρ(t,v)({ηx ; |x | ≤ ℓ}) holds.

▶ This looks plausible, since microscopic system ηN(t) may
reach equilibrium after spending long time. But, the
equilibrium states are not unique so that it may depend
on (t, v).

▶ Actually, it is more convenient to consider νρ as a measure
on X = ZZ

+ (i.e. on infinite region), since we let N →∞.
(Indeed, this doesn’t matter in our setting, since νρ are
product measures.)
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▶ From local equilibrium Ansatz and by ergodicity under the
long time average (Dynkin’s formula involves
time-integral, and it is actually large time-integral for
microscopic system η(s)) or under the large spatial
average, g(ηNx (s)) would be replaced by its ensemble
average ⟨g⟩(ρ(s, v)) for x

N
∼ v (from |x − Nv | ≤ ℓ).

▶ Also ηNx (t) in ⟨αN(t), ϕ⟩ would be replaced by
⟨η0⟩(ρ(t, v)) = ρ(t, v) for x

N
∼ v .

▶ Thus, from Dynkin’s formula, we would obtain

⟨ρ(t, ·), ϕ⟩ = ⟨ρ(0, ·), ϕ⟩+
∫ t

0

⟨φ(ρ(s, ·)), 1
2
∆ϕ+2c∇ϕ⟩ds

in the limit.

▶ This is the limit equation in Theorem 4.

Problem: How to make this rigorous?

▶ Method: Entropy method, relative entropy method
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Entropy and Entropy production
(Originally due to Guo-Papanicolaou-Varadhan)

▶ Fix α > 0 and take να ≡ νN
α as a reference measure.

▶ dµN(t) ≡ f Nt (η)dνN
α (η) := distribution of ηN(t) on XN .

▶ Then, the density f Nt = f Nt (η) satisfies Kolmogorov’s
forward equation:

∂tf
N
t = N2L∗f Nt ,

where L∗ is the dual of the generator L of the process
η(t) with respect to νN

α .

▶ Indeed, L∗ has a similar form to L, but with p(e) replaced
by p(−e).

▶ Relative entropy: For two probability measures µ, ν on
XN such that µ ≺ ν, set

H(µ|ν) :=
∫
XN

dµ
dν

log dµ
dν
dν

Kipnis-Landim p.79∼, see also F. Comm. Math. Stat., 2018.
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▶ Dirichlet form associated with the symmetric part of L
defined by Lsym := 1

2
(L+ L∗) (i.e. p(e) = 1

2
):

DN(f , h) := −
∫

f Lsymh dνα

= 1
4

∑
x,e

∫
g(ηx)

(
f (ηx,x+e)− f (η)

)(
h(ηx,x+e)− h(η)

)
dνα

▶ Entropy production (Information):
IN(f ) := DN(

√
f ,
√
f )

Proposition 5
Let us denote H(µ) := H(µ|νN

α ). Then, we have

∂tH(µN(t)) ≤ −2N2IN(f
N
t ).

In particular, for space-time average of µN
t , we have

H
(

1
TN

∫ T

0

∑
x∈TN

µN(t) ◦ τ−1
x dt

)
≤ H(µN(0)) ≤ CN,

IN
(

1
TN

∫ T

0

∑
x∈TN

µN(t) ◦ τ−1
x dt

)
≤ 1

2N2H(µN(0)) ≤ C
N
,

where τx , x ∈ TN denotes the spatial shift: (τxη)z := ηz+x .
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[Proof] Last two inequalities follow by convexity of H and IN ,
and noting H(µN(t)) ≥ 0. For the first estimate, recalling
Kolmogorov’s forward equation,

∂tH(µN(t)) = ∂t

∫
f Nt log f Nt dνNα

=

∫ (
N2L∗f Nt · log f Nt + ∂t f

N
t )dνNα

= N2

∫
f Nt · L log f Nt dνNα .

Since a log b
a
≤ 2
√
a (
√
b −
√
a) for a, b > 0, we have∫

f Nt · L log f Nt dνNα =
∑
x,e

p(e)

∫
g(ηx)f

N
t (η) log

f Nt (ηx,x+e)

f Nt (η)
dνNα

≤ 2
∑
x,e

p(e)

∫
g(ηx)

√
f Nt (η)

(√
f Nt (ηx,x+e)−

√
f Nt (η)

)
dνNα

= 2

∫ √
f Nt (η)L

√
f Nt (η)dνNα = 2

∫ √
f Nt (η)Lsym

√
f Nt (η)dνNα

= −2IN(f Nt ).

This shows the first estimate. 41 / 51



▶ For a bounded local function F = F (η) on XN

(depending only on finitely many {ηx} independently of
N) and ℓ ∈ N, define the sample average of F in the
region of size 2ℓ and center x by

F ℓ
x (η) :=

1
2ℓ+1

∑
y :|y−x |≤ℓ

τyF (η)

where τyF (η) := F (τyη) and τyη ∈ XN is defined by
(τyη)x := ηx+y .

▶ Recall ⟨F ⟩(α) := E να[F ]: ensemble average of F .
▶ Density of the space-time average of µN(t) with respect

to να:

f̃ N :=
1

NT

∑
x∈TN

∫ T

0

τx ft dt.

▶ By Proposition 5, we have

H(f̃ N) ≡ H(f̃ Ndνα) ≤ CN , IN(f̃
N) ≤ C

N
.
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▶ The heuristic argument to replace g(ηx) and ηx by their
ensemble averages with mean ρ(t, v) can be made
rigorous by the next theorem.

▶ Instead of ρ(t, v), we take sample average (density of
particles) ηεN0 in a region of macroscopic size ε > 0.

Theorem 6 (Local ergodicity =Replacement lemma)
For every δ > 0, we have

lim
ε↓0

lim
N→∞

P f̃ Ndνα
(
|F εN

0 − ⟨F ⟩(ηεN0 )| > δ
)
= 0.

▶ We take F (η) = g(η0) or η0 which are unbounded.
To introduce cut-off, we apply the entropy bound
“HN(f̃

N) ≤ CN” and the entropy inequality:
Eµ[X ] ≤ log E ν [eX ] + H(µ|ν).

▶ The proof of Theorem 6 is divided into two parts:
one block estimate and two blocks estimate.
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Theorem 7 (One block estimate)

lim
ℓ→∞

lim
N→∞

sup
f

∗ E fdνα
[
|F ℓ

0 − ⟨F ⟩(ηℓ0)|
]
= 0,

where sup∗f is taken over translation-invariant f (i.e. τx f = f )
such that IN(f ) ≤ C

N
,H(f ) ≤ CN.

Theorem 8 (Two blocks estimate)

lim
ℓ→∞

lim
ε↓0

lim
N→∞

sup
f

∗ sup
|y |≤εN

E fdνα
[
|ηℓy − ηNε

0 |
]
= 0,

where sup∗f is the same as above.

▶ Theorems 7 and 8 imply Theorem 6.
▶ Indeed, F εN

0 in Thm 6 can be replaced by F ℓ
0 by

rearranging the sum in F εN
0 .

▶ ηεN0 in Thm 6 can be replaced by ηℓ0 by Thm 8.
▶ After these replacement, we can apply Thm 7.
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Rough idea of the proof of Theorem 7 (One block estimate)

▶ Let ℓ ∈ N be fixed and consider the entropy production
Iℓ(f ) on the domain of size ℓ. (We take pieces of Dirichlet
form in this domain → see below.)

▶ Then, since it is proportional to the volume, we see
Iℓ(f ) ≤ ℓ

N
IN(f ).

▶ Showing the tightness of ℓ-marginal distribution of
{f̃ Ndνα} and recalling IN(f̃

N) ≤ C
N
, we see that every

limit f , restricted on the configuration space Xℓ of this
domain, satisfies Iℓ(f ) = 0.

▶ This implies

1
4

∑
2≤x≤ℓ−1,e=±1

∫
g(ηx){

√
f (ηx ,x+e)−

√
f (η)}2dνα = 0.

▶ Therefore, we have f (ηx ,x+e) = f (η), which means that
f is constant on the configurations in Xℓ with a fixed
total number of particles.
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▶ Thus the proof is reduced to show

lim
ℓ→∞

sup
j
ℓ
≤C

E νℓj [|F ℓ
0 − ⟨F ⟩(ηℓ0)|] = 0,

where νℓ
j := να

∣∣
Xℓ,

∑
1≤x≤ℓ ηx=j

is the conditional

distribution of να on the space with j particles in the
domain of size ℓ. νℓ

j are called canonical ensembles.
We can introduce cut-off C in density.

▶ By the equivalence of ensembles (shown by local CLT),
the limits of νℓ

j as ℓ→∞ are superpositions of (grand
canonical) ensembles {να}.

▶ From this and also noting ηℓ0 → α under να, the proof is
further reduced to show

lim
ℓ→∞

sup
α≤C

E να[|F ℓ
0 − ⟨F ⟩(α)|] = 0.

▶ But, this is nothing but the LLN for i.i.d. sequence (since
F has finite-support).

▶ This completes the proof of one block estimate.
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▶ For the proof of Theorem 8 (Two blocks estimate), we
move particles from one block to the other. The cost can
be estimated by the entropy production IN(f ).

Additional tasks to complete the proof of Theorem 4:
▶ We show the tightness of {αN(t, dv)}N .
▶ We need the uniqueness of the weak solution of the limit

nonlinear diffusion equation, roughly shown as follows.
▶ Set u(t, v) := ∇−1ρ(t, v) and then u satisfies

∂tu = 1
2
∇
(
φ(∇u)

)
− 2cφ(∇u).

▶ Assume there are two solutions u1, u2 with the same
initial value. Set ū = u1 − u2 and compute

∂t∥ū∥2L2 = 2(ū, ∂t ū)L2

= (ū,∇φ(∇u1)−∇φ(∇u2))L2 − 4c(ū, φ(∇u1)− φ(∇u2))L2

= −(∇ū, φ(∇u1)− φ(∇u2))L2 − 4c(ū, φ(∇u1)− φ(∇u2))L2

≤ −c∥∇ū∥2L2 + C
ε ∥ū∥

2
L2 + ε∥∇ū∥2L2 ,

by noting 0 < c ≤ φ′ ≤ C <∞. Taking 0 < ε < c , this
shows the uniqueness by Gronwall’s lemma.

▶ This is called H−1-method, since ∥u∥L2 = ∥ρ∥H−1 . 47 / 51



4. Linear fluctuation, KPZ fluctuation

▶ Assume ηN(0)
law
= νN

α for some α > 0, i.e., the system is
in equilibrium.

▶ We consider the equilibrium fluctuation of zero-range
process around its mean α taking pN(±1) = 1

2
± c

N
(same

scaling as HDL):

Y N(t, dv) := 1√
N

∑
x

(ηNx (t)− α)δ x
N
(dv).

Theorem 9 (Equilibrium linear fluctuation, CLT)
Y N(t) −→

N→∞
Y (t) and the limit Y (t) = Y (t, v) is a solution of

the linear SPDE:

∂tY = 1
2
φ′(α)∆Y − 2cφ′(α)∇Y +

√
φ(α)∇Ẇ (t, v),

where Ẇ (t, v) is the space-time Gaussian white noise.
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[Proof] As in the proof of HDL, we apply Dynkin’s formula
and the limit of the martingale term can be handled similarly
to the independent RWs except that we get

√
φ(α)∇W (t, v)

as the limit of g(ηx) instead of ηx :

1
2 ·

1
2ℓ+1

∑
|x|≤ℓ

(
g(ηNx (s)) + g(ηNx+1(s))

)
−→
ℓ→∞

φ(α) a.s.

by ergodicity under νN
α . To study the limit of the drift term,

we need the following theorem.

(1st order) Boltzmann-Gibbs principle in equilibrium
(=combination of local average and Taylor expansion)

Theorem 10
For a local function F (η) and G ∈ C (T), we have

lim
N→∞

E να
[( ∫ t

0

ds 1√
N

∑
x∈TN

G ( x
N
)τxVF (η(s))

)2]
= 0

where VF (η) = F (η)− ⟨F ⟩(α)− ⟨F ⟩′(α)(η0 − α).
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▶ Noting that ⟨g⟩(α) = φ(α), by Theorem 10 (BG
principle), we can show Theorem 9.

▶ Nonequilibrium fluctuation: Chang-H.T. Yau CMP 145
1992, Jara-Menezes arXiv:1810.09526

KPZ fluctuation
▶ We introduce a different (larger) scaling

pN(±1) = 1
2
± c√

N
for jump probability.

▶ We introduce moving frame to cancel ⟨F ⟩′(α) in this
scaling.

▶ Then, under the scaling, the next term in Taylor
expansion becomes O(1) and we roughly have

F (η) ∼ 1
2
⟨F ⟩′′(α)(ηℓ0 − α)2,

where recall ηℓ0 =
1

2ℓ+1

∑
|x |≤ℓ ηx .

▶ This is called (2nd order) Boltzmann-Gibbs principle and
will be discussed in Lecture No 5-B.
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Summary of this lecture.

1. Independent random walks: We made explicit
computations based on Dynkin’s formula and the formula
of quadratic variation. This is the linear theory.

2. Single species zero-range process on TN : Mostly we
discussed the hydrodynamic scaling limit due to the
method of entropy and entropy production and derived
nonlinear diffusion equation in the limit.

3. We stated 1st and 2nd order Boltzmann-Gibbs principle in
equilibrium to study fluctuation limits.
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