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ALL BAYESIANS IN DAILY LIFE?
Interest in Milano or not?

• Prior knowledge

– What is Milano? City, cookie, car?

– Where is Milano?

– Fashion and football

• Data collection

– Book on snorkeling activities

– Tour operator catalogue

– City of Milano official website
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ALL BAYESIANS IN DAILY LIFE?

• Posterior knowledge

– No snorkeling: closest beach at 150 kms!

– Probably no tour found in the catalogue

– Leonardo’s Last Supper; Michelangelo, Raffaello, Mantegna, etc.; Duomo (cathe-
dral); Sforza Castle; Canals (Navigli) and nightlife; Via Sarpi (Chinatown); etc.

• Forecast:

– Will I enjoy Milano or not?

– Cost and time to get there

• Decision: To go or not to go?

– Interest in the place

– Distance and cost for travel, lodging and meals

– Italian language (but English understood by many)
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BAYES THEOREM

• Patient subject to medical diagnostic test (P or N ) for a disease D

• Sensitivity .95, i.e. P(P |D) = .95

• Specificity .9, i.e. P(PC|DC) = P (N |DC) = .9

• Physician’s belief on patient having the disease 1%, i.e. P(D) = .01

– Knowledge about that patient

– Knowledge about people with similar characteristics (age, gender, etc.)

– Knowledge about the population in an area

– Other sources of knowledge or uninformative guess

• Positive test ⇒ P(D|P )?
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BAYES THEOREM

P(D|P ) =
P(D

⋂
P )

P(P )
=

P(P |D)P(D)

P(P |D)P(D) + P(P |DC)P(DC)

=
.95 · .01

.95 · .01+ .1 · .99
= .0875

Positive test updates belief on patient having the disease:
from 1% to 8.75%

Prior opinion updated into posterior one

If P(D) = .1 ⇒ P(D|P ) = .5135

If P(D) = .2 ⇒ P(D|P ) = .7037
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BAYES THEOREM

• Partition {A1, . . . , An} of Ω and B ⊂ Ω : P(B) > 0

P(Ai|B) =
P(B|Ai)P (Ai)∑n

j=1 P(B|Aj)P (Aj)

• X r.v. with density f(x|λ), prior π(λ)

⇒ posterior π(λ|x) =
f(x|λ)π(λ)∫
f(x|ω)π(ω)dω
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EXERCISE: BAYES THEOREM

• Suppose a person is testing for diabetes

• A priori, the person has one chance out of a million of having diabetes

• In 3% of cases the test is positive although the person has no diabetes
(⇒ False positive error rate)

• In 1% of cases the test is negative although the person has diabetes
(⇒ False negative error rate)

• What is the probability that the person has diabetes when the test is positive?

• How does such probability change when a priori the patient has the same probability
of having or not having diabetes?
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BAYESIAN STATISTICS

Bayesian statistics is . . .

• . . . another way to make inference and forecast on population features
(practitioner’s view)

• . . . a way to learn from experience and improve own knowledge
(educated layman’s view)

• . . . a formal tool to combine prior knowledge and experiments
(mathematician’s view)

• . . . cheating
(hardcore frequentist statistician’s view)

• . . .
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A SHORT HISTORY OF BAYESIAN STATISTICS
• Bayesian statistics strongly relies on the use of Bayes Theorem

• The idea of Bayes Theorem goes back to James Bernoulli in 1713 but there was no
mathematical structure yet

• Reverend Thomas Bayes died in 1761

• Richard Price, Bayes’s friend, published Bayes’s paper on inverse probability in
1763, which was about binomial data and uniform prior

• In 1774 Laplace gave more general results, probably unaware of Bayes’s work

• Jeffreys ”rediscovered” Bayes’s work in 1939

• Bruno de Finetti and Jimmy Savage set the foundations of the Bayesian approach

• In early 90’s Metropolis simulation method was ”ridiscovered” by Gelfand and Smith

• Since then MCMC (Markov chain Monte Carlo) and other simulation methods were
developed and Bayesian approach became very popular
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NOTIONS OF PROBABILITY

• Classical (random choice, equally likely events): Probability as
#Favourable events
#Possible events

• Frequentist: Probability as asymptotic limit of frequency, i.e., of proportion of favourable
events

• Subjective/Bayesian: Probability based on beliefs on, e.g., both head in tossing a
coin (like previous) and final exam success (unlike previous)

• Axiomatic (Kolmogorov) on (Ω,F , P ), which contains the other three:

– P (A) ≥ 0 for all A ∈ F

– P (Ω) = 1

– P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) for all mutually exclusive A′
is ∈ F

Bayesian ⇒ need to specify subjective P in (Ω,F , P )
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ASSESSMENT OF PRIOR PROBABILITIES

T= person having a tumor in his/her life
I= person having an infarction in his/her life

P(T
⋃
I) = .2, P(T ) = .3, P(I) = .05, P(T

⋂
I) = .1
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ASSESSMENT OF PRIOR PROBABILITIES

T= person having a tumor in his/her life
I= person having an infarction in his/her life

P(T
⋃
I) = .2, P(T ) = .3, P(I) = .05, P(T

⋂
I) = .1

• P(T
⋃
I) ≥ P(T )

• P(I) ≥ P(T
⋂
I)
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ASSESSMENT OF PRIOR PROBABILITIES

T= person having a tumor in his/her life
I= person having an infarction in his/her life

P(T
⋃
I) = .3, P(T ) = .2, P(I) = .2, P(T

⋂
I) = .15
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ASSESSMENT OF PRIOR PROBABILITIES

T= person having a tumor in his/her life
I= person having an infarction in his/her life

P(T
⋃
I) = .3, P(T ) = .2, P(I) = .2, P(T

⋂
I) = .15

• .3 = P(T
⋃
I) = P(T ) + P(I)− P(T

⋂
I) = .25

• P(T
⋃
I) = .3, P(T ) = .2, P(I) = .2, P(T

⋂
I) = .1

⇒ assessments should comply with probability rules

14



ASSESSMENT OF PRIOR PROBABILITIES

• P (A): Probability one of us was born on a given day, say May, 1st

• n people ⇒ P (A) = 1− (364/365)n

•

n = 10 ⇒ P (A) = 0.027
n = 50 ⇒ P (A) = 0.128

n = 100 ⇒ P (A) = 0.240
n = 200 ⇒ P (A) = 0.422
n = 300 ⇒ P (A) = 0.561

• Therefore, what is your opinion about P (A)?
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ASSESSING DISCRETE DISTRIBUTIONS: BETS
Probability Italy will win next FIFA World Cup

1. I bet Y = 10$ on the Italian victory. How much are you willing to bet with me against
the victory? (Say 10$ the first time, then 15$ and 20$)

2. Now let’s reverse. You bet Y = 10$ on the victory and you suggest my fair bet on
the loss (Say 30$ the first time, then 25$ and 20$)

3. Let’s repeat 1 and 2 until it is indifferent for you to bet either on the loss or the victory
(i.e. 20$)

4. Let Y be the amount I bet on the victory of Italy

5. Let X be the amount you bet on the loss of Italy

6. Fair bet ⇒ equal expected losses: Y P (loss) = XP (victory)

7. P (victory) = 1− P (loss) ⇒ P (loss) =
X

X + Y
=

20

20+ 10
=

2

3
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ASSESSING DISCRETE DISTRIBUTIONS: BETS

Problems

• Many people do not like to bet

• Most people dislike the idea of losing money

• I was talking about a 10$ bet, but would you have bet 1000X if I had
bet 10,000$?

• Reaching convergence to a fair bet might be a long process
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REFERENCE LOTTERIES

1. Lottery 1

• Get a trip to Australia if Italy wins

• Stay at home if Italy looses

2. Lottery 2

• Get a trip to Australia with probability p, e.g. if a random number generated from
a uniform distribution on [0,1] is ≤ p

• Stay at home with probability 1 − p, e.g. if a random number generated from a
uniform distribution on [0,1] is > p

3. Specify p1. Which lottery do you prefer?

4. If Lottery 1 is preferred offer change pi to pi+1 > pi.

5. If Lottery 2 is preferred offer change pi to pi+1 < pi.

6. When indifference point is reached ⇒ P (victory) = pi, else Goto 4.
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ASSESSING CONTINUOUS DISTRIBUTIONS
X continuous random variable (e.g. light bulb lifetime)

• Choose x1, . . . , xn

• Assess F (xi) = P (X ≤ xi), i = 1, n

• Draw F (x)

• Look at F (x) at some points for consistency

or

• Choose probabilities p1, . . . , pn

• Find xi’s s.t. F (xi) = P (X ≤ xi) = pi, i = 1, n

• Draw F (x)

• Look at F (x) at some points for consistency
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BAYES THEOREM AND LIKELIHOOD

• Sample X = (X1, . . . , Xn), i.i.d. from f(x|λ) ⇒ likelihood lx(λ) =
∏n

i=1 f(Xi|λ)

• Prior π(λ) ⇒ posterior π(λ|X) =
lx(λ)π(λ)∫
lx(θ)π(θ)dθ

• I.i.d. property not necessarily needed to get likelihood, e.g. Markovian observations
where f(X1, . . . , Xn|λ) = f(X1|λ)

∏n
i=2 f(Xi|Xi−1, λ)

• The likelihood is all that we need from data to perform inference and, given it, the
way the experiment was performed is not relevant (Likelihood Principle)

– Compare two experiments counting the number x of heads in n tosses of a coin
knowing that P (head) = θ

– The sequence HHT . . . TH is known ⇒ θx(1− θ)n−x

– Only known about x heads and n− x tails ⇒
(n
x

)
θx(1− θ)n−x

– Different probabilities but θx(1− θ)n−x is the same contribution to the likelihood
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ILLUSTRATIVE EXAMPLE: FREQUENTIST APPROACH

Light bulb lifetime ⇒ X ∼ E(λ) & f(x;λ) = λe−λx x, λ > 0

• Sample X = (X1, . . . , Xn), i.i.d. E(λ)

• Likelihood lx(λ) =
∏n
i=1 f(Xi;λ) = λne−λ

∑n
i=1Xi

• MLE: λ̂ = n/
∑n

i=1Xi, C.I., UMVUE, consistency, etc.

What about available prior information on light bulbs behavior?
How can we translate it? ⇒ model and parameter
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ILLUSTRATIVE EXAMPLE: BAYESIAN APPROACH

Light bulb lifetime ⇒ X ∼ E(λ) & f(x;λ) = λe−λx x, λ > 0

• Sample X = (X1, . . . , Xn), i.i.d. E(λ)

• Likelihood lx(λ) =
∏n
i=1 f(Xi;λ) = λne−λ

∑n
i=1Xi

• Prior λ ∼ G(α, β), π(λ) =
βα

Γ(α)
λα−1e−βλ

• Posterior π(λ|X) ∝ λne−λ
∑n

i=1Xi · λα−1e−βλ

⇒ λ|X ∼ G(α+ n, β +
∑n

i=1Xi)

Posterior distribution fundamental in Bayesian analysis
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CONJUGATE PRIORS
• We just saw that a gamma prior on the parameter of an exponential model leads to

a gamma posterior

• ⇒ The gamma distribution is a conjugate prior for the exponential model

• Does conjugacy occur always? Unfortunately not and simulation methods, e.g.
MCMC (Markov chain Monte Carlo), are needed to get samples from the posterior
distribution

• There are some relevant cases of conjugacy and we will see some of them:

– Beta prior conjugate w.r.t. Bernoulli, binomial, geometric models

– Dirichlet prior conjugate w.r.t. multinomial model

– Gamma prior conjugate w.r.t. exponential, Poisson models

– Gaussian prior conjugate w.r.t. Gaussian model with fixed variance/covariance
matrix and unknown mean

– Gaussian-Inverse gamma prior w.r.t. univariate Gaussian model with unknown
mean and variance
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CONJUGATE PRIOR FOR BINOMIAL

• Binomial data (x ”successes” in n trials), with P (success) = θ

⇒ lx(x|n, θ) =
(n
x

)
θx(1− θ)n−x

• Beta prior Be(α, β): π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, 0 < θ < 1, α, β > 0

• ⇒ posterior π(θ|x, n) ∝ θx(1− θ)n−x · θα−1(1− θ)β−1 ∝ θα+x−1(1− θ)β+n−x−1

• ⇒ θ|x, n ∼ Be(α+ x, β + n− x)

• Note that the result is proved without using the constant values

• Exercise: Try with the following models:

– Bernoulli: f(x|θ) = θx(1− θ)1−x, x = 0,1

– Geometric: (1− θ)θx, x nonnegative integer
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CONJUGATE PRIOR FOR GAUSSIAN

• X1, . . . , Xn ∼ N (µ, σ2)

• Mean/median µ ∈ ℜ unknown and variance σ2 > 0 known

• X = (X1, . . . , Xn)

• Likelihood:

L(X|µ) =
n∏

i=1

1√
2πσ

e−(Xi−µ)2/(2σ2)

=
1

(2πσ2)n/2
e−
∑n

i=1
(Xi−µ)2/(2σ2)

• Prior: µ ∼ N (µ0, τ2) ⇒ π(µ) =
1√
2πτ

e−(µ−µ0)2/(2τ 2)
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CONJUGATE PRIOR FOR GAUSSIAN

• Posterior:

π(µ|X) ∝ e−
∑n

i=1
(Xi−µ)2/(2σ2) · e−(µ−µ0)2/(2τ 2)

∝ e−(nµ2−2µ
∑n

i=1
Xi)/(2σ2) · e−(µ2−2µ0µ)/(2τ 2)

∝ e−{µ
2(n/σ2+1/τ 2)−2µ(

∑n

i=1
Xi/σ2+µ0/τ 2)}/2

∝ exp

{
−

1

2(n/σ2 +1/τ2)−1

[
µ2 − 2µ

∑n
i=1Xi/σ2 + µ0/τ2

n/σ2 +1/τ2

]}
⇒ µ|X ∼ N

(∑n
i=1Xi/σ2 + µ0/τ2

n/σ2 +1/τ2
,

1

n/σ2 +1/τ2

)
• Prior mean: E(µ) = µ0

• MLE:
∑n

i=1Xi

n

• Posterior mean:
∑n

i=1Xi/σ2 + µ0/τ2

n/σ2 +1/τ2
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CONJUGATE PRIOR FOR GAUSSIAN

• Lack of knowledge about µ given by noninformative prior

• π(µ) ∝ c, c positive constant

• What is the problem with this prior?

π(µ|X) ∝ e−
∑n

i=1
(Xi−µ)2/(2σ2)

∝ e−(nµ2−2µ
∑n

i=1
Xi)/(2σ2)

∝ e−
1

2σ2/n
(µ2−2µ

∑n

i=1
Xi

n
)

• ⇒ µ|X ∼ N
(∑n

i=1Xi

n
,
σ2

n

)

• Posterior mean = MLE =
∑n

i=1Xi

n
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JEFFREYS PRIORS

• There are alternative proper noninformative priors:

– Flat prior on [−K,K],K > 0 : π(µ) =
1

2K
I[−K,K](µ)

(IA indicator function of set A)

– Diffuse prior: µ ∼ N (µ0,106)

• The previous prior π(µ) ∝ c is an example of Jeffreys priors

• θ = (θ1, . . . , θp) p-dimensional parameter in f(X|θ)

• J = {Jij}i,j=1,...,p Fisher information matrix s.t. for each i, j

Jij = −E

[
∂2 log(f(X|θ))

∂θi∂θj

]
= E

[(
∂ log(f(X|θ))

∂θi

)(
∂ log(f(X|θ))

∂θj

)]
28



JEFFREYS PRIORS FOR GAUSSIAN

• Jeffreys prior: π(θ) ∝
√

|J |, with |J | the determinant of the Fisher information matrix

• Gaussian model with known variance and unknown mean µ

• Here the matrix is of size 1 since there is just one parameter

π(µ) ∝
√

|J | ∝

√
E

(
∂ log(f(X|µ))

∂µ

)2

∝

√
E

(
X − µ

σ2

)2

∝
1

σ2

√∫
f(X|µ) (X − µ)2 dX

∝
σ

σ2
∝

1

σ
∝ 1

• The last step is possible since σ2 is a constant here
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CONJUGATE PRIOR FOR GAUSSIAN

• X1, . . . , Xn ∼ N (µ, σ2)

• Mean/median µ ∈ ℜ and variance σ2 > 0 unknown

• X = (X1, . . . , Xn)

• Conjugate normal-inverse gamma prior

• Prior π(µ, σ2) = π(µ|σ2)π(σ2)

• µ|σ2 ∼ N (µ0, τ2σ2)

• σ2 ∼ IG(α, β) Inverse gamma

• π(σ2) =
βα

Γ(α)
(σ2)−α−1e−β/σ2

, with Γ(α) =

∫ ∞

0
xα−1e−xdx

30



CONJUGATE PRIOR FOR GAUSSIAN

• After some computations (left as an exercise) we get the posterior
π(µ, σ2|X) = π(µ|σ2, X)π(σ2|X) with

– µ|σ2, X ∼ N
(∑n

i=1Xi + µ0/τ2

n+1/τ2
,

σ2

n+1/τ2

)
– σ2|X ∼ IG(α+ (n+1)/2, β)

• The posterior marginal of µ, i.e. π(µ|X), has a Student-t distribution

• σ2|µ,X ∼ IG(α+ (n+1)/2, β +
n∑

i=1

(Xi − µ)2/2+ (µ− µ0)
2/(2τ2))

• ⇒ useful for MCMC (Gibbs sampling)
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PARAMETER ESTIMATION - DECISION ANALYSIS

• Loss function L(λ, a), a ∈ A action space

• Minimize Eπ(λ|X)L(λ, a) =
∫
L(λ, a)π(λ|X)dλ w.r.t. a

⇒ λ̂ Bayesian optimal estimator of λ
– λ̂ posterior median if L(λ, a) = |λ− a|

– λ̂ posterior mean Eπ(λ|X)λ if L(λ, a) = (λ− a)2

Eπ(λ|X)L(λ, a) =
∫
(λ− a)2π(λ|X)dλ

=
∫

λ2π(λ|X)dλ− 2a
∫

λπ(λ|X)dλ+ a2 · 1

=
∫

λ2π(λ|X)dλ− 2aEπ(λ|X)λ+ a2
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QUICK GLIMPSE TO BAYESIAN DECISION ANALYSIS

• Bayesian Decision Analysis supports a Decision Maker in making decisions under
uncertainty:

– Set of alternatives (actions) a ∈ A

– Unknown parameter θ depending on state of nature

– Consequence c(a, θ) of action a when θ occurs

– Loss function L(c(a, θ))

– Posterior distribution π(θ|x) on parameter θ, after observing x

– Optimal action satisfies the Minimum (Subjective) Expected Loss Principle:

a∗ = argmin
a∈A

∫
L(c(a, θ))π(θ|x)dθ

• Often losses are replaced by utilities and minimisation becomes maximisation
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QUICK GLIMPSE TO BAYESIAN DECISION ANALYSIS

• State of nature: θ = {Rain today, No rain today}

• Actions a = {stay at home, go out with umbrella, go out without umbrella}

• Consequences c(a, θ), e.g., c(stay at home, No rain today) = fired at work or
c(go out without umbrella, Rain today) = unable to meet an important customer

• Loss function L(c(a, θ)), e.g., L(c(stay at home, No rain today)) = 100,000
(income loss, in euros, after being fired)

• Posterior distribution π(θ|x) on parameter θ, after observing x, e.g., rain in the
previous days or weather forecasts

• Optimal action (suppose go out with umbrella) satisfies the Minimum (Subjective)
Expected Loss Principle:

a∗ = argmin
a∈A

∫
L(c(a, θ))π(θ|x)dθ
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PARAMETER ESTIMATION

• Light bulb: posterior mean λ̂ =
α+ n

β +
∑n

i=1Xi

⇒ compare with

– prior mean
α

β

– MLE
n∑n

i=1Xi

• MAP (Maximum a posteriori)

⇒ λ̂ =
α+ n− 1

β +
∑

Xi
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PRIOR AND DATA INFLUENCE

• Posterior mean: λ̂ =
α+ n

β +
∑

Xi

• Prior mean: λ̂P =
α

β
(and variance σ2 =

α

β2
)

• MLE: λ̂M = n/
∑

Xi

• α1 = kα and β1 = kβ ⇒ λ̂1P = λ̂P and σ2
1 = σ2/k

• Posterior mean: λ̂ =
kα+ n

kβ +
∑

Xi

• k → 0 ⇒ prior variance → ∞ ⇒ λ̂ → n/
∑

Xi, i.e. MLE (prior does not count)

• k → ∞ ⇒ prior variance → 0 ⇒ λ̂ → λ̂P , i.e. prior mean (data do not count)

• n → ∞ ⇒ λ̂ ∼
n∑
Xi

, i.e. MLE (prior does not count)
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EXERCISE: PARAMETER ESTIMATION

Prior influence (multinomial data and Dirichlet prior)

(n1, . . . , nk) ∼ MN (n, p1, . . . , pk)

(p1, . . . , pk) ∼ Dir(sα1, . . . , sαk),
∑

αi = 1, s > 0

• Posterior mean: p∗i =
sαi + ni

s+ n

• Prior mean: p̃i = αi

• MLE:
ni

n

• s → 0 ⇒ p∗i → MLE

• s → ∞ ⇒ p∗i → p̃i
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PRIOR CHOICE

Where to start from?

• X ∼ E(λ)

• f(x|λ) = λ exp{−λx}

• P (X ≤ x) = F (x) = 1− S(x) = 1− exp{−λx}

⇒ Physical properties of λ

• EX = 1/λ

• V arX = 1/λ2

• h(x) =
f(x)

S(x)
=

λ exp{−λx}
exp{−λx}

= λ (hazard function)
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PRIOR CHOICE

Possible available information

• Exact prior π(λ) (???)

• Quantiles of Xi, i.e. P (Xi ≤ xq) = q

• Quantiles of λ, i.e. P (λ ≤ λq) = q

• Moments Eλk of λ, i.e.
∫
λkπ(λ)dλ = ak ⇔

∫
(λk − ak)π(λ)dλ = 0

• Generalised moments of λ, i.e.
∫
h(λ)π(λ)dλ = 0

• Most likely value and upper and lower bounds

• . . .

• None of them
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PRIOR CHOICE

How to get information?

• Results from previous experiments (e.g. 75% of light bulbs had failed after 2 years
of operation ⇒ 2 years is the 75% quantile of Xi)

• Split of possible values of λ or Xi into equally likely intervals ⇒ quantiles

• Most likely value and upper and lower bounds

• Expected value of λ and confidence on such value (mean and variance)

• . . .
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PRIOR CHOICE
Which prior?

• λ ∼ G(α, β) ⇒ f(λ|α, β) = βαλα−1 exp{−βλ}/Γ(α) (conjugate)

• λ ∼ LN (µ, σ2) ⇒ f(λ|µ, σ2) = {λσ
√
2Π}−1 exp{−(logλ− µ)2/(2σ2)}

• λ ∼ GEV(µ, σ, θ) ⇒ f(λ) = 1
σ

[
1+ θ

(
λ−µ
σ

)]−1/θ−1

+
exp

{
−
[
1+ θ

(
λ−µ
σ

)]−1/θ

+

}
• λ ∼ T (l,m, u) (triangular)

• λ ∼ U(l, u)

• λ ∼ W(µ, α, β) ⇒ f(λ) = β
α

(
λ−µ
α

)β−1
exp{−

(
λ−µ
α

)β
}

• . . .
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PRIOR CHOICE

Choice of a prior

• Defined on suitable set (interval vs. positive real)

• Suitable functional form (monotone/unimodal, heavy/light tails, etc.)

• Mathematical convenience

• Tradition (e.g. lognormal for engineers)
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PRIOR CHOICE

Gamma prior - choice of hyperparameters

• X1, . . . , Xn ∼ E(λ)

• f(X1, . . . , Xn|λ) = λn exp{−λ
∑

Xi}

• λ ∼ G(α, β) ⇒ f(λ|α, β) = βαλα−1 exp{−βλ}/Γ(α)

• ⇒ λ|X1, . . . , Xn ∼ G(α+ n, β +
∑

Xi)
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PRIOR CHOICE

Gamma prior - choice of hyperparameters

• Eλ = µ = α/β and V arλ = σ2 = α/β2

⇒ α = µ2/σ2 and β = µ/σ2

• Two quantiles ⇒ (α, β) using, say, Wilson-Hilferty approximation. Third
quantile specified to check consistency

• Hypothetical experiment : posterior G(α+ n, β +
∑

Xi)

⇒ α sample size and β sample sum
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BAYESIAN SIMULATIONS
Alternative choice: λ ∼ LN (α, β)

• no posterior in closed form ⇒ numerical simulation

Markov Chain Monte Carlo (MCMC):

• draw(∗) a sample λ(1), λ(2), . . . (Monte Carlo) . . .

• . . . from a Markov Chain whose stationary distribution is . . .

• . . . the posterior π(λ|X) and compute . . .

• E(λ|X) ≈
∑n

i=m+1 λ
(i)/(n−m), etc.

(*) For λ = (θ, µ) ⇒ Gibbs sampler:

• draw θ(i) from θ|µ(i−1), X

• draw µ(i) from µ|θ(i), X

• repeat until convergence
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MCMC: REGRESSION

• y = β0 + β1x+ ϵ, ϵ ∼ N (0, σ2)

• (y1, x1), . . . , (yn, xn)

• Likelihood ∝ (σ2)−n/2 exp{ 1
σ2

∑n
i=1(yi − β0 − β1xi)2}

• Priors: β0 ∼ N , β1 ∼ N , σ2 ∼ IG

• Full posterior conditionals:

– β0|β1, σ2 ∼ N

– β1|β0, σ2 ∼ N

– σ2|β0, β1 ∼ IG

⇒ MCMC
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CREDIBLE INTERVALS

• In Bayesian statistics the parameter λ is considered a r.v. and it is possible to com-
pute the posterior probability P(λ ∈ A|X) for a measurable set A

• ⇒ Credible set, as a counterpart of the frequentist confidence set, but with very
different meaning

• If the set is an interval, then we call it credible interval at 100y%, if its posterior
probability is y

• We are interested also in the highest posterior density (HPD) sets, which are the
ones with the smallest Lebesgue measure among those with a given posterior prob-
ability

• Light bulb: P(λ ≤ z|X) =

∫ z

0

(β +
∑

Xi)α+n

Γ(α+ n)
λα+n−1e−(β+

∑
Xi)λdλ
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CREDIBLE INTERVALS
• One observation X ∼ N (µ,1)

• Prior µ ∼ N (0,1)

• Posterior
π(µ|x) ∝ e−(x−µ)2/2 · e−µ2/2 ∝ e−(µ2−xµ) ∝ exp

1

2 · 1/2
(µ− x/2)2

⇒ µ|x ∼ N (x/2,1/2)

• Z =
µ− x/2√

1/2
∼ N (0,1)

• Quantiles Z.975 = 1.96 and Z.025 = −1.96

• ⇒ P (Z.025 ≤ Z ≤ Z.975) =

(
−1.96 ≤

µ− x/2√
1/2

≤ 1.96

)
= .95

• ⇒
(
x/2− 1.96

√
1/2, x/2+ 1.96

√
1/2

)
credible interval at 95%
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HYPOTHESIS TESTING

• One sided test: H0 : λ ≤ λ0 vs. H1 : λ > λ0

⇒ Reject H0 iff P(λ ≤ λ0|X) ≤ α, α significance level

• Two sided test: H0 : λ = λ0 vs. H1 : λ ̸= λ0

– Do not reject if λ0 ∈ A, A 100(1− α)% credible interval

– Consider P([λ0 − ϵ, λ0 + ϵ]|X)

– Dirac measure: P(λ0) > 0 and consider P(λ0|X)
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HYPOTHESIS TESTING

• H0 : λ ∈ Λ0 vs. H1 : λ ∈ ΛC
0 , where C denotes the complement set

• Priors: P(H0) = P(λ ∈ Λ0) = 1− P(λ ∈ ΛC
0 ) = 1− P(H1)

• Sample X ⇒ posteriors P(H0|X) = 1− P(H1|X)

• There are many problems associated with the frequentist approach to hypothesis
testing which can be addressed properly in a Bayesian framework

– Bayesians have no need to know if either H0 or H1 is true but, treating λ as a
r.v., they can assess the probabilities of both hypotheses and decide based on
them

– Frequentists are unable to specify opinions about hypotheses, unlike Bayesians
with prior distributions on them

– Frequentists set significance levels a priori and decide based on them, unlike
Bayesians which get a posteriori the probability of an hypothesis and decide
based on it
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PREDICTION

• After observing an i.i.d. sample X = (X1, . . . , Xn), what can we say about a next
observation Xn+1 from the same density f(X|λ)?

• We could consider the next observations Xn+1, . . . , Xn+j but we take j = 1 for
simplicity

• When considering observations over time we prefer to use the term forecast instead
of prediction (e.g., weather forecast)

• Given the sample X and the prior π(λ), then the posterior π(λ|X) is used to com-
pute the posterior predictive density (absolutely continuous case here) for Xn+1
f(Xn+1|X) =

∫
f(Xn+1|λ,X)π(λ|X)dλ =

∫
f(Xn+1|λ)π(λ|X)dλ

• Prior predictive densities can be used to compare model via Bayes factor (more later)

• Posterior predictive densities can be used to assess the goodness of fit of a model
through the prediction error, using part of the data to get the posterior and the re-
maining one to get predicted values (e.g. predicted posterior mean/median) and
compare them with actual ones

51



PREDICTION

• Light bulb: Xn+1|λ ∼ E(λ), λ|X ∼ G(α+ n, β +
∑

Xi)

• Posterior predictive density for Xn+1

fXn+1
(Xn+1|X) =

∫ ∞

0
λe−λXn+1 ·

(β +
∑

Xi)α+n

Γ(α+ n)
λα+n−1e−λ(β+

∑
Xi)dλ

=
(β +

∑
Xi)α+n

Γ(α+ n)

∫ ∞

0
λα+n+1−1e−λ(β+

∑
Xi+Xn+1)dλ

=
(β +

∑
Xi)α+n

Γ(α+ n)

Γ(α+ n+1)

(β +
∑

Xi +Xn+1)α+n+1

= (α+ n)
(β +

∑
Xi)α+n

(β +
∑

Xi +Xn+1)α+n+1

• I found first the constant knowing that the density integrates to 1 and then I used the
property Γ(n+1) = nΓ(n)
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MODEL SELECTION
Compare M1 = {f1(x|θ1), π(θ1)} and M2 = {f2(x|θ2), π(θ2)}

• Bayes factor

⇒ BF =
f1(x)

f2(x)
=

∫
f1(x|θ1)π(θ1)dθ1∫
f2(x|θ2)π(θ2)dθ2

BF 2 log10BF Evidence in favor of M1

1 to 3 0 to 2 Hardly worth commenting
3 to 20 2 to 6 Positive

20 to 150 6 to 10 Strong
> 150 > 10 Very strong

• Posterior odds

⇒
P (M1|data)
P (M2|data)

=
P (data|M1)

P (data|M2)
·
P (M1)

P (M2)
·
1/P (data)

1/P (data)
= BF ·

P (M1)

P (M2)

53



BACK TO HYPOTHESIS TESTING

• H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, with Θ = Θ0
⋃

Θ1

• π0(θ) prior on Θ0 and π1(θ) prior on Θ1

• Priors on hypotheses: P (Θ0) = ε and P (Θ1) = 1− ε

• Mixture prior on Θ: πε(θ) = επ0(θ)IΘ0
(θ) + (1− ε)π1(θ)IΘ1

(θ)

• IA(x) indicator function of set A

• Likelihood lx(θ) = f(X|θ)

• Posterior πε(θ|X) =
εlx(θ)π0(θ)IΘ0

(θ) + (1− ε)lx(θ)π1(θ)IΘ1
(θ)

ε
∫
Θ0

lx(θ)π0(θ)dθ + (1− ε)
∫
Θ1

lx(θ)π1(θ)dθ
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BACK TO HYPOTHESIS TESTING

• Posterior on hypotheses

– P (Θ0|X) =
ε
∫
Θ0

lx(θ)π0(θ)dθ

ε
∫
Θ0

lx(θ)π0(θ)dθ + (1− ε)
∫
Θ1

lx(θ)π1(θ)dθ

– P (Θ1|X) =
(1− ε)

∫
Θ1

lx(θ)π1(θ)dθ

ε
∫
Θ0

lx(θ)π0(θ)dθ + (1− ε)
∫
Θ1

lx(θ)π1(θ)dθ

• Posterior odds = Bayes factor · prior odds

•
P (Θ0|X)

P (Θ1|X)
=

∫
Θ0

lx(θ)π0(θ)dθ∫
Θ1

lx(θ)π1(θ)dθ
·

ε

1− ε

• Posterior odds influenced by prior odds, i.e. choice of prior on hypotheses

• ⇒ Often only Bayes factor is used in hypothesis testing (corresponds to ε = 0.5)
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PRIORS AND MODELS

• The Bayesian approach criticized because subjective but . . .

• . . . is the choice of the model (the only aspect which matters in the
frequentist approach) really objective?

• Consider the failure times of n cars:

•
{
Xiji

}
, i = 1, . . . , n; ji = 1, . . . , ni

• Who is choosing the model? Expert and statistician, like for the prior!
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MODEL SELECTION

Before the analysis - Model chosen according to

• physical laws

• mathematical convenience

• exploratory data analysis

– Weibull plot, Duane plot, q-q plot

– histogram

• our knowledge about experiment, e.g.

– same/similar/different car and same/different cause of failure?

– replacement policy and aging

• . . .
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MODEL SELECTION
Which model for {Xiji} , i = 1, . . . , n; ji = 1, . . . , ni?

• All the cars behave in the same way and the failure pattern is not changing over time
⇒ Xiji ∼ E(λ)

• The cars behave differently and the failure pattern is not changing over time
⇒ Xiji ∼ E(λi)

• All the cars behave in the same way and the failure pattern is changing over time
⇒ Xiji from a NHPP (Nonhomogeneous Poisson process) with intensity λ(t)

• The cars behave differently and the failure pattern is not over time
⇒ Xiji from NHPP’s with intensities λi(t)

• Each failure affects only the next one (Markov property, e.g. AR(1) model)
⇒ Xi,k+1 = ρXi,k + εi,k

• etc.

• Lognormal, Weibull, Birnbaum-Saunders, etc. instead of exponential
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MODEL SELECTION

After the analysis - Model chosen according to

• graphical displays (e.g. residuals in regression)

• goodness of fit tests (e.g. χ2, Kolmogorov-Smirnov) (not very Bayesian!)

• Bayes factor to compare
M1 = {f1(x|θ1), π(θ1)} and M2 = {f2(x|θ2), π(θ2)}

⇒ BF =
f1(x)

f2(x)
=

∫
f1(x|θ1)π(θ1)dθ1∫
f2(x|θ2)π(θ2)dθ2

• Posterior odds

⇒
P (M1|data)
P (M2|data)

=
P (data|M1)

P (data|M2)
·
P (M1)

P (M2)
= BF ·

P (M1)

P (M2)

• AIC, BIC, DIC et al.
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BAYESIAN ROBUSTNESS: MOTIVATING EXAMPLE

• X ∼ N (θ,1)

• Expert’s opinion on prior P : median at 0, quartiles at ±1, symmetric and unimodal

• ⇒ Possible priors include Cauchy C(0,1) and Gaussian N (0,2.19)

• Interest in posterior mean µC(x) or µN(x)

x 0 1 2 4.5 10
µC(x) 0 0.52 1.27 4.09 9.80
µN(x) 0 0.69 1.37 3.09 6.87

• Decision strongly dependent on the choice of the prior for large x

• Alternative: Posterior median w.r.t. posterior mean
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BAYESIAN ROBUSTNESS

• Practical impossibility of specifying priors exactly matching experts’ knowledge

• Prior elicitation subject to uncertainty and, possibly, some degree of arbitrariness
introduced by the analyst, e.g. the functional form of the distribution

• Uncertainty in the choice of priors modelled through a class of distribution (the same
might apply for loss functions and statistical models/likelihoods)

• Use of indices to measure the consequences (i.e. perform robustness analysis) of
the choice of a class of priors on the quantities of interest (e.g. posterior mean)

• An answer to the criticism about the arbitrariness in the choice of the prior and a
possible excessive influence
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BAYESIAN ROBUSTNESS
A more formal statement about model and prior sensitivity

• M = {Qθ; θ ∈ Θ} , Qθ probability on (X ,FX)

• Sample x = (x1, . . . , xn) ⇒ likelihood lx(θ) ≡ lx(θ|x1, . . . , xn)

• Prior P su (Θ,F) ⇒ posterior P ∗

• Uncertainty about M and/or P ⇒ changes in

– EP ∗[h(θ)] =

∫
Θ
h(θ)l(θ)P (dθ)∫
Θ
l(θ)P (dθ)

– P ∗

Bayesian robustness studies these changes
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ROBUST BAYESIAN ANALYSIS

Interest in robustness w.r.t. to changes in prior/model/loss but most work
concentrated on priors since

• controversial aspect of Bayesian approach

• easier (w.r.t. model) computations

• problems with interpretation of classes of models/likelihood

• often interest in posterior mean (corresponding to optimal Bayesian
action under squared loss function) and no need for classes of losses
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ROBUST BAYESIAN ANALYSIS

Three major approaches

• Informal sensitivity : comparison among few priors

• Global sensitivity : study over a class of priors specified by some fea-
tures

• Local sensitivity : infinitesimal changes w.r.t. elicited prior
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ROBUST BAYESIAN ANALYSIS

We concentrate mostly on sensitivity to changes in the prior

• Choice of a class Γ of priors

• Computation of a robustness measure, e.g. range δ = ρ− ρ

(ρ = sup
P∈Γ

EP ∗[h(θ)] and ρ = inf
P∈Γ

EP ∗[h(θ)])

– δ “small” ⇒ robustness

– δ “large”, Γ1 ⊂ Γ and/or new data

– δ “large”, Γ and same data
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ROBUST BAYESIAN ANALYSIS

Relaxing the unique prior assumption (Berger and O’Hagan, 1988)

• X ∼ N (θ,1)

• Prior θ ∼ N (0,2)

• Data x = 1.5 ⇒ posterior θ|x ∼ N (1,2/3)

• Split ℜ in intervals with same probability pi as prior N (0,2)
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ROBUST BAYESIAN ANALYSIS

Refining the class of priors (Berger and O’Hagan, 1988)

Ii pi p∗i ΓQ ΓQU

(-∞,-2) 0.08 .0001 (0,0.001) (0,0.0002)
(-2,-1) 0.16 .007 (0.001,0.029) (0.006,0.011)
(-1,0) 0.26 .103 (0.024,0.272) (0.095,0.166)
(0,1) 0.26 .390 (0.208,0.600) (0.322,0.447)
(1,2) 0.16 .390 (0.265,0.625) (0.353,0.473)
(2,+∞,) 0.08 .110 (0,0.229) (0,0.156)

• ΓQ quantile class and ΓQU unimodal quantile class

• Robustness in ΓQU

• Huge reduction of δ from ΓQ to ΓQU
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CLASSES OF PRIORS

Desirable features of classes of priors

• Easy elicitation and interpretation (e.g. moments, quantiles, symmetry,
unimodality)

• Compatible with prior knowledge (e.g. quantile class)

• Simple computations

• Without unreasonable priors (e.g. unimodal quantile class, ruling out
discrete distributions)
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CLASSES OF PRIORS

• ΓP = {P : p(θ;ω), ω ∈ Ω} (Parametric class)

– ΓP = {G(α, β) : l1 ≤ α/β ≤ u1, l2 ≤ α/β2 ≤ u2}

• ΓQ = {P : αi ≤ P (Ii) ≤ βi, i = 1, . . . ,m} (Quantile class)

• ΓQU = {P ∈ ΓQ, unimodal} (Unimodal quantile class)
• ΓQUS = {P ∈ ΓQU , symmetric} (Symmetric, unimodal quantile class)
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CLASSES OF PRIORS

• ΓGM = {P :
∫
hi(θ)dP (θ) = ai, i = 1, . . . ,m} (Generalised moments class)

– hi(θ) = θi (Moments class)

– hi(θ) = IAi
(θ) (Quantile class)

• ΓB = {P : L(θ) ≤ p(θ) ≤ U(θ)} (Density bounded class)

• ΓDB = {F c.d.f. : Fl(θ) ≤ F (θ) ≤ Fu(θ), ∀θ} (Distribution bounded class)
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