Bayesian Statistics

Fabrizio Ruggeri

Istituto di Matematica Applicata e Tecnologie Informatiche Consiglio Nazionale delle Ricerche Via Alfonso Corti 12, I-20133, Milano, Italy, European Union fabrizio@mi.imati.cnr.it
www.mi.imati.cnr.it/fabrizio/

ALL BAYESIANS IN DAILY LIFE?

Interest in Milano or not?

- Prior knowledge
 - What is Milano? City, cookie, car?
 - Where is Milano?
 - Fashion and football
- Data collection
 - Book on snorkeling activities
 - Tour operator catalogue
 - City of Milano official website

ALL BAYESIANS IN DAILY LIFE?

- Posterior knowledge
 - No snorkeling: closest beach at 150 kms!
 - Probably no tour found in the catalogue
 - Leonardo's Last Supper; Michelangelo, Raffaello, Mantegna, etc.; Duomo (cathedral); Sforza Castle; Canals (Navigli) and nightlife; Via Sarpi (Chinatown); etc.
- Forecast:
 - Will I enjoy Milano or not?
 - Cost and time to get there
- Decision: To go or not to go?
 - Interest in the place
 - Distance and cost for travel, lodging and meals
 - Italian language (but English understood by many)

BAYES THEOREM

- Patient subject to medical diagnostic test (*P* or *N*) for a disease *D*
- Sensitivity .95, i.e. $\mathbb{P}(P|D) = .95$
- Specificity .9, i.e. $\mathbb{P}(P^C|D^C) = P(N|D^C) = .9$
- Physician's belief on patient having the disease 1%, i.e. $\mathbb{P}(D) = .01$
 - Knowledge about that patient
 - Knowledge about people with similar characteristics (age, gender, etc.)
 - Knowledge about the population in an area
 - Other sources of knowledge or uninformative guess
- Positive test $\Rightarrow \mathbb{P}(D|P)$?

BAYES THEOREM

$$\mathbb{P}(D|P) = \frac{\mathbb{P}(D \cap P)}{\mathbb{P}(P)} = \frac{\mathbb{P}(P|D)\mathbb{P}(D)}{\mathbb{P}(P|D)\mathbb{P}(D) + \mathbb{P}(P|D^C)\mathbb{P}(D^C)}$$
$$= \frac{.95 \cdot .01}{.95 \cdot .01 + .1 \cdot .99} = .0875$$

Positive test updates belief on patient having the disease: from 1% to 8.75%

Prior opinion updated into posterior one

If
$$\mathbb{P}(D) = .1 \Rightarrow \mathbb{P}(D|P) = .5135$$

If $\mathbb{P}(D) = .2 \Rightarrow \mathbb{P}(D|P) = .7037$

BAYES THEOREM

• Partition $\{A_1, \ldots, A_n\}$ of Ω and $B \subset \Omega$: $\mathbb{P}(B) > 0$

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)P(A_i)}{\sum_{j=1}^n \mathbb{P}(B|A_j)P(A_j)}$$

• X r.v. with density $f(x|\lambda)$, prior $\pi(\lambda)$

$$\Rightarrow$$
 posterior $\pi(\lambda|x) = \frac{f(x|\lambda)\pi(\lambda)}{\int f(x|\omega)\pi(\omega)d\omega}$

EXERCISE: BAYES THEOREM

- Suppose a person is testing for diabetes
- A priori, the person has one chance out of a million of having diabetes
- In 3% of cases the test is positive although the person has no diabetes
 (⇒ False positive error rate)
- In 1% of cases the test is negative although the person has diabetes
 (⇒ False negative error rate)
- What is the probability that the person has diabetes when the test is positive?
- How does such probability change when a priori the patient has the same probability of having or not having diabetes?

BAYESIAN STATISTICS

Bayesian statistics is . . .

- ... another way to make inference and forecast on population features (practitioner's view)
- ... a way to learn from experience and improve own knowledge (educated layman's view)
- ... a formal tool to combine prior knowledge and experiments (mathematician's view)
- ... cheating (hardcore frequentist statistician's view)

• . . .

A SHORT HISTORY OF BAYESIAN STATISTICS

- Bayesian statistics strongly relies on the use of Bayes Theorem
- The idea of Bayes Theorem goes back to James Bernoulli in 1713 but there was no mathematical structure yet
- Reverend Thomas Bayes died in 1761
- Richard Price, Bayes's friend, published Bayes's paper on inverse probability in 1763, which was about binomial data and uniform prior
- In 1774 Laplace gave more general results, probably unaware of Bayes's work
- Jeffreys "rediscovered" Bayes's work in 1939
- Bruno de Finetti and Jimmy Savage set the foundations of the Bayesian approach
- In early 90's Metropolis simulation method was "ridiscovered" by Gelfand and Smith
- Since then MCMC (Markov chain Monte Carlo) and other simulation methods were developed and Bayesian approach became very popular

NOTIONS OF PROBABILITY

- Classical (random choice, equally likely events): Probability as $\frac{\#\text{Favourable events}}{\#\text{Possible events}}$
- Frequentist: Probability as asymptotic limit of frequency, i.e., of proportion of favourable events
- Subjective/Bayesian: Probability based on beliefs on, e.g., both head in tossing a coin (like previous) and final exam success (unlike previous)
- Axiomatic (Kolmogorov) on (Ω, \mathcal{F}, P) , which contains the other three:
 - **-** P(A) ≥ 0 for all $A \in \mathcal{F}$
 - $P(\Omega) = 1$
 - $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$ for all mutually exclusive $A_i's \in \mathcal{F}$

Bayesian \Rightarrow need to specify subjective P in (Ω, \mathcal{F}, P)

T= person having a tumor in his/her life I= person having an infarction in his/her life

$$\mathbb{P}(T \cup I) = .2, \ \mathbb{P}(T) = .3, \ \mathbb{P}(I) = .05, \ \mathbb{P}(T \cap I) = .1$$

T= person having a tumor in his/her life I= person having an infarction in his/her life

$$\mathbb{P}(T \cup I) = .2, \ \mathbb{P}(T) = .3, \ \mathbb{P}(I) = .05, \ \mathbb{P}(T \cap I) = .1$$

- $\mathbb{P}(T \cup I) \geq \mathbb{P}(T)$
- $\mathbb{P}(I) \geq \mathbb{P}(T \cap I)$

T= person having a tumor in his/her life I= person having an infarction in his/her life

$$\mathbb{P}(T \cup I) = .3, \ \mathbb{P}(T) = .2, \ \mathbb{P}(I) = .2, \ \mathbb{P}(T \cap I) = .15$$

T= person having a tumor in his/her life I= person having an infarction in his/her life

$$\mathbb{P}(T \cup I) = .3, \ \mathbb{P}(T) = .2, \ \mathbb{P}(I) = .2, \ \mathbb{P}(T \cap I) = .15$$

•
$$.3 = \mathbb{P}(T \cup I) = \mathbb{P}(T) + \mathbb{P}(I) - \mathbb{P}(T \cap I) = .25$$

•
$$\mathbb{P}(T \cup I) = .3$$
, $\mathbb{P}(T) = .2$, $\mathbb{P}(I) = .2$, $\mathbb{P}(T \cap I) = .1$

⇒ assessments should comply with probability rules

- P(A): Probability one of us was born on a given day, say May, 1st
- $n \text{ people} \Rightarrow P(A) = 1 (364/365)^n$

lacktriangle

$$n = 10 \Rightarrow P(A) = 0.027$$

 $n = 50 \Rightarrow P(A) = 0.128$
 $n = 100 \Rightarrow P(A) = 0.240$
 $n = 200 \Rightarrow P(A) = 0.422$
 $n = 300 \Rightarrow P(A) = 0.561$

• Therefore, what is your opinion about P(A)?

ASSESSING DISCRETE DISTRIBUTIONS: BETS

Probability Italy will win next FIFA World Cup

- 1. I bet Y = 10\$ on the Italian victory. How much are you willing to bet with me against the victory? (Say 10\$ the first time, then 15\$ and 20\$)
- 2. Now let's reverse. You bet Y = 10\$ on the victory and you suggest my *fair* bet on the loss (Say 30\$ the first time, then 25\$ and 20\$)
- 3. Let's repeat 1 and 2 until it is indifferent for you to bet either on the loss or the victory (i.e. 20\$)
- 4. Let Y be the amount I bet on the victory of Italy
- 5. Let *X* be the amount you bet on the loss of Italy
- 6. Fair bet \Rightarrow equal expected losses: YP(loss) = XP(victory)

7.
$$P(victory) = 1 - P(loss) \Rightarrow P(loss) = \frac{X}{X+Y} = \frac{20}{20+10} = \frac{2}{3}$$

ASSESSING DISCRETE DISTRIBUTIONS: BETS

Problems

- Many people do not like to bet
- Most people dislike the idea of losing money
- I was talking about a 10\$ bet, but would you have bet 1000X if I had bet 10,000\$?
- Reaching convergence to a fair bet might be a long process

REFERENCE LOTTERIES

1. Lottery 1

- Get a trip to Australia if Italy wins
- Stay at home if Italy looses

2. Lottery 2

- Get a trip to Australia with probability p, e.g. if a random number generated from a uniform distribution on [0,1] is $\leq p$
- Stay at home with probability 1-p, e.g. if a random number generated from a uniform distribution on [0,1] is >p
- 3. Specify p_1 . Which lottery do you prefer?
- 4. If Lottery 1 is preferred offer change p_i to $p_{i+1} > p_i$.
- 5. If Lottery 2 is preferred offer change p_i to $p_{i+1} < p_i$.
- 6. When indifference point is reached $\Rightarrow P(victory) = p_i$, else Goto 4.

ASSESSING CONTINUOUS DISTRIBUTIONS

X continuous random variable (e.g. light bulb lifetime)

- Choose x_1, \ldots, x_n
- Assess $F(x_i) = P(X \le x_i), i = 1, n$
- Draw F(x)
- Look at F(x) at some points for consistency

or

- Choose probabilities p_1, \ldots, p_n
- Find x_i 's s.t. $F(x_i) = P(X \le x_i) = p_i, i = 1, n$
- Draw F(x)
- Look at F(x) at some points for consistency

BAYES THEOREM AND LIKELIHOOD

- Sample $\underline{X} = (X_1, \dots, X_n)$, i.i.d. from $f(x|\lambda) \Rightarrow$ likelihood $l_x(\lambda) = \prod_{i=1}^n f(X_i|\lambda)$
- Prior $\pi(\lambda) \Rightarrow$ posterior $\pi(\lambda|\underline{X}) = \frac{l_x(\lambda)\pi(\lambda)}{\int l_x(\theta)\pi(\theta)d\theta}$
- I.i.d. property not necessarily needed to get likelihood, e.g. Markovian observations where $f(X_1, ..., X_n | \lambda) = f(X_1 | \lambda) \prod_{i=2}^n f(X_i | X_{i-1}, \lambda)$
- The likelihood is all that we need from data to perform inference and, given it, the way the experiment was performed is not relevant (*Likelihood Principle*)
 - Compare two experiments counting the number x of heads in n tosses of a coin knowing that $P(head) = \theta$
 - The sequence $HHT \dots TH$ is known $\Rightarrow \theta^x (1-\theta)^{n-x}$
 - Only known about x heads and n-x tails $\Rightarrow \binom{n}{x} \theta^x (1-\theta)^{n-x}$
 - Different probabilities but $\theta^x(1-\theta)^{n-x}$ is the same contribution to the likelihood

ILLUSTRATIVE EXAMPLE: FREQUENTIST APPROACH

Light bulb lifetime
$$\Rightarrow X \sim \mathcal{E}(\lambda) \& f(x; \lambda) = \lambda e^{-\lambda x}$$
 $x, \lambda > 0$

- Sample $\underline{X} = (X_1, \dots, X_n)$, i.i.d. $\mathcal{E}(\lambda)$
- Likelihood $l_x(\lambda) = \prod_{i=1}^n f(X_i; \lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n X_i}$
- MLE: $\hat{\lambda} = n / \sum_{i=1}^{n} X_i$, C.I., UMVUE, consistency, etc.

What about available prior information on light bulbs behavior? How can we translate it? \Rightarrow model and **parameter**

ILLUSTRATIVE EXAMPLE: BAYESIAN APPROACH

Light bulb lifetime $\Rightarrow X \sim \mathcal{E}(\lambda) \& f(x; \lambda) = \lambda e^{-\lambda x}$ $x, \lambda > 0$

- Sample $\underline{X} = (X_1, \dots, X_n)$, i.i.d. $\mathcal{E}(\lambda)$
- Likelihood $l_x(\lambda) = \prod_{i=1}^n f(X_i; \lambda) = \lambda^n e^{-\lambda \sum_{i=1}^n X_i}$
- Prior $\lambda \sim \mathcal{G}(\alpha, \beta)$, $\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha 1} e^{-\beta \lambda}$
- Posterior $\pi(\lambda|\underline{X}) \propto \lambda^n e^{-\lambda \sum_{i=1}^n X_i} \cdot \lambda^{\alpha-1} e^{-\beta \lambda}$ $\Rightarrow \lambda|\underline{X} \sim \mathcal{G}(\alpha + n, \beta + \sum_{i=1}^n X_i)$

Posterior distribution fundamental in Bayesian analysis

CONJUGATE PRIORS

- We just saw that a gamma prior on the parameter of an exponential model leads to a gamma posterior
- → The gamma distribution is a conjugate prior for the exponential model
- Does conjugacy occur always? Unfortunately not and simulation methods, e.g. MCMC (Markov chain Monte Carlo), are needed to get samples from the posterior distribution
- There are some relevant cases of conjugacy and we will see some of them:
 - Beta prior conjugate w.r.t. Bernoulli, binomial, geometric models
 - Dirichlet prior conjugate w.r.t. multinomial model
 - Gamma prior conjugate w.r.t. exponential, Poisson models
 - Gaussian prior conjugate w.r.t. Gaussian model with fixed variance/covariance matrix and unknown mean
 - Gaussian-Inverse gamma prior w.r.t. univariate Gaussian model with unknown mean and variance

CONJUGATE PRIOR FOR BINOMIAL

- Binomial data (x "successes" in n trials), with $P(success) = \theta$ $\Rightarrow l_x(x|n,\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$
- Beta prior $\mathcal{B}e(\alpha,\beta)$: $\pi(\theta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha-1}(1-\theta)^{\beta-1}, 0 < \theta < 1, \alpha, \beta > 0$
- \Rightarrow posterior $\pi(\theta|x,n) \propto \theta^x (1-\theta)^{n-x} \cdot \theta^{\alpha-1} (1-\theta)^{\beta-1} \propto \theta^{\alpha+x-1} (1-\theta)^{\beta+n-x-1}$
- $\Rightarrow \theta | x, n \sim \mathcal{B}e(\alpha + x, \beta + n x)$
- Note that the result is proved without using the constant values
- Exercise: Try with the following models:
 - Bernoulli: $f(x|\theta) = \theta^x (1-\theta)^{1-x}, x = 0, 1$
 - Geometric: $(1 \theta)\theta^x$, x nonnegative integer

- $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$
- Mean/median $\mu \in \Re$ unknown and variance $\sigma^2 > 0$ known
- $\underline{X} = (X_1, \dots, X_n)$
- Likelihood:

$$L(\underline{X}|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i - \mu)^2/(2\sigma^2)}$$
$$= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\sum_{i=1}^{n} (X_i - \mu)^2/(2\sigma^2)}$$

• Prior:
$$\mu \sim \mathcal{N}(\mu_0, \tau^2) \Rightarrow \pi(\mu) = \frac{1}{\sqrt{2\pi}\tau} e^{-(\mu - \mu_0)^2/(2\tau^2)}$$

Posterior:

$$\pi(\mu|\underline{X}) \propto e^{-\sum_{i=1}^{n}(X_{i}-\mu)^{2}/(2\sigma^{2})} \cdot e^{-(\mu-\mu_{0})^{2}/(2\tau^{2})}$$

$$\propto e^{-(n\mu^{2}-2\mu\sum_{i=1}^{n}X_{i})/(2\sigma^{2})} \cdot e^{-(\mu^{2}-2\mu_{0}\mu)/(2\tau^{2})}$$

$$\propto e^{-\left\{\mu^{2}(n/\sigma^{2}+1/\tau^{2})-2\mu(\sum_{i=1}^{n}X_{i}/\sigma^{2}+\mu_{0}/\tau^{2})\right\}/2}$$

$$\propto \exp\left\{-\frac{1}{2(n/\sigma^{2}+1/\tau^{2})^{-1}}\left[\mu^{2}-2\mu\frac{\sum_{i=1}^{n}X_{i}/\sigma^{2}+\mu_{0}/\tau^{2}}{n/\sigma^{2}+1/\tau^{2}}\right]\right\}$$

$$\Rightarrow \mu|\underline{X} \sim \mathcal{N}\left(\frac{\sum_{i=1}^{n}X_{i}/\sigma^{2}+\mu_{0}/\tau^{2}}{n/\sigma^{2}+1/\tau^{2}}, \frac{1}{n/\sigma^{2}+1/\tau^{2}}\right)$$

- Prior mean: $E(\mu) = \mu_0$
- MLE: $\frac{\sum_{i=1}^{n} X_i}{n}$
- Posterior mean: $\frac{\sum_{i=1}^{n} X_i/\sigma^2 + \mu_0/\tau^2}{n/\sigma^2 + 1/\tau^2}$

- Lack of knowledge about μ given by noninformative prior
- $\pi(\mu) \propto c$, c positive constant
- What is the problem with this prior?

$$\pi(\mu|\underline{X}) \propto e^{-\sum_{i=1}^{n}(X_i-\mu)^2/(2\sigma^2)} \ \propto e^{-(n\mu^2-2\mu\sum_{i=1}^{n}X_i)/(2\sigma^2)} \ \propto e^{-\frac{1}{2\sigma^2/n}}(\mu^2-2\mu\frac{\sum_{i=1}^{n}X_i}{n})$$

•
$$\Rightarrow \mu | \underline{X} \sim \mathcal{N} \left(\frac{\sum_{i=1}^{n} X_i}{n}, \frac{\sigma^2}{n} \right)$$

• Posterior mean = MLE =
$$\frac{\sum_{i=1}^{n} X_i}{n}$$

JEFFREYS PRIORS

- There are alternative proper noninformative priors:
 - Flat prior on [-K, K], K > 0: $\pi(\mu) = \frac{1}{2K}I_{[-K,K]}(\mu)$ (I_A indicator function of set A)
 - Diffuse prior: $\mu \sim \mathcal{N}(\mu_0, 10^6)$
- The previous prior $\pi(\mu) \propto c$ is an example of Jeffreys priors
- $\underline{\theta} = (\theta_1, \dots, \theta_p)$ p-dimensional parameter in $f(X|\underline{\theta})$
- $J = \{J_{ij}\}_{i,j=1,\dots,p}$ Fisher information matrix s.t. for each i,j

$$J_{ij} = -E \left[\frac{\partial^2 \log(f(X|\underline{\theta}))}{\partial \theta_i \partial \theta_j} \right]$$
$$= E \left[\left(\frac{\partial \log(f(X|\underline{\theta}))}{\partial \theta_i} \right) \left(\frac{\partial \log(f(X|\underline{\theta}))}{\partial \theta_j} \right) \right]$$

JEFFREYS PRIORS FOR GAUSSIAN

- Jeffreys prior: $\pi(\theta) \propto \sqrt{|J|}$, with |J| the determinant of the Fisher information matrix
- Gaussian model with known variance and unknown mean μ
- Here the matrix is of size 1 since there is just one parameter

$$\pi(\mu) \propto \sqrt{|J|} \propto \sqrt{E\left(\frac{\partial \log(f(X|\mu))}{\partial \mu}\right)^2}$$

$$\propto \sqrt{E\left(\frac{X-\mu}{\sigma^2}\right)^2} \propto \frac{1}{\sigma^2} \sqrt{\int f(X|\mu) (X-\mu)^2 dX}$$

$$\propto \frac{\sigma}{\sigma^2} \propto \frac{1}{\sigma} \propto 1$$

• The last step is possible since σ^2 is a constant here

- $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$
- Mean/median $\mu \in \Re$ and variance $\sigma^2 > 0$ unknown
- $\underline{X} = (X_1, \dots, X_n)$
- Conjugate normal-inverse gamma prior
- Prior $\pi(\mu, \sigma^2) = \pi(\mu|\sigma^2)\pi(\sigma^2)$
- $\mu | \sigma^2 \sim \mathcal{N}(\mu_0, \tau^2 \sigma^2)$
- $\sigma^2 \sim \mathcal{IG}(\alpha, \beta)$ Inverse gamma

•
$$\pi(\sigma^2) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} (\sigma^2)^{-\alpha - 1} e^{-\beta/\sigma^2}$$
, with $\Gamma(\alpha) = \int_0^{\infty} x^{\alpha - 1} e^{-x} dx$

• After some computations (left as an exercise) we get the posterior $\pi(\mu, \sigma^2 | \underline{X}) = \pi(\mu | \sigma^2, \underline{X}) \pi(\sigma^2 | \underline{X})$ with

$$-\mu|\sigma^2, \underline{X} \sim \mathcal{N}\left(\frac{\sum_{i=1}^n X_i + \mu_0/\tau^2}{n+1/\tau^2}, \frac{\sigma^2}{n+1/\tau^2}\right)$$

- $\sigma^2 | \underline{X} \sim \mathcal{IG}(\alpha + (n+1)/2, \beta)$
- The posterior marginal of μ , i.e. $\pi(\mu|\underline{X})$, has a Student-t distribution

•
$$\sigma^2 | \mu, \underline{X} \sim \mathcal{IG}(\alpha + (n+1)/2, \beta + \sum_{i=1}^n (X_i - \mu)^2 / 2 + (\mu - \mu_0)^2 / (2\tau^2))$$

⇒ useful for MCMC (Gibbs sampling)

PARAMETER ESTIMATION - DECISION ANALYSIS

- Loss function $L(\lambda, a)$, $a \in \mathcal{A}$ action space
- Minimize $\mathcal{E}^{\pi(\lambda|\underline{X})}L(\lambda,a) = \int L(\lambda,a)\pi(\lambda|\underline{X})d\lambda$ w.r.t. a
 - $\Rightarrow \hat{\lambda}$ Bayesian optimal estimator of λ
 - $\hat{\lambda}$ posterior median if $L(\lambda, a) = |\lambda a|$
 - $\hat{\lambda}$ posterior mean $\mathcal{E}^{\pi(\lambda|\underline{X})}\lambda$ if $L(\lambda,a)=(\lambda-a)^2$

$$\mathcal{E}^{\pi(\lambda|\underline{X})}L(\lambda,a) = \int (\lambda - a)^2 \pi(\lambda|\underline{X}) d\lambda$$

$$= \int \lambda^2 \pi(\lambda|\underline{X}) d\lambda - 2a \int \lambda \pi(\lambda|\underline{X}) d\lambda + a^2 \cdot 1$$

$$= \int \lambda^2 \pi(\lambda|\underline{X}) d\lambda - 2a \mathcal{E}^{\pi(\lambda|\underline{X})} \lambda + a^2$$

QUICK GLIMPSE TO BAYESIAN DECISION ANALYSIS

- Bayesian Decision Analysis supports a Decision Maker in making decisions under uncertainty:
 - Set of alternatives (actions) $a \in \mathcal{A}$
 - Unknown parameter θ depending on state of nature
 - Consequence $c(a, \theta)$ of action a when θ occurs
 - Loss function $L(c(a, \theta))$
 - Posterior distribution $\pi(\theta|x)$ on parameter θ , after observing x
 - Optimal action satisfies the Minimum (Subjective) Expected Loss Principle:

$$a^* = \operatorname*{arg\,min}_{a \in \mathcal{A}} \int L(c(a, \theta)) \pi(\theta|x) d\theta$$

Often losses are replaced by utilities and minimisation becomes maximisation

QUICK GLIMPSE TO BAYESIAN DECISION ANALYSIS

- State of nature: $\theta = \{\text{Rain today}, \text{No rain today}\}$
- Actions $a = \{$ stay at home, go out with umbrella, go out without umbrella $\}$
- Consequences $c(a, \theta)$, e.g., c(stay at home, No rain today) = fired at work or c(go out without umbrella, Rain today) = unable to meet an important customer
- Loss function $L(c(a, \theta))$, e.g., L(c(stay at home, No rain today)) = 100,000 (income loss, in euros, after being fired)
- Posterior distribution $\pi(\theta|x)$ on parameter θ , after observing x, e.g., rain in the previous days or weather forecasts
- Optimal action (suppose go out with umbrella) satisfies the Minimum (Subjective) Expected Loss Principle:

$$a^* = \operatorname*{arg\,min}_{a \in \mathcal{A}} \int L(c(a, \theta)) \pi(\theta|x) d\theta$$

PARAMETER ESTIMATION

- Light bulb: posterior mean $\hat{\lambda} = \frac{\alpha + n}{\beta + \sum_{i=1}^{n} X_i}$
 - \Rightarrow compare with
 - prior mean $\frac{\alpha}{\beta}$
 - MLE $\frac{n}{\sum_{i=1}^{n} X_i}$
- MAP (Maximum a posteriori)

$$\Rightarrow \hat{\lambda} = \frac{\alpha + n - 1}{\beta + \sum X_i}$$

PRIOR AND DATA INFLUENCE

- Posterior mean: $\hat{\lambda} = \frac{\alpha + n}{\beta + \sum X_i}$
- Prior mean: $\hat{\lambda}_P = \frac{\alpha}{\beta}$ (and variance $\sigma^2 = \frac{\alpha}{\beta^2}$)
- MLE: $\hat{\lambda}_M = n / \sum X_i$
- $\alpha_1 = k\alpha$ and $\beta_1 = k\beta \Rightarrow \hat{\lambda}_{1P} = \hat{\lambda}_P$ and $\sigma_1^2 = \sigma^2/k$
- Posterior mean: $\hat{\lambda} = \frac{k\alpha + n}{k\beta + \sum X_i}$
- $k \to 0 \Rightarrow$ prior variance $\to \infty \Rightarrow \hat{\lambda} \to n/\sum X_i$, i.e. MLE (prior does not count)
- $k \to \infty \Rightarrow$ prior variance $\to 0 \Rightarrow \hat{\lambda} \to \hat{\lambda}_P$, i.e. prior mean (data do not count)
- $n \to \infty \Rightarrow \hat{\lambda} \sim \frac{n}{\sum X_i}$, i.e. MLE (prior does not count)

EXERCISE: PARAMETER ESTIMATION

Prior influence (multinomial data and Dirichlet prior)

$$(n_1, \ldots, n_k) \sim \mathcal{MN}(n, p_1, \ldots, p_k)$$

 $(p_1, \ldots, p_k) \sim \mathcal{D}ir(s\alpha_1, \ldots, s\alpha_k), \ \sum \alpha_i = 1, \ s > 0$

- Posterior mean: $p_i^* = \frac{s\alpha_i + n_i}{s+n}$
- Prior mean: $\tilde{p_i} = \alpha_i$
- MLE: $\frac{n_i}{n}$
- $s \to 0 \Rightarrow p_i^* \to \mathsf{MLE}$
- $s \to \infty \Rightarrow p_i^* \to \tilde{p}_i$

Where to start from?

- $X \sim \mathcal{E}(\lambda)$
- $f(x|\lambda) = \lambda \exp\{-\lambda x\}$
- $P(X \le x) = F(x) = 1 S(x) = 1 \exp\{-\lambda x\}$

\Rightarrow *Physical* properties of λ

- $\mathbf{E}X = 1/\lambda$
- $VarX = 1/\lambda^2$
- $h(x) = \frac{f(x)}{S(x)} = \frac{\lambda \exp\{-\lambda x\}}{\exp\{-\lambda x\}} = \lambda$ (hazard function)

Possible available information

- Exact prior $\pi(\lambda)$ (???)
- Quantiles of X_i , i.e. $P(X_i \le x_q) = q$
- Quantiles of λ , i.e. $P(\lambda \leq \lambda_q) = q$
- Moments $\mathbf{E}\lambda^k$ of λ , i.e. $\int \lambda^k \pi(\lambda) d\lambda = a_k \Leftrightarrow \int (\lambda^k a_k) \pi(\lambda) d\lambda = 0$
- Generalised moments of λ , i.e. $\int h(\lambda)\pi(\lambda)d\lambda = 0$
- Most likely value and upper and lower bounds
- . . .
- None of them

How to get information?

- Results from previous experiments (e.g. 75% of light bulbs had failed after 2 years of operation \Rightarrow 2 years is the 75% quantile of X_i)
- Split of possible values of λ or X_i into equally likely intervals \Rightarrow quantiles
- Most likely value and upper and lower bounds
- Expected value of λ and confidence on such value (mean and variance)

• . . .

Which prior?

- $\lambda \sim \mathcal{G}(\alpha, \beta) \Rightarrow f(\lambda | \alpha, \beta) = \beta^{\alpha} \lambda^{\alpha 1} \exp\{-\beta \lambda\} / \Gamma(\alpha)$ (conjugate)
- $\lambda \sim \mathcal{LN}(\mu, \sigma^2) \Rightarrow f(\lambda | \mu, \sigma^2) = \{\lambda \sigma \sqrt{2\Pi}\}^{-1} \exp\{-(\log \lambda \mu)^2/(2\sigma^2)\}$

•
$$\lambda \sim \mathcal{GEV}(\mu, \sigma, \theta) \Rightarrow f(\lambda) = \frac{1}{\sigma} \left[1 + \theta \left(\frac{\lambda - \mu}{\sigma} \right) \right]_{+}^{-1/\theta - 1} \exp \left\{ - \left[1 + \theta \left(\frac{\lambda - \mu}{\sigma} \right) \right]_{+}^{-1/\theta} \right\}$$

- $\lambda \sim \mathcal{T}(l, m, u)$ (triangular)
- $\lambda \sim \mathcal{U}(l, u)$
- $\lambda \sim \mathcal{W}(\mu, \alpha, \beta) \Rightarrow f(\lambda) = \frac{\beta}{\alpha} \left(\frac{\lambda \mu}{\alpha}\right)^{\beta 1} \exp\left\{-\left(\frac{\lambda \mu}{\alpha}\right)^{\beta}\right\}$

• . . .

Choice of a prior

- Defined on suitable set (interval vs. positive real)
- Suitable functional form (monotone/unimodal, heavy/light tails, etc.)
- Mathematical convenience
- *Tradition* (e.g. lognormal for engineers)

Gamma prior - choice of hyperparameters

•
$$X_1, \ldots, X_n \sim \mathcal{E}(\lambda)$$

•
$$f(X_1, ..., X_n | \lambda) = \lambda^n \exp\{-\lambda \sum X_i\}$$

•
$$\lambda \sim \mathcal{G}(\alpha, \beta) \Rightarrow f(\lambda | \alpha, \beta) = \beta^{\alpha} \lambda^{\alpha - 1} \exp\{-\beta \lambda\} / \Gamma(\alpha)$$

•
$$\Rightarrow \lambda | X_1, \dots, X_n \sim \mathcal{G}(\alpha + n, \beta + \sum X_i)$$

Gamma prior - choice of hyperparameters

•
$$\mathcal{E}\lambda = \mu = \alpha/\beta$$
 and $Var\lambda = \sigma^2 = \alpha/\beta^2$
 $\Rightarrow \alpha = \mu^2/\sigma^2$ and $\beta = \mu/\sigma^2$

- Two quantiles \Rightarrow (α, β) using, say, Wilson-Hilferty approximation. Third quantile specified to check consistency
- Hypothetical experiment: posterior $\mathcal{G}(\alpha + n, \beta + \sum X_i)$ $\Rightarrow \alpha$ sample size and β sample sum

BAYESIAN SIMULATIONS

Alternative choice: $\lambda \sim \mathcal{LN}(\alpha, \beta)$

no posterior in closed form ⇒ numerical simulation

Markov Chain Monte Carlo (MCMC):

- draw^(*) a sample $\lambda^{(1)}, \lambda^{(2)}, \dots$ (Monte Carlo) ...
- ... from a Markov Chain whose stationary distribution is ...
- ... the posterior $\pi(\lambda|\underline{X})$ and compute ...
- $\mathcal{E}(\lambda|\underline{X}) \approx \sum_{i=m+1}^{n} \lambda^{(i)}/(n-m)$, etc.

(*) For $\lambda = (\theta, \mu) \Rightarrow$ Gibbs sampler:

- draw $\theta^{(i)}$ from $\theta | \mu^{(i-1)}, \underline{X}$
- draw $\mu^{(i)}$ from $\mu|\theta^{(i)}, \underline{X}$
- repeat until convergence

MCMC: REGRESSION

•
$$y = \beta_0 + \beta_1 x + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \sigma^2)$

•
$$(y_1, x_1), \ldots, (y_n, x_n)$$

• Likelihood
$$\propto (\sigma^2)^{-n/2} \exp\{\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2\}$$

• Priors:
$$\beta_0 \sim \mathcal{N}, \beta_1 \sim \mathcal{N}, \sigma^2 \sim \mathcal{IG}$$

• Full posterior conditionals:

-
$$\beta_0 | \beta_1, \sigma^2 \sim \mathcal{N}$$

-
$$\beta_1 | \beta_0, \sigma^2 \sim \mathcal{N}$$

-
$$\sigma^2 | \beta_0, \beta_1 \sim \mathcal{IG}$$

 \Rightarrow MCMC

CREDIBLE INTERVALS

- In Bayesian statistics the parameter λ is considered a r.v. and it is possible to compute the posterior probability $\mathcal{P}(\lambda \in A|\underline{X})$ for a measurable set A
- ⇒ Credible set, as a counterpart of the frequentist confidence set, but with very different meaning
- If the set is an interval, then we call it *credible interval at* 100y%, if its posterior probability is y
- We are interested also in the highest posterior density (HPD) sets, which are the ones with the smallest Lebesgue measure among those with a given posterior probability
- Light bulb: $\mathcal{P}(\lambda \leq z|\underline{X}) = \int_0^z \frac{(\beta + \sum X_i)^{\alpha + n}}{\Gamma(\alpha + n)} \lambda^{\alpha + n 1} e^{-(\beta + \sum X_i)\lambda} d\lambda$

CREDIBLE INTERVALS

- One observation $X \sim \mathcal{N}(\mu, 1)$
- Prior $\mu \sim \mathcal{N}(0,1)$
- Posterior

$$\pi(\mu|x) \propto e^{-(x-\mu)^2/2} \cdot e^{-\mu^2/2} \propto e^{-(\mu^2 - x\mu)} \propto \exp{\frac{1}{2 \cdot 1/2}} (\mu - x/2)^2$$

 $\Rightarrow \mu|x \sim \mathcal{N}(x/2, 1/2)$

- $Z = \frac{\mu x/2}{\sqrt{1/2}} \sim \mathcal{N}(0, 1)$
- Quantiles $Z_{.975} = 1.96$ and $Z_{.025} = -1.96$

•
$$\Rightarrow P(Z_{.025} \le Z \le Z_{.975}) = \left(-1.96 \le \frac{\mu - x/2}{\sqrt{1/2}} \le 1.96\right) = .95$$

•
$$\Rightarrow$$
 $\left(x/2 - 1.96\sqrt{1/2}, x/2 + 1.96\sqrt{1/2}\right)$ credible interval at 95%

HYPOTHESIS TESTING

- One sided test: H_0 : $\lambda \leq \lambda_0$ vs. H_1 : $\lambda > \lambda_0$
 - \Rightarrow Reject H_0 iff $\mathbb{P}(\lambda \leq \lambda_0 | \underline{X}) \leq \alpha$, α significance level
- Two sided test: $H_0: \lambda = \lambda_0$ vs. $H_1: \lambda \neq \lambda_0$
 - Do not reject if $\lambda_0 \in A$, $A \ 100(1-\alpha)\%$ credible interval
 - Consider $\mathbb{P}([\lambda_0 \epsilon, \lambda_0 + \epsilon]|\underline{X})$
 - Dirac measure: $\mathbb{P}(\lambda_0) > 0$ and consider $\mathbb{P}(\lambda_0|X)$

HYPOTHESIS TESTING

- $H_0: \lambda \in \Lambda_0$ vs. $H_1: \lambda \in \Lambda_0^C$, where C denotes the complement set
- Priors: $\mathbb{P}(H_0) = \mathbb{P}(\lambda \in \Lambda_0) = 1 \mathbb{P}(\lambda \in \Lambda_0^C) = 1 \mathbb{P}(H_1)$
- Sample $X \Rightarrow$ posteriors $\mathbb{P}(H_0|X) = 1 \mathbb{P}(H_1|X)$
- There are many problems associated with the frequentist approach to hypothesis testing which can be addressed properly in a Bayesian framework
 - Bayesians have no need to know if either H_0 or H_1 is true but, treating λ as a r.v., they can assess the probabilities of both hypotheses and decide based on them
 - Frequentists are unable to specify opinions about hypotheses, unlike Bayesians with prior distributions on them
 - Frequentists set significance levels a priori and decide based on them, unlike Bayesians which get a posteriori the probability of an hypothesis and decide based on it

PREDICTION

- After observing an i.i.d. sample $\underline{X} = (X_1, \dots, X_n)$, what can we say about a next observation X_{n+1} from the same density $f(X|\lambda)$?
- We could consider the next observations X_{n+1}, \ldots, X_{n+j} but we take j=1 for simplicity
- When considering observations over time we prefer to use the term forecast instead of prediction (e.g., weather forecast)
- Given the sample \underline{X} and the prior $\pi(\lambda)$, then the posterior $\pi(\lambda|\underline{X})$ is used to compute the posterior predictive density (absolutely continuous case here) for X_{n+1} $f(X_{n+1}|\underline{X}) = \int f(X_{n+1}|\lambda,\underline{X})\pi(\lambda|\underline{X})d\lambda = \int f(X_{n+1}|\lambda)\pi(\lambda|\underline{X})d\lambda$
- Prior predictive densities can be used to compare model via Bayes factor (more later)
- Posterior predictive densities can be used to assess the goodness of fit of a model through the prediction error, using part of the data to get the posterior and the remaining one to get predicted values (e.g. predicted posterior mean/median) and compare them with actual ones

PREDICTION

- Light bulb: $X_{n+1}|\lambda \sim \mathcal{E}(\lambda), \ \lambda|\underline{X} \sim \mathcal{G}(\alpha + n, \beta + \sum X_i)$
- Posterior predictive density for X_{n+1}

$$f_{X_{n+1}}(X_{n+1}|\underline{X}) = \int_{0}^{\infty} \lambda e^{-\lambda X_{n+1}} \cdot \frac{(\beta + \sum X_{i})^{\alpha+n}}{\Gamma(\alpha+n)} \lambda^{\alpha+n-1} e^{-\lambda(\beta + \sum X_{i})} d\lambda$$

$$= \frac{(\beta + \sum X_{i})^{\alpha+n}}{\Gamma(\alpha+n)} \int_{0}^{\infty} \lambda^{\alpha+n+1-1} e^{-\lambda(\beta + \sum X_{i} + X_{n+1})} d\lambda$$

$$= \frac{(\beta + \sum X_{i})^{\alpha+n}}{\Gamma(\alpha+n)} \frac{\Gamma(\alpha+n+1)}{(\beta + \sum X_{i} + X_{n+1})^{\alpha+n+1}}$$

$$= (\alpha+n) \frac{(\beta + \sum X_{i})^{\alpha+n}}{(\beta + \sum X_{i} + X_{n+1})^{\alpha+n+1}}$$

• I found first the constant knowing that the density integrates to 1 and then I used the property $\Gamma(n+1) = n\Gamma(n)$

Compare $\mathcal{M}_1 = \{f_1(x|\theta_1), \pi(\theta_1)\}\$ and $\mathcal{M}_2 = \{f_2(x|\theta_2), \pi(\theta_2)\}\$

Bayes factor

$$\Rightarrow BF = \frac{f_1(x)}{f_2(x)} = \frac{\int f_1(x|\theta_1)\pi(\theta_1)d\theta_1}{\int f_2(x|\theta_2)\pi(\theta_2)d\theta_2}$$

BF	$2\log_{10}BF$	Evidence in favor of \mathcal{M}_1
1 to 3	0 to 2	Hardly worth commenting
3 to 20	2 to 6	Positive
20 to 150	6 to 10	Strong
> 150	> 10	Very strong

Posterior odds

$$\Rightarrow \frac{P(\mathcal{M}_1|data)}{P(\mathcal{M}_2|data)} = \frac{P(data|\mathcal{M}_1)}{P(data|\mathcal{M}_2)} \cdot \frac{P(\mathcal{M}_1)}{P(\mathcal{M}_2)} \cdot \frac{1/P(data)}{1/P(data)} = BF \cdot \frac{P(\mathcal{M}_1)}{P(\mathcal{M}_2)}$$

BACK TO HYPOTHESIS TESTING

- $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_1$, with $\Theta = \Theta_0 \bigcup \Theta_1$
- $\pi_0(\theta)$ prior on Θ_0 and $\pi_1(\theta)$ prior on Θ_1
- Priors on hypotheses: $P(\Theta_0) = \varepsilon$ and $P(\Theta_1) = 1 \varepsilon$
- Mixture prior on Θ : $\pi_{\varepsilon}(\theta) = \varepsilon \pi_0(\theta) I_{\Theta_0}(\theta) + (1 \varepsilon) \pi_1(\theta) I_{\Theta_1}(\theta)$
- I_A(x) indicator function of set A
- Likelihood $l_x(\theta) = f(\underline{X}|\theta)$
- Posterior $\pi_{\varepsilon}(\theta|\underline{X}) = \frac{\varepsilon l_x(\theta)\pi_0(\theta)I_{\Theta_0}(\theta) + (1-\varepsilon)l_x(\theta)\pi_1(\theta)I_{\Theta_1}(\theta)}{\varepsilon \int_{\Theta_0} l_x(\theta)\pi_0(\theta)d\theta + (1-\varepsilon)\int_{\Theta_1} l_x(\theta)\pi_1(\theta)d\theta}$

BACK TO HYPOTHESIS TESTING

Posterior on hypotheses

$$-P(\Theta_0|\underline{X}) = \frac{\varepsilon \int_{\Theta_0} l_x(\theta) \pi_0(\theta) d\theta}{\varepsilon \int_{\Theta_0} l_x(\theta) \pi_0(\theta) d\theta + (1-\varepsilon) \int_{\Theta_1} l_x(\theta) \pi_1(\theta) d\theta}$$
$$-P(\Theta_1|\underline{X}) = \frac{(1-\varepsilon) \int_{\Theta_1} l_x(\theta) \pi_1(\theta) d\theta}{\varepsilon \int_{\Theta_0} l_x(\theta) \pi_0(\theta) d\theta + (1-\varepsilon) \int_{\Theta_1} l_x(\theta) \pi_1(\theta) d\theta}$$

Posterior odds = Bayes factor · prior odds

•
$$\frac{P(\Theta_0|\underline{X})}{P(\Theta_1|\underline{X})} = \frac{\int_{\Theta_0} l_x(\theta) \pi_0(\theta) d\theta}{\int_{\Theta_1} l_x(\theta) \pi_1(\theta) d\theta} \cdot \frac{\varepsilon}{1 - \varepsilon}$$

- Posterior odds influenced by prior odds, i.e. choice of prior on hypotheses
- \Rightarrow Often only Bayes factor is used in hypothesis testing (corresponds to $\varepsilon = 0.5$)

PRIORS AND MODELS

- The Bayesian approach criticized because subjective but . . .
- ... is the choice of the model (the only aspect which matters in the frequentist approach) really *objective*?
- Consider the failure times of *n* cars:
- $\{X_{ij_i}\}, i = 1, ..., n; j_i = 1, ..., n_i$
- Who is choosing the model? Expert and statistician, like for the prior!

Before the analysis - Model chosen according to

- physical laws
- mathematical convenience
- exploratory data analysis
 - Weibull plot, Duane plot, q-q plot
 - histogram
- our knowledge about experiment, e.g.
 - same/similar/different car and same/different cause of failure?
 - replacement policy and aging

• . . .

Which model for $\{X_{ij_i}\}, i = 1, ..., n; j_i = 1, ..., n_i$?

- All the cars behave in the same way and the failure pattern is not changing over time $\Rightarrow X_{ij_i} \sim \mathcal{E}(\lambda)$
- The cars behave differently and the failure pattern is not changing over time $\Rightarrow X_{ij} \sim \mathcal{E}(\lambda_i)$
- All the cars behave in the same way and the failure pattern is changing over time $\Rightarrow X_{ij_i}$ from a NHPP (Nonhomogeneous Poisson process) with intensity $\lambda(t)$
- The cars behave differently and the failure pattern is not over time $\Rightarrow X_{ij}$ from NHPP's with intensities $\lambda_i(t)$
- Each failure affects only the next one (Markov property, e.g. AR(1) model) $\Rightarrow X_{i,k+1} = \rho X_{i,k} + \varepsilon_{i,k}$
- etc.
- Lognormal, Weibull, Birnbaum-Saunders, etc. instead of exponential

After the analysis - Model chosen according to

- graphical displays (e.g. residuals in regression)
- goodness of fit tests (e.g. χ^2 , Kolmogorov-Smirnov) (not very Bayesian!)
- Bayes factor to compare

$$\mathcal{M}_1 = \{f_1(x|\theta_1), \dot{\pi}(\theta_1)\}\$$
and $\mathcal{M}_2 = \{f_2(x|\theta_2), \dot{\pi}(\theta_2)\}\$

$$\Rightarrow BF = \frac{f_1(x)}{f_2(x)} = \frac{\int f_1(x|\theta_1)\pi(\theta_1)d\theta_1}{\int f_2(x|\theta_2)\pi(\theta_2)d\theta_2}$$

Posterior odds

$$\Rightarrow \frac{P(\mathcal{M}_1|data)}{P(\mathcal{M}_2|data)} = \frac{P(data|\mathcal{M}_1)}{P(data|\mathcal{M}_2)} \cdot \frac{P(\mathcal{M}_1)}{P(\mathcal{M}_2)} = BF \cdot \frac{P(\mathcal{M}_1)}{P(\mathcal{M}_2)}$$

• AIC, BIC, DIC et al.

BAYESIAN ROBUSTNESS: MOTIVATING EXAMPLE

- $X \sim \mathcal{N}(\theta, 1)$
- Expert's opinion on prior P: median at 0, quartiles at ± 1 , symmetric and unimodal
- \Rightarrow Possible priors include Cauchy $\mathcal{C}(0,1)$ and Gaussian $\mathcal{N}(0,2.19)$
- Interest in posterior mean $\mu^{C}(x)$ or $\mu^{N}(x)$

\overline{x}	0	1	2	4.5	10
$\overline{\mu^C(x)}$	0	0.52	1.27	4.09	9.80
$\mu^N(x)$	0	0.69	1.37	3.09	6.87

- Decision strongly dependent on the choice of the prior for large x
- Alternative: Posterior median w.r.t. posterior mean

BAYESIAN ROBUSTNESS

- Practical impossibility of specifying priors exactly matching experts' knowledge
- Prior elicitation subject to uncertainty and, possibly, some degree of arbitrariness introduced by the analyst, e.g. the functional form of the distribution
- Uncertainty in the choice of priors modelled through a class of distribution (the same might apply for loss functions and statistical models/likelihoods)
- Use of indices to measure the consequences (i.e. perform robustness analysis) of the choice of a class of priors on the quantities of interest (e.g. posterior mean)
- An answer to the criticism about the arbitrariness in the choice of the prior and a possible excessive influence

BAYESIAN ROBUSTNESS

A more formal statement about model and prior sensitivity

- $M = \{Q_{\theta}; \theta \in \Theta\}$, Q_{θ} probability on $(\mathcal{X}, \mathcal{F}_{\mathcal{X}})$
- Sample $\underline{x} = (x_1, \dots, x_n) \Rightarrow \text{likelihood } l_x(\theta) \equiv l_x(\theta|x_1, \dots, x_n)$
- Prior P su $(\Theta, \mathcal{F}) \Rightarrow$ posterior P^*
- Uncertainty about M and/or $P \Rightarrow$ changes in

$$- E_{P^*}[h(\theta)] = \frac{\int_{\Theta} h(\theta)l(\theta)P(d\theta)}{\int_{\Theta} l(\theta)P(d\theta)}$$

 $-P^*$

Bayesian robustness studies these changes

Interest in robustness w.r.t. to changes in prior/model/loss but most work concentrated on priors since

- controversial aspect of Bayesian approach
- easier (w.r.t. model) computations
- problems with interpretation of classes of models/likelihood
- often interest in posterior mean (corresponding to optimal Bayesian action under squared loss function) and no need for classes of losses

Three major approaches

- Informal sensitivity: comparison among few priors
- Global sensitivity: study over a class of priors specified by some features
- Local sensitivity: infinitesimal changes w.r.t. elicited prior

We concentrate mostly on sensitivity to changes in the prior

- Choice of a class
 □ of priors
- Computation of a robustness measure, e.g. range $\delta = \overline{\rho} \underline{\rho}$ $(\overline{\rho} = \sup_{P \in \Gamma} E_{P^*}[h(\theta)])$ and $\underline{\rho} = \inf_{P \in \Gamma} E_{P^*}[h(\theta)])$
 - δ "small" \Rightarrow robustness
 - − δ "large", $\Gamma_1 \subset \Gamma$ and/or new data
 - δ "large", Γ and same data

Relaxing the unique prior assumption (Berger and O'Hagan, 1988)

- $X \sim \mathcal{N}(\theta, 1)$
- Prior $\theta \sim \mathcal{N}(0,2)$
- Data $x = 1.5 \Rightarrow \text{posterior } \theta | x \sim \mathcal{N}(1, 2/3)$
- Split \Re in intervals with same probability p_i as prior $\mathcal{N}(0,2)$

Refining the class of priors (Berger and O'Hagan, 1988)

$\overline{I_i}$	p_i	p_i^*	$\overline{\Gamma_Q}$	Γ_{QU}
$\overline{(-\infty,-2)}$	0.08	.0001	(0,0.001)	(0,0.0002)
(-2,-1)	0.16	.007	(0.001, 0.029)	(0.006, 0.011)
(-1,0)	0.26	.103	(0.024, 0.272)	(0.095, 0.166)
(0,1)	0.26	.390	(0.208, 0.600)	(0.322, 0.447)
(1,2)	0.16	.390	(0.265, 0.625)	(0.353, 0.473)
$(2,+\infty,)$	0.08	.110	(0,0.229)	(0,0.156)

- Γ_Q quantile class and Γ_{QU} unimodal quantile class
- Robustness in Γ_{QU}
- Huge reduction of δ from Γ_Q to Γ_{QU}

CLASSES OF PRIORS

Desirable features of classes of priors

- Easy elicitation and interpretation (e.g. moments, quantiles, symmetry, unimodality)
- Compatible with prior knowledge (e.g. quantile class)
- Simple computations
- Without unreasonable priors (e.g. unimodal quantile class, ruling out discrete distributions)

CLASSES OF PRIORS

- $\Gamma_P = \{P : p(\theta; \omega), \omega \in \Omega\}$ (Parametric class)
 - $\Gamma_P = \{ \mathcal{G}(\alpha, \beta) : l_1 \le \alpha/\beta \le u_1, l_2 \le \alpha/\beta^2 \le u_2 \}$
- $\Gamma_Q = \{P : \alpha_i \leq P(I_i) \leq \beta_i, i = 1, \dots, m\}$ (Quantile class)
- $\Gamma_{QU} = \{ P \in \Gamma_Q, \text{ unimodal } \textit{quantile class} \}$
- $\Gamma_{QUS} = \{P \in \Gamma_{QU}, \text{ symmetric}\}$ (Symmetric, unimodal quantile class)

CLASSES OF PRIORS

- $\Gamma_{GM} = \{P : \int h_i(\theta) dP(\theta) = a_i, i = 1, ..., m\}$ (Generalised moments class)
 - $h_i(\theta) = \theta^i$ (Moments class)
 - $h_i(\theta) = I_{A_i}(\theta)$ (Quantile class)
- $\Gamma^B = \{P : L(\theta) \le p(\theta) \le U(\theta)\}$ (Density bounded class)
- $\Gamma^{DB} = \{F \text{ c.d.} f. : F_l(\theta) \leq F(\theta) \leq F_u(\theta), \forall \theta\}$ (Distribution bounded class)