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ALL BAYESIANS IN DAILY LIFE?

Interest in Milano or not?

e Prior knowledge
— What is Milano? City, cookie, car?
— Where is Milano?

— Fashion and football

e Data collection
— Book on snorkeling activities
— Tour operator catalogue

— City of Milano official website



ALL BAYESIANS IN DAILY LIFE?

e Posterior knowledge
— No snorkeling: closest beach at 150 kms!
— Probably no tour found in the catalogue

— Leonardo’s Last Supper; Michelangelo, Raffaello, Mantegna, etc.; Duomo (cathe-
dral); Sforza Castle; Canals (Navigli) and nightlife; Via Sarpi (Chinatown); etc.

e Forecast:
— Will I enjoy Milano or not?

— Cost and time to get there

e Decision: To go or not to go?
— Interest in the place
— Distance and cost for travel, lodging and meals

— ltalian language (but English understood by many)



BAYES THEOREM

Patient subject to medical diagnostic test (P or N) for a disease D
Sensitivity .95, i.e. P(P|D) = .95
Specificity .9, i.e. P(P¢|D%) = P(N|D%) = .9

Physician’s belief on patient having the disease 1%, i.e. P(D) = .01
— Knowledge about that patient
— Knowledge about people with similar characteristics (age, gender, etc.)
— Knowledge about the population in an area

— Other sources of knowledge or uninformative guess

Positive test = P(D|P)?



BAYES THEOREM

_ P(DNP) P(P|D)P(D)
P(D|P) = P(P)  P(P|D)P(D) + P(P|DC)P(DC)
_ .95 - .01 _ o878

95.-.01+.1-.99

Positive test updates belief on patient having the disease:
from 1% t0 8.75%

Prior opinion updated into posterior one

f P(D) = .1 = P(D|P) = .5135
f P(D) = .2 = P(D|P) = .7037



BAYES THEOREM

e Partition {Aq,...,Ap}of Qand BC Q:P(B) >0

P(B|A;)P(A;)

PR = S BBl P(ay)

e X r.v. with density f(x|)), prior w(\)

f(&[A)m ()
J f(z|lw)m(w)dw

= posterior T(A|x) =



EXERCISE: BAYES THEOREM

Suppose a person is testing for diabetes
A priori, the person has one chance out of a million of having diabetes

In 3% of cases the test is positive although the person has no diabetes
(= False positive error rate)

In 1% of cases the test is negative although the person has diabetes
(= False negative error rate)

What is the probability that the person has diabetes when the test is positive?

How does such probability change when a priori the patient has the same probability
of having or not having diabetes?



BAYESIAN STATISTICS

Bayesian statistics is . . .

e ... another way to make inference and forecast on population features
(practitioner’s view)

e ... away to learn from experience and improve own knowledge
(educated layman’s view)

e ... aformal tool to combine prior knowledge and experiments
(mathematician’s view)

e ... cheating
(hardcore frequentist statistician’s view)



A SHORT HISTORY OF BAYESIAN STATISTICS

Bayesian statistics strongly relies on the use of Bayes Theorem

The idea of Bayes Theorem goes back to James Bernoulli in 1713 but there was no
mathematical structure yet

Reverend Thomas Bayes died in 1761

Richard Price, Bayes’s friend, published Bayes’s paper on inverse probability in
1763, which was about binomial data and uniform prior

In 1774 Laplace gave more general results, probably unaware of Bayes’s work
Jeffreys "rediscovered” Bayes’s work in 1939

Bruno de Finetti and Jimmy Savage set the foundations of the Bayesian approach
In early 90’s Metropolis simulation method was ridiscovered” by Gelfand and Smith

Since then MCMC (Markov chain Monte Carlo) and other simulation methods were
developed and Bayesian approach became very popular



NOTIONS OF PROBABILITY

#-Favourable events
#Possible events

e Classical (random choice, equally likely events): Probability as

e Frequentist: Probability as asymptotic limit of frequency, i.e., of proportion of favourable
events

e Subjective/Bayesian: Probability based on beliefs on, e.g., both head in tossing a
coin (like previous) and final exam success (unlike previous)
e Axiomatic (Kolmogorov) on (€2, F, P), which contains the other three:
— P(A) >Oforall A e F
- P()=1

- P (U AZ-) =) P(A;) for all mutually exclusive As € F

Bayesian = need to specify subjective P in (2, F, P)
10



ASSESSMENT OF PRIOR PROBABILITIES

T'= person having a tumor in his/her life
I= person having an infarction in his/her life

P(TUI) =.2, X(T) =.3, P(I) =.05, P(TNI) = .1
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ASSESSMENT OF PRIOR PROBABILITIES

T'= person having a tumor in his/her life
I= person having an infarction in his/her life

P(TUI) =.2, X(T) =.3, P(I) =.05, P(TNI) = .1

o P(T'UI) > P(T)

o P(1)>P(TNI)
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ASSESSMENT OF PRIOR PROBABILITIES

T'= person having a tumor in his/her life
I= person having an infarction in his/her life

P(TUI) = .3, P(T) = .2, P(I) =.2, (TNI) = .15
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ASSESSMENT OF PRIOR PROBABILITIES

T'= person having a tumor in his/her life
I= person having an infarction in his/her life

P(TUI) = .3, (T)=.2, P(I) = .2, P(TNI) = .15

e 3=P(TUI) =P(T) +PU)-P(TNI) = .25

e P(TUI) =.3, P(T)=.2, PUI)=.2, P(TNI) =.1

= assessments should comply with probability rules
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ASSESSMENT OF PRIOR PROBABILITIES

P(A): Probability one of us was born on a given day, say May, 1st

n people = P(A) = 1 — (364/365)"

n =10
n = 50
n = 100
n = 200
n = 300

¢4l

P(A) = 0.027
P(A) =0.128
P(A) = 0.240
P(A) = 0.422
P(A) = 0.561

Therefore, what is your opinion about P(A)?
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ASSESSING DISCRETE DISTRIBUTIONS: BETS

Probability Italy will win next FIFA World Cup

1.

| bet Y = 10% on the ltalian victory. How much are you willing to bet with me against
the victory? (Say 10$% the first time, then 15% and 209%)

Now let’s reverse. You bet Y = 10% on the victory and you suggest my fair bet on
the loss (Say 309% the first time, then 25% and 20%)

Let's repeat 1 and 2 until it is indifferent for you to bet either on the loss or the victory
(i.e. 209%)

Let Y be the amount | bet on the victory of Italy
Let X be the amount you bet on the loss of ltaly

Fair bet = equal expected losses: Y P(loss) = X P(victory)

X 20 2

P(victory) = 1 — P(loss) = P(loss) = XtV = 20+ 10 =3
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ASSESSING DISCRETE DISTRIBUTIONS: BETS

Problems

e Many people do not like to bet

e Most people dislike the idea of losing money

e | was talking about a 10$ bet, but would you have bet 1000X if | had
bet 10,000%7?

e Reaching convergence to a fair bet might be a long process

17



REFERENCE LOTTERIES

. Lottery 1
e (et a trip to Australia if ltaly wins

e Stay at home if ltaly looses

. Lottery 2

e Get a trip to Australia with probability p, e.g. if a random number generated from
a uniform distribution on [0, 1] is < p

e Stay at home with probability 1 — p, e.g. if a random number generated from a
uniform distribution on [0, 1] is > p

. Specify p1. Which lottery do you prefer?

. If Lottery 1 is preferred offer change p; to p;+1 > ps.

. If Lottery 2 is preferred offer change p; to p;+1 < ps.

. When indifference point is reached = P(victory) = p;, else Goto 4.
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ASSESSING CONTINUOUS DISTRIBUTIONS

X continuous random variable (e.g. light bulb lifetime)

or

Choose z1,...,xn
Assess F'(z;)) = P(X <x;),i=1,n
Draw F'(x)

Look at F'(x) at some points for consistency

Choose probabilities p1, ..., pn
Find z;’s s.t. F(z;)) = P(X <z;) =pj,i=1,n
Draw F'(x)

Look at F'(x) at some points for consistency
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BAYES THEOREM AND LIKELIHOOD
Sample X = (X1,...,X,), i.id. from f(z|\) = likelihood I, (\) = [[i_; f(Xi|A)

Lo (M) (X)
[1.(6)m(6)do

Prior m(\) = posterior 7(\|X) =

l.i.d. property not necessarily needed to get likelihood, e.g. Markovian observations
where f(X1,..., XnlA) = f(X1|M) [T, f(Xi| Xi-1,\)

The likelihood is all that we need from data to perform inference and, given it, the
way the experiment was performed is not relevant (Likelihood Principle)

— Compare two experiments counting the number x of heads in n tosses of a coin
knowing that P(head) = 6

— The sequence HHT ...TH is known = 0*(1 — )" *
— Only known about = heads and n — z tails = (n) 0*(1 —6)""
T
— Different probabilities but 6*(1 — )" * is the same contribution to the likelihood
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ILLUSTRATIVE EXAMPLE: FREQUENTIST APPROACH

Light bulb lifetime = X ~ E(\) & f(z;\) = Xe ™ 2, A >0
e Sample X = (X1,...,Xp),iid. E(N)
o Likelihood I;(A) = [T F(X;; A) = Ale A 2i=1 X
e MLE: A =n/Y" ; X;, C.I, UMVUE, consistency, etc.

What about available prior information on light bulbs behavior?
How can we translate it? = model and parameter

21



ILLUSTRATIVE EXAMPLE: BAYESIAN APPROACH
Light bulb lifetime = X ~ E(\) & f(z;\) = Xe™* 2,2 >0
e Sample X = (X1,...,Xp),iid. E(N)
o Likelihood I;(A) = [T F(X;; A) = ATe A 2i=1 Xi
e Prior A\ ~ G(a, ), m(N\) = %)\O‘_le_w‘

e Posterior (\X) oc Ae=A2i=1Xi . ya—1le—=5A

= >‘|X ~ g(Oé +n, B8+ 2?21 Xz)

Posterior distribution fundamental in Bayesian analysis
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CONJUGATE PRIORS

We just saw that a gamma prior on the parameter of an exponential model leads to
a gamma posterior

= The gamma distribution is a conjugate prior for the exponential model

Does conjugacy occur always? Unfortunately not and simulation methods, e.g.
MCMC (Markov chain Monte Carlo), are needed to get samples from the posterior
distribution

There are some relevant cases of conjugacy and we will see some of them:
— Beta prior conjugate w.r.t. Bernoulli, binomial, geometric models
— Dirichlet prior conjugate w.r.t. multinomial model
— Gamma prior conjugate w.r.t. exponential, Poisson models

— Gaussian prior conjugate w.r.t. Gaussian model with fixed variance/covariance
matrix and unknown mean

— Gaussian-Inverse gamma prior w.r.t. univariate Gaussian model with unknown
mean and variance

23



CONJUGATE PRIOR FOR BINOMIAL

Binomial data (x "successes” in n trials), with P(success) = 6
= l(z|n, 0) = (”)ew(l _ gy
X

(o + B)
(o) (B3)

Beta prior Be(a, 8): w(0) = 0> 1(1 -0t 0o<0<1,a,8>0

= posterior 7(f|z,n) < 67(1 — O)*~* .92~ 1(1 — 9)F1 & goT*=1(1 — ) +n—=2-1
= Olz,n ~ Be(a +z,8+n —x)
Note that the result is proved without using the constant values

Exercise: Try with the following models:
— Bernoulli: f(z]|0) =0*(1 —-0)1"*,2 =0,1

— Geometric: (1 — 6)6*, x nonnegative integer
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CONJUGATE PRIOR FOR GAUSSIAN
X1,..., Xn ~N(u,o?)
Mean/median ;. € ® unknown and variance o2 > 0 known

X = (X1,...,X»n)

Likelihood:
LA | 2o
L(X = —e_(Xi—N) /(20?)
(X|n) E —
S
o< )"
Prior: 1 ~ N (o, 72) = (1) = —e—(i=h0)?/(27)
\V2TT
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CONJUGATE PRIOR FOR GAUSSIAN

e Posterior:
(| X) o 2o (Xim)?/(20%) | = (n—p10)?/(272)
(=2 3 X)/(207) |~ (e=2p0m)/(27)
{202 +1/72)2u(3 | Xifortio/7)} /2
u2 — QMZ?ZI Xi/o® + po/ 7>
n/oc?—+1/72

RoOR R R

1
=P {_2<n/02 +1/72)1

> iy Xi/o® + po/T? 1 )
= HX N( n/o? 4+ 1/72 'n/o2 4+ 1/712

e Prior mean: E(u) = uo

o MLE; Zi=1 X
n
D iy Xi/o® + po/T?
n/o?—+1/72

e Posterior mean:
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CONJUGATE PRIOR FOR GAUSSIAN

Lack of knowledge about p given by noninformative prior
w(u) o ¢, c positive constant

What is the problem with this prior?

(X)) o e 2 (Xmm?/(20%)
o (P=2u ) X0)/(207)

1 > Zj_lxi
X 6_20%(“ —2p===)
"X o2
iuliwf\/(zz—l 2 )
n n
: "X
Posterior mean = MLE = @
n
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JEFFREYS PRIORS

There are alternative proper noninformative priors:

: 1
— Flatprioron [-K,K],K > 0:n(n) = ﬁl[—K,K](N)
(I 4 indicator function of set A)

— Diffuse prior: u ~ N (uo, 109)
The previous prior 7(u) o cis an example of Jeffreys priors

0 = (01,...,0,) p-dimensional parameter in f(X|0)

J ={Jij}; j—1.., Fisher information matrix s.t. for each ¢,
2
J = _p|0P09G(XI0)
00;00;
_ o [(2109(F(X10))Y (9l0g(£(X]6))
00; 00;

)|
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JEFFREYS PRIORS FOR GAUSSIAN

o Jeffreys prior: w(6) = /|J|, with |J| the determinant of the Fisher information matrix
e Gaussian model with known variance and unknown mean p

e Here the matrix is of size 1 since there is just one parameter

d1og(f(X|m))\?
(1) o ¢|7|o<\/E( / )

U
X -—u\? 1
x \/E( > ) OC;\//J"(Xlu)(X—u)QdX
o 1
X ;oc;ocl

e The last step is possible since o2 is a constant here

29



CONJUGATE PRIOR FOR GAUSSIAN
X1,...,Xn ~N(u,o?)
Mean/median 1 € & and variance o2 > 0 unknown
X =(X1,...,Xp)
Conjugate normal-inverse gamma prior
Prior m(p,0%) = m(plo?)m(0?)
plo? ~ N (po, 7%02)

02 ~ ZG(a, B) Inverse gamma

w(0?) = @(02)_0‘_16_5/02, with ' (o) = / e %dy
0

30



CONJUGATE PRIOR FOR GAUSSIAN

After some computations (left as an exercise) we get the posterior
m(p,0%|X) = n(plo?, X)m(o?|X) with

- > oieq Xi+ po/T° o* )
M‘O’,X N( n_|_1/7-2 ,n—|—1/7'2
- 0% X ~IG(a+ (n+1)/2,8)

The posterior marginal of u, i.e. w(u|X), has a Student-t distribution

o, X ~IG(a+ (n+1)/2,8+ Y (Xi—p)?/2 4 (b — po)?/(27°))

1=1

= useful for MCMC (Gibbs sampling)
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PARAMETER ESTIMATION - DECISION ANALYSIS

e Loss function L()\,a), a € A action space

e Minimize ETAX (N, a) = [ L\, a)7(A|X)dA w.rt. a
= )\ Bayesian optimal estimator of \
— ) posterior median if L(\,a) = |\ — a|

— X posterior mean ETAIXI N if L\, a) = (A — a)?
erNX (N q) = / (A — a)27 (A X)dX

— /A%(A@)d/\ _ za//\wmg)d/\ +a2.1

/A27r(>\|1)d)\ _2qe™ QX \ 4 42
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QUICK GLIMPSE TO BAYESIAN DECISION ANALYSIS

e Bayesian Decision Analysis supports a Decision Maker in making decisions under
uncertainty:

— Set of alternatives (actions) a € A

— Unknown parameter 6 depending on state of nature

— Consequence c(a, 0) of action a when 6 occurs

— Loss function L(c(a,0))

— Posterior distribution 7w (6|x) on parameter 6, after observing x

— Optimal action satisfies the Minimum (Subjective) Expected Loss Principle:

a* = arg min/L(c(a, 0))m(0|x)do

acA

e Often losses are replaced by utilities and minimisation becomes maximisation

33



QUICK GLIMPSE TO BAYESIAN DECISION ANALYSIS

State of nature: 6 = {Rain today, No rain today }
Actions a = {stay at home, go out with umbrella, go out without umbrella}

Consequences c(a, 0), e.g., c(stay at home, No rain today) = fired at work or
c(go out without umbrella, Rain today) = unable to meet an important customer

Loss function L(c(a,8)), €.9., L(c(stay at home, No rain today)) = 100, 000
(income loss, in euros, after being fired)

Posterior distribution 7(6|x) on parameter 0, after observing z, e.g., rain in the
previous days or weather forecasts

Optimal action (suppose go out with umbrella) satisfies the Minimum (Subjective)
Expected Loss Principle:

a* = arg min/L(c(a,Q))W(9|x)d9

acA
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PARAMETER ESTIMATION

a—+n
5"‘2?:1)(@'

e Light bulb: posterior mean \ =
= compare with
. (87
— prior mean —
B
n

Z?:l Xi

e MAP (Maximum a posteriori)

:>5\:oz—|—n—1

— MLE

B+> X
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PRIOR AND DATA INFLUENCE

Posterior mean: A = —— tn
B+ X
Prior mean: A\p = % (and variance o° = %)

MLE: Xy = n/ 3 X;
a1 = ko and 51 = k5:> /)\\1]3 = j\p and o] = 0'2/]6

ko + n
kB + > X

Posterior mean: \ =

k — O = prior variance — co = X\ — n/ Y X;, i.e. MLE (prior does not count)

k — oo = prior variance — 0 = X — \p, i.e. prior mean (data do not count)

" - i.e. MLE (prior does not count)

2. Xi

n—>oo:>5\rw
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EXERCISE: PARAMETER ESTIMATION

Prior influence (multinomial data and Dirichlet prior)
(TL]_, c o ,?’Lk) ~ MN(n7p17 S >pk)

(pla"'apk:) NDi?“(SOél,-~-,Sak), Zai =1, s>0

sa; + ny;

s+n

e Posterior mean: p; =

e Prior mean: p; = «;

o MLE: X

n

e s— 0= p’ — MLE

® 55— 00 =D, —> P



PRIOR CHOICE

Where to start from?
o X ~E&(N)
o f(x|A\) = Aexp{—Azx}

o P(X<z)=F(x)=1-S() =1-—exp{—Az}

= Physical properties of A
e EX =1/)\
o VarX = 1/)?

_ f(x) _ Aexp{—Az} _
S(x) exp{—Az}

A (hazard function)
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PRIOR CHOICE

Possible available information
e Exact prior () (?77?)
e Quantiles of X;, i.e. P(X; < xy) =q
e Quantiles of \,i.e. P(A < \y) = ¢
e Moments EX* of A, i.e. [ A*r(A\)d\ = ar & [(AF —ap)m(A\)dA =0
e Generalised moments of A, i.e. [A(A)7(A)d\ =0

e Most likely value and upper and lower bounds

e None of them
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PRIOR CHOICE

How to get information?

e Results from previous experiments (e.g. 75% of light bulbs had failed after 2 years
of operation = 2 years is the 75% quantile of X))

e Split of possible values of A\ or X; into equally likely intervals = quantiles

Most likely value and upper and lower bounds

Expected value of \ and confidence on such value (mean and variance)

40



PRIOR CHOICE
Which prior?

o A\~ G(a,B) = f(\a, B) = BX\*Lexp{—BA}/T(a) (conjugate)
o A~ LN (p,0%) = f(A|p,02) = {dov2M} L exp{—(log X — 1)?/(20°)}

o A~GEV(1,0,0) = f(A) =1 [1 46 <A%‘M)E1/9—1exp {_ [1 + 0 (Aa_u)Ll/e}

e )\~ T(l,m,u) (triangular)

o A~ U(l,u)

AW, o, 8) = fF(A) =2 (A—”)B_l exp{— (%)B}

41



PRIOR CHOICE

Choice of a prior

e Defined on suitable set (interval vs. positive real)

e Suitable functional form (monotone/unimodal, heavy/light tails, etc.)

e Mathematical convenience

e Tradition (e.g. lognormal for engineers)

42



PRIOR CHOICE

Gamma prior - choice of hyperparameters

L Xl,,XnNg(A)

o f(X1,...,Xn|lN) = N"exp{-2Y X;}

e A~ G(a,B) = f(Na, B) = BoAYLexp{—BA}/I (@)

e = \X1,...,.Xn~G(a+n, B8+ X;)

43



PRIOR CHOICE

Gamma prior - choice of hyperparameters

e EA=p=uqa/Band Vard = 02 = o/
= o= p?/o?and B = p/o?

e Two quantiles = («, 8) using, say, Wilson-Hilferty approximation. Third
quantile specified to check consistency

e Hypothetical experiment: posterior G(a + n, 8+ > X;)
= o sample size and 5 sample sum

44



BAYESIAN SIMULATIONS

Alternative choice: A ~ LN (a, B)
e Nno posterior in closed form = numerical simulation
Markov Chain Monte Carlo (MCMC):

o draw™ a sample A(), X(2)_ . (Monte Carlo) . ..

e ... from a Markov Chain whose stationary distribution is . . .

e ... the posterior 7(A|X) and compute ...

o £E(NX) ~ Z?:m—l—l 2D /(n —m), etc.
(*) For A = (0, 1) = Gibbs sampler:

o draw 0 from 9|1, X

o draw p( from p|6(), X

e repeat until convergence

45



MCMC: REGRESSION
y = Bo+ Biz + €, ¢ ~ N(0,02)
(y1,71), -5 (Yn, Tn)
Likelihood oc (02) ™2 exp{Z Y1, (i — Bo — Brzi)?}
Priors: Bo ~ N, B1 ~ N, 0% ~ IG

Full posterior conditionals:
— BolB1,0% ~ N
— B1lBo, 02 ~ N
- 0°|Bo, B1 ~ IG

= MCMC
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CREDIBLE INTERVALS

In Bayesian statistics the parameter X is considered a r.v. and it is possible to com-
pute the posterior probability P(\ € A|X) for a measurable set A

= Credible set, as a counterpart of the frequentist confidence set, but with very
different meaning

If the set is an interval, then we call it credible interval at 100y%, if its posterior
probability is y

We are interested also in the highest posterior density (HPD) sets, which are the
ones with the smallest Lebesgue measure among those with a given posterior prob-
ability

z Na+n
Light bulb: P(A < z|X) = (Bt 2 XO)™™ yabn1,-(+3 X0A gy
0 M(a+n)
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CREDIBLE INTERVALS
One observation X ~ N (u, 1)
Prior u ~ N (0, 1)

Posterior

w(ulz) oc e G2 L o2 o o= =m) o axpy

= plr ~ N(x/2,1/2)

(n—x/2)?

2.1/2

Quantiles Zg75 = 1.96 and Z go5 = —1.96

—z/2
= P(Zoss < Z < Zors) = (—1.96 < “\/1% < 1.96) — .95

= (x/z —1.96\/1/2,2/2 + 1.96\/1/2) credible interval at 95%
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HYPOTHESIS TESTING

e Onesidedtest: Hy: A< XAgVvs. H{: A > X

= Reject Hy iff P(A < A\g|X) < a, a significance level

e Two sidedtest: Hp: A= AgVs. H1 : A # X
— Do notrejectif \g € A, A 100(1 — )% credible interval
— Consider P([Ag — €, A\g + €]|X)

— Dirac measure: P(\g) > 0 and consider P(\g|X)

49



HYPOTHESIS TESTING

Ho: X € Novs. Hy : X € NS, where C denotes the complement set

Priors: P(Hp) =P(A € Ag) =1 —-P(A e A§) =1 —P(H1)

Sample X = posteriors P(Hp|X) = 1 — P(H1|X)

There are many problems associated with the frequentist approach to hypothesis

testing which can be addressed properly in a Bayesian framework

— Bayesians have no need to know if either Ho or H; is true but, treating A as a
r.v., they can assess the probabilities of both hypotheses and decide based on
them

— Frequentists are unable to specify opinions about hypotheses, unlike Bayesians
with prior distributions on them

— Frequentists set significance levels a priori and decide based on them, unlike
Bayesians which get a posteriori the probability of an hypothesis and decide
based on it

50



PREDICTION

After observing an i.i.d. sample X = (Xi,...,X,), what can we say about a next
observation X,,4+1 from the same density f(X|X\)?

We could consider the next observations X,,+1,...,X,4+; but we take j = 1 for
simplicity

When considering observations over time we prefer to use the term forecast instead
of prediction (e.g., weather forecast)

Given the sample X and the prior w(A), then the posterior w(A|X) is used to com-
pute the posterior predictive density (absolutely continuous case here) for X, ;1

f(Xn11X) = [ fF(Xng1 X XDm(ANXDdX = [ f(Xng1]AD)T(AX)dA
Prior predictive densities can be used to compare model via Bayes factor (more later)

Posterior predictive densities can be used to assess the goodness of fit of a model
through the prediction error, using part of the data to get the posterior and the re-
maining one to get predicted values (e.g. predicted posterior mean/median) and
compare them with actual ones

51



PREDICTION
o Lightbulb: X, 1|JA~EWN), M X ~G(a+n,8+ > X))

e Posterior predictive density for X, 41

/Oo Ao~ M (B+ > X))t NeFn—1,-MB+Y X)) gy

0 M(a+n)

CEDIP.O Rt /Oo Nabnt 11 =AY XA Xo) gy
Mo+ n) 0

CEDIP. Ot Moa+n—+1)
Ma+n) B+ Xi+ Xppp)otntl

. (B4 > Xyt

= (atn) B+ D Xi+ Xpqpp)otntl

fx (Xng11X)

e | found first the constant knowing that the density integrates to 1 and then | used the
property F(n + 1) = nl(n)
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MODEL SELECTION
Compare M1 = {f1(z|61),7(61)} and Mo = {f2(z|02), 7(62)}

e Bayes factor

i@ [ f1(x]|61)7(01)d6y

= b= fo(z) [ fo(z]02)7(02)db>

BF | 210919 BF Evidence in favor of M
1t03 0 to 2 | Hardly worth commenting
3to 20 2106 Positive
20 to 150 6to 10 Strong
> 150 > 10 Very strong

e Posterior odds

P(Mj1ldata) _ P(data| M) . P(Mq) - 1/P(data) _Bp. P(M1)
P(Mz|data)  P(data|M3z) P(M2) 1/P(data) P(Mo>)
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BACK TO HYPOTHESIS TESTING
Ho:0€©pvs. H : 0 € ©;1,with® =0 O
m0(6) prior on ©¢ and 71 (6) prior on ©;
Priors on hypotheses: P(©p) =cand P(©1) =1 —¢
Mixture prior on ©: 7.(0) = emo(0)1o,(0) + (1 —e)m1(0)1o,(0)
I4(z) indicator function of set A
Likelihood I,,(0) = f(X|0)

elz(0)m0(0)1e,(0) + (1 —€)l(8)71(0) 1o, (6)

Posterior m(6].X) = - Jo L(®)m0(0)d0 + (1 — &) [ 1:(0)m1(0)d0
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BACK TO HYPOTHESIS TESTING

Posterior on hypotheses

— e Jo, lo(0)m0(68)d0
O L L@@ + (1= 0) Jo, L@ @)ip
- P(©.|X) = (1-¢) fel 1.(0)71(6)do

e fo, L (O)m0(0)d0 + (1 — &) [, 1o(0)m1(0)do
Posterior odds = Bayes factor - prior odds

P(9olX)  Jo, lz(0)mo(0)df ¢
P(©11X)  [o l(0)m(0)d6 1—¢

Posterior odds influenced by prior odds, i.e. choice of prior on hypotheses

= Often only Bayes factor is used in hypothesis testing (corresponds to ¢ = 0.5)
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PRIORS AND MODELS

The Bayesian approach criticized because subjective but . . .

. is the choice of the model (the only aspect which matters in the
frequentist approach) really objective?

Consider the failure times of n cars:

Who is choosing the model? Expert and statistician, like for the prior!
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MODEL SELECTION

Before the analysis - Model chosen according to

physical laws
mathematical convenience

exploratory data analysis
— Weibull plot, Duane plot, g-q plot

— histogram

our knowledge about experiment, e.g.
— same/similar/different car and same/different cause of failure?

— replacement policy and aging
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MODEL SELECTION

Which model for {Xiji};i =1,...,n;5:.=1,... ,ni?

All the cars behave in the same way and the failure pattern is not changing over time
= Xz’ji ~ 5()\)

The cars behave differently and the failure pattern is not changing over time
= Xij ~ E(N)

All the cars behave in the same way and the failure pattern is changing over time
= X;;, from a NHPP (Nonhomogeneous Poisson process) with intensity A(¢)

The cars behave differently and the failure pattern is not over time
= Xj; from NHPP’s with intensities \;(¢)

Each failure affects only the next one (Markov property, e.g. AR(1) model)
= Xip+1 = pXik + €ik

etc.
Lognormal, Weibull, Birnbaum-Saunders, etc. instead of exponential
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MODEL SELECTION

After the analysis - Model chosen according to

graphical displays (e.g. residuals in regression)
goodness of fit tests (e.g. x2, Kolmogorov-Smirnov) (not very Bayesian!)

Bayes factor to compare
My = {f1(x|61),7(61)} and Mz = {f2(x|02), 7 (02)}

_ f@) _ [ f1(2|01)7(01)db:
fo(z) [ fo(x]|02)7(02)do2

= BF

Posterior odds

P(Mji|data) _ P(data|M1) . P(My) _ BF. P(My)
P(Ms|data)  P(data|Mz) P(My) P(M>)

AIC, BIC, DIC et al.
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BAYESIAN ROBUSTNESS: MOTIVATING EXAMPLE
X ~ N(6,1)

Expert's opinion on prior P: median at 0, quartiles at -1, symmetric and unimodal
= Possible priors include Cauchy C(0, 1) and Gaussian A'(0, 2.19)

Interest in posterior mean p¢(x) or puN ()

T 0O 1 2 4.5 10
uC(xz) O 052 1.27 4.09 9.80
V() 0 0.69 1.37 3.00 6.87

Decision strongly dependent on the choice of the prior for large «

Alternative: Posterior median w.r.t. posterior mean
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BAYESIAN ROBUSTNESS

Practical impossibility of specifying priors exactly matching experts’ knowledge

Prior elicitation subject to uncertainty and, possibly, some degree of arbitrariness
introduced by the analyst, e.g. the functional form of the distribution

Uncertainty in the choice of priors modelled through a class of distribution (the same
might apply for loss functions and statistical models/likelihoods)

Use of indices to measure the consequences (i.e. perform robustness analysis) of
the choice of a class of priors on the quantities of interest (e.g. posterior mean)

An answer to the criticism about the arbitrariness in the choice of the prior and a
possible excessive influence
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BAYESIAN ROBUSTNESS

A more formal statement about model and prior sensitivity
o M ={Qy;0 € ©}, Qg probability on (X, Fx)
e Sample x = (x1,...,x,) = likelihood I,(0) = 1,.(0|x1,...,zy)
e Prior P su (©, F) = posterior P*
e Uncertainty about M and/or P = changes in
/ h(6)I(0)P(do)
S
/ 1(60)P(dO)
S

- P*

Bayesian robustness studies these changes
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ROBUST BAYESIAN ANALYSIS

Interest in robustness w.r.t. to changes in prior/model/loss but most work
concentrated on priors since

e controversial aspect of Bayesian approach

e easier (w.r.t. model) computations

e problems with interpretation of classes of models/likelihood

e oOften interest in posterior mean (corresponding to optimal Bayesian
action under squared loss function) and no need for classes of losses
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ROBUST BAYESIAN ANALYSIS

Three major approaches

e Informal sensitivity: comparison among few priors

e Global sensitivity: study over a class of priors specified by some fea-
tures

e Local sensitivity: infinitesimal changes w.r.t. elicited prior
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ROBUST BAYESIAN ANALYSIS

We concentrate mostly on sensitivity to changes in the prior

e Choice of a class " of priors

e Computation of a robustness measure, e.g. range § = p — p

(p = sup Ep«[h(0)] and p = inf Ep«[h(0)])
Perlr Pel

— 0 “small” = robustness
— ¢ “large”, 1 C I and/or new data

— ¢ “large”, I' and same data
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ROBUST BAYESIAN ANALYSIS

Relaxing the unique prior assumption (Berger and O’Hagan, 1988)

e X ~N(6,1)

e Prior 6 ~ N (0,2)

e Data x = 1.5 = posterior 8|z ~ N (1,2/3)

e Split ik in intervals with same probability p; as prior N (0, 2)
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ROBUST BAYESIAN ANALYSIS

Refining the class of priors (Berger and O’Hagan, 1988)

I; pi  D; o Mou
(-00,-2) 0.08 .0001 (0,0.001) (0,0.0002)
(-2-1) 0.6 .007 (0.001,0.029) (0.006,0.011)
(1,00 026 .103 (0.024,0.272) (0.095,0.166)
(0,1)  0.26 .390 (0.208,0.600) (0.322,0.447)
(1,2)  0.16 .390 (0.265,0.625) (0.353,0.473)
(2,400,) 0.08 .110  (0,0.229) (0,0.156)

e [ quantile class and I" gy unimodal quantile class

e Robustness in IM g1

e Huge reduction of § from M to Mgrs
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CLASSES OF PRIORS

Desirable features of classes of priors

e Easy elicitation and interpretation (e.g. moments, quantiles, symmetry,
unimodality)

e Compatible with prior knowledge (e.g. quantile class)

e Simple computations

e Without unreasonable priors (e.g. unimodal quantile class, ruling out
discrete distributions)
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CLASSES OF PRIORS

o Np={P:p(l,w),w e N} (Parametric class)
- Tp={G(e,8) : l1 < /B <u1,l2 < a/B? < us}

o [o={P:o; < P(;) LBi,i=1,...,m} (Quantile class)

o gu ={P € Tlg, unimodal} (Unimodal quantile class)
o gus ={P € lgu, symmetric} (Symmetric, unimodal quantile class)
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CLASSES OF PRIORS

o Toy ={P: [hi(6)dP(0) = a;,i = 1,...,m} (Generalised moments class)
— hi(0) = 0" (Moments class)
— hi(0) = 14.(0) (Quantile class)

o MB={P:L(O) <p(d) <UO)} (Density bounded class)

o MNP ={Fcdf. : F0) <F(@) < F,0),V0} (Distribution bounded class)
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