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@ Joint equidistribution of Farey sequences

© Equidistribution on expanding horocycles: A baby example
© Main theorem

@ Random circulant graphs: An application

© Key points in the proof of main theorem



Farey sequences

@ The Farey sequence of order g > 1, denoted by F,, is the sequence of
completely reduced fractions between 0 and 1, which when in lowest terms
have denominators less than or equal to g, arranged in order of increasing
size. For example,

Fa:{9111131§3§i§1}
1’6’574’3’5°2'5’3°4’5°6"1J°
o Let Sg=Fg\ Fg—1={7 : r€eZn][l,q], ged(r,q) =1} be the set of
rationals in [0, 1] with denominator = q.
#5, = ¢(q) > q/loglog q, where ¢ is Euler’s totient function.
For example, if g = p is a prime, then

Sp:{é : 1§r§p71} and #S,=p—1.

o Equadistribution theorem: for any fixed 0 < o < § < 1,

lim #Sq N o, B] _

Jim 7S, 8 — a.



Equadistribution of reduced fractions

Claim: For any smooth function F on T 2 [0,1), we have

1
.S F(r/q):/o F(x)dx + Op(q~**%).

Proof: By Fourier analysis, we get F(y) =>_ ., (fol F(x)e(—nx)dx) e(ny),
where e(z) = e?™2. Hence

ﬁ zq: F(r/q)_/ol dx+z</ F(x)e nx)dx) Zq: e<’;’>

i - o

By the integral we know that we can truncate n-sum at |n| < g° with a negligible
error term. Now we consider the Ramanujan sums

q
R(mq)= Y e <';r> = > du(q/d) < n"F < g .
ool di(ma)

This proves our claim. [



Joint distribution

For any r € ZN[1,q], ged(r, q) = 1, we define 7 € ZN[1, q] to be the inverse of
r modulo g, that is, r7 =1 (mod q).

A natural question is the joint distribution of (r/q,7/q) in [0, 1]2.
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Joint distribution

q = piooo = 7919




Joint equidistribution

Theorem (Marklof 2010 and Einsiedler-Mozes—Shah—Shapira 2016)

Let F : T2 — R be a smooth function, then for any positive ¢ < 1/2, we have

1 i F(r/q,7/q) = / / (x,y)dxdy + O(g™°).

e(q) =
(r,q)=1

Sketch of proof: By Fourier expansion, we have

B o SN ATl P RE———"

r=1 me€Z neZ
(r,q)=1



Joint equidistribution

Rearranging the sums, we get

ZZSmnq// (x,y)e(—mx — ny)dxdy,

mEZ neZ

where S(m, n; q) := Xq: e ("”Tm) is the Kloosterman sum.
(ra-1
@ The case m = n= 0. Note that 5(0,0; g) = ¢(q), hence we get the main
term fo fo (x,y)dxdy.
@ The case m =0 and n # 0. Note that S(0, n; g) is the Ramanujan's sum, for
which we have |S(0, n; )| < ged(n, q). Hence the contribution is < g~ 1=,
@ The case m # 0 and n = 0 is the same as above.

@ The case m # 0 and n # 0. By the Riemann Hypothesis for curves over a
finite field (due to André Weil 1948), we have

S(m,n; q) < q'/?te ged(m, n, q)l/z.

Hence the contribution is < g~1/2t<, O
D EEEEEOEOBEBEBRERBRE



Group theory interpretation

Let G =SLy(R) and ' = SLp(Z) and define

1-{(5 %) xer)cs

Denote by dx the H-invariant Haar probability measure on '\TH = R/Z.
For r e ZN[1,q], gcd(r,q) =1, we have

r (r}q ?) (g qgl) =T <(1) ’1<> € T\TH,
where x = 7/q, as <i’ q01> (é —Fl/q> = <i’ 7ﬁ/;i 1/q> erl.

Let f : T\T'H x T — R be a smooth function, then

% Zq: f( (r/q §)> (g q01) ,r/q) N /r\erT fixdy + Or(g27),

r:l
,q)=1




Expanding horocycles

1L O\(g 0Y,_ v . & |,
v 1)\0 ¢! vigt+1  vPgr+1
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Expanding horocycles with —1/2 <v <1/2and g =1, v/2, V3.
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Horocycle equidistribution

From Constantin Kogler's webpage



Flows on the Modular Surface

Geodesc Flow Horoeydle Flow



Define, for d > 1and g > 1,
Rg={re(zZn[i,q))? : ged(r,q) =1}

and
D(q) = dlag(qéa L) q%) qil) € SLd+1(R)'
Let G = SLg41(R) and I = SLg41(Z) and define

H— {(% ‘1’> : AeSLd(R),veRd} cG.

Denote by py the H-invariant Haar probability measure on M\['H. Finally, for

x € RY, define
Iy 0
ny(x) = w 1) € G.

Fny(q r)D(q) € T\T'H.

We have



Main theorem

Let C§(T'\T'H x T9) be the space of k times continuously differentiable functions
with all derivatives bounded.

Theorem (El-Baz—H-Lee 2022+)

For every d > 3, every € > 0 and every integer k > 2d*> — d + 1, there exists a
constant ¢ > 0 such that for every function f € CE(T\[H x T?) and every
q € Zx1,

1 1 1
Fny ( —r) D(q),—r —/ fdupydx
’#Rq Z ( " (q ) (q) q ) M\FHxTd HH

reRy

< f||ckq_%+d2(2kz;22‘d“)+8.
b




@ We have “continuous version”, e.g. Nimish Shah (1996).
@ “Average version” over g is due to Jens Marklof (2010) and Han Li (2015).

@ Our result is an effective version of a result of Manfred Einsiedler, Shahar
Mozes, Nimish Shah, and Uri Shapira (2016).

@ Andreas Strombergsson (2015) proved an effective Ratner equidistribution
result for the affine special linear group ASL,(RR).

@ The case d = 1is “easy”, which is already known at least by Marklof (2010)
and Einsiedler, Mozes, Shah, and Shapira (2016).

@ The case d = 2 is due to Min Lee and Jens Marklof (2018).



Circulant graphs
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The 4—regu|ar circulant graph Gg(2,3) and the circulant digraphs G (2, 3),
Cgr(2, 5). The corresponding diameters are 2, 3 and 4, respectively.
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Circulant graphs

The 3-regular circulant graph Cio(2,5) and the circulant digraphs Cj5(2,5),
C.5(5,8). The corresponding diameters are 3, 5 and 5, respectively.

17



Undirected circulant graphs

Let us fix an integer vector a = (ay,. .., a4) with distinct positive coefficients
0<a<...<ag<3.

We construct a graph Cy(a) with g vertices 1,2, ..., q, by connecting vertex i and
J whenever |i — j| = a, mod g for some h € {1,...,d}.

If ag < 4, then Cy(a) is 2d-regular, i.e., every vertex has precisely 2d neighbours.
If ag = 4, then Cy(a) is (2d — 1)-regular.

Cq4(a) is connected if and only if ged(ay, ..., aq4,q) = 1.



Diameter of a circulant graph

We endow our circulant graph with a (quasi-)metric by stipulating that the edge
from i to j =i + ap mod g has length 1. We denote the corresponding metric
graphs by C4(a) itself.

The distance d(i, j) between two vertices is the length of the shortest path from i
to j. The diameter is the maximal distance between any pair of vertices,

diam Cy4(a) = maxd(/, ).
i

Amir and Gurel-Gurevich (2010) conjectured the existence of a limiting
diam Cy(a)

distribution, as g — 400, for Ve



Limiting distribution

Marklof and Strombergsson (2013) proved the limiting distribution of the
diameters with averaging over q.

The existence of this limiting distribution is a consequence of the main theorem
Einsiedler, Mozes, Shah, and Shapira (2016).

Corollary (El-Baz—H-Lee 2022+ )

For every d > 2, there exists a continuous non-increasing function
Vy: R>o — Rso with Wy(0) =1 and a constant ng > 0 such that for every
R >0, we have

Prob (‘j""‘r;—c'(a) > R) = Wy(R)+ O (q™),

where the implicit constant depends on R.




Limiting distribution
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Distribution of diameters diam C,(a) with average over g
for circulant graphs with d = 2.



Proof Sketch of Main Theorem: Congruence equations

For r € Ry, there exist A € SL4(R) and x € R9 such that
rn.(gir)D(q) =T (% ’1‘) € M\lH.

This is equivalent to the existence of A € SL4(R) and x € R?, uniquely
determined modulo I' = SL441(Z), satisfying

(% D@ oo@r = (G ) (76" (L4, )

Let s=gx and B = q%A. By the above relation,
1
sc 79, E(B —s'r) € My(Z) and det(B) = g9 1 det(A) = g9~ 1.

So
B€My(Z) and B=s' (modq).



Parametrizing R4

For a positive integer g, we also define the following congruence subgroup:
*

Fo,a(q) = {’Y €SLy(Z) : v= <t0 Z) (mod q), ged(u, q) = 1}.

We can parametrise Rq in terms of g 4(q)\ SL4(Z) and (Z/qZ)*.
Let B, be a set of representatives for Mg 4(q)\ SL4(Z).

Lemma (El-Baz—H-Lee 2022+)

We have

Ry = {r =Y (2) (mod q) : YEB,, u€ (Z/qZ)X}.

Let By = (94~ ), for any v € F0,4(q)\ SL4(Z) and u € (Z/qZ)*, if we set
r=u'yey (mod q),
s =Tey, ui =1 (mod g),
B = B()’)/7

then r € Ry, det(B) = q?~! and B=s'r (mod q).



Connection to Kloosterman sums

We have
1 1 1
f{Tn.(—r|D(q),—r
#Rqr;;q < +<q) (q)q)
,1+l —1—
)3 f<<q t(;Bov q 1ued>’q1ut7ed>

YE€Bq ue(Z/qz)*

_ 1 > ((a*iByy q 'Tey nutyeq
“ R, 2 2 (( 0 1 ))¢ ’

9 yeB, u€(Z/qZ)* neZd q

1
#Rq

N

where



Connection to Kloosterman sums

For A€ SLy(R) and y € R, let Fo(A,y) = f, ((A y)) '

0 1
We have
1 1 1
f <Fn (r) D(q), r>
#Rq reZRq - q q
1 = _141 ‘muey + nutyey
:#quz ZF“(q dBO'y,m) Z e( q

Y€EBg neZd mezd u€(Z/qZ)*

= #% XD R (q‘”%Bo%m) S(mg, n(*veq); q),
q

'YGBq n mezd
where 7-_:(A, m) = f(]R/Z)d Fa(A,t) e (— 'mt) dt.
Now by the Riemann Hypothesis for curves over a finite field, equidistribution of

Hecke points (due to Laurent Clozel, Hee Oh, and Emmanuel Ullmo 2001), and
counting techniques, we can prove our main theorem. ]



Thank you for your attention!



