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Farey sequences

The Farey sequence of order q ≥ 1, denoted by Fq, is the sequence of
completely reduced fractions between 0 and 1, which when in lowest terms
have denominators less than or equal to q, arranged in order of increasing
size. For example,
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Let Sq = Fq \ Fq−1 = { rq : r ∈ Z ∩ [1, q], gcd(r , q) = 1} be the set of

rationals in [0, 1] with denominator = q.
#Sq = ϕ(q)� q/ log log q, where ϕ is Euler’s totient function.
For example, if q = p is a prime, then

Sp =
{ r

p
: 1 ≤ r ≤ p − 1

}
and #Sp = p − 1.

Equadistribution theorem: for any fixed 0 ≤ α < β ≤ 1,

lim
q→∞

#Sq ∩ [α, β]

#Sq
= β − α.
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Equadistribution of reduced fractions

Claim: For any smooth function F on T ∼= [0, 1), we have

1

ϕ(q)

q∑
r=1

(r ,q)=1

F (r/q) =

∫ 1

0

F (x)dx + OF (q−1+ε).

Proof: By Fourier analysis, we get F (y) =
∑

n∈Z

(∫ 1

0
F (x)e(−nx)dx

)
e(ny),

where e(z) = e2πiz . Hence

1

ϕ(q)

q∑
r=1

(r ,q)=1

F (r/q) =

∫ 1

0

F (x)dx+
1

ϕ(q)

∑
n 6=0

(∫ 1

0

F (x)e(−nx)dx

) q∑
r=1

(r ,q)=1

e

(
nr

q

)
.

By the integral we know that we can truncate n-sum at |n| � qε with a negligible
error term. Now we consider the Ramanujan sums

R(n; q) =

q∑
r=1

(r ,q)=1

e

(
nr

q

)
=
∑

d|(n,q)

dµ(q/d)� n1+ε � qε.

This proves our claim.
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Joint distribution

For any r ∈ Z ∩ [1, q], gcd(r , q) = 1, we define r̄ ∈ Z ∩ [1, q] to be the inverse of
r modulo q, that is, r r̄ ≡ 1 (mod q).

A natural question is the joint distribution of (r/q, r̄/q) in [0, 1]2.
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Joint distribution
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Joint equidistribution

Theorem (Marklof 2010 and Einsiedler–Mozes–Shah–Shapira 2016)

Let F : T2 → R be a smooth function, then for any positive c < 1/2, we have

1

ϕ(q)

q∑
r=1

(r ,q)=1

F (r/q, r̄/q) =

∫ 1

0

∫ 1

0

F (x , y)dxdy + OF (q−c).

Sketch of proof: By Fourier expansion, we have

Σ =
1

ϕ(q)

q∑
r=1

(r ,q)=1

F (r/q, r̄/q)

=
1

ϕ(q)

q∑
r=1

(r ,q)=1

∑
m∈Z

∑
n∈Z

e

(
mr + nr̄

q

)∫ 1

0

∫ 1

0

F (x , y)e(−mx − ny)dxdy .
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Joint equidistribution

Rearranging the sums, we get

Σ =
1

ϕ(q)

∑
m∈Z

∑
n∈Z

S(m, n; q)

∫ 1

0

∫ 1

0

F (x , y)e(−mx − ny)dxdy ,

where S(m, n; q) :=
q∑

r=1
(r ,q)=1

e
(

mr+nr̄
q

)
is the Kloosterman sum.

The case m = n = 0. Note that S(0, 0; q) = ϕ(q), hence we get the main

term
∫ 1

0

∫ 1

0
F (x , y)dxdy .

The case m = 0 and n 6= 0. Note that S(0, n; q) is the Ramanujan’s sum, for
which we have |S(0, n; q)| ≤ gcd(n, q). Hence the contribution is � q−1+ε.

The case m 6= 0 and n = 0 is the same as above.

The case m 6= 0 and n 6= 0. By the Riemann Hypothesis for curves over a
finite field (due to André Weil 1948), we have

S(m, n; q)� q1/2+ε gcd(m, n, q)1/2.

Hence the contribution is � q−1/2+ε.
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Group theory interpretation

Let G = SL2(R) and Γ = SL2(Z) and define

H =

{(
1 x
0 1

)
: x ∈ R

}
⊂ G .

Denote by dx the H-invariant Haar probability measure on Γ\ΓH ∼= R/Z.

For r ∈ Z ∩ [1, q], gcd(r , q) = 1, we have

Γ

(
1 0

r/q 1

)(
q 0
0 q−1

)
= Γ

(
1 x
0 1

)
∈ Γ\ΓH,

where x = r̄/q, as

(
q 0
r q−1

)(
1 −r̄/q
0 1

)
=

(
q −r̄
r −r r̄/q + 1/q

)
∈ Γ.

Let f : Γ\ΓH × T→ R be a smooth function, then

1

ϕ(q)

q∑
r=1

(r ,q)=1

f

(
Γ

(
1 0

r/q 1

)(
q 0
0 q−1

)
, r/q

)
=

∫
Γ\ΓH×T

f dxdy + Of (q−1/2+ε).
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Expanding horocycles
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Horocycle equidistribution

From Constantin Kogler’s webpage
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Flows on the Modular Surface
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Notations

Define, for d ≥ 1 and q ≥ 1,

Rq = {r ∈ (Z ∩ [1, q])d : gcd(r, q) = 1}

and
D(q) = diag(q

1
d , . . . , q

1
d , q−1) ∈ SLd+1(R).

Let G = SLd+1(R) and Γ = SLd+1(Z) and define

H =

{(
A v
t0 1

)
: A ∈ SLd(R), v ∈ Rd

}
⊂ G .

Denote by µH the H-invariant Haar probability measure on Γ\ΓH. Finally, for
x ∈ Rd , define

n+(x) =

(
Id 0
tx 1

)
∈ G .

We have
Γn+(q−1r)D(q) ∈ Γ\ΓH.
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Main theorem

Let Ck
b(Γ\ΓH × Td) be the space of k times continuously differentiable functions

with all derivatives bounded.

Theorem (El-Baz–H–Lee 2022+)

For every d ≥ 3, every ε > 0 and every integer k ≥ 2d2 − d + 1, there exists a
constant c > 0 such that for every function f ∈ Ck

b(Γ\ΓH × Td) and every
q ∈ Z≥1,∣∣∣∣ 1

#Rq

∑
r∈Rq

f

(
Γn+

(
1

q
r

)
D(q),

1

q
r

)
−
∫

Γ\ΓH×Td

f dµHdx

∣∣∣∣
≤ c‖f ‖Ck

b
q−

1
2 + d2(2k−2d+1)

2k2 +ε.
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Remarks

We have “continuous version”, e.g. Nimish Shah (1996).

“Average version” over q is due to Jens Marklof (2010) and Han Li (2015).

Our result is an effective version of a result of Manfred Einsiedler, Shahar
Mozes, Nimish Shah, and Uri Shapira (2016).

Andreas Strömbergsson (2015) proved an effective Ratner equidistribution
result for the affine special linear group ASL2(R).

The case d = 1 is “easy”, which is already known at least by Marklof (2010)
and Einsiedler, Mozes, Shah, and Shapira (2016).

The case d = 2 is due to Min Lee and Jens Marklof (2018).

15



Circulant graphs

The 4-regular circulant graph C8(2, 3) and the circulant digraphs C+
8 (2, 3),

C+
8 (2, 5). The corresponding diameters are 2, 3 and 4, respectively.
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Circulant graphs

The 3-regular circulant graph C10(2, 5) and the circulant digraphs C+
10(2, 5),

C+
10(5, 8). The corresponding diameters are 3, 5 and 5, respectively.
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Undirected circulant graphs

Let us fix an integer vector a = (a1, . . . , ad) with distinct positive coefficients
0 < a1 < . . . < ad ≤ q

2 .

We construct a graph Cq(a) with q vertices 1, 2, . . . , q, by connecting vertex i and
j whenever |i − j | ≡ ah mod q for some h ∈ {1, . . . , d}.

If ad <
q
2 , then Cq(a) is 2d-regular, i.e., every vertex has precisely 2d neighbours.

If ad = q
2 , then Cq(a) is (2d − 1)-regular.

Cq(a) is connected if and only if gcd(a1, . . . , ad , q) = 1.
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Diameter of a circulant graph

We endow our circulant graph with a (quasi-)metric by stipulating that the edge
from i to j ≡ i + ah mod q has length 1. We denote the corresponding metric
graphs by Cq(a) itself.

The distance d(i , j) between two vertices is the length of the shortest path from i
to j . The diameter is the maximal distance between any pair of vertices,

diam Cq(a) = max
i,j

d(i , j).

Amir and Gurel-Gurevich (2010) conjectured the existence of a limiting

distribution, as q → +∞, for
diam Cq(a)

q1/d .
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Limiting distribution

Marklof and Strömbergsson (2013) proved the limiting distribution of the
diameters with averaging over q.

The existence of this limiting distribution is a consequence of the main theorem
Einsiedler, Mozes, Shah, and Shapira (2016).

Corollary (El-Baz–H–Lee 2022+)

For every d ≥ 2, there exists a continuous non-increasing function
Ψd : R≥0 → R≥0 with Ψd(0) = 1 and a constant ηd > 0 such that for every
R ≥ 0, we have

Prob

(
diamCq(a)

q1/d
≥ R

)
= Ψd(R) + O

(
q−ηd

)
,

where the implicit constant depends on R.
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Limiting distribution

Distribution of diameters diamCq(a) with average over q
for circulant graphs with d = 2.
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Proof Sketch of Main Theorem: Congruence equations

For r ∈ Rq, there exist A ∈ SLd(R) and x ∈ Rd such that

Γn+(q−1r)D(q) = Γ

(
A x
t0 1

)
∈ Γ\ΓH.

This is equivalent to the existence of A ∈ SLd(R) and x ∈ Rd , uniquely
determined modulo Γ = SLd+1(Z), satisfying(

A x
t0 1

)
(n+(q−1r)D(q))−1 =

(
A x
t0 1

)(
q−

1
d Id 0
t0 q

)(
Id 0

−q−1 tr 1

)
=

(
q1− 1

d A−qx tr
q qx

− tr q

)
∈ Γ.

Let s = qx and B = q
d−1
d A. By the above relation,

s ∈ Zd ,
1

q
(B − s tr) ∈ Md(Z) and det(B) = qd−1 det(A) = qd−1.

So
B ∈ Md(Z) and B ≡ s tr (mod q).
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Parametrizing Rq

For a positive integer q, we also define the following congruence subgroup:

Γ0,d(q) =

{
γ ∈ SLd(Z) : γ ≡

(
∗ ∗
t0 u

)
(mod q), gcd(u, q) = 1

}
.

We can parametrise Rq in terms of Γ0,d(q)\SLd(Z) and (Z/qZ)×.
Let Bq be a set of representatives for Γ0,d(q)\ SLd(Z).

Lemma (El-Baz–H–Lee 2022+)

We have

Rq =

{
r ≡ tγ

(
0
u

)
(mod q) : γ ∈ Bq, u ∈ (Z/qZ)×

}
.

Let B0 =
(
qId−1

1

)
, for any γ ∈ Γ0,d(q)\ SLd(Z) and u ∈ (Z/qZ)×, if we set

r ≡ u tγed (mod q),

s = ued , uu ≡ 1 (mod q),

B = B0γ,

then r ∈ Rq, det(B) = qd−1 and B ≡ s tr (mod q).
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Connection to Kloosterman sums

We have

1

#Rq

∑
r∈Rq

f

(
Γn+

(
1

q
r

)
D(q),

1

q
r

)

=
1

#Rq

∑
γ∈Bq

∑
u∈(Z/qZ)×

f

((
q−1+ 1

d B0γ q−1ued
t0 1

)
, q−1u tγed

)

=
1

#Rq

∑
γ∈Bq

∑
u∈(Z/qZ)×

∑
n∈Zd

f̂n

((
q−1+ 1

d B0γ q−1ued
t0 1

))
e

(
tnu tγed

q

)
,

where

f̂n(g) =

∫
(R/Z)d

f (g , t)e
(
− tnt

)
dt.
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Connection to Kloosterman sums

For A ∈ SLd(R) and y ∈ Rd , let Fn(A, y) = f̂n

((
A y
t0 1

))
.

We have

1

#Rq

∑
r∈Rq

f

(
Γn+

(
1

q
r

)
D(q),

1

q
r

)

=
1

#Rq

∑
γ∈Bq

∑
n∈Zd

∑
m∈Zd

F̂n

(
q−1+ 1

d B0γ,m
) ∑

u∈(Z/qZ)×

e

(
tmūed + tnu tγed

q

)

=
1

#Rq

∑
γ∈Bq

∑
n

∑
m∈Zd

F̂n

(
q−1+ 1

d B0γ,m
)
S(md ,

tn( tγed); q),

where F̂n(A,m) =
∫

(R/Z)d
Fn(A, t) e (− tmt)dt.

Now by the Riemann Hypothesis for curves over a finite field, equidistribution of
Hecke points (due to Laurent Clozel, Hee Oh, and Emmanuel Ullmo 2001), and
counting techniques, we can prove our main theorem.
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Thank you for your attention!


