
Critical Phenomena and universality

• Experimental evidence for the critical exponent.

• Universality: Many systems have the

same exponent.

• Relationship between critical exponents.
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Understanding critical phenomena

• Renormalization group

• An example: the Kosterlitz Thouless transition.

© 2017 Pearson Education, Inc.



KT: Two dimensional melting

• In two dimension, no long range order

• What is the order parameter?

• Fluids have zero shear modulus, solids do

not.
Kosterlitz-Thouless, Part of their Nobel Prize
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KT: Two dimensional melting

• In two dimension, no long range order

• What is the order parameter?

• Zero shear modulus, fluid

• Dislocation unbinding. Dislocations are topological

defects. One has to remove a whole line of atoms

to get back to the perfect solid and cannot get

back to the perfect solid by continuous

deformation of the system.
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What is a renormaliation group  (RG) 

transformation?

• The statistical averages such as the calculation of

the partition function involves summing over all

possible configurations for the variables of interest.

• We do a partial sum over configurations of a certain

length scale in the (grand) partition function, usually

with some approximations.

• We then redefine parameters so that the result of

the partial sum involves an energy of the same

functional form as the original energy.

• The relationship between the new and original

parameters is called a RG transformation.
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KT RG

• We consider a collection of dislocations  so the energy of
two dislocations is (for a pair of opposute charge, q = −q′)

𝐻0 = 2𝑞′𝑞 ln
𝑟

𝑟0
+ 2𝜇′, for r>𝑟0, the size of a dislocation.

• Assume low density with , 𝑦0 = 𝑒−𝛽𝜇′ small, 𝛽 = 1/𝑘𝑇

• Do RG transformation by integrating out in the grand

partition function configurations with the pairs of opposite

charges that are close by with 𝑟0<r<𝑟0+dr. The length 

scale of the problem, 𝑟0, is increased but the free energy 

is of the same form . 

• We have renormalized pairs with renormalized 𝑟0, 𝑦0 and

a renormalized coupling K = 𝛽𝑞2, 𝛽 =
1

𝑘𝑇
.
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KT: screening by other pairs

• 𝐻0 = 2𝑞′𝑞 ln
𝑟

𝑟0
+ 2𝜇’ for the dislocations of charges q 

and q’

• The effect of the close by pairs of ooposite charges  is to

screen out the the interaction the charges and make q

smaller.

• The free energy depends on 𝑒−𝛽𝐻. We perform the RG

transformation on the screening term /kT so that the 

functional ln r  form is maintained.

• Ln(r) is of the same form as the electric potential between

charged rods. We shall us the language of electrostatics.
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The screening is from the polarizability 

of pairs

• The polarizability p (change of the dipole moment per 

unit electric field) of a pair of charges ±𝑞 separated by 

a distance r but randomly oriented (diple moment 𝑚 =
𝑞Ԧ𝑟) under an electric field E is determined as follows: 

• Energy H = −Eqrcosθ + 𝑜𝑡ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠

• p = q𝜕𝐸 < rcosθ >

• < rcosθ >= 𝑒−𝐻/𝑘𝑇׬ rcosθ/ ׬ 𝑒−𝐻/𝑘𝑇,𝛽 = 1/𝑘𝑇

• 𝜕𝐸 < rcosθ > = 𝑞 ׬ 𝑒−𝐻/𝑘𝑇( rcosθ)2/kT/ ׬ 𝑒−𝐻/𝑘𝑇

• < co𝑠2θ > = 1/2

• p = q𝜕𝐸 < rcosθ > = ( qr)2/2kT



• p = 𝛽𝑞2𝑟2/2,

• Density of  dislocation pairs in annulus of width dr:

• 𝑑𝑛 = 2𝜋𝑟𝑑𝑟𝑒−𝛽𝐻0/𝑟0
4

• Susceptibility from pairs in an annulus of width dr:

• 𝑑𝜒 = 𝑝𝑑𝑛 = 𝐾𝜋𝑑𝑥𝑦0
2𝑥−2𝐾+3, 𝑥 = 𝑟/𝑟0, 𝑦0 = 𝑒−𝛽𝜇′

• Coupling K = 𝛽𝑞2 due to screening: 𝐾𝑠 = 𝐾 − 1׬
∞
𝑑𝜒

• 1/𝐾𝑠 = 1/(𝐾 − 1׬
∞
𝑑𝜒) =

1

𝐾
+ 1׬

∞
𝑑𝜒/K,
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Do RG transformation with.

• 1/𝐾𝑠 = 1/𝐾 + 1׬
∞
𝑑𝜒/𝐾 (1)

• 𝑑𝜒/𝐾 = 𝜋𝑑𝑥𝑦0
2𝑥−2𝐾+3

• Do RG transformation by integrating out contributions

with x from 1 to b:

• 1/𝐾𝑠 = 1/𝐾 + 1׬
𝑏
𝑑𝜒/𝐾 + 𝑏׬

∞
𝑑𝜒/𝐾

• 𝑑𝐾−1 = 1׬
𝑏
𝑑𝜒/𝐾 = (𝑏 − 1)𝜋𝑦0

2

• Introduce renormalzized 𝑟0, 𝑦0 so the new equation looks

the same as eq. (1).

• 𝑏׬
∞
𝑑𝜒/𝐾 = 1׬

∞
𝜋𝑑𝑢𝑧0

2𝑢−2𝐾+3, 𝑢 =
𝑥

𝑏
, 𝑧0

2 = 𝑦0
2 𝑏−2𝐾+4,

• 𝑑𝑦0
2 = 𝑦0

2 (𝑏−2𝐾+4−1)
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RG eqn
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• 𝑑𝐾−1 = (𝑏 − 1)𝜋𝑦0
2

• 𝑑𝑦0
2 = 𝑦0

2 (𝑏−2𝐾+4−1)

• Let b=1+dl,

• 𝑑𝐾−1/𝑑𝑙 = 𝜋𝑦0
2

• 𝑑𝑦0 /dl = 𝑦0 (2 − 𝐾)

• At K=2, y=0, the parameters do not change. This is called

a fixed point of the transformation.



RG eqn
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• 𝑑𝐾−1/𝑑𝑙 = 𝜋𝑦0
2

• 𝑑𝑦0 /dl = 𝑦0 (2 − 𝐾)

• Near the fixed point write 𝐾−1 = 1/2 + 𝑡

• 𝑡𝑑𝑡/𝑑𝑙 = 𝜋𝑦0
2𝑡 (1)

• 𝑦0 𝑑𝑦0 /dl = 4𝑦0 𝑡𝑦0 (2)

• 4(1)-𝜋(2), get 2𝑡2 −
𝜋𝑦0

2

2
= 𝑐, a constant 



Flow diagram, • Different solutions for

different cx=t

𝑦2 = 𝑦02/4𝜋3
𝑑𝑦0 /dl = 4𝑦0 𝑡

Solid on the 

left
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Fixed point analysis for general 

systems

•
𝑑𝐾−1

𝑑 ln 𝐿
= 𝑓 𝐾−1 . At a fixed point 𝐾𝑐

−1, f=0.

• Let 𝜖 = 𝐾−1 − 𝐾𝑐
−1, 𝜖 is just (T−𝑇𝑐)/𝑇𝑐, then

•
𝑑𝜖

𝑑 ln 𝐿
= 𝑓 𝐾𝑐

−1 + 𝜖 = 𝑔 𝜖 , g(0)=0

• Close to the fixed point

•
𝑑𝑙𝑛 𝜖

𝑑 ln 𝐿
= 𝑦, 𝑦 = 𝑔′ 0 . 𝜖 = 𝜖0𝐿

𝑦,

• We also have, for the free energy,

• 𝐹(𝜖𝐿𝑦) = 𝐿𝑑𝐹(𝜖 ) for spatial dimension d. This is
called the scaling hypothesis.
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Magnetic systems
Atoms in magnets are charged particles with angular momenta S called 

spins  that, in some units, are interger or half integer.  

Their magnetic moments M =  𝑔𝜇𝐵S where 𝑔𝜇𝐵 is some constant. 

In a magnetic field B, the energy  is -H.M = -𝑔𝜇𝐵𝐻.S.

Including heat change, we get the total energy change of a magnetic 
system is

dE=TdS+other terms-H.dM

One can define a quantity G=F+BM so that dF’=-SdT+MdH+other
terms

Thus 
𝜕𝐺

𝜕𝐻
= 𝑀

For processes under a constant magnetic field and at fixed 
temperature, G is minimized.



Magnetic system, 

• For the magnetic system, we have the coupling

j=kT/J and H=magnetic field /kT, Similar

calculations give, 𝜖 = (T−𝑇𝑐)/𝑇𝑐

• 𝐺(𝜖𝐿𝑦, 𝐻 𝐿𝑥) = 𝐿𝑑𝐺(𝜖, 𝐻)

• This can be written as (𝜆 = 𝐿𝑑 , 𝑎𝜖 =
𝑦

𝑑
, 𝑎𝐻 = 𝑥/𝑑)

• 𝐺(𝜖𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝐺(𝜖, 𝐻)
• This is called the static scaling hypothesis.

• From this, we can obtain different the critical

exponents and the relationships between them.
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• Derivation of critical exponents

from the static scaling hypothesis.
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Critical exponents

• 𝐺(𝜖𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝐺(𝜖, 𝐻)
• Differentiate both sides wrt H

• 𝜆𝑎𝐻𝜕𝐺(𝜖𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻)/𝜕(𝐻 𝜆𝑎𝐻) = 𝜆𝜕𝐺(𝜖, 𝐻)/𝜕𝐻
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𝑀 𝜖, 0 ∝ (−𝜖)𝛽, 𝜖 = (T−𝑇𝑐)/𝑇𝑐

• 𝜆𝑎𝐻𝑀(𝜖0𝜆
𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝑀(𝜖0,𝐻)

• Consider H=0

• 𝜆𝑎𝐻−1𝑀(𝜖𝜆𝑎𝜖 , 0) = 𝑀(𝜖, 0)

• Take 𝜆 =(-1/𝜖 }1/𝑎𝜖

• 𝑀 𝜖, 0 = −𝜖 (1−𝑎𝐻)/𝑎𝜖𝑀(−1,0) ∝ (−𝜖)𝛽

• 𝛽 = (1 − 𝑎𝐻)/𝑎𝜖
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𝑀 0,𝐻 ∝ (𝐻)1/𝛿, 

• 𝜆𝑎𝐻𝑀(𝜖𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝑀(𝜖, 𝐻)

• Consider 𝜖 =0, H small

• 𝜆𝑎𝐻−1𝑀(0,𝐻 𝜆𝑎𝐻) = 𝑀(0,𝐻)

• Take 𝜆 =(H}−1/𝑎𝐻

• 𝑀 0,𝐻 = 𝐻(1−𝑎𝐻)/𝑎𝐻𝑀(0,1) ∝ (𝐻)𝛿

• 𝛿 = 𝑎𝐻/(1 − 𝑎𝐻)
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𝜒𝑇 𝜖, 0 ∝ (−𝜖)−𝛾, 

• 𝜆𝑎𝐻𝑀(𝜖𝜆𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝑀(𝜖, 𝐻)

• Magnetic susceptibility at constant T: 𝜒𝑇 = 𝜕𝑀/𝜕𝐻

• 𝜆2𝑎𝐻𝜒𝑇(𝜖𝜆
𝑎𝜖 , 𝐻 𝜆𝑎𝐻) = 𝜆𝜒𝑇(𝜖, 𝐻)

• Take 𝜆 =(-1/𝜖 }1/𝑎𝜖, H=0

• 𝜒𝑇 𝜖, 0 = −𝜖 (1−2𝑎𝐻)/𝑎𝜖𝜒𝑇(−1,0) ∝ (−𝜖)−𝛾′

• 𝛾′ = (2𝑎𝐻 − 1)/𝑎𝜖

• Recall that  𝛿 = 𝑎𝐻/(1 − 𝑎𝐻), 𝛽 = (1 − 𝑎𝐻)/𝑎𝜖

• 𝛾′ = 𝛽(𝛿 − 1)
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