Critical Phenomena and universality

* Experimental evidence for the critical exponent.

* Universality: Many systems have the
same exponent.

* Relationship between critical exponents.

© 2017 Pearson Education, Inc.
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F1a. 1.8. Measurements on eight fluids of the coexistence curve (a reflection of the PpT
surface in the pT plane analogous to Fig. 1.3). The solid curve corresponds to & fit to a
cubic equation, i.e. to the choice B = }, where p — p, ~ (— €)?. From Guggenheim (1945).

is the zero-field magnetization M because M is a measure of the degree
to which the magnetic moments are aligned throughout the crystal.
Here again the classic Weiss theory predicts a quadratic dependence
M2 c (T, — T), whereas we see that M3 oc (T, — T') would seem to be
an appropriate fit to the measurements of Heller and Benedek shown
in Fig. 1.9.
It is customary to say that the order parameter varies as (—e)?
where
_T-T

€= —p (1.2)

c

and where the critical-point exponent B typically has a value in the
range 0-3-0-5. It is important to stress that it is not necessary to have a
strict proportionality between the order parameter and (—e)? in order
to be able to define a critical-point exponent. In fact, if we knew that a
simple relation of the form M = #(—¢€)? were valid, then three meas-
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urements in the critical region would suffice to determine the exponent
B! In practice there are frequently correction terms, so that M might
have the form Z,(—e¢)’{1 + B(—¢€)* +...} with z > 0. Hence a more
natural definition of the critical-point exponent § is

B = lim ——, (1.3)

where the correction terms will drop out in taking the limit. In fact,
critical-point exponents are frequently determined by measuring the
slopes of log-log plots of experimental data, since 'Hospital’s rule,
together with eqn (1.3), implies that 8 = d(In M)/d{In (—¢)}. Although
this is a particularly quiek-methed-of-determining the exponent, it
requires a prior knowledge of the critical temperature, so_that in prac-
tice one must frequently resort to plotting M /2 for several trial values of
B until a value is found which produces a straight line.

At one time many workers believed that all materials have the same
exponents. For example, we remarked above that all eight fluids shown
in the Guggenheim plot, Fig. 1.8, appear to have roughly the same
exponent, B ~ }. Hence it was rather satisfying when the first accurate
measurements of 8 for a magnetic system, those of Heller and Benedek
in 1962, produced the value 8 = 0-335 + 0-005 (cf. Fig. 1.9), and
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F1a. 1.9. Dependence upon temperature of the cube of the zero-field magnetization for
MnF,. Since MnF; is an antiferromagnet instead of & ferromagnet, the critical tem-
perature is denoted by Ty rather than by T',. After Heller and Benedek (1962).
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subsequent measurements on other magnetic systems also appeared
to yield similar values of 8. However, this once-hoped-for universality
has yet to be more rigorously demonstrated, and there now exists a
growing list of materials for which B = } is definitely outside the
experimental error. For example, particularly accurate measurements
supporting 8 = 0-354 for helium are shown in Fig. 1.10.
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F1a. 1.10. Measurements of the coexistence curve of helium in the neighbourhood of its
critical-point. The critical-point exponent 8 has a value of 0-354. After Roach (1968).

For some of these materials, however, the source of the discrepancy
may be due to complicating factors such as the lattice compressibility.
In Fig. 1.11, for example, are shown some recent data on the magnetiza-
tion of CoO, which contracts suddenly on cooling through the critical
temperature so that the exchange energy between neighbouring atomic
moments increases. Hence when the critical temperature is approached
from below, the system finds the exchange energy and hence the
effective critical temperature decreasing (k7, is generally thought to
be a linear function of J, as one might imagine from dimensional analy-
gis), and the measured critical-point exponent B is decreased below
what one would expect for an incompressible lattice. Thus the value
B = 0-244 + 0-015 is obtained from the slope of the log-log plot of the
CoO data in Fig. 1.11 whereas, when corrected for this lattice contrac-
tion effect, the data indicate 8 = 0-290 + 0-025.
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In Chapter 3 we shall define a good many of the commonly used
critical-point exponents—suffice it to say here that there are essentially
as many exponents as there are singular functions, and the Greek
alphabet is fast being exhausted. Three of the most common critical-
point exponents—c«’, B, and y'—are defined for fluid and magnetic
systems in Table 1.1. Note that minus signs are associated with the
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Fia. 1.11. Dependence of the logarithm of the magnetic Bragg peak intensity from
neutron scattering from CoO upon the logarithm of (T'y — T'). This intensity is propor-
tional to the square of the spontaneous magnetization. The upper curve is a least squares
fit (LSF) to a power law, assuming that the lattice is incompressible. The lower curve is a
similar least squares fit to data that have been corrected for the lattice compressibility.
The critical exponent obtained from the lower curve is clearly in better agreement than
the upper curve with the anticipated value of 8 ~ 0-3. After Rechtin, Moss, and
Averbach (1970).

exponents for response functions such as the specific heat, compressi-
bility, and susceptibility* which are expected, theoretically speaking, to
diverge to infinity at the critical point; hence the exponents «’ and »’
are defined such that they are positive quantities. Of course, no one
has ever measured an infinite value for any of these response functions.
This is not only because we never can make measurements arbitrarily

close to T', (measurements for ¢ < 10~% or closer than one part in a
3—1.P.T.
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TasBLE 1.1

Representative critical-point exponents for fluid and magnetic systems.
For simplicity we have only considered here the approach to T, from the
low-temperature side. More complete tables are shown in Chapter 3

Definition 4 B ¥ o’ +28+v"

Fluid Cyave~ (~€)™%  po—po~(—¢)f Kp~(—e)¥ —
Magnet Cumo~(—€)™% Myoo~(—€)® xr~(—e)~" -
Typical experimental
values
Fluid or magnet 0-0-2 0-3-0-5 1-1-1-4 <2
Theories
van der Waals or Weiss 0 (discontinuity) 3 1 2
Two dimensional Ising

model 0 (log) % ¥ 2

million from the critical temperature are extremely rare) but also be-
cause some sort of rounding-off of the data is frequently found, as we
see, for example, in the specific-heat data shown in Fig. 1.12.
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Fia. 1.12. Dependence of the specific heat upon the logarithm of | T — Ty| for cobalt
chloride. The data appear to be fitted fairly well by a logarithmic divergence except
within a few millidegrees of T'y. After Kadanoff et. al. (1967).

1.2.2. Results from model systems

The number of model systems which have been studied as a means of
gaining insight into the nature of phase transitions and critical pheno-
mena is extremely large and therefore we shall limit our remarks here
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to the two models we introduced above, the Ising model and the Heisen-
berg model. Although both these models were proposed in the early
years of this century, it is only within the last two decades that much
of their richness has come to be appreciated.

The highlight in any discussion of the Ising model is perforce

4-0 1 l
|
f
|

30

Culk

2-0

—— e

1-0

1-0 1-5 2:0
T/T,

0-0
00

F1a. 1.13. The solid curve shows the specific heat of the two-dimensional Ising model as

obtained from the exact solution of Onsager (solid curve), from the Bethe approximation

(dotted curve), and the Kramers-Wannier and Kikuchi approximation (broken curve).
After Domb (1960).

Onsager’s solution, in 1944, for the H = 0 partition function of a two-
dimensional lattice. From the partition function he was able to demon-
strate that the specific heat possesses a logarithmic divergence at T,
when approached from either side of the transition. This result stood in
dramatic contradistinction to the predictions of the mean field theory
and other theories of cooperative phenomena of that day which pre-
dicted a simple discontinuity in the specific heat (cf. Fig. 1.13). In



Understanding critical phenomena

* Renormalization group
* An example: the Kosterlitz Thouless transition.
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KT: Two dimensional melting

* In two dimension, no long range order
* What is the order parameter?

 Fluids have zero shear modulus, solids do
not.

Kosterlitz-Thouless, Part of their Nobel Prize

© 2017 Pearson Education, Inc.



U Lhstocations

Figure 4 Structure of an edge dislocation.
The deformation may be thought of as caused
by inserting an extra plane of atons on the
upper half of the y axis. Atoms in the upper
half-crystal are compressed by the insertion;
those in the lower half are extended.

Figure 5 A dislocation in a two-dimensional bubble raft. The dislocation is riost easily seen by
turning the page by 30° in its plaue and sighting at a low angle. (W. M. Lomer, after Bragg and
Nve.)

Figure 6 Motion of a disloca- TO0Q0 &8 T o O & o -
tion under a shear tending to ¢

move the upper surface of the

specimen  to  the nght

(D. Hull ) — . Vo



Understanding critical phenomena

* Renormalization group
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KT: Two dimensional melting

* In two dimension, no long range order
* What is the order parameter?
* Fluids have zero shear modulus, solids do not
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KT: Two dimensional melting

In two dimension, no long range order

What is the order parameter?

Zero shear modulus, fluid

Dislocation unbinding. Dislocations are topological
defects. One has to remove a whole line of atoms
to get back to the perfect solid and cannot get
back to the perfect solid by continuous
deformation of the system.

© 2017 Pearson Education, Inc.



What is a renormaliation group (RG)
transformation?

* The statistical averages such as the calculation of
the partition function involves summing over all
possible configurations for the variables of interest.

« We do a partial sum over configurations of a certain
length scale in the (grand) partition function, usually
with some approximations.

* We then redefine parameters so that the result of
the partial sum involves an energy of the same
functional form as the original energy.

* The relationship between the new and original
parameters is called a RG transformation.

© 2017 Pearson Education, Inc.



KT RG

* We consider a collection of dislocations so the energy of
two dislocations is (for a pair of opposute charge,q = —q')

H, = 2q'q ln(

« Assume low density with , y, = e #* small, § = 1/kT

TL) + 24, for r>r the size of a dislocation.
0

Do RG transformation by integrating out in the grand
partition function configurations with the pairs of opposite
charges that are close by with ry<r<ry+dr. The length
scale of the problem, ry, Is increased but the free energy
Is of the same form .

 We have renormalized pairs with renormalized ry, y, and

1

a renormalized coupling K = Bg?%, B = —.

© 2017 Pearson Education, Inc.



KT: screening by other pairs

« Hy=2q'gqln (TL) + 2u’ for the dislocations of charges g
0
and q’

* The effect of the close by pairs of ooposite charges is to
screen out the the interaction the charges and make ¢
smaller.

« The free energy depends on e~#H_ We perform the RG
transformation on the screening term /KT so that the
functional In r form is maintained.

« Ln(r) is of the same form as the electric potential between
charged rods. We shall us the language of electrostatics.

© 2017 Pearson Education, Inc.



The screening Is from the polarizability
of pairs

The polarizability p (change of the dipole moment per
unit electric field) of a pair of charges +q separated by
a distance r but randomly oriented (diple moment m =
gr) under an electric field E is determined as follows:

Energy H = —Eqrcos0 + other terms

p = qdg < rcosd >

< rcos® >= [ e H/*T rcosB/ [ e H/*T B = 1/kT
0r < rcos® >=q [ e H/KT(rcos0)?2 /KT/ [ e H/KT
< c0s%0>=1/2

p = qdg < rcos® > = (qr)%/2kT



* p=pq’r?/2,

« Density of dislocation pairs in annulus of width dr:
* dn = 2nrdre PHo/r}

e Susceptibility from pairs in an annulus of width dr:

—2K+4+3 . _ B
, X =T1/1y, Vg =€ Pu

e dy=pdn=Kndxysx
* Coupling K = Bg? due to screening: K=K — floo dy

YRS =1/(K~ [ dp) =+ [] dx/K

© 2017 Pearson Education, Inc.
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Do RG transformation with.

.+ 1/KS=1/K+ [ dx/K (1)
e dy/K = ndxyéx—2K+3

Do RG transformation by integrating out contributions
with x from 1 to b:

+ 1/KS=1/K+ [ dy/K + [” dx/K

[0 dx/K =

* Introduce renormalzized ry, y, SO the new equation looks
the same as eq. (1).

o R 2., —2K+3 _ X 2 _ .2 1.—-2K+4
|, dx/K = [ mduzgu u=7-,25 =Y5 b ,

© 2017 Pearson Education, Inc.



RG eqgn

« dK1=(b-1Dmy¢

- dyg =y5 (b7*T-1)
* Let b=1+dl,

e dK71/dl = my§

* dyy /dl=y, (2 —-K)

« At K=2, y=0, the parameters do not change. This is called
a fixed point of the transformation.

© 2017 Pearson Education, Inc.



RG eqgn

. dK"1/dl = my?

e dyy, /dl=y, (2—-K)

* Near the fixed pointwrite K™1 =1/2+t
e tdt/dl =myst (1)

* Yo Ay /dl =4y, tyg (2)

2

- 4(1)-m(2), get 2t% — % — ¢, a constant

© 2017 Pearson Education, Inc.



Flow diagram, Different solutions for

X=t

y? = yo’/Am’
dy0 /dl=4y0t

Solid on the

left

© 2017 Pearson Education, Inc.

different c

y=x/mt

s/ y=-=x/m

c>0)
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Fixed point analysis for general
systems

dK~1
dlnlL
e Lete=K1—-K 1 eisjust(T-T.)/T,, then

= f(Kt +e) = g(e), g(0)=0

dlnlL
* Close to the fixed point

din e
dinL

 We also have, for the free energy,

* F(el?) = L9F(€) for spatial dimension d. This is
called the scaling hypothesis.

= f(K~1). At a fixed point K;1, f=0.

=y, y=g9'(0). € = ¢L?,

© 2017 Pearson Education, Inc.



Magnetic systems

Atoms in magnets are charged particles with angular momenta S called
spins that, in some units, are interger or half integer.

Their magnetic moments M = gugS where gug is some constant.
In a magnetic field B, the energy is-H.M =-gugH.S.

Including heat change, we get the total energy change of a magnetic
system is

dE=TdS+other terms-H.dM

One can define a quantity G=F+BM so that dF’=-SdT+MdH+other
terms
Thus 9% _ M
0H
For processes under a constant magnetic field and at fixed

temperature, G is minimized.



Magnetic system,

* For the magnetic system, we have the coupling
]=kT/J and H=magnetic field /KT, Similar
calculations give, e = (T-T,) /T,

e G(el?, HL*) = L%G(e H)

+ This can be written as (1 = L%, a. = >, ay = x/d)
e G(eA%, H A%) = AG(e H)

* This Is called the static scaling hypothesis.

* From this, we can obtain different the critical
exponents and the relationships between them.

© 2017 Pearson Education, Inc.



* Derivation of critical exponents
from the static scaling hypothesis.
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Critical exponents

* G(eA%, H A"H) = AG(e H)
 Differentiate both sides wrt H
o \*HQG(eA%, H A%H)/0(H A%H) = A0G(e H)/0H

© 2017 Pearson Education, Inc.



M(e 0) o« (=€), e=(T-T,)/T.

A%H M (eq A%, H %) = 1M (€, H)

Consider H=0

A%~ IM (€A%, 0) = M(€ 0)

Take 1 =(-1/e /%%

M(e 0) = (—e)(t-aw)/aepf(—1,0)  (—€)P
p=0-ay)/ac



M(0 H) o (H)Y/?,

e A%HM (€A%, H 1%H) = AM (e H)

« Consider € =0, H small

e AH=1M(0,H A%H) = M(0, H)

» Take A =(H} 1/%n

e M(0,H) = H(~aw)/eup(0,1) « (H)®
* 0 =ay/(1—ay)

© 2017 Pearson Education, Inc.



)(T(E, O) x (—€)77,

e MMM (eA%, H A*H) = AM (e H)

« Magnetic susceptibility at constant T: y; = dM /0H
o A2y (eA%, H A%H) = Axr(€ H)

« Take A =(-1/e /%, H=0

o xr(€0) = (—e)72m)/ ey, (=1,0) < (=€)

e V' = (2ay —1)/a,

e Recallthat § = ay/(1—ay), =1 —ay)/a,

c Y =B -1)

© 2017 Pearson Education, Inc.
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188 SCALING LAW HYPOTHESIS
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Fic. 11.4. Scaled magnetic field £ is plotted against scaled magnetization s for the
insulating ferromagnet CrBrg, using data from seven supercritical (T > T) and from
eleven subecritical (7 < T,) isotherms. Here ¢ = M/[M,. After Ho and Litster (1969).

Note that the determination of the values of two of the exponents is
not sufficient to check the validity of the scaling predictions; we need
at least three exponents. Of course, if we assume the validity of the
scaling hypothesis, (11.30), then determination of two exponents
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F1e. 11.5. A plot of ~2 against £/, where » is the scaled magnetization and £ is the
scaled magnetic field. The data are from measurements on the metallic ferromagnet
nickel. Here o = M[M,. After Kouvel and Comly (1968).

suffices to fix the values of all the remaining exponents. For example,
the reader can easily verify from Table 11.1 that for CrBr, the data of
(11.64) together with the scaling assumption imply that

~ 0-05,

~ 1-6,

~ 0-03,

~ 0-60.

(11.66)

<« 8 P g

14—1.2.71.
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